
MASTER IN ARTIFICIAL INTELLIGENCE (UDC - USC - UVigo)

REASONING AND PLANNING exam. January 8th, 2024

Surname:

First Name:

INSTRUCTIONS This exam covers units 1-6 and is weighted with a maximum of 42 points (pt)
from a total of 100 pt in the whole course (Unit 7 is not covered in the exam and weights 8 pt). For
the test, use the original statement sheet and avoid corrections or unclear marking (ask for a new blank
sheet if needed). Completion time = 2 hours.

— EXAM —

Exercise 1 (20pt). Each question has at least one correct answer and its total score depends on whether
you check: some incorrect answer = -3pt; all the correct answers = 5pt; only correct answers, but not all
= 3pt; leaving blank = 0pt. A total negative score in Exercise 1 counts as 0pt in the rest of the exam.

1.1) Mark those formulas below that are stronger than p→ ¬q in classical propositional logic:

� p ∧ ¬q
� p

� ¬q
� p ∧ ¬p

1.2) The logic program P with rules p :- not q, r. r :- p. is stratified. Mark the rules below that,

if they were (individually) added to P , they would make the result a non-stratified program.

� p :- r. � q :- r.

� q :- not p. � r :- q.

1.3) Given the following logic program p :- q. p :- not p, not q.

� the reduct with respect to {q} is the program p :- q.

� the reduct with respect to {q} is the program p :- q. p :- not p.

� the reduct with respect to ∅ is the program p :- q. p.

� the reduct with respect to {p} is the program p :- q. p.

� the reduct with respect to {p, q} is the program

1.4) The rule p :- not p, not q. used above is actually equivalent to the formula ¬¬p∨¬¬q in the logic

of Here-and-There (HT), but the latter is not equivalent to p ∨ q in that logic. Mark those HT
interpretations that are HT models of ¬¬p ∨ ¬¬q but not of p ∨ q.

� H = ∅, T = {p}
� H = {q}, T = {q}
� H = ∅, T = {p, q}
� H = {p, q}, T = {p}



Explanations for the test

1.1) The formula p→ ¬q, call it α, has only one countermodel {p, q} (when the antecedent is true and
the consquent false).

• This formula, p ∧ ¬q, only has one model {p} which makes α true.

• The formula p has two models, but one of them {p, q} is a countermodel of α.

• The formula ¬q makes α true (it makes true its consequent)

• The formula p∧¬p has no models so it is the strongest possible formula. All models of p∧¬p
are models of α, because p ∧ ¬p has no models.

1.2) The program graph has three dependences: p depends negatively on q; p depends positively on r;
and r depends positively on p.

• Adding p:-r does not change the program dependences (p still depends positively on r).

• Adding q:-r creates a negative loop: p depends negatively on q, which depends on r which in
its turn depends on p.

• Adding q:-not p creates a negative loop: p depends negatively on q, and q depends negatively
on p.

• Adding r:-q does not create any new loop.

1.3) Answer number 2 is incorrect: the program reduct never contains a negation (all not’s are removed).
On the other hand, any positive rule is preserved untouched in the reduct: this applies to the first
rule p :- q, that must always be present in all reducts, so answer 5 is also incorrect. On the other
hand, as soon as we have p or q in the assumption, the second rule must be removed, so answer 4
is incorrect. The other two answers are correct.

1.4) Answer 4 is obviously incorrect, since an HT interpretation must satisfy H ⊆ T by construction.
The models of the formula ¬¬p∨¬¬p are those where in the assumed atoms T we have either p or
q or both, but it does not impose any restriction on the proved atoms H. Thus, answers 1, 2, 3 are
all models of ¬¬p ∨ ¬¬p. However, to be a model of p ∨ q we must additionally have either p or q
(or both) proved in H. So answers 1 and 3 are not models of p ∨ q.



Exercise 2 (10pt). Write an ASP program that generates all ways to place 5 rooks in a chessboard
so that they do not attack each other. Use predicate rook(X,Y) meaning there is a rook at row X and
column Y. (NOTE: in chess, rooks attack other pieces in the same row or in the same column).

#const n=8.

cell(1..n,1..n).

5 {rook(X,Y): cell(X,Y)} 5.

:- rook(X,Y), rook(X,Y’), Y!=Y’.

:- rook(X,Y), rook(X’,Y), X!=X’.

#show rook/2.

Exercise 3 (8pt). The following telingo program tries to move a robot in a grid from an initial position
at (0,0) to a goal position at (3,4). Complete the program to fulfil the two missing requirements: (1)
the robot must reach the goal position at the end; (2) the robot cannot step into a wall.

#program initial.

grid(0..3,0..4).

wall(0,2). wall(2,2). wall(3,2). robot(0,0). goal(3,4).

#program dynamic.

1 { robot(X+1,Y); robot(X-1,Y); robot(X,Y+1); robot(X,Y-1) } 1 :- ’robot(X,Y).

:- robot(X,Y), not _grid(X,Y). % Do not step out of the grid

:- robot(X,Y), _wall(X,Y). % Do not step into a wall

#program final.

:- robot(X,Y), not _goal(X,Y). % Reach the goal at last state

Exercise 4 (4pt). Write a formula in Description Logic (DL) that describes the set of individuals with
children (use relation has child) being all of them students (use concept name Student).

∃has child u ∀has child .Student


