Surname:

\qquad

First Name:

INSTRUCTIONS This exam covers units 1-6 and is weighted with a maximum of $\mathbf{4 2}$ points ($\mathbf{p t}$) from a total of $\mathbf{1 0 0} \mathbf{p t}$ in the whole course (Unit 7 is not covered in the exam and weights 8 pt). For the test, use the original statement sheet and avoid corrections or unclear marking (ask for a new blank sheet if needed). Completion time $=2$ hours.

- EXAM -

Exercise 1 (20pt). Each question may have $n \geq 1$ correct answers. For each question: Checking all correct answers $=\mathbf{5 p t}$; Checking only correct answers, but not all $=\mathbf{3 p t}$; Checking an incorrect answer $=\mathbf{- 3 p t}$; Leaving blank $=\mathbf{0 p t}$. A total negative score in Exercise 1 counts as 0% in the rest of the exam.
1.1) Mark those formulas below that are tautologies in classical propositional logic:

```
\(p \rightarrow(p \rightarrow p)\)
\(\square(p \rightarrow p) \rightarrow p\)
\(\square q \wedge \neg p \leftrightarrow \neg(p \rightarrow q)\)
\(\square p \wedge \neg p \rightarrow q\)
```

1.2) Mark those clauses that "occur in" (that is, can be derived from) the transformation of ($p \wedge \neg q \leftrightarrow r$) into Conjunctive Normal Form (CNF)

1.3) Given the following logic program p :- not $\mathrm{q}, \mathrm{r} . \quad \mathrm{r}$:- not p .
\square the reduct with respect to $\{q\}$ is the program $\mathrm{p}:-\mathrm{r} . \quad \mathrm{r}$.
\square the reduct with respect to \emptyset is the program $\mathrm{p}:-$ not $q, r . \quad r:-$ not p.
\square the reduct with respect to $\{p\}$ is the program $\mathrm{p}:-\mathrm{r}$.
\square the reduct with respect to $\{p\}$ is the program $\begin{aligned} & \mathrm{p}:-\mathrm{r} . \quad \mathrm{r} \text {. } \\ & \square\end{aligned}$
\square the reduct with respect to $\{p, q\}$ is the program
1.4) Which of the following interpretations satisfy the formula $p \rightarrow \neg q$ in the logic of Here-and-There:

$$
\begin{aligned}
& \square \quad H=\emptyset, T=\{p\} \\
& \square \quad H=\{p\}, T=\emptyset \\
& \square \quad H=\{q\}, T=\{q\} \\
& \square \quad H=\{p\}, T=\{p, q\}
\end{aligned}
$$

Exercise 2 (5pt). A logic program contains an extensional database with facts for two predicates with the following meanings: teaches $(P, C)=$ "professor P teaches course C "; enrolled (S, C) = "student S is enrolled in course C". Write a rule (without aggregates) to obtain in query (S) the students S enrolled to more than one course taught by professor enrique.

```
query(S) :-
```

Exercise 3 (5pt). A logic program is used to compute several answer sets with a predicate assigned (C, R, N) meaning that course C is assigned classroom R for N hours. Write a \#minimize clause to minimize the total number of hours assigned to classroom 25.
\square

Exercise 4 (12pt). A player of straight poker receives 5 cards at the beginning of the game. Write an ASP program that generates all possible initial hands (for a single player) with a full house, that is, three cards with the same rank x, plus other two cards with the same rank y different from x. Use predicate hand (R, S) meaning that we get a card with rank R for suit S. For instance hand (2 , diamonds) means we got the 2 of diamonds.

```
suit(club;diamond;spade;heart).
rank(2..10;jack;queen;king;ace).
```

