REASONING WITH INACCURATE INFORMATION

VICENTE MORET BONILLO

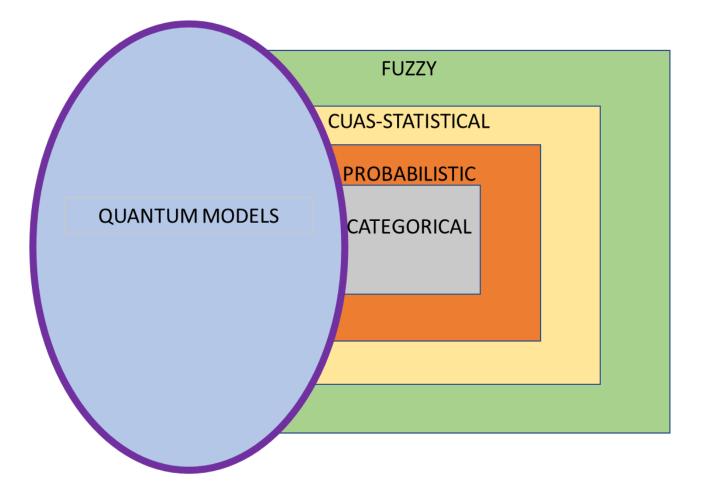
Senior Member IEEE

REASONING WITH INACCURATE INFORMATION

It may happen that the information available is incomplete.	In many cases the information available is not sufficient to make a categorical decision.	Sometimes the available information we handle is reactly true.
The information we use is usually imprecise.	Normally the real world is non-deterministic. Intelligent systems are not always governed by deterministic laws, so that general laws are not always applicable.	Our model is often incomplete. There are ma phenomena whose cause unknown.
	The lack of agreement between experts in the same field is frequent. Both circumstances make it difficult to include knowledge in a Rule-Based System.	

REASONING WITH INACCURATE INFORMATION

- CATEGORICAL MODELS
- · PROBABILISTIC MODELS
- · CUASI-PROBABILISTIC MODELS
 - · CERTAINTY FACTORS
 - THEORY OF EVIDENCE
- FUZZY LOGIC
- · VECTORIAL APPROACHES
- QUANTUM MODELS



CLASSIC CATEGORICAL MODEL

DOMAIN:

- X = {ALL POSSIBLE FACTS} = {X(1), X(2),..., X(n)}
- Y = {ALL POSSIBLE INTERPRETATIONS} = {Y(1), Y(2),..., Y(m)}

PROBLEM:

- f (X)
 - f [X(i)] = 0 if X(i) is not a manifestation of my problem
 - f [X(i)] = 1 if X(i) is a manifestation of my problem
- g (Y)
 - g [Y(j)] = 0 if Y(j) is not a possible solution of my problem
 - g [Y(j)] = 1 if Y(j) is a possible solution of my problem

KNOWLEDGE

• E = E (X , Y)

LOGICAL PROBLEM

• E (f \rightarrow g)

CLASSIC CATEGORICAL MODEL

- DOMAIN:
 - $X = \{X(1), X(2)\}$
 - $Y = \{Y(1), Y(2)\}$
- KNOWLEDGE
 - + RULE 1: Y (2) \rightarrow X (1)
 - RULE 2: Y (1) and not Y (2) \rightarrow X (2)
 - + RULE 3: not Y (1) and Y (2) \rightarrow not X (2)
 - RULE 4: X (1) or X (2) \rightarrow Y (1) or Y (2)
- PROBLEM
 - f (X) = not X (1) and X (2)
- SOLUTION
 - g (Y) = Y (1) and not Y (2)

	X1	X2	X3	x4
X (1)	0	0	1	1
X (2)	0	1	0	1

	Y1	Y2	Y3	Y4
Y (1)	0	0	1	1
Y (2)	0	1	0	1

	X1	X2	Х3	X4												
X (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
X (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
Y (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Y (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	Y1			Y2			Y3				Y4					

	RULE 1: IF Y(2) THEN X(1)																
	X1	X2	Х3	X4			Х3	X4	X1	X2	X3	X4	X1		X3	X4	
X (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	
X (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	
Y (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
Y (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	
	Y1					Y2				Y3				Y4			

	RULE 2: IF Y(1) and not Y(2) THEN X(2)															
	X1	X2	Х3	X4			X3	X4		X2	Х3	X4	X1		Х3	X4
X (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
X (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
Y (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Y (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	Y1				Y2			Y3				Y4				

	RULE 3: IF not Y(1) and Y(2) THEN not X(2)															
	X1	X2	Х3	X4			X3	X4	X1	X2	X3	X4			X3	X4
X (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
X (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
Y (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Y (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	Y1 Y2						Y3 Y4									

	RULE 4: IF X(1) or X(2) THEN Y(1) or Y(2)															
	X1	X2	Х3	X4			X3	X4	X1	X2	X3	X4	X1		Х3	X4
X (1)	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
X (2)	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
Y (1)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Y (2)	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	Y1 Y2						Y3 Y4									

EXPANDED LOGICAL BASIS:

X1Y1, X1Y2, X1Y3, X1Y4, X2Y1, X2Y2, X2Y3, X2Y4, X3Y1, X3Y2, X3Y3, X3Y4, X4Y1, X4Y2, X4Y3, X4Y4

REDUCED LOGICAL BASIS:

X1Y1, X3Y2, X2Y3, X4Y3, X3Y4, X4Y4

OUR CURRENT PROBLEM:

f (X) = not X(1) and X(2) \rightarrow X2

盬

ASSOCIATED COMPLEX IN RBL:

X2Y3

SOLUTION:

 $Y3 \rightarrow g(Y) = Y(1)$ and not Y(2)

- UNCERTAINTY APPEARS SPONTANEOUSLY EVEN WHEN WE USE CATEGORICAL MODELS
 - Assume that f (X) = X(1) and not X(2) = X3
 - Associated complex in RLB = $\begin{cases} X3Y2 \\ X3Y4 \end{cases}$
 - TWO SOLUTIONS:
 - g1 (Y) = Y2 \rightarrow not Y(1) and Y(2)
 - g2 (Y) = Y4 \rightarrow Y(1) and Y(2)
 - INTERPRETATION
 - Y(1) could be a solution or could not be a solution
 - Y(2) is, for sure, a solution

PROBABILISTIC APPROACH

• BAYESIAN METHOD

• A simple equation for Bayes Theorem

$$P(Y/X) = \frac{P(X/Y) \times P(Y)}{P(X)}$$

$$P(X/Y) = \frac{P(Y/X) \times P(X)}{P(Y)}$$

Generalization

$$P\left(\frac{Y_0}{X}\right) = \frac{P\left(\frac{X}{Y_0}\right) \times P(Y_0)}{\sum_i P\left(\frac{X}{Y_i}\right) \times P(Y_i)}$$
$$P\left(\frac{X_0}{Y}\right) = \frac{P\left(\frac{Y}{X_0}\right) \times P(X_0)}{\sum_i P\left(\frac{Y}{X_i}\right) \times P(X_i)}$$

PROBABILISTIC APPROACH JOINT PROBABILITIES OF ELEMENTS THAT DO NOT APPEAR IN THE REDUCED LOGICAL BASIS ARE ZERO.

TO ENSURE MATHEMATICAL CONSISTENCY THE SUM OF THE CONDITIONAL PROBABILITIES OF ELEMENTS THAT SHARE CONDITIONS MUST BE ONE.

P(Y2/X1) MUST BE ZERO SINCE X1Y2 DO NOT BELONG TO BLR

P(Y3/X2) MUST BE ONE SINCE THERE IS ONLY ONE COMPLEX IN BLR X2

P(Y2/X3) + P(Y4/X3) MUST BE ONE SINCE BOTH X3Y2 and X3Y4 ARE IN BLR

THIS OPENS A VERY INTERESTING PERSPECTIVE FROM THE POINT OF VIEW OF KNOWLEGE ENGINEERING.

OBVIOUSLY, CATEGORICAL REASONING IS A PARTICULAR CASE OF PROBABILISTIC REASONING.

Some Problems

GENERAL CONCEPTS:

- IMPRECISION concerns declarative knwowledge or FACTS
- UNCERTAINTY concerns procedural knowledge or RULES
- There are other kinds of inaccuracy.
 - Lack of knowledge
 - Vagueness
 - Belief
 - Disbelief
 - . . .

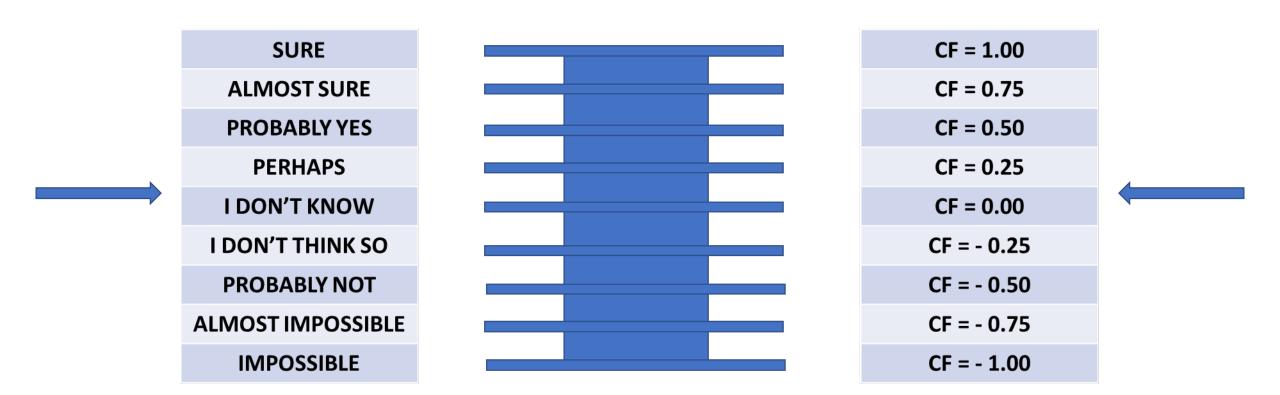
Some Problems

- When dealing with knowledge, one of the main problems of Probabilistic Models is their own mathematical consistency.
- P(H/E) = X such that $X \in [0,1]$
- P(not H/E) = 1 X such that $X \in [0,1]$
- This is not always true, specially if our knowledge is not complete.
- Subjective Conditional Probilities have been proposed for this problem.

CERTAINTY FACTORS

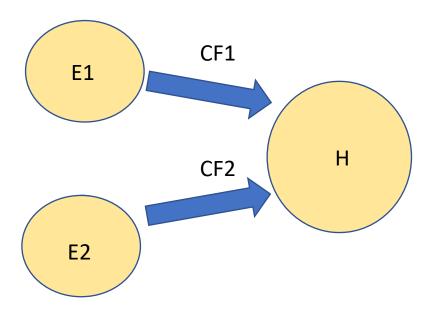
- INCREASING BELIEF: $MB(H, E) = \frac{P(H/E) P(H)}{1 P(H)}$
- INCREASING DISBELIEF: $MD(H, E) = \frac{P(H) P(H/E)}{P(H)}$
- CERTAINTY FACTORS: CF(H, E) = MB(H, E) MD(H, E)
- IF P(H/E) > P(H) THEN MB(H,E) > 0 and MD(H,E) = 0 \rightarrow CF(H,E) = MB(H,E)
- IF P(H/E) < P(H) THEN MB(H,E) = 0 and MD(H,E) > 0 \rightarrow CF(H,E) = MD(H,E)
- IF P(H/E) = P(H) THEN MB(H,E) = 0 and MD(H,E) = 0 \rightarrow CF(H,E) = 0

CERTAINTY FACTORS



CERTAINTY FACTORS

• COMBINING EVIDENCES



- 1. CF1 > 0 and CF2 > 0
 - CF12 = (CF1 + CF2) (CF1 x CF2)
- 2. CF1 < 0 and CF2 < 0
 - CF12 = (CF1 + CF2) + (CF1 x CF2)

3.
$$CF1 \times CF2 < 0$$

•
$$CF12 = \frac{CF1+CF2}{1-\min\{|CF1|,|CF2|\}}$$

CERTAINTY FACTORS

PROPAGATING INACCURACY

RULE_1: IF IT RAINS A LOT I NORMALLY STAY AT HOME:

 $\rm E1 \rightarrow H1$ with CF1

RULE_2: IF I STAY AT HOME I USE TO READ A BOOK:

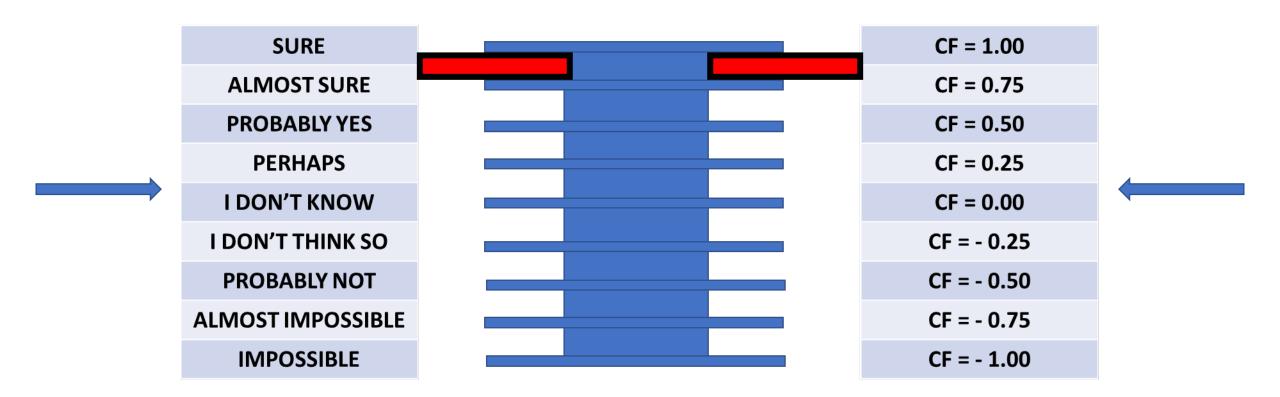
 $\rm H1 \rightarrow \rm H2$ with CF2

FACT_1: IT RAINS MODERATELY: E is not E1, but it is something similar: $E \rightarrow E1$ with CF(It rains moderately)

QUESTION: WHICH IS THE CERTAINTY FACTOR OF "READING A BOOK"?

CF(Reading a book, It rains moderately) = CF(It rains moderately) x max {0, (CF1 x CF2)}

CERTAINTY FACTORS EXAMPLE

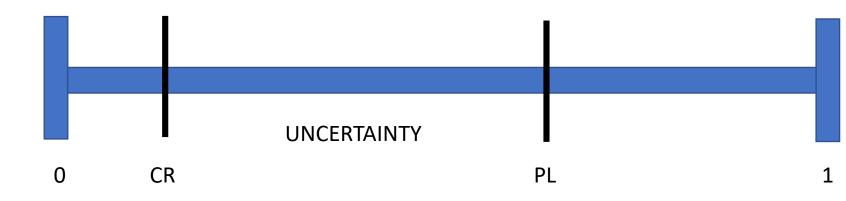


THE THEORY OF EVIDENCE

• CREDIBILITY = $CR = \sum_{B \subset A} m(B)$

•
$$PLAUSIBILITY = PL = \sum_{B \cap A \neq \emptyset} m(B)$$

• CONFIDENCE INTERVAL = CI = [CR, PL]



THE THEORY OF EVIDENCE

• $0 \le Cr(A) \le 1$ $Cr(A) = 0 \ y \ Pl(A) = 1 \rightarrow ???$

- $0 \le PI(A) \le 1$ $Cr(A) = 1 \ y \ PI(A) = 1 \rightarrow YES$
- $Cr(A) \le PI(A)$ $Cr(A) = 0 \ y \ PI(A) = 0 \rightarrow _{NO}$

• $Cr(A) \le P(A) \le PI(A)$

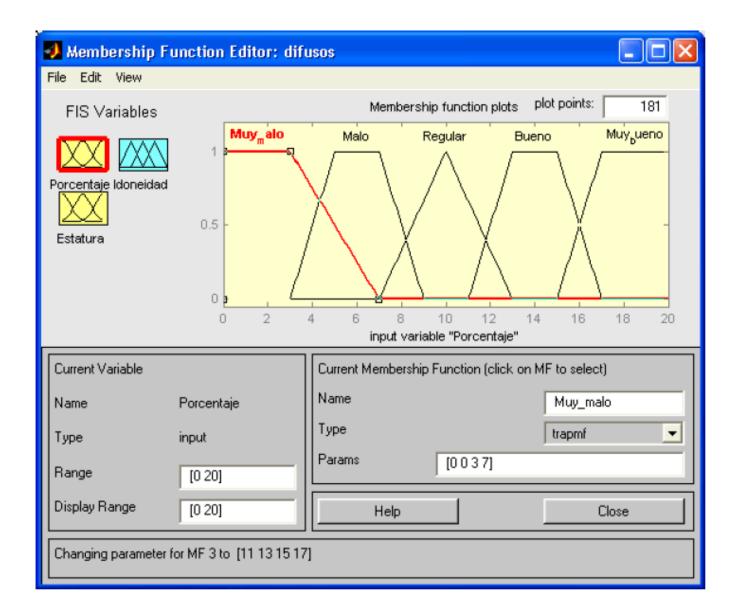
25

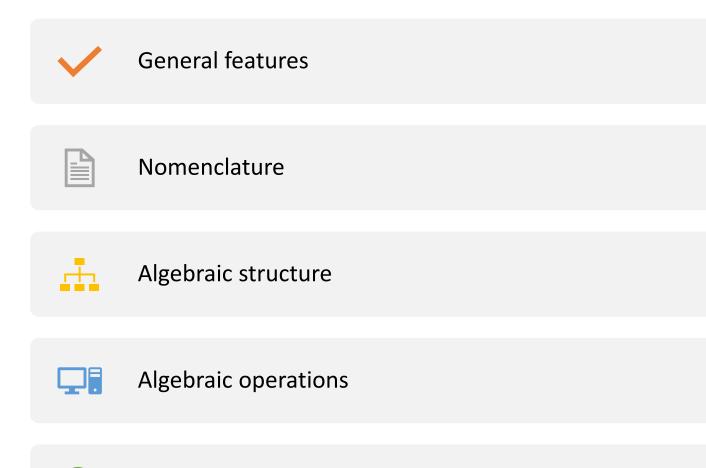
CERTAINTY FACTORS ARE IN EVIDENTIAL THEORY

26

e1 : A / m1(A) = s1 , m1(θ) = 1-s1
e2 : A / m2(A) = s2 , m2(θ) = 1-s2
m12(A) = s1s2 + s1(1-s2) + s2(1-s1) = s1 + s2 -s1s2

🛃 FIS Editor: dif	ISOS			
File Edit View				
Porcentaj	<u>_</u>	difus (mamda		Idoneidad
FIS Name:	difusos		FIS Type:	mamdani
	Girdsos		110 Type.	mandan
And method	min	-	Current Variable	
Or method	max	•	Name	Porcentaje
Implication	min	•	Туре	input
Aggregation	max		Range	[0 20]
Defuzzification	centroid	•	Help	Close
Updating Membership	9 Function Editor			





Knowledge representation

Fuzzy reasoning

Linguistic criteria

Ambiguity

Language

Classification

Taxonomies

Hierarchies

Reasoning

Concepts

Definitions

Plant? Stone? Virus?

Subjective issues

Contexts

Lofti Zadeh, 1965 Universe N of natural numbers

 $A \subseteq N$

A = Natural numbers, even numbers and less than 10

 $A = \{2, 4, 6, 8\}$ such that $2 \in A$ and $3 \notin A$

- U = Living human beings
- $A \subseteq U$
- A = Tall dark-haired living human beings
- Conventional sets:
- $U, A \subseteq U$ such that $\exists \mu_A(x) : U \rightarrow \{0, x \notin A : 1, x \in A\} \forall x \in U$
- Fuzzy sets:
- $U, A \subseteq U$ such that $\exists \mu_A(x) : U \rightarrow [0,1] \forall x \in U$

Criteria for defining the membership degree function

U = Living people

A = Young living persons

$$\mu_A(x) = 1: \forall x / AGE(x) \le 25$$

$\mu_A(x) = 0 : \forall x / AGE(x) \ge 65$

|¿ $µ_A(x)$: ∀x / 25 < AGE(x) < 65?

$$\mu A(x) = \frac{65 - AGE(x)}{40} : \forall x / AGE(x) \in [25, 65]$$

A = *Young living person*

AGE (Juan)	= 17	\rightarrow	μ Young (Juan)	= 1.00
AGE (Marisa)	= 31	\rightarrow	μ Young (Marisa)	= 0.85
AGE (Blas)	= 47	\rightarrow	μ Young (Blas)	= 0.45
AGE (Ana)	= 57	\rightarrow	μ Young (Ana)	= 0.20
AGE(Alex)	= 73	\rightarrow	μ Young (Alex)	= 0.00

Juan Marisa	is is	1.00 0.85	young young
Blas	is	0.45	young
Ana	is	0.20	young
Alex	is	0.00	young

0.00 - 0.00 = *Is not*

0.00 - 0.20 = *Is very few*

0.20 - 0.40 = *Is a little*

0.40 - 0.60 = *Is somewhat*

0.60 - 0.80 = *Is moderately*

0.80 - 1.00 = *Is quite*

1.00 - 1.00 = ls

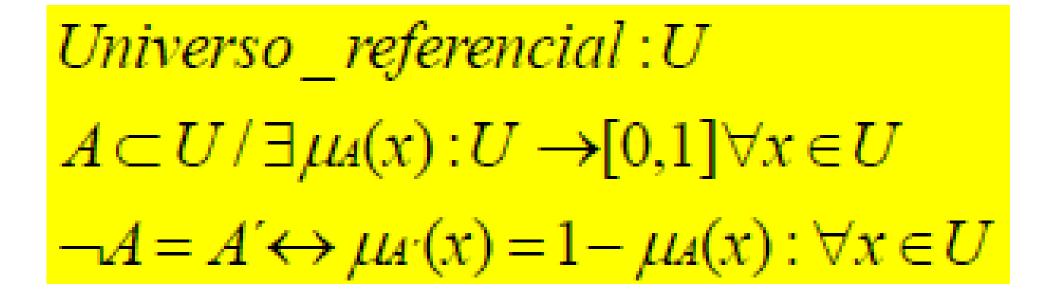
x ∈ U	LABEL (μ)	$A \subseteq U$
Juan	IS	YOUNG
Marisa	IS QUITE	YOUNG
Blas	IS SOMEWHAT	YOUNG
Ana	IS VERY FEW	YOUNG
Alex	IS NOT	YOUNG

- Comments
 - The diffuse zone does not have to be linear
 - The linguistic scale is arbitrary
 - The number of items in the scale is arbitrary
 - We can define complementary fuzzy sets
 - Any set can be fuzzyfied

$\forall A \subset U : A \text{ is } Fuzzy \leftrightarrow \exists \mu_A(x) : U \rightarrow [0,1] \forall x \in U$

Universe :U $Z \subset U / \exists \mu z(x) : U \rightarrow [0,1] \forall x \in U$ $Z = \emptyset \leftrightarrow \mu z(x) = 0 \forall x \in U$

Universe :U $A \subset U / \exists \mu_A(x) : U \rightarrow [0,1] \forall x \in U$ $B \subset U / \exists \mu_B(x) : U \rightarrow [0,1] \forall x \in U$ $A = B \leftrightarrow \mu_A(x) = \mu_B(x) : \forall x \in U$



Universo _ referencial : U $A \subset U / \exists \mu_A(x) : U \rightarrow [0,1] \forall x \in U$ $B \subset U / \exists \mu_B(x) : U \rightarrow [0,1] \forall x \in U$ $B \subset A \leftrightarrow \mu_B(x) \le \mu_A(x) : \forall x \in U$

 $U = \{1, 2, 3, 4, 5, 6\}$ $A \subset U/A = \{1, 2, 3, 4\}$ $B \subset U / B = \{1,3\}$ $\mu_4(x) = \{\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{0}{5} + \frac{0}{6}\}$ $\mu_{\mathcal{B}}(x) = \{\frac{1}{1} + \frac{0}{2} + \frac{1}{3} + \frac{0}{4} + \frac{0}{5} + \frac{0}{6}\}$ 1/1 = 1/1 : 1/2 > 0/2 : 1/3 = 1/31/4 > 0/4 : 0/5 = 0/5 : 0/6 = 0/6

Universo referencial : U $A \subset U / \exists \mu_{u}(x) : U \rightarrow [0,1] \forall x \in U$ $B \subset U / \exists \mu_B(x) : U \rightarrow [0,1] \forall x \in U$ $C \subset U / \exists \mu c(x) : U \rightarrow [0,1] \forall x \in U$ $C = A \cup B \leftrightarrow \mu_c(x) = \max\{\mu_A(x), \mu_B(x)\} : \forall x \in U$ Asociatividad : $A \cup (B \cup C) = (A \cup B) \cup C$

Universo _ referencial : U $A \subset U / \exists \mu_{4}(x) : U \rightarrow [0,1] \forall x \in U$ $B \subset U / \exists \mu_{5}(x) : U \rightarrow [0,1] \forall x \in U$ $C \subset U / \exists \mu_{c}(x) : U \rightarrow [0,1] \forall x \in U$ $C = A \cap B \leftrightarrow \mu_{c}(x) = \min{\{\mu_{4}(x), \mu_{5}(x)\}} : \forall x \in U$ Asociatividad : $A \cap (B \cap C) = (A \cap B) \cap C$

Universo _ referencia l:U $A \subset U / \exists \mu_A(x) : U \rightarrow [0,1] \forall x \in U$ $B \subset U / \exists \mu_B(x) : U \rightarrow [0,1] \forall x \in U$ 1ª Ley $\neg (A \cup B) = \neg A \cap \neg B$ $\neg [\mu_A(x) \lor \mu_B(x)] = [\neg \mu_A(x) \land \neg \mu_B(x)] : \forall x \in U$ 2 ^aLey $\neg (A \cap B) = \neg A \cup \neg B$ $\neg [\mu_A(x) \land \mu_B(x)] = [\neg \mu_A(x) \lor \neg \mu_B(x)] : \forall x \in U$

Universo referencial : U $A \subset U / \exists \mu_{4}(x) : U \rightarrow [0,1] \forall x \in U$ $B \subset U / \exists \mu B(x) : U \rightarrow [0,1] \forall x \in U$ $\neg (A \cup B) \rightarrow \mu_{-(A \cup B)}(x) = 1 - \max{\{\mu_A(x), \mu_B(x)\}} : \forall x \in U$ $\neg A \cap \neg B \rightarrow \mu_{A \cap \neg B}(x) = \min\{1 - \mu_A(x), 1 - \mu_B(x)\}: \forall x \in U$

Universo referencial U $A \subset U / \exists \mu (x) \rightarrow U : [0,1] \forall x \in U$ $B \subset U / \exists \mu_B(x) \rightarrow U : [0,1] \forall x \in U$ $C \subset U / \exists \mu_c(x) \rightarrow U : [0,1] \forall x \in U$ 1ª ley $C \cap (A \cup B) = (C \cap A) \cup (C \cap B)$ $\mu_{C}(x) \wedge [\mu_{u}(x) \vee \mu_{B}(x)] = [\mu_{C}(x) \wedge \mu_{u}(x)] \vee [\mu_{C}(x) \wedge \mu_{B}(x)]: \forall x \in U$ 2ª ley $C \cup (A \cap B) = (C \cup A) \cap (C \cup B)$ $\mu_{C}(x) \vee [\mu_{u}(x) \wedge \mu_{B}(x)] = [\mu_{C}(x) \vee \mu_{u}(x)] \wedge [\mu_{C}(x) \vee \mu_{B}(x)]: \forall x \in U$

Casos extremos $\mu_A(x) \ge \mu_B(x) : \forall x \in U$ $1 - \max{\{\mu_{\mathcal{H}}(x), \mu_{\mathcal{B}}(x)\}} = 1 - \mu_{\mathcal{H}}(x) : \forall x \in U$ $\min\{1 - \mu_{\mathcal{U}}(x), 1 - \mu_{\mathcal{B}}(x)\} = 1 - \mu_{\mathcal{U}}(x) : \forall x \in U$ $\mu_A(x) \leq \mu_B(x) : \forall x \in U$ $1 - \max{\{\mu_{\mathcal{H}}(x), \mu_{\mathcal{B}}(x)\}} = 1 - \mu_{\mathcal{B}}(x) : \forall x \in U$ $\min\{1-\mu_{A}(x),1-\mu_{B}(x)\}=1-\mu_{B}(x):\forall x\in U$

Ley_del tercero excluido Universo referencial U Conjuntos ordinarios: $A \cup -A = U$ Conjuntos difusos: $A \subset U / \exists \mu_i(x) \rightarrow U : [0,1] \forall x \in U$ $-A \rightarrow \mu_{u}(x) = 1 - \mu_{u}(x) : \forall x \in U$ $A \cup -A \rightarrow \mu_U \cup \mu(x) = \max\{\mu_U(x), \mu_U(x)\} = \max\{\mu_U(x), 1 - \mu_U(x)\}: \forall x \in U$ $\mu \cup x(x) \geq \frac{1}{2}$

Ley de no contradicción Universo referencia l U Conjuntos ordinarios : $A \cap -A = \emptyset$ Conjuntos difusos: $A \subset U / \exists \mu_i(x) \rightarrow U : [0,1] \forall x \in U$ $-A \rightarrow \mu_{u}(x) = 1 - \mu_{u}(x) : \forall x \in U$ $A \cap -A \rightarrow \mu_{1 \cap A}(x) = \min\{\mu_{1}(x), \mu_{2}(x)\} = \min\{\mu_{1}(x), 1 - \mu_{2}(x)\}: \forall x \in U$ $\mu_{\alpha,\alpha'}(x) \leq \frac{1}{2}$

Universo _ referencial _U $A \subset U / \exists \mu_A(x) \rightarrow U : [0,1] \forall x \in U$ $B \subset U / \exists \mu_B(x) \rightarrow U : [0,1] \forall x \in U$ $A \times B \rightarrow \mu_{AB}(x) = \mu_A(x) \times \mu_B(x) : \forall x \in U$

Conjuntos _ ordinarios $A \times B = A \cap B$ Conjuntos _ difusos Universo referencia l U $A \subset U / \exists \mu_A(x) \to U : [0,1] \forall x \in U$ $B \subset U / \exists \mu_B(x) \to U : [0,1] \forall x \in U$ $A \times B \rightarrow \mu_{AB}(x) = \mu_A(x) \times \mu_B(x) : \forall x \in U$ $A \cap B \rightarrow \mu_A \cap B(x) = \min\{ \mu_A(x), \mu_B(x)\} : \forall x \in U$ $\mu_{AB}(x) < \min\{ \mu_A(x), \mu_B(x) \} : \forall x \in U$ $A \times B \subset A \cap B$

Universo _ referencial _U $A \subset U / \exists \mu_A(x) \rightarrow U : [0,1] \forall x \in U$ $B \subset U / \exists \mu_B(x) \rightarrow U : [0,1] \forall x \in U$ $A + B \rightarrow \mu_{A+B}(x) = \mu_A(x) + \mu_B(x) : \forall x \in U$ $A \oplus B \rightarrow \mu_A \oplus B(x) = \min\{1, \mu_A(x) + \mu_B(x)\} : \forall x \in U$

Universo _ referencial _U $A \subset U / \exists \mu_A(x) \rightarrow U : [0,1] \forall x \in U$ $B \subset U / \exists \mu_B(x) \rightarrow U : [0,1] \forall x \in U$ $A - B \rightarrow \mu_{A-B}(x) = \mu_A(x) - \mu_B(x) : \forall x \in U$ $|A - B| \rightarrow \mu_{|A-B|}(x) = |\mu_A(x) - \mu_B(x)| : \forall x \in U$

Universo _ referencial _U $A \subset U / \exists \mu_A(x) \rightarrow U : [0,1] \forall x \in U$ $Núcleo : N_A = \{x \in U / \mu_A(x) = 1\}$ $A = Normalizado \leftrightarrow N_A \neq \{\emptyset\}$

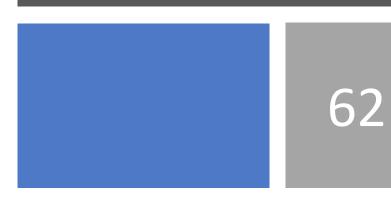
Given a referential U, we define a fuzzy relation of order "n" on U, as a fuzzy set A in the space U x U x...x U (n times), characterized by a membership degree function of the type:

 $\mu_A(x1,\ldots,xn):\forall x\in U$

	U2					
U1	1	2	3	4		
1	1.0	0.8	0.2	0.0		
2	0.8	1.0	0.8	0.2		
3	0.2	0.8	1.0	0.8		
4	0.0	0.2	0.8	0.0		

• Referential U = {1, 2, 3, 4}

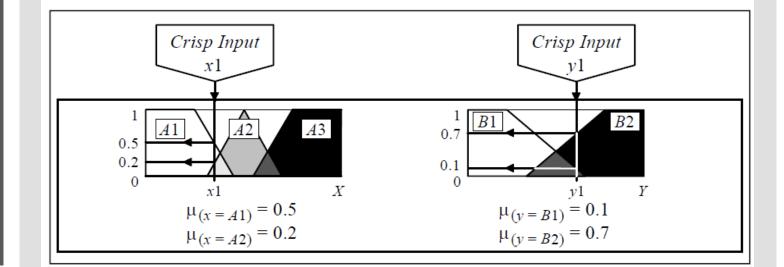
- Fuzzy relation of order 2
- A = {approximately equal numbers}

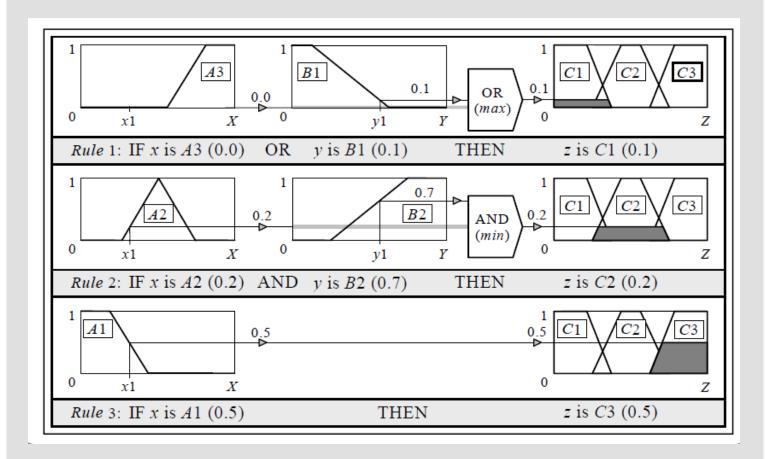


Rule: 1 Rule: 1 project_funding is adequate project_staffing is small risk is low IF OR IF x is A3 OR y is B1 THENz is C1 THEN Rule: 2 Rule: 2 project_funding is marginal project_staffing is large risk is normal x is A2 IF AND y is B2 AND THEN_z is C2 THEN Rule: 3 Rule: 3 IF THEN project_funding is inadequate risk is high IF x is A1 THENz is C3

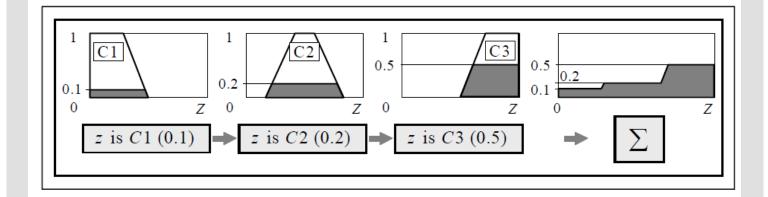
IF

9/22/2022

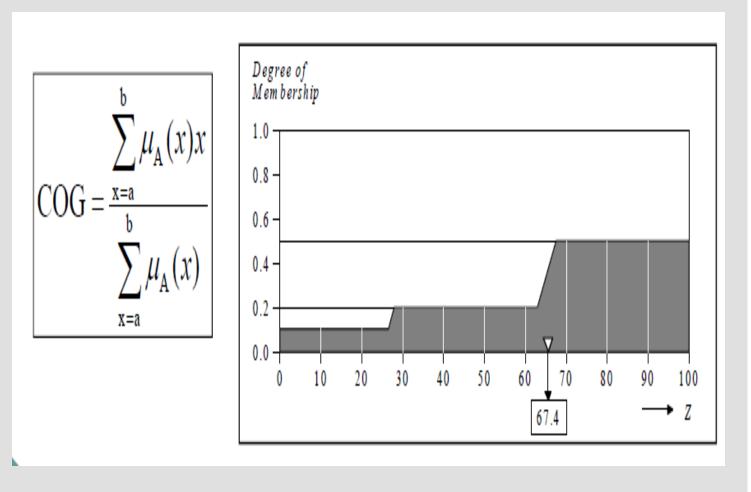




64



66



9/22/2022

THANK YOU VERY MUCH FOR YOUR ATTENTION

67

