Reasoning and Planning Unit 6. Terminological Reasoning

Pedro Cabalar

Dept. Computer Science University of Corunna, SPAIN

November 18, 2022

- Domain knowledge uses many concepts. E.g. a piston is a mechanical piece and is part of the engine that is a device ...
- Represent concept definitions for a given domain = Terminological Knowledge
 - In the past known as terminological systems or concept languages
 - Nowadays, main use: description of Ontologies for the Semantic Web (OWL-DL, OWL-Lite).
 - Description Logic (DL) uses basic operators (similar to modal logic) that can be translated to predicate calculus.

Syntax: we start from

- A set of atoms called concepts. They represent classes or sets of objects. E.g.: Person, Mammal, Vehicle, Blue, ...
- A set of roles that represent binary relations among objects. E.g.: likes, owns, travels_by, has_child ...
- S A set of constructors to define new concepts recursively. E.g.: blue or red vehicles = Vehicle □ (Blue □ Red).
 E g : g father is g Man □ □ has ghild
 - E.g.: a father is a *Man* ⊓ ∃has_child
- There exists a whole family of Description Logics depending on the constructors we allow

• The simplest DL is \mathcal{FL}^- . Syntax:

 $C ::= A \mid C \sqcap D \mid \forall R.C \mid \exists R \mid \top \mid \bot$

where A=atomic concept, C, D=concepts and R=role.

• Alternative syntax:

 $C ::= A \mid (: \text{and } C D) \mid (: \text{all } R C) \mid (: \text{some } R)$

Quantifiers: ∀has_child.Female are those living beings whose offsprings are all female, whereas ∃has_child are those that have, at list, some child. We can write it as ∃has_child.⊤ too

Definition (Interpretation)

An interpretation $\mathcal I$ is a pair $\langle \Delta^{\mathcal I}, \cdot^{\mathcal I} \rangle$ where

- $\Delta^{\mathcal{I}}$ is a non-empty set called the domain
- $\cdot^{\mathcal{I}}$ is a function that maps:
 - Each concept to a subset of $\Delta^{\mathcal{I}}$.
 - **2** Each role to a subset of $\Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$.

Description Logic: \mathcal{FL}^-

• We extend $\cdot^{\mathcal{I}}$ for evaluation of non-atomic concepts:

$$\begin{array}{rcl} (C \sqcap D)^{\mathcal{I}} &=& C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (\exists R)^{\mathcal{I}} &=& \{x \in \Delta^{\mathcal{I}} \ : \ \exists y.(x,y) \in R^{\mathcal{I}}\} \\ (\forall R.C)^{\mathcal{I}} &=& \{x \in \Delta^{\mathcal{I}} \ : \ \forall y.(x,y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\} \\ (\top)^{\mathcal{I}} &=& \Delta^{\mathcal{I}} \\ (\bot)^{\mathcal{I}} &=& \emptyset \end{array}$$

• Examples: which is the meaning of the following expressions?

Adult \sqcap Male \forall has_child.(Adult \sqcap Male) \exists has_child $\sqcap \forall$ has_child.(\exists has_child \sqcap Adult) • A second example: ALC is more expressive than FL^- . It allows:

$C ::= A \mid C \sqcap D \mid \forall R.C \mid \exists R \mid \neg C$

 $\operatorname{con}(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$

A more limited variant *AL* replaces ¬*C* by ¬*A* (only atomic concepts can be negated).

Constructor	Sintaxis	Semántica
Concept assertion	0 : C	$oldsymbol{o}^\mathcal{I}\in oldsymbol{C}^\mathcal{I}$
Role assertion	(<i>o</i> ₁ , <i>o</i> ₂) : <i>R</i>	$(\textit{o}_1^\mathcal{I},\textit{o}_2^\mathcal{I}) \in \textit{R}^\mathcal{I}$
Intersection	$C \sqcap D$	$\mathcal{C}^{\mathcal{I}}\cap \mathcal{D}^{\mathcal{I}}$
Union	$C \sqcup D$	${m {\cal C}}^{{\cal I}} \cup {m {\cal D}}^{{\cal I}}$
Negation	$\neg C$	$\Delta^\mathcal{I} \setminus \mathcal{C}^\mathcal{I}$
Existential	∃R.C	$\{x : \exists y.(x,y) \in \mathcal{R}^{\mathcal{I}} \& y \in \mathcal{C}^{\mathcal{I}}\}$
Universal	∀R.C	$\{x : \forall y.(x,y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$
Cardinality	$(\geq n R)$	$\{x : \{y.(x,y) \in R^{\mathcal{I}}\} \ge n\}$
	(≤ <i>n R</i>)	$\{x : \{y.(x,y) \in R^{\mathcal{I}}\} \le n\}$
Inverse	R ⁻	$\{(x,y) \ : \ (y,x) \in {\it I\!\!R}^{{\cal I}}\}$
Transitive	R *	$(\mathcal{R}^\mathcal{I})^*$
Enumeration (one-of)	$\{o_1,\ldots,o_n\}$	$\{o_1^{\mathcal{I}},\ldots,o_n^{\mathcal{I}}\}$

. . .

Description Logics: naming

To name each combination, we use the initials

- \mathcal{F} functional property ($\leq 1 R$)
- \mathcal{E} general existential $\exists R.C$
- \mathcal{U} concept union $C \sqcup D$
- C concept negation $\neg C$
- S = ALC plus transitive roles R^*
- ${\mathcal H}$ role hierarchy
- $\ensuremath{\mathcal{R}}$ reflexive, irreflexive and disjunct roles
- \mathcal{I} inverse role R^-
- \mathcal{O} enumeration (one-of) $\{o_1, \ldots, o_n\}$
- \mathcal{N} cardinality constraints ($\geq n R$), ($\leq n R$)
- Q qualified cardinality constraints ($\geq n R.C$), ($\leq n R.C$)
- (\mathcal{D}) data types (integer, string, etc)
- OWL-DL corresponds to SHOIN^(D) whereas OWL-Lite is based on SHIF^(D).

Description Logic

- A (terminological) Knowledge Base consists of two sets of expressions TBox and ABox.
- TBox: contains general terminological declarations. Two types:
 A concept defition A = C. Examples:

Woman	≡	Person 🗆 Female
Mother	≡	Woman ⊓ ∃has_child

(acyclicity is usually required)

2 An inclusion axiom $C_1 \sqsubseteq C_2$. Example

 \exists has_child.Person \sqsubseteq Person

They impose constraints on our model

- ABox: contains assertions about specific element and relation instances in the domain. Two types:
 - Concept assertion o : C. Example:

Moby_Dick : Whale Mary : Female □ ∃has_child

2 Role assertions $(o_1, o_2) : R$. Example:

(Mary, Jesus) : has_child

- Typical reasoning problems to solve. Given a Knowledge Base:
 Subsumption. Check whether a concept is more general than another C ⊂ D
 - 2 Equivalence. Check whether two concepts are equivalent $C \equiv D$
 - 3 Consistency. Check whether a concept has at least some model $C \equiv \bot$
 - Belonging. Check whether an individual is member of a concept o : C
- All these problems can be reduced to consistency. Example: $C \sqsubseteq D$ can be checked as the consistency test $C \sqcap \neg D \equiv \bot$.

- There exist efficient methods to solve these reasoning problems
- Normally, more expressive language variant ⇒ more complex associated reasoning
- Example: subsumption in \mathcal{FL}^- is decidable in time complexity P.
- See Description Logic Complexity Navigator http://www.cs.man.ac.uk/~ezolin/dl/

Description Logic: translation to First-Order Logic

- Most Description Logics are reducible to decidable fragments of Firt-Order Logic
- Each concept *C* becomes a unary predicate *C*(*x*); each role *R* a binary predicate *R*(*x*, *y*).
- We can use First-Order Logic with variables:

$$\begin{array}{rcl} t_x(A) &=& A(x) & t_y(A) &=& A(y) \\ t_x(C \sqcap D) &=& t_x(C) \land t_x(D) & t_y(C \sqcap D) &=& t_y(C) \land t_y(D) \\ t_x(C \sqcup D) &=& t_x(C) \lor t_x(D) & t_y(C \sqcup D) &=& t_y(C) \lor t_y(D) \\ t_x(\exists R.C) &=& \exists y.R(x,y) \land t_y(C) & t_y(\exists R.C) &=& \exists x.R(y,x) \land t_x(C) \\ t_x(\forall R.C) &=& \forall y.R(x,y) \Rightarrow t_y(C) & t_y(\forall R.C) &=& \forall x.R(y,x) \Rightarrow t_x(C) \end{array}$$

• In a TBox, we translate $C \equiv D$ into $\forall x.t_x(C) \leftrightarrow t_x(D)$.