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@ Actions and change
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Back to our simple example

@ Lamp and switches revisited
@ Fluents: up1, up2, up3, light (Boolean).
@ Actions: toggle1, toggle2, toggle3.

@ State: a possible configuration of fluent values. Example:
{up1, up2, upg, light}.

@ Situation: a moment in time. We can justuse 0,1,2, ...
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Reasoning about actions with ASP

@ Download system telingo (temporal c1ingo)
@ We can make groups of rules

#program initial. % At timepoint t=0

o)

#program dynamic. % Transition from t-1 to t

o

#program always. % Any timepoint t=0..n-1

)

#program final. % Last timepoint t=n-1

@ Predicate names preceded by ’ refer to timepoint t-1
@ Predicate names preceded by _ refer to timepoint £=0
@ Temporal formulas built with stel{ ... }
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Reasoning about actions with ASP

o

% File: switches.lp (domain description)
switch(1l..3).
action(tog (X)) :— switch(X).

#program dynamic.

o)

% Effect axioms

h (sw(X) ,up) :— "h(sw(X),down), o(tog(X)).
h(sw(X),down) :— "h(sw(X),up), o(tog (X)) .
h(light, off) :— "h(light,on), o(tog(_)) .
h (light, on) :— 'h(light,off), of(tog(_)).

Executability constraints: none in this case
Inertia: c(F)= fluent F has changed

h(F,V) := "h(F,V), not c(F).

c(F) := "h(F,V), h(F,W), V!I=W.

o oo

o

% Action generation
1 { o(A): _action(A) } 1.
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RAC goals

We want to solve some typical reasoning problems.

The most usual ones:

@ Simulation (aka prediction, aka temporal projection):
run a sequence of actions on an initial state

@ Temporal explanation (aka postdiction):
fill gaps from partial observations

Planning: obtain sequence of actions to reach some goal

Diagnosis: explain unexpected observed results

Verification: check system properties
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Prediction (simulation, or temporal projection)

@ Knowing: initial state + sequence of actions

@ Find out: final state (alternatively sequence of intermediate
states)
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Reasoning about actions with ASP

Prediction example

% File: switches-predict.lp (instance of prediction problem)
#program initial.

h(light,off).

h(sw(X),up) :— switch(X).

We assert a sequence of facts using:

% Sequence of performed actions
&tel{

&true
o(tog(
o (tog(
o (tog(
o(tog(

r
’

’

vV V. V V

3))
1))
2))
i 2))
}.
#show h/2.
#show o/1.

where ; > is a sequence operator
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Reasoning about actions with ASP

Prediction example
Calling telingo switches.txt switches-predict.txt

Answer: 1
State 0:
h(light,off) h(sw(l),up) h(sw(2),up) h(sw(3),up)
State 1:
o(tog(3))
h(light,on) h(sw(l),up) h(sw(2),up) h(sw(3),down)
State 2:
o(tog (1))
h(light,off) h(sw(l),down) h(sw(2),up) h(sw(3),down)
State 3:
o(tog(2))
h(light,on) h(sw(l),down) h(sw(2),down) h(sw(3),down)
State 4:
o(tog(2))
h(light,off) h(sw(l),down) h(sw(2),up) h(sw(3),down)
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Postdiction (or temporal explanation)

@ Knowing: partial observations of states and performed actions
@ Find out: complete information on states and performed actions
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Reasoning about actions with ASP

Postdiction example:

o

% switches-postdict.lp
#program initial.
% Completing unknown facts

1 {h(sw(X),up); h(sw(X),down)} 1 :- switch(X).
1 {h(light,on); h(light,off)} 1.
% Observations: we use a constraint!

:— not &tel{

h(sw(3),up) & h(light,on)

;> h(light,off) & h(sw(l),down) & h(sw(3),up)
7> o(tog(3))
}.

Calling telingo 0 switches.txt switches-postdict.txt we
get 4 possible explanations

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 11/72



@ Knowing: initial state + goal (partial description of final state)

@ Find out: plan (sequence of actions) that guarantees reaching the
goal

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 12/72



Reasoning about actions with ASP

Planning example

% File: switches-plan.lp

#program initial.
h(light,on).
h(sw(X),up) :- switch(X).

#program final.

goal :- h(light,on),h(sw(l),down),
h(sw(2),up),h(sw(3),down) .
:— not goal.

Calling telingo 0 switches.txt switches-plan.txt we get
two minimal plans of length 2 toggling 1 and 3 or vice versa.
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Planning vs Postdiction

@ Note that planning seems a type of postdiction. For deterministic
systems, this is true, but . ..

@ Nondeterministic transition system: fixing current state +
performed action — several possible successor states.

@ For instance, switch 1 up may fail to turn the light on...

togglel 2 togglel

Switch 1 "failed"
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Planning vs Postdiction

@ For postdiction, one valid explanation is: we performed toggle,
and it succeeded to turn the light on.

@ For planning, togglei is not a valid plan: it does not guarantee
reaching the goal /ight. Possible plans are toggle2 or toggle3.
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Exercise

“Elaborating Missionaries and Cannibals Problem” [J. McCarthy]
3 missionaries and 3 cannibals come to a river and find a boat
that holds two. If the cannibals ever outnumber the missionar-
ies on either bank, the missionaries will be eaten. How shall
they cross?

We will use the following fluents:
@ n (G, B) =is the number of persons of group G at bank B.

Ex.:h(n(mis, 1), 3) = “there are 3 missionaries in the left bank”

@ boat points out the boat bank. Ex. h (boat, 1) = “the boat is at
left bank’
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Exercise: missionaries and cannibals

We will use action:
@ move (M, C) = move M missionaries and C cannibals.

@ For simplicity, we include two action attributes moved (mis, N)

and moved (can, N) that point out separatedly how many persons
of each group are moved.
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Exercise: missionaries and cannibals

We begin with types and initial state

#program initial.

% Some types
group (mis; can) .

bank (1;r) .
opposite(l,r). opposite(r,1l).
action (move (M,C)) :— M=0..2, C=0..2, M+C<3, M+C>O0.

o)

% Initial state

h(n(G,1),3) :- group(G).
h(n(G,r),0) :- group(G).
h (boat, 1) .
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Exercise: missionaries and cannibals

Rules for transitions

#program dynamic.
% Action generation
1 {o(A) : _action(A) } 1.

% Auxiliary (action attributes)
moved (mis,M) :— o (move(M,C)).
moved (can,C) :— o(move (M,C)).

% Executability axioms
:— moved(G,N), ’"h(boat,B), "h(n(G,B),M), N>M.

% Effect axioms (no inertia needed)

h(n(G,B),M+N) :- 'h(n(G,B),M), h(boat,B), moved(G,N).
h(n(G,B),M-N) :- "h(n(G,B),M), "h(boat,B), moved(G,N).
h (boat, B1) :— "h(boat,B), _opposite(B,Bl).

Inertia not needed because all fluents are changed
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Exercise: missionaries and cannibals

Rules for transitions

#program always.

% Missionaries not outnumbered by cannibals
:— h(n(mis,B),M), h(n(can,B),C), C>M, M>0.

#program final.
:— not goal.
goal :- h(n(mis,r),3), h(n(can,r),3).

#show o/1l. % We only show performed actions

@ We execute telingo 0 mc.txt and it will try length
t=1,2,... until a solution is found.

@ Four solutions of length t = 11 are eventually found.
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Exercise: the Blocks World

Example
@ Rearrange blocks of same size into goal stacks

@ We can only move a free block (nothing on top) at a time

@ We can put it on another block or on the table (it has room for all) )

A
D "B
A B C D B
| | |
Initial state Goal
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Exercise: the Blocks World

@ Fluents:
h (on (B), L) = block B is on location L (a block or the table)

@ Actions:
o (move (B, L) ) = move block B to location L

@ To specify the goal we use a static predicate:
g (B, L) =block B goal location is L

The problem instance:
blocks (a;b;c;d).

> Initial state
h(on(a),table). h(on(b),table). h(on(c),table). h(on(d),c).
% Goal positions

g(a,b). g(b,d). g(d,table). g(c,table).
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Exercise: the Blocks World

A blocks world encoding:

#program initial.

location (table) . location(B) :— block (B).
#program dynamic.

h(on(B),L) :— o(move(B,L)).
:— o(move(B,_)), "unclear(B).
:— o(move(_,L)), "unclear(L). y
:— o(move (B,table)), 'h(on(B),table). % control constraint
#program always.

unclear (C) :- h(on(_),C),C!=table.

#program final.

:— _g(B,L), not h(on(B),L). % goal is reached

plus the general patterns:

#program dynamic.

1 {o(A): _action(dA) } 1. % action generation
h(F,v) := "h(F,V), not c(F). 5 inertia

c (F) = h/ (F,V),h(F,W),V!I=W. % change

#show o/1.
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Exercise: the Blocks World

@ An efficient encoding (goal oriented) may mean sacrifices in

elaboration tolerance

@ Strategy 1: restrict available actions
> Allow moving a block to the table or to its destination block

action (move (B, table))
action (move (B, C))

:— block (B
:— g(B,C).

).

@ Strategy 2: reduce generality of inertia. Replace by:

’h(on(B),L) :— "h(on(B),L), not o(move(B,_)). ‘

(Slight) frame problem (what if new actions for moving are defined)

@ Strategy 3: control executability constraints = they tell you what
(not) to do next, guided by our goal. Ex.: never undo a good tower.
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Exercise: the Blocks World

A
D B
A B a D C
( ) )
Initial state Goal

Never undo a good tower:
@ We should not start moving A on B, because B is not ready

@ B will be ready when placed on D, being D ready in its turn

@ D will be ready when placed on the table
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Exercise: the Blocks World

@ The ready auxiliary predicate is recursive

#program always.
ready (table) .
ready (B) :- h(on(B),L), _g(B,L), ready(L).

@ Finally, we can now add the control constraints:

#program dynamic.
% Don’t move a ready block
:— o(move (B,_)), ’'ready(B).

% Don lay on a non-ready location

:— o(move(_,L)), not ’'ready(L).

@ These changes drastically reduce the search space, but the
representation is now totally guided by goal location, predicate
—9(B,L).
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@ Diagnosis
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Abductivon as best explanation

Abduction
@ Knowing: a knowledge base KB + an observed result C

@ Find out: hypotheses H suchthat KBU H = C
? H should be the best explanation

@ Example: we have C = wetgrass and KB =

rain — wetgrass
sprinkle N\ night — wetgrass
glass A fill N push — wetgrass

We can use H; = {rain}, < simplest hypothesis
H, = {sprinkle, night} or Hy = {glass, fill, push}

o If we have KB’ = KB U {—rain}, the best hypothesis (less
assumptions) becomes H-
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Abduction in ASP

@ Atoms are reified: h (a) = atom A holds

@ We distinguish the abducible atoms (they can form hypotheses)
Generation of hypothesis becomes a choice rule

abducible (rain; sprinkle;night;push;glass; full).
{hyp(a)} :— abducible(a). % generate hypothesis
h(A) :- hyp(a). % any hypothesis A holds

@ Observations can be incorporated as constraints

h(wetgrass) :- h(rain).
h(wetgrass) :— h(night), h(sprinkle).
h(wetgrass) :- h(glass), h(full), h(push).

not h(wetgrass) . > Observation

We cannot add h (wetgrass) as a fact, or as an abducible atom!

@ We get 43 explanations! (including hypothesis with all abducible
atoms). Smallest explanations = minimal sets of hypotheses

’#minimize{l,A:hyp(A)}. ‘
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@ An agent acts in a dynamic environment and observes the results
of her actions.

@ Sometimes she gets discrepancies:
observations # expected result

@ Diagnosis = search for abductive explanations

» Knowing: a model distinguishing between normal and abnormal
transitions + a partial set of observations (usually implying
abnormal behavior).

» Find out: the minimal set of abnormal transitions that explains the
observations.
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@ Example [Balduccini & Gelfond 03]
We have a circuit with lightbulb b and a relay r. The agent can
close s1 causing s2 to close (if r is not damaged). The bulb
emits light if s2 is closed and b is not damaged.

A
—® IQ \Q
' b

| +
»
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Diagnosis example

@ Example [Balduccini & Gelfond 03]
Exogenous action break damages the relay. Action power-
surge damages r, and b too, if the latter is not protected (prot).

..-»". /~
52:‘ \\'O
! b
: e
L sl
— r
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Diagnosis example

@ Example [Balduccini & Gelfond 03]
We close s1 but b does not emit light: what has happened?

52:‘ \Q
! b
: e
+ sl
— r
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Diagnosis example

@ Types and domains

#program initial.
switch(sl;s2).

component (relay;bulb) .

fluent (relay;light;b_prot).
fluent (S) :—switch (S) .

fluent (ab(C)) :— component (C) .

value (relay, (on;off)).
value (light, (on;o0ff)).
value (S, (openj;closed)) :— switch(S).

% Fluents are boolean by default
domain (F, (true; false)) :- fluent(F), not value(F,_).
otherwise, they take the specified values

domain (F,V) :— value (F,V).

@ Fluents ab(C) point out that a component is damaged
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Diagnosis example

@ Actions are exogenous exog or agent’s agent:

agent (close(sl)) .
exog (break; surge) .
action(Y) :—exog(Y) .
action (Y) :—agent (Y) .
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Diagnosis example

#program dynamic.

Inertia
h(F,V) := "h(F,V), not c(F).
c (F) :— "h(F,V), h(F,W), V!I=W.
Direct effects
h(sl,closed) :— o(close(sl)).

#program always.
Indirect effects

h(relay,on) :— h(sl,closed), h(ab(relay), false).
h(relay,off) :— h(sl,open).

h(relay,off) :— h(ab(relay),true).

h(s2,closed) :— h(relay,on).

h(light,on) :— h(s2,closed), h(ab(bulb), false).
h(light, off) :— h(s2,open).

h(light,off) :— h(ab (bulb), true).
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Diagnosis example

#program dynamic.

Executability
:— o(close(S)), "h(S,closed).

% Malfunctioning

h (ab (bulb), true) :— o(break).

h(ab(relay),true) :—- o(surge).

h (ab (bulb), true) :— o(surge), not 'h(b_prot,true).

We use predicates obs, and obsy, to denote observations
5 Observed actions actually occur

o(A) :— obs_o(A).

#program always.
% Check that observations hold
:— obs_h(F,V), not h(F,V).

#program initial.
Completing the initial state
1 {h(F,V):_domain(F,V)} 1 :— _fluent (F).
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Diagnosis example

@ These are the observations:
A history
stel {
obs_h(sl,open) & obs_h(s2,open) &
obs_h (b_prot, true) &
(ab (
(ab (

obs_h bulb), false) &
obs_h relay), false)

;> obs_o(close(sl)) &
obs_h(light, off)

#program dynamic.
% Generate exogenous actions

{ hyp(A): _exog(A) }.

o(A) :— hyp(A).
#show cause/1.
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Diagnosis example

@ This will provide all possible explanations, but not minimal
diagnoses.

$ telingo 0 diag.lp
Answer: 1
State 0O:
State 1:
cause (break)

Answer: 2

State 0:

State 1:

cause (break) cause (surge)
Answer: 3

State 0:

State 1:

cause (surge)
SATISFIABLE
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Diagnosis example

@ We look for best explanations:

’#minimize {1,A:hyp(A)}. ‘

@ To obtain all minimal solutions we use the options:

’$ telingo —-opt-mode=optN -n0 diag.lp

Two minimal solutions are found:

Answer: 1

State 0:

State 1:

cause (surge)
Optimization: 1
Answer: 2

State O:

State 1:

cause (break)
Optimization: 1
OPTIMUM FOUND
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e Temporal Logic
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Temporal Reasoning

@ Until now, temporal expressivenes limited to:
pﬂxyan1secﬂons:initial, dynamic, always, final
» previous situation ' h (sw (X) , down)

» initial situation _action (A)

» sequence of actions ; >

Can we go further?

v

@ Example: (in the switches planning problem) choose plans where
fog(1) does not occur after tog(3) Obvious solution: auxiliary
predicate

#program dynamic.

moved3 :— o(tog(3)).

moved3 :— ’'moved3.

:— o(tog(l)), moved3.

@ Linear Temporal Logic can do the job requiring
—( o(tog(3)) A ¢o(tog(1)) )
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Modal Temporal Logic

NN

SEENENEN

P. Cabalar

Linear-time Temporal Logic (LTL)

[J (forever), ¢ (eventually), o (next), & (until)

Decidable inference methods. Satisfiability: PSpace-complete

Relation to other mathematical models:
algebra, automata, formal languages

Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)
Model checking and verification of reactive systems

Many uses in Al: planning, ontologies, multi-agent systems, ...
Monotonic: action domain representations manifest frame problem
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Our proposal

Temporal Equilibrium Logic (TEL) [C_&Pérez 07]
TEL = ASP + LTL
@ ASP: logical characterisation Equilibrium Logic [Pearce 96]

@ LTL: We add temporal operators [, 0, o, U, R (+ past versions)
Result: Temporal Stable Models for any arbitrary LTL theory.
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(Linear) Temporal Equilibrium Logic

@ Syntax = propositional plus
» o = “forever” o
Oa = “eventually” «
Oa = “next moment” «
a U [ =« “until eventually” 5
a R B =a‘“release” 3

v vy VvYy

@ As we had with Equilibrium Logic:
@ A monotonic underlying logic: Temporal Here-and-There (THT)

@ An ordering among models. Select minimal models.
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Sequences

@ In standard LTL, an interpretation is a (possibly oc)-sequence of

sets of atoms
HEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER

0 1 2 3 4

@ In THT we will have a (possibly ~c)-sequence of HT interpretations
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER
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Sequences

@ We define an ordering among sequences H < <T when

To T; T> . T;
Ul Ul UilJ Ul
Ho H, Ho . H;
Definition (THT-interpretation)
is a pair of sequences of sets of atoms (H, T) with H < T. DJ
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Temporal Here-and-There (THT)

(HT),iEa <« “aisprovedat /”
(T,T),iFa < “aassumedat/” < T,/ ainlTL

@ An interpretation M = (H, T) satisfies « at situation /, written

M ik«
a M,i = o when ...
an atom p p € H;
A,V as usual
a—f T.iE=a— pinlLTL and

(H,T),i = a implies (H,T),i = 3

o,[0,0, U , R | asin LTL (just deal with timepoints)
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(Linear) Temporal Equilibrium Logic

@ oo satisfiedin i + 1

@ [lo satisfied for all j >/

(e « o «

@ (O« satisfied for some j > |
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(Linear) Temporal Equilibrium Logic

@ o U [ =repeat a until (mandatorily) 3
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(Linear) Temporal Equilibrium Logic

a R = disjunction of two cases

o U (BNha)
B B B BN«
e [
B B B B B
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Temporal Equilibrium Models

Definition (Temporal Equilibrium Model)

of a theory I" is a model T of ' such that there is no H < T satisfying
(H,T),0 =T. O

@ Temporal Equilibrium Logic (TEL) is the logic induced by temporal
equilibrium models.

Theorem

Deciding whether a temporal theory has some THT-model is
PSPACE-complete.

Theorem

Deciding whether a temporal theory has some temporal stable model
is EXPSPACE-complete.
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P. Cabalar

@ Tool abstem allows computing temporal stable models for infinite

traces

@ Tool telingo focuses on finite traces, closer to practical problem

solving with ASP

@ Temporal formulas in telingo: we can use expressions inside
stel{ ...} with future-ops in heads, past-ops in bodies and any

of them in constraints.

LTL future past

op > p < p

6,0 > P <: P

op >? p <? p

Llp >% p <x p

pUqg |p > qg|p <? g
PRQgG |p > g |p <* g
pAOqg|p i>a |p <; g

plus Boolean operators &, |, ~, &true, &false...

@ We can fix the trace length nwith stel{n > &true}
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@ Back to our planning example, we forbid
O(o(tog(3)) A oo(tog(1)) )
#program initial.

h(light,on).
h(sw(X),up) :—- switch(X).

#program final.

goal :— h(light,on),h(sw(l),down),
h(sw(2),up),h(sw(3),down) .
:— not goal.

#program initial.
- &tel{ >? (o(tog(3)) ;> >2 o(tog(l)) )}.

Or we can use instead past operators like:

#program dynamic.
:— o(tog(l)), &tel{ < <? o(tog(3))}.
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@ Temporal control constraints: they allow disregarding plans
without changing the domain representation towards a goal

@ Convenient in concurrent planning: some “non-critical" agents
may fill the plan with erratic actions

@ Example of control constraints:

—(-p U d) if you pick (p), do it before dropping (d)
-O(p A oOp) never pick twice

:— &tel { ~p >2 d }.
- &tel { >? (p ;> >? p)}.
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e Al Planning

Cabalar mporal Reasoning November 18, 2022 56/72



Classical Al Planning

@ Knowing: initial state + goal (partial description of final state)
@ Find out: plan (sequence of actions) to reach the goal
Classical Al Planning adds these premises

@ Discrete: fluents, actions, time points, everything discrete

@ Deterministic: given a state and a (ground) action, only one
possible outcome

@ Static: the environment does not change while the agent is
deliberating

@ Fully observable domain: no missing information
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Languages for Planning

@ Languages for planning look for a balance between allowing
efficient processing versus flexibility (elaboration tolerance).

@ The most influential language has been STRIPS
STanford Research Institute Problem Solver [Fikes & Nilson 1971]

@ Based on triples with (ACTTION, PRECON, EFFECT)
where PRECON and EFFECT are lists of literals

ACTION: move(X, From, To)
PRECON : on(X, From), clear(X), clear(To)
EFFECT : on(X, T0), clear(From),—on(X, From), —clear(To) on(X,

S—

(:action move
:parameters (?block ?from ?to)
:precondition (and
(on ?block ?from) (clear ?0b) (clear ?to) )
ceffect (and

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 58/72



Languages for Planning

@ Inertia is implicit: all the changes are listed (ADD/DEL lists)
A STRIPS manifests ramification and qualification problems
@ Existence of plan in propositional STRIPS is PSPACE-complete

@ STRIPS has been carefully extended to add flexibility without
harming planners efficiency ...
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Languages for Planning

@ PDDL (Planning Domain Description Language) [McDermott
1998]. Used for the International Planning Competition (IPC).

@ Language versions:
» 2.1: numeric fluents, plan metrics, actions with duration
» 2.2: derived predicates (ramifications), timed exogenous events
» 3.0: state-trajectory constraints (temporal logic), preferences

» 3.0: object fluents (non-numeric multivalued)
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Algorithms: Forward Planning

@ State-space: 1 search node = 1 state
@ Start with initial state, end when goal reached

@ Expanding a node means looking for applicable ground actions

D move(X, From, To)
throws 7 cases
A B ' C )
[ ) ¢ X=aFrom=t,To=b
X=aFrom=t To=d
on(a,t) on(b,t) on(c,t) b X=Db,From=tTo=a
on(d,c) clear(a) . X=b,From=tTo=d
clear(b) clear(c) X=d From=c,To=a

2 X=d,From=c,To=0>b
: X=d From=c,To=t

@ Branching factor = maximum size of one expand
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Algorithms: Forward Planning

@ Pros = simple!
» We can use standard search algorithms
» There are good (domain independent) heuristics

@ Contras
» Branching factor can be too large

@ Many modern planners are based on Forward Planning

@ A good admissible heuristic that underestimates the plan length is
ignoring the delete list [Bonet & Geffner 2001]
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Algorithms: Backward Planning
@ Search space: 1 search node = 1 sub-goal = set of states
@ We start with goal state, end when initial state reached

@ Expanding a node means looking for relevant actions from effects
to preconditions and jumping to a new sub-goal.
E.g. where did each block come from?

o Uu\:>

move(X, From, To)
only 3 possible cases

2 ( )
X=aFrom=t To=>b :
X=aFrom=c,To=b>b
X — C/ From— a. To — t ? on(a,b) on(b,d) on(d,t)
= ¢ Ffrom=a, /0= : on{e,ticlear(a} clear(c]
?
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Algorithms: Backward Planning

@ Pros

» Goal-directed: explore relevant part of the search space
» Branching factor much lower than Forward Planning

@ Contras

» Requires dealing with non-ground sub-goals
» Hard to get good heuristics

@ Goal can be a partial description. E.g. just get on(b, c)

B

move(X, From, To) ? i

no hint to ground From

X =b,From, To=c ? on(b,c)
?
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Algorithms: Bounded Horizon

@ Horizon h = maximum plan length to explore
7 Idea: find plans of fixed length h. If no one found, try with h + 1

@ Firstintroduced in SAT planning [Kautz & Selman 92] with the
SATPLAN planner.

@ Ground fluent f becomes h + 1 propositional atoms 1y, ... . f4

Planning domain becomes a propositional formula in CNF
A SAT solver is used to obtain plans

@ CSP planning: domain becomes a constraint satisfaction problem
(CSP). Actions and fluents can be integer variables

@ ASP planning: domain becomes a logic program and an ASP
solver is used instead. See translator from PDDL to ASP:
P https://github.com/potassco/plasp
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https://github.com/potassco/plasp

Algorithms: Bounded Horizon

@ In general, bounded horizon algorithms are incomplete: they
cannot decide non-existence of plan

@ However, in some cases, upper bounds for h can be obtained and
completeness can be guaranteed.

@ Example: if a Rubik Cube problem has a solution, the maximum
number of quarter turns required is 26. Thus, try for all h < 26.
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Other Planning Techniques

@ GRAPHPLAN [Blum & Furst 1995] graph search based on a
(layered) planning graph
» Even layers: 1 node = 1 (ground) fluent fact
» Odd layers: 1 node = 1 (ground) action
» Edges of type: precondition, effect, mutex (mutual exclusion)

@ Partial-order Planning avoids fixing an ordering among actions,
when it is irrelevant. Example of plan:

get(flour)

— N

go(store) — get(milk) — pay

~

get(eggs)

any of the 3!=6 permutations for getting items is a valid plan
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Other Planning Techniques

@ Using Temporal Logic expressions of control knowledge.
Introduced with TLPLAN [Bacchus & Kabanza 2000]
Formulas in LTL like C(pick — {drop) (as seen in telingo)

@ Hierarchical Task Networks (HTN) planning
Different levels: first high-level actions
@ Land-travel from Ourense to Santiago (SCQ)
@ Fly from SCQ to GCN (Arizona)
© Land-travel from GCN airport to Great Canyon
Then, get a refinement
Land-travel from Ourense to Santiago (SCQ) =
@ Walk to Ourense train station
@ Take train 04175 to Santiago
© Walk to bus station
© Take bus XG802 to SCQ
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Other Planning Techniques

Combining Planning and Machine Learning

@ Learning control rules using Inductive Logic Programming (ILP)
[Leckie & Sukerman 1991] Grasshopper

@ Learning macro actions, i.e. fixed sequences of actions that
simplify the search. Example in 8-puzzle: push a row to the right
Using Reinforcement learning [Randlgv 1999]

@ Learning the domain description from set of execution traces.
Very recent example using ASP [Rodriguez, Bonet, Romero &
Geffner 2021]
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Beyond Classical Planning

@ Conformant planning: domain is only partially observable
» Knowing: partial initial state + goal description

» Find out: plan (linear sequence of actions) that always reaches the
goal

@ Non-deterministic actions can also be covered: reduction to an
exogenous variable unknown at the initial state

@ Complexity raises from PSPACE to EXPSPACE
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Beyond Classical Planning

@ Contingency planning: domain is only partially observable, but we
have sensing actions (always non-deterministic)
» Knowing: partial initial state + goal description

» Find out: plan = nested conditional sequences of actions that
guarantee reaching the goal

@ Example of plan: the phone is at the kitchen or at the bedroom

go(kitchen); turn(light, on); watch;
if at(phone, kitchen) then walk; pick(phone)
else go(bedroom); pick(phone)

@ We represent the agent’s beliefs (epistemic reasoning)
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Beyond Classical Planning

@ Probabilistic Planning: extends non-deterministic actions with
probabilistic information
» Markov Decision Process (MDP): world is fully-observable,
transition only depends on the previous state, not previous history
» Partially Observable MDP (POMDP): world not fully observable,
deal with agent’s beliefs (undecidable in the general case)

@ Online planning: the environment changes during deliberation or
plan execution £ Requires monitoring the plan execution and
detecting the need for replanning

@ Scheduling: actions may have durations and require consuming
resources. Related to Operations Research techniques such as
Critical Path Method (CPM)
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