Reasoning and Planning

Unit 5. Temporal Reasoning and Planning

Pedro Cabalar

Dept. Computer Science
University of Corunna, SPAIN

November 18, 2022

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

@ Actions and change

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 2/72

Back to our simple example

@ Lamp and switches revisited
@ Fluents: up1, up2, up3, light (Boolean).
@ Actions: toggle1, toggle2, toggle3.

@ State: a possible configuration of fluent values. Example:
{up1, up2, upg, light}.

@ Situation: a moment in time. We can justuse 0,1,2, ...

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

Reasoning about actions with ASP

@ Download system telingo (temporal c1ingo)
@ We can make groups of rules

#program initial. % At timepoint t=0

o)

#program dynamic. % Transition from t-1 to t

o

#program always. % Any timepoint t=0..n-1

)

#program final. % Last timepoint t=n-1

@ Predicate names preceded by ’ refer to timepoint t-1
@ Predicate names preceded by _ refer to timepoint £=0
@ Temporal formulas built with stel{ ... }

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

Reasoning about actions with ASP

o

% File: switches.lp (domain description)
switch(1l..3).
action(tog (X)) :— switch(X).

#program dynamic.

o)

% Effect axioms

h (sw(X) ,up) :— "h(sw(X),down), o(tog(X)).
h(sw(X),down) :— "h(sw(X),up), o(tog (X)) .
h(light, off) :— "h(light,on), o(tog(_)) .
h (light, on) :— 'h(light,off), of(tog(_)).

Executability constraints: none in this case
Inertia: c(F)= fluent F has changed

h(F,V) := "h(F,V), not c(F).

c(F) := "h(F,V), h(F,W), V!I=W.

o oo

o

% Action generation
1 { o(A): _action(A) } 1.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

RAC goals

We want to solve some typical reasoning problems.

The most usual ones:

@ Simulation (aka prediction, aka temporal projection):
run a sequence of actions on an initial state

@ Temporal explanation (aka postdiction):
fill gaps from partial observations

Planning: obtain sequence of actions to reach some goal

Diagnosis: explain unexpected observed results

Verification: check system properties

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

Prediction (simulation, or temporal projection)

@ Knowing: initial state + sequence of actions

@ Find out: final state (alternatively sequence of intermediate
states)

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

Reasoning about actions with ASP

Prediction example

% File: switches-predict.lp (instance of prediction problem)
#program initial.

h(light,off).

h(sw(X),up) :— switch(X).

We assert a sequence of facts using:

% Sequence of performed actions
&tel{

&true
o(tog(
o (tog(
o (tog(
o(tog(

r
’

’

vV V. V V

3))
1))
2))
i 2))
}.
#show h/2.
#show o/1.

where ; > is a sequence operator

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 8/72

Reasoning about actions with ASP

Prediction example
Calling telingo switches.txt switches-predict.txt

Answer: 1
State 0:
h(light,off) h(sw(l),up) h(sw(2),up) h(sw(3),up)
State 1:
o(tog(3))
h(light,on) h(sw(l),up) h(sw(2),up) h(sw(3),down)
State 2:
o(tog (1))
h(light,off) h(sw(l),down) h(sw(2),up) h(sw(3),down)
State 3:
o(tog(2))
h(light,on) h(sw(l),down) h(sw(2),down) h(sw(3),down)
State 4:
o(tog(2))
h(light,off) h(sw(l),down) h(sw(2),up) h(sw(3),down)

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

Postdiction (or temporal explanation)

@ Knowing: partial observations of states and performed actions
@ Find out: complete information on states and performed actions

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 10/72

Reasoning about actions with ASP

Postdiction example:

o

% switches-postdict.lp
#program initial.
% Completing unknown facts

1 {h(sw(X),up); h(sw(X),down)} 1 :- switch(X).
1 {h(light,on); h(light,off)} 1.
% Observations: we use a constraint!

:— not &tel{

h(sw(3),up) & h(light,on)

;> h(light,off) & h(sw(l),down) & h(sw(3),up)
7> o(tog(3))
}.

Calling telingo 0 switches.txt switches-postdict.txt we
get 4 possible explanations

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 11/72

@ Knowing: initial state + goal (partial description of final state)

@ Find out: plan (sequence of actions) that guarantees reaching the
goal

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 12/72

Reasoning about actions with ASP

Planning example

% File: switches-plan.lp

#program initial.
h(light,on).
h(sw(X),up) :- switch(X).

#program final.

goal :- h(light,on),h(sw(l),down),
h(sw(2),up),h(sw(3),down) .
:— not goal.

Calling telingo 0 switches.txt switches-plan.txt we get
two minimal plans of length 2 toggling 1 and 3 or vice versa.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 13/72

Planning vs Postdiction

@ Note that planning seems a type of postdiction. For deterministic
systems, this is true, but . ..

@ Nondeterministic transition system: fixing current state +
performed action — several possible successor states.

@ For instance, switch 1 up may fail to turn the light on...

togglel 2 togglel

Switch 1 "failed"

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 14/72

Planning vs Postdiction

@ For postdiction, one valid explanation is: we performed toggle,
and it succeeded to turn the light on.

@ For planning, togglei is not a valid plan: it does not guarantee
reaching the goal /ight. Possible plans are toggle2 or toggle3.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 15/72

Exercise

“Elaborating Missionaries and Cannibals Problem” [J. McCarthy]
3 missionaries and 3 cannibals come to a river and find a boat
that holds two. If the cannibals ever outnumber the missionar-
ies on either bank, the missionaries will be eaten. How shall
they cross?

We will use the following fluents:
@ n (G, B) =is the number of persons of group G at bank B.

Ex.:h(n(mis, 1), 3) = “there are 3 missionaries in the left bank”

@ boat points out the boat bank. Ex. h (boat, 1) = “the boat is at
left bank’

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 16/72

Exercise: missionaries and cannibals

We will use action:
@ move (M, C) = move M missionaries and C cannibals.

@ For simplicity, we include two action attributes moved (mis, N)

and moved (can, N) that point out separatedly how many persons
of each group are moved.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 17/72

Exercise: missionaries and cannibals

We begin with types and initial state

#program initial.

% Some types
group (mis; can) .

bank (1;r) .
opposite(l,r). opposite(r,1l).
action (move (M,C)) :— M=0..2, C=0..2, M+C<3, M+C>O0.

o)

% Initial state

h(n(G,1),3) :- group(G).
h(n(G,r),0) :- group(G).
h (boat, 1) .

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

Exercise: missionaries and cannibals

Rules for transitions

#program dynamic.
% Action generation
1 {o(A) : _action(A) } 1.

% Auxiliary (action attributes)
moved (mis,M) :— o (move(M,C)).
moved (can,C) :— o(move (M,C)).

% Executability axioms
:— moved(G,N), ’"h(boat,B), "h(n(G,B),M), N>M.

% Effect axioms (no inertia needed)

h(n(G,B),M+N) :- 'h(n(G,B),M), h(boat,B), moved(G,N).
h(n(G,B),M-N) :- "h(n(G,B),M), "h(boat,B), moved(G,N).
h (boat, B1) :— "h(boat,B), _opposite(B,Bl).

Inertia not needed because all fluents are changed

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 19/72

Exercise: missionaries and cannibals

Rules for transitions

#program always.

% Missionaries not outnumbered by cannibals
:— h(n(mis,B),M), h(n(can,B),C), C>M, M>0.

#program final.
:— not goal.
goal :- h(n(mis,r),3), h(n(can,r),3).

#show o/1l. % We only show performed actions

@ We execute telingo 0 mc.txt and it will try length
t=1,2,... until a solution is found.

@ Four solutions of length t = 11 are eventually found.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 20/72

Exercise: the Blocks World

Example
@ Rearrange blocks of same size into goal stacks

@ We can only move a free block (nothing on top) at a time

@ We can put it on another block or on the table (it has room for all))

A
D "B
A B C D B
| | |
Initial state Goal

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 21/72

Exercise: the Blocks World

@ Fluents:
h (on (B), L) = block B is on location L (a block or the table)

@ Actions:
o (move (B, L)) = move block B to location L

@ To specify the goal we use a static predicate:
g (B, L) =block B goal location is L

The problem instance:
blocks (a;b;c;d).

> Initial state
h(on(a),table). h(on(b),table). h(on(c),table). h(on(d),c).
% Goal positions

g(a,b). g(b,d). g(d,table). g(c,table).

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 22/72

Exercise: the Blocks World

A blocks world encoding:

#program initial.

location (table) . location(B) :— block (B).
#program dynamic.

h(on(B),L) :— o(move(B,L)).
:— o(move(B,_)), "unclear(B).
:— o(move(_,L)), "unclear(L). y
:— o(move (B,table)), 'h(on(B),table). % control constraint
#program always.

unclear (C) :- h(on(_),C),C!=table.

#program final.

:— _g(B,L), not h(on(B),L). % goal is reached

plus the general patterns:

#program dynamic.

1 {o(A): _action(dA) } 1. % action generation
h(F,v) := "h(F,V), not c(F). 5 inertia

c (F) = h/ (F,V),h(F,W),V!I=W. % change

#show o/1.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 23/72

Exercise: the Blocks World

@ An efficient encoding (goal oriented) may mean sacrifices in

elaboration tolerance

@ Strategy 1: restrict available actions
> Allow moving a block to the table or to its destination block

action (move (B, table))
action (move (B, C))

:— block (B
:— g(B,C).

).

@ Strategy 2: reduce generality of inertia. Replace by:

’h(on(B),L) :— "h(on(B),L), not o(move(B,_)). ‘

(Slight) frame problem (what if new actions for moving are defined)

@ Strategy 3: control executability constraints = they tell you what
(not) to do next, guided by our goal. Ex.: never undo a good tower.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 24/72

Exercise: the Blocks World

A
D B
A B a D C
())
Initial state Goal

Never undo a good tower:
@ We should not start moving A on B, because B is not ready

@ B will be ready when placed on D, being D ready in its turn

@ D will be ready when placed on the table

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 25/72

Exercise: the Blocks World

@ The ready auxiliary predicate is recursive

#program always.
ready (table) .
ready (B) :- h(on(B),L), _g(B,L), ready(L).

@ Finally, we can now add the control constraints:

#program dynamic.
% Don’t move a ready block
:— o(move (B,_)), ’'ready(B).

% Don lay on a non-ready location

:— o(move(_,L)), not ’'ready(L).

@ These changes drastically reduce the search space, but the
representation is now totally guided by goal location, predicate
—9(B,L).

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 26/72

@ Diagnosis

Cabalar i mporal Reasoning November 18, 2022 27/72

Abductivon as best explanation

Abduction
@ Knowing: a knowledge base KB + an observed result C

@ Find out: hypotheses H suchthat KBU H = C
? H should be the best explanation

@ Example: we have C = wetgrass and KB =

rain — wetgrass
sprinkle N\ night — wetgrass
glass A fill N push — wetgrass

We can use H; = {rain}, < simplest hypothesis
H, = {sprinkle, night} or Hy = {glass, fill, push}

o If we have KB’ = KB U {—rain}, the best hypothesis (less
assumptions) becomes H-

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 28/72

Abduction in ASP

@ Atoms are reified: h (a) = atom A holds

@ We distinguish the abducible atoms (they can form hypotheses)
Generation of hypothesis becomes a choice rule

abducible (rain; sprinkle;night;push;glass; full).
{hyp(a)} :— abducible(a). % generate hypothesis
h(A) :- hyp(a). % any hypothesis A holds

@ Observations can be incorporated as constraints

h(wetgrass) :- h(rain).
h(wetgrass) :— h(night), h(sprinkle).
h(wetgrass) :- h(glass), h(full), h(push).

not h(wetgrass) . > Observation

We cannot add h (wetgrass) as a fact, or as an abducible atom!

@ We get 43 explanations! (including hypothesis with all abducible
atoms). Smallest explanations = minimal sets of hypotheses

’#minimize{l,A:hyp(A)}. ‘

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 29/72

@ An agent acts in a dynamic environment and observes the results
of her actions.

@ Sometimes she gets discrepancies:
observations # expected result

@ Diagnosis = search for abductive explanations

» Knowing: a model distinguishing between normal and abnormal
transitions + a partial set of observations (usually implying
abnormal behavior).

» Find out: the minimal set of abnormal transitions that explains the
observations.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 30/72

@ Example [Balduccini & Gelfond 03]
We have a circuit with lightbulb b and a relay r. The agent can
close s1 causing s2 to close (if r is not damaged). The bulb
emits light if s2 is closed and b is not damaged.

A
—® IQ \Q
' b

| +
»

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 31/72

Diagnosis example

@ Example [Balduccini & Gelfond 03]
Exogenous action break damages the relay. Action power-
surge damages r, and b too, if the latter is not protected (prot).

..-»". /~
52:‘ \\'O
! b
: e
L sl
— r

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 32/72

Diagnosis example

@ Example [Balduccini & Gelfond 03]
We close s1 but b does not emit light: what has happened?

52:‘ \Q
! b
: e
+ sl
— r

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 33/72

Diagnosis example

@ Types and domains

#program initial.
switch(sl;s2).

component (relay;bulb) .

fluent (relay;light;b_prot).
fluent (S) :—switch (S) .

fluent (ab(C)) :— component (C) .

value (relay, (on;off)).
value (light, (on;o0ff)).
value (S, (openj;closed)) :— switch(S).

% Fluents are boolean by default
domain (F, (true; false)) :- fluent(F), not value(F,_).
otherwise, they take the specified values

domain (F,V) :— value (F,V).

@ Fluents ab(C) point out that a component is damaged

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 34/72

Diagnosis example

@ Actions are exogenous exog or agent’s agent:

agent (close(sl)) .
exog (break; surge) .
action(Y) :—exog(Y) .
action (Y) :—agent (Y) .

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 35/72

Diagnosis example

#program dynamic.

Inertia
h(F,V) := "h(F,V), not c(F).
c (F) :— "h(F,V), h(F,W), V!I=W.
Direct effects
h(sl,closed) :— o(close(sl)).

#program always.
Indirect effects

h(relay,on) :— h(sl,closed), h(ab(relay), false).
h(relay,off) :— h(sl,open).

h(relay,off) :— h(ab(relay),true).

h(s2,closed) :— h(relay,on).

h(light,on) :— h(s2,closed), h(ab(bulb), false).
h(light, off) :— h(s2,open).

h(light,off) :— h(ab (bulb), true).

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 36/72

Diagnosis example

#program dynamic.

Executability
:— o(close(S)), "h(S,closed).

% Malfunctioning

h (ab (bulb), true) :— o(break).

h(ab(relay),true) :—- o(surge).

h (ab (bulb), true) :— o(surge), not 'h(b_prot,true).

We use predicates obs, and obsy, to denote observations
5 Observed actions actually occur

o(A) :— obs_o(A).

#program always.
% Check that observations hold
:— obs_h(F,V), not h(F,V).

#program initial.
Completing the initial state
1 {h(F,V):_domain(F,V)} 1 :— _fluent (F).

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

Diagnosis example

@ These are the observations:
A history
stel {
obs_h(sl,open) & obs_h(s2,open) &
obs_h (b_prot, true) &
(ab (
(ab (

obs_h bulb), false) &
obs_h relay), false)

;> obs_o(close(sl)) &
obs_h(light, off)

#program dynamic.
% Generate exogenous actions

{ hyp(A): _exog(A) }.

o(A) :— hyp(A).
#show cause/1.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 38/72

Diagnosis example

@ This will provide all possible explanations, but not minimal
diagnoses.

$ telingo 0 diag.lp
Answer: 1
State 0O:
State 1:
cause (break)

Answer: 2

State 0:

State 1:

cause (break) cause (surge)
Answer: 3

State 0:

State 1:

cause (surge)
SATISFIABLE

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 39/72

Diagnosis example

@ We look for best explanations:

’#minimize {1,A:hyp(A)}. ‘

@ To obtain all minimal solutions we use the options:

’$ telingo —-opt-mode=optN -n0 diag.lp

Two minimal solutions are found:

Answer: 1

State 0:

State 1:

cause (surge)
Optimization: 1
Answer: 2

State O:

State 1:

cause (break)
Optimization: 1
OPTIMUM FOUND

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 40/72

e Temporal Logic

Cabalar mporal Reasoning November 18, 2022 41/72

Temporal Reasoning

@ Until now, temporal expressivenes limited to:
pﬂxyan1secﬂons:initial, dynamic, always, final
» previous situation ' h (sw (X) , down)

» initial situation _action (A)

» sequence of actions ; >

Can we go further?

v

@ Example: (in the switches planning problem) choose plans where
fog(1) does not occur after tog(3) Obvious solution: auxiliary
predicate

#program dynamic.

moved3 :— o(tog(3)).

moved3 :— ’'moved3.

:— o(tog(l)), moved3.

@ Linear Temporal Logic can do the job requiring
—(o(tog(3)) A ¢o(tog(1)))

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 42/72

Modal Temporal Logic

NN

SEENENEN

P. Cabalar

Linear-time Temporal Logic (LTL)

[J (forever), ¢ (eventually), o (next), & (until)

Decidable inference methods. Satisfiability: PSpace-complete

Relation to other mathematical models:
algebra, automata, formal languages

Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)
Model checking and verification of reactive systems

Many uses in Al: planning, ontologies, multi-agent systems, ...
Monotonic: action domain representations manifest frame problem

Unit 5. Temporal Reasoning November 18, 2022 43/72

Our proposal

Temporal Equilibrium Logic (TEL) [C_&Pérez 07]
TEL = ASP + LTL
@ ASP: logical characterisation Equilibrium Logic [Pearce 96]

@ LTL: We add temporal operators [, 0, o, U, R (+ past versions)
Result: Temporal Stable Models for any arbitrary LTL theory.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 44/72

(Linear) Temporal Equilibrium Logic

@ Syntax = propositional plus
» o = “forever” o
Oa = “eventually” «
Oa = “next moment” «
a U [=« “until eventually” 5
a R B =a‘“release” 3

v vy VvYy

@ As we had with Equilibrium Logic:
@ A monotonic underlying logic: Temporal Here-and-There (THT)

@ An ordering among models. Select minimal models.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 45/72

Sequences

@ In standard LTL, an interpretation is a (possibly oc)-sequence of

sets of atoms
HEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER

0 1 2 3 4

@ In THT we will have a (possibly ~c)-sequence of HT interpretations
EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 46/72

Sequences

@ We define an ordering among sequences H < <T when

To T; T> . T;
Ul Ul UilJ Ul
Ho H, Ho . H;
Definition (THT-interpretation)
is a pair of sequences of sets of atoms (H, T) with H < T. DJ

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 47/72

Temporal Here-and-There (THT)

(HT),iEa <« “aisprovedat /”
(T,T),iFa < “aassumedat/” < T,/ ainlTL

@ An interpretation M = (H, T) satisfies « at situation /, written

M ik«
a M,i = o when ...
an atom p p € H;
A,V as usual
a—f T.iE=a— pinlLTL and

(H,T),i = a implies (H,T),i = 3

o,[0,0, U , R | asin LTL (just deal with timepoints)

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

(Linear) Temporal Equilibrium Logic

@ oo satisfiedin i + 1

@ [lo satisfied for all j >/

(e « o «

@ (O« satisfied for some j > |

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 49/72

(Linear) Temporal Equilibrium Logic

@ o U [=repeat a until (mandatorily) 3

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 50/72

(Linear) Temporal Equilibrium Logic

a R = disjunction of two cases

o U (BNha)
B B B BN«
e [
B B B B B

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

Temporal Equilibrium Models

Definition (Temporal Equilibrium Model)

of a theory I" is a model T of ' such that there is no H < T satisfying
(H,T),0 =T. O

@ Temporal Equilibrium Logic (TEL) is the logic induced by temporal
equilibrium models.

Theorem

Deciding whether a temporal theory has some THT-model is
PSPACE-complete.

Theorem

Deciding whether a temporal theory has some temporal stable model
is EXPSPACE-complete.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 52/72

P. Cabalar

@ Tool abstem allows computing temporal stable models for infinite

traces

@ Tool telingo focuses on finite traces, closer to practical problem

solving with ASP

@ Temporal formulas in telingo: we can use expressions inside
stel{ ...} with future-ops in heads, past-ops in bodies and any

of them in constraints.

LTL future past

op > p < p

6,0 > P <: P

op >? p <? p

Llp >% p <x p

pUqg |p > qg|p <? g
PRQgG |p > g |p <* g
pAOqg|p i>a |p <; g

plus Boolean operators &, |, ~, &true, &false...

@ We can fix the trace length nwith stel{n > &true}

Unit 5. Temporal Reasoning

November 18, 2022

@ Back to our planning example, we forbid
O(o(tog(3)) A oo(tog(1)))
#program initial.

h(light,on).
h(sw(X),up) :—- switch(X).

#program final.

goal :— h(light,on),h(sw(l),down),
h(sw(2),up),h(sw(3),down) .
:— not goal.

#program initial.
- &tel{ >? (o(tog(3)) ;> >2 o(tog(l)))}.

Or we can use instead past operators like:

#program dynamic.
:— o(tog(l)), &tel{ < <? o(tog(3))}.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

@ Temporal control constraints: they allow disregarding plans
without changing the domain representation towards a goal

@ Convenient in concurrent planning: some “non-critical" agents
may fill the plan with erratic actions

@ Example of control constraints:

—(-p U d) if you pick (p), do it before dropping (d)
-O(p A oOp) never pick twice

:— &tel { ~p >2 d }.
- &tel { >? (p ;> >? p)}.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 55/72

e Al Planning

Cabalar mporal Reasoning November 18, 2022 56/72

Classical Al Planning

@ Knowing: initial state + goal (partial description of final state)
@ Find out: plan (sequence of actions) to reach the goal
Classical Al Planning adds these premises

@ Discrete: fluents, actions, time points, everything discrete

@ Deterministic: given a state and a (ground) action, only one
possible outcome

@ Static: the environment does not change while the agent is
deliberating

@ Fully observable domain: no missing information

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

Languages for Planning

@ Languages for planning look for a balance between allowing
efficient processing versus flexibility (elaboration tolerance).

@ The most influential language has been STRIPS
STanford Research Institute Problem Solver [Fikes & Nilson 1971]

@ Based on triples with (ACTTION, PRECON, EFFECT)
where PRECON and EFFECT are lists of literals

ACTION: move(X, From, To)
PRECON : on(X, From), clear(X), clear(To)
EFFECT : on(X, T0), clear(From),—on(X, From), —clear(To) on(X,

S—

(:action move
:parameters (?block ?from ?to)
:precondition (and
(on ?block ?from) (clear ?0b) (clear ?to))
ceffect (and

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 58/72

Languages for Planning

@ Inertia is implicit: all the changes are listed (ADD/DEL lists)
A STRIPS manifests ramification and qualification problems
@ Existence of plan in propositional STRIPS is PSPACE-complete

@ STRIPS has been carefully extended to add flexibility without
harming planners efficiency ...

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 59/72

Languages for Planning

@ PDDL (Planning Domain Description Language) [McDermott
1998]. Used for the International Planning Competition (IPC).

@ Language versions:
» 2.1: numeric fluents, plan metrics, actions with duration
» 2.2: derived predicates (ramifications), timed exogenous events
» 3.0: state-trajectory constraints (temporal logic), preferences

» 3.0: object fluents (non-numeric multivalued)

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 60/72

Algorithms: Forward Planning

@ State-space: 1 search node = 1 state
@ Start with initial state, end when goal reached

@ Expanding a node means looking for applicable ground actions

D move(X, From, To)
throws 7 cases
A B ' C)
[) ¢ X=aFrom=t,To=b
X=aFrom=t To=d
on(a,t) on(b,t) on(c,t) b X=Db,From=tTo=a
on(d,c) clear(a) . X=b,From=tTo=d
clear(b) clear(c) X=d From=c,To=a

2 X=d,From=c,To=0>b
: X=d From=c,To=t

@ Branching factor = maximum size of one expand

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 61/72

Algorithms: Forward Planning

@ Pros = simple!
» We can use standard search algorithms
» There are good (domain independent) heuristics

@ Contras
» Branching factor can be too large

@ Many modern planners are based on Forward Planning

@ A good admissible heuristic that underestimates the plan length is
ignoring the delete list [Bonet & Geffner 2001]

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 62/72

Algorithms: Backward Planning
@ Search space: 1 search node = 1 sub-goal = set of states
@ We start with goal state, end when initial state reached

@ Expanding a node means looking for relevant actions from effects
to preconditions and jumping to a new sub-goal.
E.g. where did each block come from?

o Uu\:>

move(X, From, To)
only 3 possible cases

2 ()
X=aFrom=t To=>b :
X=aFrom=c,To=b>b
X — C/ From— a. To — t ? on(a,b) on(b,d) on(d,t)
= ¢ Ffrom=a, /0= : on{e,ticlear(a} clear(c]
?

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 63/72

Algorithms: Backward Planning

@ Pros

» Goal-directed: explore relevant part of the search space
» Branching factor much lower than Forward Planning

@ Contras

» Requires dealing with non-ground sub-goals
» Hard to get good heuristics

@ Goal can be a partial description. E.g. just get on(b, c)

B

move(X, From, To) ? i

no hint to ground From

X =b,From, To=c ? on(b,c)
?

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

Algorithms: Bounded Horizon

@ Horizon h = maximum plan length to explore
7 Idea: find plans of fixed length h. If no one found, try with h + 1

@ Firstintroduced in SAT planning [Kautz & Selman 92] with the
SATPLAN planner.

@ Ground fluent f becomes h + 1 propositional atoms 1y, f4

Planning domain becomes a propositional formula in CNF
A SAT solver is used to obtain plans

@ CSP planning: domain becomes a constraint satisfaction problem
(CSP). Actions and fluents can be integer variables

@ ASP planning: domain becomes a logic program and an ASP
solver is used instead. See translator from PDDL to ASP:
P https://github.com/potassco/plasp

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 65/72

https://github.com/potassco/plasp

Algorithms: Bounded Horizon

@ In general, bounded horizon algorithms are incomplete: they
cannot decide non-existence of plan

@ However, in some cases, upper bounds for h can be obtained and
completeness can be guaranteed.

@ Example: if a Rubik Cube problem has a solution, the maximum
number of quarter turns required is 26. Thus, try for all h < 26.

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 66/72

Other Planning Techniques

@ GRAPHPLAN [Blum & Furst 1995] graph search based on a
(layered) planning graph
» Even layers: 1 node = 1 (ground) fluent fact
» Odd layers: 1 node = 1 (ground) action
» Edges of type: precondition, effect, mutex (mutual exclusion)

@ Partial-order Planning avoids fixing an ordering among actions,
when it is irrelevant. Example of plan:

get(flour)

— N

go(store) — get(milk) — pay

~

get(eggs)

any of the 3!=6 permutations for getting items is a valid plan

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022

Other Planning Techniques

@ Using Temporal Logic expressions of control knowledge.
Introduced with TLPLAN [Bacchus & Kabanza 2000]
Formulas in LTL like C(pick — {drop) (as seen in telingo)

@ Hierarchical Task Networks (HTN) planning
Different levels: first high-level actions
@ Land-travel from Ourense to Santiago (SCQ)
@ Fly from SCQ to GCN (Arizona)
© Land-travel from GCN airport to Great Canyon
Then, get a refinement
Land-travel from Ourense to Santiago (SCQ) =
@ Walk to Ourense train station
@ Take train 04175 to Santiago
© Walk to bus station
© Take bus XG802 to SCQ

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 68/72

Other Planning Techniques

Combining Planning and Machine Learning

@ Learning control rules using Inductive Logic Programming (ILP)
[Leckie & Sukerman 1991] Grasshopper

@ Learning macro actions, i.e. fixed sequences of actions that
simplify the search. Example in 8-puzzle: push a row to the right
Using Reinforcement learning [Randlgv 1999]

@ Learning the domain description from set of execution traces.
Very recent example using ASP [Rodriguez, Bonet, Romero &
Geffner 2021]

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 69/72

Beyond Classical Planning

@ Conformant planning: domain is only partially observable
» Knowing: partial initial state + goal description

» Find out: plan (linear sequence of actions) that always reaches the
goal

@ Non-deterministic actions can also be covered: reduction to an
exogenous variable unknown at the initial state

@ Complexity raises from PSPACE to EXPSPACE

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 70/72

Beyond Classical Planning

@ Contingency planning: domain is only partially observable, but we
have sensing actions (always non-deterministic)
» Knowing: partial initial state + goal description

» Find out: plan = nested conditional sequences of actions that
guarantee reaching the goal

@ Example of plan: the phone is at the kitchen or at the bedroom

go(kitchen); turn(light, on); watch;
if at(phone, kitchen) then walk; pick(phone)
else go(bedroom); pick(phone)

@ We represent the agent’s beliefs (epistemic reasoning)

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 71/72

Beyond Classical Planning

@ Probabilistic Planning: extends non-deterministic actions with
probabilistic information
» Markov Decision Process (MDP): world is fully-observable,
transition only depends on the previous state, not previous history
» Partially Observable MDP (POMDP): world not fully observable,
deal with agent’s beliefs (undecidable in the general case)

@ Online planning: the environment changes during deliberation or
plan execution £ Requires monitoring the plan execution and
detecting the need for replanning

@ Scheduling: actions may have durations and require consuming
resources. Related to Operations Research techniques such as
Critical Path Method (CPM)

P. Cabalar Unit 5. Temporal Reasoning November 18, 2022 72/72

	Actions and change
	Diagnosis
	Temporal Logic
	AI Planning

