Reasoning and Planning Unit 5. Temporal Reasoning and Planning

Pedro Cabalar

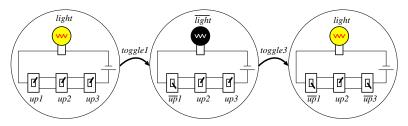
Dept. Computer Science University of Corunna, SPAIN

November 18, 2022

2 Diagnosis

Back to our simple example

- Lamp and switches revisited
- Fluents: up1, up2, up3, light (Boolean).
- Actions: *toggle*1, *toggle*2, *toggle*3.
- State: a possible configuration of fluent values. Example: $\{\overline{up1}, up2, up3, \overline{light}\}$.
- Situation: a moment in time. We can just use 0, 1, 2, ...



Reasoning about actions with ASP

- Download system telingo (temporal clingo)
- We can make groups of rules

```
#program initial. % At timepoint t=0
...
#program dynamic. % Transition from t-1 to t
...
#program always. % Any timepoint t=0..n-1
...
#program final. % Last timepoint t=n-1
...
```

- Predicate names preceded by 'refer to timepoint t-1
- Predicate names preceded by _ refer to timepoint t=0
- Temporal formulas built with &tel{ ... }

```
% File: switches.lp (domain description)
switch(1..3).
action(toq(X)) := switch(X).
#program dynamic.
% Effect axioms
 h(sw(X), up) := 'h(sw(X), down), o(tog(X)).
 h(sw(X), down) := 'h(sw(X), up), o(toq(X)).
 h(light, off) := 'h(light, on), o(tog(_)).
 h(light,on) :- 'h(light,off), o(tog(_)).
% Executability constraints: none in this case
% Inertia: c(F) = fluent F has changed
 h(F,V) := 'h(F,V), not c(F).
 c(F) := 'h(F,V), h(F,W), V!=W.
% Action generation
 1 { o(A): _action(A) } 1.
```

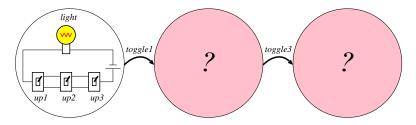
We want to solve some typical reasoning problems.

The most usual ones:

- Simulation (aka prediction, aka temporal projection): run a sequence of actions on an initial state
- Temporal explanation (aka postdiction): fill gaps from partial observations
- Planning: obtain sequence of actions to reach some goal
- Diagnosis: explain unexpected observed results
- Verification: check system properties

Prediction (simulation, or temporal projection)

- Knowing: initial state + sequence of actions
- Find out: final state (alternatively sequence of intermediate states)



Reasoning about actions with ASP

Prediction example

```
% File: switches-predict.lp (instance of prediction problem)
#program initial.
h(light,off).
h(sw(X),up) :- switch(X).
```

We assert a sequence of facts using:

```
% Sequence of performed actions
&tel{
    &true
;> o(tog(3))
;> o(tog(1))
;> o(tog(2))
;> o(tog(2))
}.
#show h/2.
#show o/1.
```

where ; > is a sequence operator

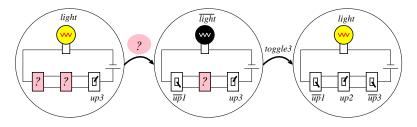
Prediction example

Calling telingo switches.txt switches-predict.txt

```
Answer: 1
 State 0:
  h(light, off) h(sw(1), up) h(sw(2), up) h(sw(3), up)
 State 1:
 o(tog(3))
 h(light, on) h(sw(1), up) h(sw(2), up) h(sw(3), down)
 State 2:
 o(tog(1))
  h(light, off) h(sw(1), down) h(sw(2), up) h(sw(3), down)
 State 3:
 o(toq(2))
  h(light, on) h(sw(1), down) h(sw(2), down) h(sw(3), down)
 State 4:
 o(toq(2))
  h(light,off) h(sw(1),down) h(sw(2),up) h(sw(3),down)
```

Postdiction (or temporal explanation)

- Knowing: partial observations of states and performed actions
- Find out: complete information on states and performed actions

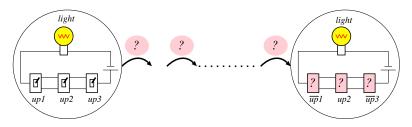


Postdiction example:

```
% switches-postdict.lp
#program initial.
% Completing unknown facts
1 {h(sw(X),up); h(sw(X),down)} 1 :- switch(X).
1 {h(light,on); h(light,off)} 1.
% Observations: we use a constraint!
:- not &tel{
    h(sw(3),up) & h(light,on)
    ;> h(light,off) & h(sw(1),down) & h(sw(3),up)
    ;> o(tog(3))
}.
```

Calling telingo 0 switches.txt switches-postdict.txt we get 4 possible explanations

- Knowing: initial state + goal (partial description of final state)
- Find out: plan (sequence of actions) that guarantees reaching the goal

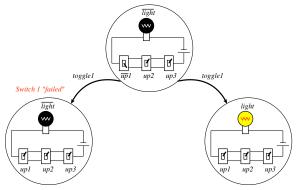


Planning example

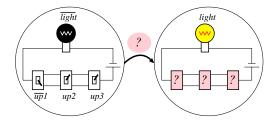
Calling telingo 0 switches.txt switches-plan.txt we get two minimal plans of length 2 toggling 1 and 3 or vice versa.

Planning vs Postdiction

- Note that planning seems a type of postdiction. For deterministic systems, this is true, but ...
- Nondeterministic transition system: fixing current state + performed action → several possible successor states.
- For instance, switch 1 up may fail to turn the light on...



Planning vs Postdiction



- For postdiction, one valid explanation is: we performed *toggle1*, and it succeeded to turn the light on.
- For planning, *toggle1* is not a valid plan: it does not guarantee reaching the goal *light*. Possible plans are *toggle2* or *toggle3*.

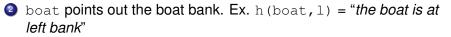
Exercise

"Elaborating Missionaries and Cannibals Problem" [J. McCarthy] 3 missionaries and 3 cannibals come to a river and find a boat that holds two. If the cannibals ever outnumber the missionaries on either bank, the missionaries will be eaten. How shall they cross?

We will use the following fluents:

n (G, B) = is the number of persons of group G at bank B.

Ex.: h (n (mis, 1), 3) = "there are 3 missionaries in the left bank"



We will use action:

- move (M, C) = move M missionaries and C cannibals.
- For simplicity, we include two action attributes moved (mis, N) and moved (can, N) that point out separatedly how many persons of each group are moved.

We begin with types and initial state

```
#program initial.
% Some types
group(mis;can).
bank(l;r).
opposite(l,r). opposite(r,l).
action(move(M,C)) :- M=0..2, C=0..2, M+C<3, M+C>0.
% Initial state
h(n(G,l),3) :- group(G).
h(n(G,r),0) :- group(G).
h(boat,l).
```

Rules for transitions

```
#program dynamic.
% Action generation
1 {o(A) : _action(A) } 1.
% Auxiliary (action attributes)
moved(mis, M) := o(move(M, C)).
moved(can, C) := o(move(M, C)).
% Executability axioms
:- moved(G,N), 'h(boat,B), 'h(n(G,B),M), N>M.
% Effect axioms (no inertia needed)
h(n(G,B),M+N) := 'h(n(G,B),M), h(boat,B), moved(G,N).
h(n(G,B), M-N) := 'h(n(G,B), M), 'h(boat, B), moved(G, N).
h(boat,B1) :- 'h(boat,B), _opposite(B,B1).
```

Inertia not needed because all fluents are changed

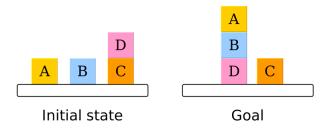
Rules for transitions

```
#program always.
% Missionaries not outnumbered by cannibals
:- h(n(mis,B),M), h(n(can,B),C), C>M, M>0.
#program final.
:- not goal.
goal :- h(n(mis,r),3), h(n(can,r),3).
#show o/1. % We only show performed actions
```

- We execute telingo 0 mc.txt and it will try length t = 1, 2, ... until a solution is found.
- Four solutions of length t = 11 are eventually found.

Example

- Rearrange blocks of same size into goal stacks
- We can only move a free block (nothing on top) at a time
- We can put it on another block or on the table (it has room for all)



• Fluents:

h(on(B), L) = block B is on location L (a block or the table)

• Actions:

o(move(B,L)) = move block B to location L

• To specify the goal we use a static predicate: g(B,L) = block B goal location is L

The problem instance:

```
blocks(a;b;c;d).
% Initial state
h(on(a),table). h(on(b),table). h(on(c),table). h(on(d),c).
% Goal positions
g(a,b). g(b,d). g(d,table). g(c,table).
```

Exercise: the Blocks World

A blocks world encoding:

plus the general patterns:

- An efficient encoding (goal oriented) may mean sacrifices in elaboration tolerance
- Strategy 1: restrict available actions
 Allow moving a block to the table or to its destination block

```
action(move(B,table)) :- block(B).
action(move(B,C)) :- g(B,C).
```

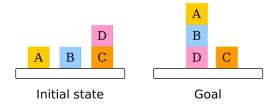
• Strategy 2: reduce generality of inertia. Replace by:

```
h(on(B), L) := 'h(on(B), L), not o(move(B, _)).
```

(Slight) frame problem (what if new actions for moving are defined)

 Strategy 3: control executability constraints = they tell you what (not) to do next, guided by our goal. Ex.: never undo a good tower.

Exercise: the Blocks World



Never undo a good tower:

- We should not start moving A on B, because B is not ready
- B will be ready when placed on D, being D ready in its turn
- D will be ready when placed on the table

Exercise: the Blocks World

• The ready auxiliary predicate is recursive

```
#program always.
ready(table).
ready(B) :- h(on(B),L), _g(B,L), ready(L).
```

• Finally, we can now add the control constraints:

```
#program dynamic.
% Don't move a ready block
:- o(move(B,_)), 'ready(B).
% Don't lay on a non-ready location
:- o(move(_,L)), not 'ready(L).
```

• These changes drastically reduce the search space, but the representation is now totally guided by goal location, predicate _g(B,L).

Actions and change

3 Temporal Logic

Abductivon as best explanation

Abduction

- Knowing: a knowledge base *KB* + an observed result *C*
- Find out: hypotheses H such that $KB \cup H \models C$ rightarrow H should be the best explanation
- Example: we have *C* = wetgrass and *KB* =

 $rain \rightarrow wetgrass$ $sprinkle \land night \rightarrow wetgrass$ $glass \land fill \land push \rightarrow wetgrass$

We can use $H_1 = \{rain\}$, $rain\}$ simplest hypothesis $H_2 = \{sprinkle, night\}$ or $H_3 = \{glass, fill, push\}$

If we have KB' = KB ∪ {¬rain}, the best hypothesis (less assumptions) becomes H₂

Abduction in ASP

- Atoms are reified: h (A) = atom A holds
- We distinguish the abducible atoms (they can form hypotheses) Generation of hypothesis becomes a choice rule

```
abducible(rain;sprinkle;night;push;glass;full).
{hyp(A)} :- abducible(A). % generate hypothesis
h(A) :- hyp(A). % any hypothesis A holds
```

Observations can be incorporated as constraints

We cannot add h (wetgrass) as a fact, or as an abducible atom!

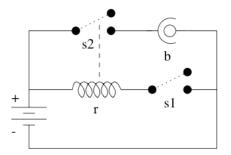
 We get 43 explanations! (including hypothesis with all abducible atoms). Smallest explanations = minimal sets of hypotheses

#minimize{1,A:hyp(A)}.

- An agent acts in a dynamic environment and observes the results of her actions.
- Sometimes she gets discrepancies: observations ≠ expected result
- Diagnosis = search for abductive explanations
 - Knowing: a model distinguishing between normal and abnormal transitions + a partial set of observations (usually implying abnormal behavior).
 - Find out: the minimal set of abnormal transitions that explains the observations.

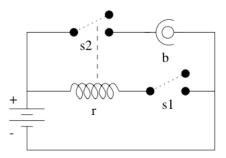
• Example [Balduccini & Gelfond 03]

We have a circuit with lightbulb b and a relay r. The agent can close s1 causing s2 to close (if r is not damaged). The bulb emits light if s2 is closed and b is not damaged.

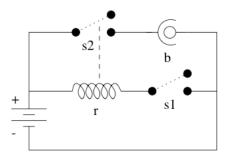


• Example [Balduccini & Gelfond 03]

Exogenous action break damages the relay. Action powersurge damages r, and b too, if the latter is not protected (prot).



• Example [Balduccini & Gelfond 03] We close s1 but b does not emit light: what has happened?



Types and domains

```
#program initial.
switch(s1;s2).
component (relay; bulb).
fluent(relay;light;b_prot).
fluent(S):-switch(S).
fluent(ab(C)) :- component(C).
value(relay, (on; off)).
value(light, (on; off)).
value(S, (open; closed)) :- switch(S).
% Fluents are boolean by default
domain(F,(true;false)) :- fluent(F), not value(F,_).
% otherwise, they take the specified values
domain(F,V) :- value(F,V).
```

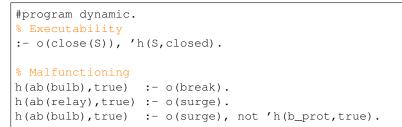
Fluents ab(C) point out that a component is damaged

• Actions are exogenous *exog* or agent's *agent*:

```
agent(close(s1)).
exog(break;surge).
action(Y):-exog(Y).
action(Y):-agent(Y).
```

Diagnosis example

```
#program dynamic.
% Inertia
h(F,V) := 'h(F,V), not c(F).
c(F) := 'h(F,V), h(F,W), V!=W.
% Direct effects
h(s1, closed) := o(close(s1)).
#program always.
% Indirect effects
h(relay,on) :- h(s1,closed), h(ab(relay),false).
h(relay,off) :- h(s1,open).
h(relay,off) :- h(ab(relay),true).
h(s2,closed) :- h(relay,on).
h(light,on) :- h(s2,closed), h(ab(bulb),false).
h(light,off) :- h(s2,open).
h(light,off) :- h(ab(bulb),true).
```



We use predicates obso and obsh to denote observations

```
% Observed actions actually occur
o(A) :- obs_o(A).
#program always.
% Check that observations hold
:- obs_h(F,V), not h(F,V).
#program initial.
% Completing the initial state
1 {h(F,V):_domain(F,V)} 1 :- _fluent(F).
```

These are the observations:

```
% A history
&tel {
     obs_h(s1,open) & obs_h(s2,open) &
     obs_h(b_prot,true) &
     obs_h(ab(bulb),false) &
     obs_h(ab(relay),false)
  ;> obs o(close(s1)) &
     obs_h(light, off)
}.
#program dynamic.
% Generate exogenous actions
\{ hyp(A): \_exoq(A) \}.
o(A) :- hyp(A).
#show cause/1.
```

 This will provide all possible explanations, but not minimal diagnoses.

```
$ telingo 0 diag.lp
Answer: 1
State 0:
State 1:
 cause(break)
Answer: 2
State 0:
 State 1:
 cause(break) cause(surge)
Answer: 3
State 0:
 State 1:
 cause(surge)
SATISFIABLE
```

• We look for best explanations:

```
#minimize {1,A:hyp(A)}.
```

• To obtain all minimal solutions we use the options:

```
$ telingo --opt-mode=optN -n0 diag.lp
```

Two minimal solutions are found:

```
Answer: 1
State 0:
State 1:
cause(surge)
Optimization: 1
Answer: 2
State 0:
State 1:
cause(break)
Optimization: 1
OPTIMUM FOUND
```


2 Diagnosis

Temporal Reasoning

• Until now, temporal expressivenes limited to:

- program sections: initial, dynamic, always, final
- previous situation ' h (sw (X), down)
- initial situation _action(A)
- sequence of actions ; >

Can we go further?

• Example: (in the switches planning problem) choose plans where tog(1) does not occur after tog(3) Obvious solution: auxiliary predicate

```
#program dynamic.
moved3 :- o(tog(3)).
moved3 :- 'moved3.
:- o(tog(1)), moved3.
```

• Linear Temporal Logic can do the job requiring $\neg(o(tog(3)) \land \Diamond o(tog(1)))$

Linear-time Temporal Logic (LTL)

 \Box (forever), \Diamond (eventually), \circ (next), \mathcal{U} (until)

- ✓ Decidable inference methods. Satisfiability: PSpace-complete
- ✓ Relation to other mathematical models: algebra, automata, formal languages
- ✓ Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)
- ✓ Model checking and verification of reactive systems
- ✓ Many uses in AI: planning, ontologies, multi-agent systems, ...
- X Monotonic: action domain representations manifest frame problem

Temporal Equilibrium Logic (TEL) [C_&Pérez 07] TEL = ASP + LTL

• ASP: logical characterisation Equilibrium Logic [Pearce 96]

 LTL: We add temporal operators □, ◊, ∘, U, R (+ past versions) Result: Temporal Stable Models for any arbitrary LTL theory.

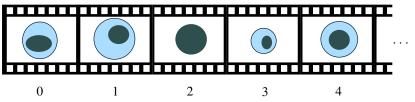
(Linear) Temporal Equilibrium Logic

- Syntax = propositional plus
 - $\Box \alpha$ = "forever" α
 - $\Diamond \alpha$ = "eventually" α
 - $\circ \alpha$ = "next moment" α
 - $\alpha \ \mathcal{U} \ \beta = \alpha$ "until eventually" β
 - $\alpha \mathcal{R} \beta = \alpha$ "release" β
- As we had with Equilibrium Logic:
 - A monotonic underlying logic: Temporal Here-and-There (THT)
 - 2 An ordering among models. Select minimal models.

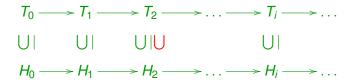
• In standard LTL, an interpretation is a (possibly $\infty)\mbox{-sequence}$ of sets of atoms

{p, q}	{p}	<i>{q}</i>	{}	{p, q}	
0	1	2	3	4	

• In THT we will have a (possibly ∞)-sequence of HT interpretations



 $\bullet\,$ We define an ordering among sequences $\mathbf{H}\leq <\mathbf{T}$ when



Definition (THT-interpretation)

is a pair of sequences of sets of atoms $\langle H, T \rangle$ with $H \leq T$.

Temporal Here-and-There (THT)

 $\langle \mathbf{H}, \mathbf{T} \rangle, i \models \alpha \quad \Leftrightarrow \quad ``\alpha \text{ is proved at } i'' \\ \langle \mathbf{T}, \mathbf{T} \rangle, i \models \alpha \quad \Leftrightarrow \quad ``\alpha \text{ assumed at } i'' \quad \Leftrightarrow \quad \mathbf{T}, i \models \alpha \text{ in LTL}$

An interpretation *M* = (H, T) satisfies *α* at situation *i*, written *M*, *i* |= *α*

α	$M, i \models \alpha$ when
an atom <i>p</i>	$p \in H_i$ as usual
\wedge,\vee	
$\alpha \rightarrow \beta$	$ \begin{array}{l} \mathbf{T}, i \models \alpha \rightarrow \beta \text{ in LTL and} \\ \langle \mathbf{H}, \mathbf{T} \rangle, i \models \alpha \text{ implies } \langle \mathbf{H}, \mathbf{T} \rangle, i \models \beta \end{array} $
$\circ,\Box,\diamondsuit,\mathcal{U},\mathcal{R}$	as in LTL (just deal with timepoints)

(Linear) Temporal Equilibrium Logic

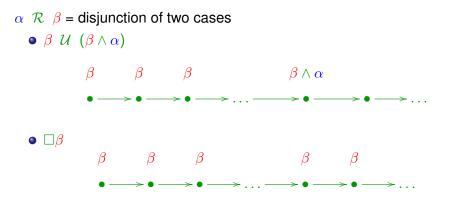
• $\circ \alpha$ satisfied in *i* + 1

• $\Box \alpha$ satisfied for all $j \ge i$

• $\Diamond \alpha$ satisfied for some $j \ge i$

• $\alpha \ \mathcal{U} \ \beta$ = repeat α until (mandatorily) β

(Linear) Temporal Equilibrium Logic



Definition (Temporal Equilibrium Model)

of a theory Γ is a model T of Γ such that there is no H < T satisfying $\langle H, T \rangle, 0 \models \Gamma.$

• Temporal Equilibrium Logic (TEL) is the logic induced by temporal equilibrium models.

Theorem

Deciding whether a temporal theory has some THT-model is PSPACE-complete.

Theorem

Deciding whether a temporal theory has some temporal stable model is EXPSPACE-complete.

- Tool abstem allows computing temporal stable models for infinite traces
- Tool telingo focuses on finite traces, closer to practical problem solving with ASP
- Temporal formulas in telingo: we can use expressions inside &tel{...} with future-ops in heads, past-ops in bodies and any of them in constraints.

LTL	future	past
0 p	> p	< p
ô p	>: p	<: p
$\Diamond p$	>? p	p</th
$\Box p$	>* p	<* p
рUq	p >? q	p q</th
рRq	p >* q	p <∗ d
$p \land \circ q$	p ;> q	p <; q

plus Boolean operators &, |, ~, &true, &false...

• We can fix the trace length n with &tel{n > &true}

• Back to our planning example, we forbid $\Diamond(o(tog(3)) \land \circ \Diamond o(tog(1)))$

Or we can use instead past operators like:

```
#program dynamic.
:- o(tog(1)), &tel{ < <? o(tog(3))}.</pre>
```

- Temporal control constraints: they allow disregarding plans without changing the domain representation towards a goal
- Convenient in concurrent planning: some "non-critical" agents may fill the plan with erratic actions
- Example of control constraints:

 $\neg(\neg p \ \mathcal{U} \ d)$ if you pick (p), do it before dropping (d) $\neg \Diamond (p \land \circ \Diamond p)$ never pick twice

:- &tel { ~p >? d }. :- &tel { >? (p ;> >? p)}.

- Knowing: initial state + goal (partial description of final state)
- Find out: plan (sequence of actions) to reach the goal

Classical Al Planning adds these premises

- Discrete: fluents, actions, time points, everything discrete
- Deterministic: given a state and a (ground) action, only one possible outcome
- Static: the environment does not change while the agent is deliberating
- Fully observable domain: no missing information

Languages for Planning

- Languages for planning look for a balance between allowing efficient processing versus flexibility (elaboration tolerance).
- The most influential language has been STRIPS STanford Research Institute Problem Solver [Fikes & Nilson 1971]
- Based on triples with (ACTION, PRECON, EFFECT) where PRECON and EFFECT are lists of literals
 - ACTION: move(X, From, To) PRECON: on(X, From), clear(X), clear(To)
 - EFFECT : $on(X, To), clear(From), \neg on(X, From), \neg clear(To) on(X, From)), \neg clear(To) on(X, From), \neg clear(To) on(X, From)), \neg clear(To) on(X, From))$

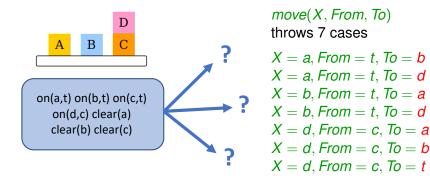
```
(:action move
  :parameters (?block ?from ?to)
  :precondition (and
       (on ?block ?from) (clear ?ob) (clear ?to) )
  :effect (and
```

- Inertia is implicit: all the changes are listed (ADD/DEL lists)
- A STRIPS manifests ramification and qualification problems
 - Existence of plan in propositional STRIPS is PSPACE-complete
 - STRIPS has been carefully extended to add flexibility without harming planners efficiency ...

- PDDL (Planning Domain Description Language) [McDermott 1998]. Used for the International Planning Competition (IPC).
- Language versions:
 - 2.1: numeric fluents, plan metrics, actions with duration
 - > 2.2: derived predicates (ramifications), timed exogenous events
 - ► 3.0: state-trajectory constraints (temporal logic), preferences
 - 3.0: object fluents (non-numeric multivalued)

Algorithms: Forward Planning

- State-space: 1 search node = 1 state
- Start with initial state, end when goal reached
- Expanding a node means looking for applicable ground actions

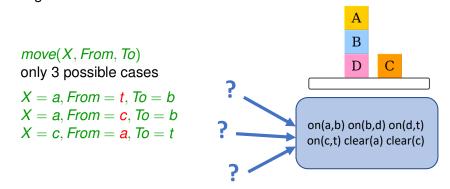


Branching factor = maximum size of one expand

- Pros = simple!
 - We can use standard search algorithms
 - There are good (domain independent) heuristics
- Contras
 - Branching factor can be too large
- Many modern planners are based on Forward Planning
- A good admissible heuristic that underestimates the plan length is ignoring the delete list [Bonet & Geffner 2001]

Algorithms: Backward Planning

- Search space: 1 search node = 1 sub-goal = set of states
- We start with goal state, end when initial state reached
- Expanding a node means looking for relevant actions from effects to preconditions and jumping to a new sub-goal.
 E.g. where did each block come from?



Algorithms: Backward Planning

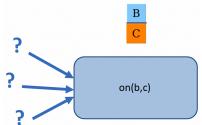
Pros

- Goal-directed: explore relevant part of the search space
- Branching factor much lower than Forward Planning

Contras

- Requires dealing with non-ground sub-goals
- Hard to get good heuristics
- Goal can be a partial description. E.g. just get on(b, c)

move(X, From, To)no hint to ground *From* X = b, *From*, To = c



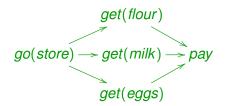
Algorithms: Bounded Horizon

- First introduced in SAT planning [Kautz & Selman 92] with the SATPLAN planner.
- Ground fluent *f* becomes h + 1 propositional atoms f_0, \ldots, f_h Planning domain becomes a propositional formula in CNF A SAT solver is used to obtain plans
- CSP planning: domain becomes a constraint satisfaction problem (CSP). Actions and fluents can be integer variables
- ASP planning: domain becomes a logic program and an ASP solver is used instead. See translator from PDDL to ASP:
 https://github.com/potassco/plasp

- In general, bounded horizon algorithms are incomplete: they cannot decide non-existence of plan
- However, in some cases, upper bounds for *h* can be obtained and completeness can be guaranteed.
- Example: if a Rubik Cube problem has a solution, the maximum number of quarter turns required is 26. Thus, try for all $h \le 26$.

Other Planning Techniques

- GRAPHPLAN [Blum & Furst 1995] graph search based on a (layered) planning graph
 - Even layers: 1 node = 1 (ground) fluent fact
 - Odd layers: 1 node = 1 (ground) action
 - Edges of type: precondition, effect, mutex (mutual exclusion)
- Partial-order Planning avoids fixing an ordering among actions, when it is irrelevant. Example of plan:



any of the 3!=6 permutations for getting items is a valid plan

- Using Temporal Logic expressions of control knowledge. Introduced with TLPLAN [Bacchus & Kabanza 2000]
 Formulas in LTL like □(pick → ◊drop) (as seen in telingo)
- Hierarchical Task Networks (HTN) planning Different levels: first high-level actions
 - Land-travel from Ourense to Santiago (SCQ)
 - Ply from SCQ to GCN (Arizona)
 - Land-travel from GCN airport to Great Canyon

Then, get a refinement

Land-travel from Ourense to Santiago (SCQ) =

- Walk to Ourense train station
- Take train 04175 to Santiago
- Walk to bus station
- Take bus XG802 to SCQ

Combining Planning and Machine Learning

- Learning control rules using Inductive Logic Programming (ILP) [Leckie & Sukerman 1991] Grasshopper
- Learning macro actions, i.e. fixed sequences of actions that simplify the search. Example in 8-puzzle: push a row to the right Using Reinforcement learning [Randløv 1999]
- Learning the domain description from set of execution traces. Very recent example using ASP [Rodríguez, Bonet, Romero & Geffner 2021]

• Conformant planning: domain is only partially observable

- Knowing: partial initial state + goal description
- Find out: plan (linear sequence of actions) that always reaches the goal
- Non-deterministic actions can also be covered: reduction to an exogenous variable unknown at the initial state
- Complexity raises from PSPACE to EXPSPACE

- Contingency planning: domain is only partially observable, but we have sensing actions (always non-deterministic)
 - Knowing: partial initial state + goal description
 - Find out: plan = nested conditional sequences of actions that guarantee reaching the goal
- Example of plan: the phone is at the kitchen or at the bedroom

go(kitchen); turn(light, on); watch; if at(phone, kitchen) then walk; pick(phone) else go(bedroom); pick(phone)

We represent the agent's beliefs (epistemic reasoning)

- Probabilistic Planning: extends non-deterministic actions with probabilistic information
 - Markov Decision Process (MDP): world is fully-observable, transition only depends on the previous state, not previous history
 - Partially Observable MDP (POMDP): world not fully observable, deal with agent's beliefs (undecidable in the general case)
- Scheduling: actions may have durations and require consuming resources. Related to Operations Research techniques such as Critical Path Method (CPM)