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Back to our simple example

Lamp and switches revisited

Fluents: up1,up2,up3, light (Boolean).

Actions: toggle1, toggle2, toggle3.

State: a possible configuration of fluent values. Example:
{up1,up2,up3, light}.

Situation: a moment in time. We can just use 0,1,2, . . .

up1 up2 up3 up1 up2 up3 up1 up2 up3

light light light

toggle1 toggle3
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Reasoning about actions with ASP

Download system telingo (temporal clingo)
We can make groups of rules
#program initial. % At timepoint t=0
...
#program dynamic. % Transition from t-1 to t
...
#program always. % Any timepoint t=0..n-1
...
#program final. % Last timepoint t=n-1
...

Predicate names preceded by ’ refer to timepoint t-1
Predicate names preceded by _ refer to timepoint t=0
Temporal formulas built with &tel{ ... }
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Reasoning about actions with ASP

% File: switches.lp (domain description)
switch(1..3).
action(tog(X)) :- switch(X).

#program dynamic.
% Effect axioms
h(sw(X),up) :- ’h(sw(X),down), o(tog(X)).
h(sw(X),down) :- ’h(sw(X),up), o(tog(X)).
h(light,off) :- ’h(light,on), o(tog(_)).
h(light,on) :- ’h(light,off), o(tog(_)).

% Executability constraints: none in this case
% Inertia: c(F)= fluent F has changed
h(F,V) :- ’h(F,V), not c(F).
c(F) :- ’h(F,V), h(F,W), V!=W.

% Action generation
1 { o(A): _action(A) } 1.
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RAC goals

We want to solve some typical reasoning problems.

The most usual ones:
Simulation (aka prediction, aka temporal projection):
run a sequence of actions on an initial state

Temporal explanation (aka postdiction):
fill gaps from partial observations

Planning: obtain sequence of actions to reach some goal

Diagnosis: explain unexpected observed results

Verification: check system properties

P. Cabalar ( Dept. Computer Science University of Corunna, SPAIN )Unit 5. Temporal Reasoning November 18, 2022 6 / 72



Prediction (simulation, or temporal projection)

Knowing: initial state + sequence of actions

Find out: final state (alternatively sequence of intermediate
states)

up1 up2 up3

light

toggle1 toggle3

? ?
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Reasoning about actions with ASP

Prediction example
% File: switches-predict.lp (instance of prediction problem)
#program initial.
h(light,off).
h(sw(X),up) :- switch(X).

We assert a sequence of facts using:
% Sequence of performed actions
&tel{

&true
;> o(tog(3))
;> o(tog(1))
;> o(tog(2))
;> o(tog(2))

}.
#show h/2.
#show o/1.

where ;> is a sequence operator
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Reasoning about actions with ASP

Prediction example
Calling telingo switches.txt switches-predict.txt

Answer: 1
State 0:
h(light,off) h(sw(1),up) h(sw(2),up) h(sw(3),up)

State 1:
o(tog(3))
h(light,on) h(sw(1),up) h(sw(2),up) h(sw(3),down)

State 2:
o(tog(1))
h(light,off) h(sw(1),down) h(sw(2),up) h(sw(3),down)

State 3:
o(tog(2))
h(light,on) h(sw(1),down) h(sw(2),down) h(sw(3),down)

State 4:
o(tog(2))
h(light,off) h(sw(1),down) h(sw(2),up) h(sw(3),down)
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Postdiction (or temporal explanation)

Knowing: partial observations of states and performed actions

Find out: complete information on states and performed actions

up3 up1 up3 up1 up2 up3

light light light

toggle3

?

?

??
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Reasoning about actions with ASP

Postdiction example:
% switches-postdict.lp
#program initial.
% Completing unknown facts
1 {h(sw(X),up); h(sw(X),down)} 1 :- switch(X).
1 {h(light,on); h(light,off)} 1.

% Observations: we use a constraint!
:- not &tel{

h(sw(3),up) & h(light,on)
;> h(light,off) & h(sw(1),down) & h(sw(3),up)
;> o(tog(3))

}.

Calling telingo 0 switches.txt switches-postdict.txt we
get 4 possible explanations
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Planning

Knowing: initial state + goal (partial description of final state)

Find out: plan (sequence of actions) that guarantees reaching the
goal

up1 up2 up3 up1 up2 up3

light light

? ??

? ? ?
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Reasoning about actions with ASP

Planning example
% File: switches-plan.lp
#program initial.
h(light,on).
h(sw(X),up) :- switch(X).

#program final.
goal :- h(light,on),h(sw(1),down),

h(sw(2),up),h(sw(3),down).
:- not goal.

Calling telingo 0 switches.txt switches-plan.txt we get
two minimal plans of length 2 toggling 1 and 3 or vice versa.
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Planning vs Postdiction

Note that planning seems a type of postdiction. For deterministic
systems, this is true, but . . .

Nondeterministic transition system: fixing current state +
performed action −→ several possible successor states.

For instance, switch 1 up may fail to turn the light on...

up1 up2 up3

up1 up2 up3

light

light

toggle1

up1 up2 up3

light

toggle1

Switch 1 "failed"
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Planning vs Postdiction

up1 up2 up3

light light

?

? ? ?

For postdiction, one valid explanation is: we performed toggle1,
and it succeeded to turn the light on.

For planning, toggle1 is not a valid plan: it does not guarantee
reaching the goal light . Possible plans are toggle2 or toggle3.
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Exercise

“Elaborating Missionaries and Cannibals Problem” [J. McCarthy]
3 missionaries and 3 cannibals come to a river and find a boat
that holds two. If the cannibals ever outnumber the missionar-
ies on either bank, the missionaries will be eaten. How shall
they cross?

We will use the following fluents:
1 n(G,B) = is the number of persons of group G at bank B.

Ex.: h(n(mis,l),3) = “there are 3 missionaries in the left bank”

2 boat points out the boat bank. Ex. h(boat,l) = “the boat is at
left bank”
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Exercise: missionaries and cannibals

We will use action:
move(M,C) = move M missionaries and C cannibals.

For simplicity, we include two action attributes moved(mis,N)
and moved(can,N) that point out separatedly how many persons
of each group are moved.
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Exercise: missionaries and cannibals

We begin with types and initial state
#program initial.
% Some types
group(mis;can).
bank(l;r).
opposite(l,r). opposite(r,l).
action(move(M,C)) :- M=0..2, C=0..2, M+C<3, M+C>0.

% Initial state
h(n(G,l),3) :- group(G).
h(n(G,r),0) :- group(G).
h(boat,l).
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Exercise: missionaries and cannibals

Rules for transitions
#program dynamic.
% Action generation
1 {o(A) : _action(A) } 1.

% Auxiliary (action attributes)
moved(mis,M) :- o(move(M,C)).
moved(can,C) :- o(move(M,C)).

% Executability axioms
:- moved(G,N), ’h(boat,B), ’h(n(G,B),M), N>M.

% Effect axioms (no inertia needed)
h(n(G,B),M+N) :- ’h(n(G,B),M), h(boat,B), moved(G,N).
h(n(G,B),M-N) :- ’h(n(G,B),M), ’h(boat,B), moved(G,N).
h(boat,B1) :- ’h(boat,B), _opposite(B,B1).

Inertia not needed because all fluents are changed
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Exercise: missionaries and cannibals

Rules for transitions
#program always.
% Missionaries not outnumbered by cannibals
:- h(n(mis,B),M), h(n(can,B),C), C>M, M>0.

#program final.
:- not goal.
goal :- h(n(mis,r),3), h(n(can,r),3).

#show o/1. % We only show performed actions

We execute telingo 0 mc.txt and it will try length
t = 1,2, . . . until a solution is found.
Four solutions of length t = 11 are eventually found.
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Exercise: the Blocks World

Example
Rearrange blocks of same size into goal stacks

We can only move a free block (nothing on top) at a time

We can put it on another block or on the table (it has room for all)
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Exercise: the Blocks World

Fluents:
h(on(B),L) = block B is on location L (a block or the table)

Actions:
o(move(B,L)) = move block B to location L

To specify the goal we use a static predicate:
g(B,L) = block B goal location is L

The problem instance:
blocks(a;b;c;d).
% Initial state
h(on(a),table). h(on(b),table). h(on(c),table). h(on(d),c).
% Goal positions
g(a,b). g(b,d). g(d,table). g(c,table).
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Exercise: the Blocks World

A blocks world encoding:
#program initial.
location(table). location(B) :- block(B).
#program dynamic.
h(on(B),L) :- o(move(B,L)). % effect axiom
:- o(move(B,_)), ’unclear(B). % executability
:- o(move(_,L)), ’unclear(L). % executability
:- o(move(B,table)), ’h(on(B),table). % control constraint
#program always.
unclear(C) :- h(on(_),C),C!=table.
#program final.
:- _g(B,L), not h(on(B),L). % goal is reached

plus the general patterns:
#program dynamic.
1 {o(A): _action(A) } 1. % action generation
h(F,V) :- ’h(F,V), not c(F). % inertia
c(F) :- h’(F,V),h(F,W),V!=W. % change
#show o/1.
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Exercise: the Blocks World

An efficient encoding (goal oriented) may mean sacrifices in
elaboration tolerance

Strategy 1: restrict available actions
� Allow moving a block to the table or to its destination block

action(move(B,table)) :- block(B).
action(move(B,C)) :- g(B,C).

Strategy 2: reduce generality of inertia. Replace by:
h(on(B),L) :- ’h(on(B),L), not o(move(B,_)).

(Slight) frame problem (what if new actions for moving are defined)

Strategy 3: control executability constraints = they tell you what
(not) to do next, guided by our goal. Ex.: never undo a good tower.
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Exercise: the Blocks World

Never undo a good tower:
We should not start moving A on B, because B is not ready

B will be ready when placed on D, being D ready in its turn

D will be ready when placed on the table
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Exercise: the Blocks World

The ready auxiliary predicate is recursive
#program always.
ready(table).
ready(B) :- h(on(B),L), _g(B,L), ready(L).

Finally, we can now add the control constraints:
#program dynamic.
% Don’t move a ready block
:- o(move(B,_)), ’ready(B).
% Don’t lay on a non-ready location
:- o(move(_,L)), not ’ready(L).

These changes drastically reduce the search space, but the
representation is now totally guided by goal location, predicate
_g(B,L).
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Abductivon as best explanation

Abduction
Knowing: a knowledge base KB + an observed result C

Find out: hypotheses H such that KB ∪ H |= C
� H should be the best explanation

Example: we have C = wetgrass and KB =

rain→ wetgrass
sprinkle ∧ night → wetgrass

glass ∧ fill ∧ push→ wetgrass

We can use H1 = {rain}, � simplest hypothesis
H2 = {sprinkle,night} or H3 = {glass, fill ,push}

If we have KB′ = KB ∪ {¬rain}, the best hypothesis (less
assumptions) becomes H2
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Abduction in ASP

Atoms are reified: h(A) = atom A holds
We distinguish the abducible atoms (they can form hypotheses)
Generation of hypothesis becomes a choice rule
abducible(rain;sprinkle;night;push;glass;full).
{hyp(A)} :- abducible(A). % generate hypothesis
h(A) :- hyp(A). % any hypothesis A holds

Observations can be incorporated as constraints
h(wetgrass) :- h(rain).
h(wetgrass) :- h(night), h(sprinkle).
h(wetgrass) :- h(glass), h(full), h(push).
:- not h(wetgrass). % observation

We cannot add h(wetgrass) as a fact, or as an abducible atom!
We get 43 explanations! (including hypothesis with all abducible
atoms). Smallest explanations = minimal sets of hypotheses
#minimize{1,A:hyp(A)}.
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Diagnosis

An agent acts in a dynamic environment and observes the results
of her actions.

Sometimes she gets discrepancies:
observations 6= expected result

Diagnosis = search for abductive explanations
I Knowing: a model distinguishing between normal and abnormal

transitions + a partial set of observations (usually implying
abnormal behavior).

I Find out: the minimal set of abnormal transitions that explains the
observations.
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Diagnosis

Example [Balduccini & Gelfond 03]
We have a circuit with lightbulb b and a relay r . The agent can
close s1 causing s2 to close (if r is not damaged). The bulb
emits light if s2 is closed and b is not damaged.
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Diagnosis example

Example [Balduccini & Gelfond 03]
Exogenous action break damages the relay. Action power-
surge damages r , and b too, if the latter is not protected (prot).
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Diagnosis example

Example [Balduccini & Gelfond 03]
We close s1 but b does not emit light: what has happened?
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Diagnosis example

Types and domains
#program initial.
switch(s1;s2).
component(relay;bulb).
fluent(relay;light;b_prot).
fluent(S):-switch(S).
fluent(ab(C)) :- component(C).

value(relay,(on;off)).
value(light,(on;off)).
value(S,(open;closed)) :- switch(S).
% Fluents are boolean by default
domain(F,(true;false)) :- fluent(F), not value(F,_).
% otherwise, they take the specified values
domain(F,V) :- value(F,V).

Fluents ab(C) point out that a component is damaged
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Diagnosis example

Actions are exogenous exog or agent’s agent :
agent(close(s1)).
exog(break;surge).
action(Y):-exog(Y).
action(Y):-agent(Y).
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Diagnosis example

#program dynamic.
% Inertia
h(F,V) :- ’h(F,V), not c(F).
c(F) :- ’h(F,V), h(F,W), V!=W.

% Direct effects
h(s1,closed) :- o(close(s1)).

#program always.
% Indirect effects
h(relay,on) :- h(s1,closed), h(ab(relay),false).
h(relay,off) :- h(s1,open).
h(relay,off) :- h(ab(relay),true).

h(s2,closed) :- h(relay,on).

h(light,on) :- h(s2,closed), h(ab(bulb),false).
h(light,off) :- h(s2,open).
h(light,off) :- h(ab(bulb),true).
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Diagnosis example
#program dynamic.
% Executability
:- o(close(S)), ’h(S,closed).

% Malfunctioning
h(ab(bulb),true) :- o(break).
h(ab(relay),true) :- o(surge).
h(ab(bulb),true) :- o(surge), not ’h(b_prot,true).

We use predicates obso and obsh to denote observations
% Observed actions actually occur
o(A) :- obs_o(A).

#program always.
% Check that observations hold
:- obs_h(F,V), not h(F,V).

#program initial.
% Completing the initial state
1 {h(F,V):_domain(F,V)} 1 :- _fluent(F).
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Diagnosis example

These are the observations:
% A history
&tel {

obs_h(s1,open) & obs_h(s2,open) &
obs_h(b_prot,true) &
obs_h(ab(bulb),false) &
obs_h(ab(relay),false)

;> obs_o(close(s1)) &
obs_h(light,off)

}.

#program dynamic.
% Generate exogenous actions
{ hyp(A): _exog(A) }.

o(A) :- hyp(A).
#show cause/1.
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Diagnosis example

This will provide all possible explanations, but not minimal
diagnoses.
$ telingo 0 diag.lp
Answer: 1
State 0:
State 1:
cause(break)

Answer: 2
State 0:
State 1:
cause(break) cause(surge)

Answer: 3
State 0:
State 1:
cause(surge)

SATISFIABLE
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Diagnosis example

We look for best explanations:
#minimize {1,A:hyp(A)}.

To obtain all minimal solutions we use the options:
$ telingo --opt-mode=optN -n0 diag.lp

Two minimal solutions are found:
Answer: 1
State 0:
State 1:
cause(surge)

Optimization: 1
Answer: 2
State 0:
State 1:
cause(break)

Optimization: 1
OPTIMUM FOUND
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Temporal Reasoning

Until now, temporal expressivenes limited to:
I program sections: initial, dynamic, always, final
I previous situation ’h(sw(X),down)
I initial situation _action(A)
I sequence of actions ;>

Can we go further?

Example: (in the switches planning problem) choose plans where
tog(1) does not occur after tog(3) Obvious solution: auxiliary
predicate
#program dynamic.
moved3 :- o(tog(3)).
moved3 :- ’moved3.
:- o(tog(1)), moved3.

Linear Temporal Logic can do the job requiring
¬( o(tog(3)) ∧ ♦o(tog(1)) )
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Modal Temporal Logic

Linear-time Temporal Logic (LTL)
� (forever), ♦ (eventually), ◦ (next), U (until)

X Decidable inference methods. Satisfiability: PSpace-complete
X Relation to other mathematical models:

algebra, automata, formal languages
X Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)
X Model checking and verification of reactive systems
X Many uses in AI: planning, ontologies, multi-agent systems, . . .
7 Monotonic: action domain representations manifest frame problem
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Our proposal

Temporal Equilibrium Logic (TEL) [C_&Pérez 07]

TEL = ASP + LTL

ASP: logical characterisation Equilibrium Logic [Pearce 96]

LTL: We add temporal operators �, ♦, ◦, U , R (+ past versions)
Result: Temporal Stable Models for any arbitrary LTL theory.
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(Linear) Temporal Equilibrium Logic

Syntax = propositional plus
I �α = “forever” α
I ♦α = “eventually” α
I ◦α = “next moment” α
I α U β = α “until eventually” β
I α R β = α “release” β

As we had with Equilibrium Logic:

1 A monotonic underlying logic: Temporal Here-and-There (THT)

2 An ordering among models. Select minimal models.
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Sequences

In standard LTL, an interpretation is a (possibly∞)-sequence of
sets of atoms

 {p, q} {p}    {q}   {  }  {p, q} . . .

0 1 2 3 4

In THT we will have a (possibly∞)-sequence of HT interpretations

. . .

0 1 2 3 4
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Sequences

We define an ordering among sequences H ≤ <T when

T0 // T1 // T2 // . . . // Ti // . . .⋃
|

⋃
|

⋃
|
⋃ ⋃

|

H0 // H1 // H2 // . . . // Hi // . . .

Definition (THT-interpretation)
is a pair of sequences of sets of atoms 〈H,T〉 with H ≤ T.
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Temporal Here-and-There (THT)

〈H,T〉, i |= α ⇔ “α is proved at i”
〈T,T〉, i |= α ⇔ “α assumed at i” ⇔ T, i |= α in LTL

An interpretation M = 〈H,T〉 satisfies α at situation i , written
M, i |= α

α M, i |= α when . . .
an atom p p ∈ Hi

∧,∨ as usual

α→ β T, i |= α→ β in LTL and
〈H,T〉, i |= α implies 〈H,T〉, i |= β

◦,�,♦, U , R as in LTL (just deal with timepoints)
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(Linear) Temporal Equilibrium Logic

◦α satisfied in i + 1

α

• // • // • // . . . // • // . . .

�α satisfied for all j ≥ i

α α α α

• // • // • // . . . // • // . . .

♦α satisfied for some j ≥ i

α

• // • // • // . . . // • // . . .
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(Linear) Temporal Equilibrium Logic

α U β = repeat α until (mandatorily) β

α α α α β

• // • // • // . . . // • // • // . . .
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(Linear) Temporal Equilibrium Logic

α R β = disjunction of two cases
β U (β ∧ α)

β β β β ∧ α

• // • // • // . . . // • // • // . . .

�β
β β β β β

• // • // • // . . . // • // • // . . .
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Temporal Equilibrium Models

Definition (Temporal Equilibrium Model)
of a theory Γ is a model T of Γ such that there is no H < T satisfying
〈H,T〉,0 |= Γ.

Temporal Equilibrium Logic (TEL) is the logic induced by temporal
equilibrium models.

Theorem
Deciding whether a temporal theory has some THT-model is
PSPACE-complete.

Theorem
Deciding whether a temporal theory has some temporal stable model
is EXPSPACE-complete.
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Tool abstem allows computing temporal stable models for infinite
traces
Tool telingo focuses on finite traces, closer to practical problem
solving with ASP
Temporal formulas in telingo: we can use expressions inside
&tel{...} with future-ops in heads, past-ops in bodies and any
of them in constraints.

LTL future past
◦p > p < p
◦̂p >: p <: p
♦p >? p <? p
�p >* p <* p
p U q p >? q p <? q
p R q p >* q p <* q
p ∧ ◦q p ;> q p <; q

plus Boolean operators &, |, ~, &true, &false . . .
We can fix the trace length n with &tel{n > &true}
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Back to our planning example, we forbid
♦( o(tog(3)) ∧ ◦♦o(tog(1)) )

#program initial.
h(light,on).
h(sw(X),up) :- switch(X).

#program final.
goal :- h(light,on),h(sw(1),down),

h(sw(2),up),h(sw(3),down).
:- not goal.

#program initial.
:- &tel{ >? (o(tog(3)) ;> >? o(tog(1)) )}.

Or we can use instead past operators like:
#program dynamic.
:- o(tog(1)), &tel{ < <? o(tog(3))}.
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Temporal control constraints: they allow disregarding plans
without changing the domain representation towards a goal

Convenient in concurrent planning: some “non-critical" agents
may fill the plan with erratic actions

Example of control constraints:

¬(¬p U d) if you pick (p), do it before dropping (d)
¬♦(p ∧ ◦♦p) never pick twice

:- &tel { ~p >? d }.
:- &tel { >? (p ;> >? p)}.
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1 Actions and change

2 Diagnosis

3 Temporal Logic

4 AI Planning
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Classical AI Planning

Knowing: initial state + goal (partial description of final state)

Find out: plan (sequence of actions) to reach the goal

Classical AI Planning adds these premises

Discrete: fluents, actions, time points, everything discrete

Deterministic: given a state and a (ground) action, only one
possible outcome

Static: the environment does not change while the agent is
deliberating

Fully observable domain: no missing information
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Languages for Planning

Languages for planning look for a balance between allowing
efficient processing versus flexibility (elaboration tolerance).

The most influential language has been STRIPS
STanford Research Institute Problem Solver [Fikes & Nilson 1971]

Based on triples with 〈ACTION,PRECON,EFFECT〉
where PRECON and EFFECT are lists of literals

ACTION : move(X ,From,To)
PRECON : on(X ,From), clear(X ), clear(To)
EFFECT : on(X ,To), clear(From),¬on(X ,From),¬clear(To) on(X ,To), clear(From)︸ ︷︷ ︸

ADD list

,¬on(X ,From),¬clear(To)︸ ︷︷ ︸
DEL list

(:action move
:parameters (?block ?from ?to)
:precondition (and

(on ?block ?from) (clear ?ob) (clear ?to) )
:effect (and

(on ?block ?to) (clear ?from)
(not (on ?block ?from)) (not (clear ?to)) ) )
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Languages for Planning

Inertia is implicit: all the changes are listed (ADD/DEL lists)

o STRIPS manifests ramification and qualification problems

Existence of plan in propositional STRIPS is PSPACE-complete

STRIPS has been carefully extended to add flexibility without
harming planners efficiency . . .
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Languages for Planning

PDDL (Planning Domain Description Language) [McDermott
1998]. Used for the International Planning Competition (IPC).

Language versions:

I 2.1: numeric fluents, plan metrics, actions with duration

I 2.2: derived predicates (ramifications), timed exogenous events

I 3.0: state-trajectory constraints (temporal logic), preferences

I 3.0: object fluents (non-numeric multivalued)
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Algorithms: Forward Planning

State-space: 1 search node = 1 state

Start with initial state, end when goal reached

Expanding a node means looking for applicable ground actions
 
 
 

on(a,t) on(b,t) on(c,t) 
on(d,c) clear(a) 
clear(b) clear(c) 

? 

? 

? 

move(X ,From,To)
throws 7 cases

X = a,From = t ,To = b
X = a,From = t ,To = d
X = b,From = t ,To = a
X = b,From = t ,To = d
X = d ,From = c,To = a
X = d ,From = c,To = b
X = d ,From = c,To = t

Branching factor = maximum size of one expand
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Algorithms: Forward Planning

Pros = simple!
I We can use standard search algorithms
I There are good (domain independent) heuristics

Contras
I Branching factor can be too large

Many modern planners are based on Forward Planning

A good admissible heuristic that underestimates the plan length is
ignoring the delete list [Bonet & Geffner 2001]
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Algorithms: Backward Planning

Search space: 1 search node = 1 sub-goal = set of states

We start with goal state, end when initial state reached

Expanding a node means looking for relevant actions from effects
to preconditions and jumping to a new sub-goal.
E.g. where did each block come from?

move(X ,From,To)
only 3 possible cases

X = a,From = t ,To = b
X = a,From = c,To = b
X = c,From = a,To = t

 
 
 
 
 

on(a,b) on(b,d) on(d,t) 
on(c,t) clear(a) clear(c) 

? 
? 
? 
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Algorithms: Backward Planning

Pros
I Goal-directed: explore relevant part of the search space
I Branching factor much lower than Forward Planning

Contras
I Requires dealing with non-ground sub-goals
I Hard to get good heuristics

Goal can be a partial description. E.g. just get on(b, c)

move(X ,From,To)
no hint to ground From

X = b,From,To = c
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Algorithms: Bounded Horizon

Horizon h = maximum plan length to explore
� Idea: find plans of fixed length h. If no one found, try with h + 1

First introduced in SAT planning [Kautz & Selman 92] with the
SATPLAN planner.

Ground fluent f becomes h + 1 propositional atoms f0, . . . , fh
Planning domain becomes a propositional formula in CNF
A SAT solver is used to obtain plans

CSP planning: domain becomes a constraint satisfaction problem
(CSP). Actions and fluents can be integer variables

ASP planning: domain becomes a logic program and an ASP
solver is used instead. See translator from PDDL to ASP:
� https://github.com/potassco/plasp
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Algorithms: Bounded Horizon

In general, bounded horizon algorithms are incomplete: they
cannot decide non-existence of plan

However, in some cases, upper bounds for h can be obtained and
completeness can be guaranteed.

Example: if a Rubik Cube problem has a solution, the maximum
number of quarter turns required is 26. Thus, try for all h ≤ 26.
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Other Planning Techniques

GRAPHPLAN [Blum & Furst 1995] graph search based on a
(layered) planning graph

I Even layers: 1 node = 1 (ground) fluent fact
I Odd layers: 1 node = 1 (ground) action
I Edges of type: precondition, effect, mutex (mutual exclusion)

Partial-order Planning avoids fixing an ordering among actions,
when it is irrelevant. Example of plan:

get(flour)

&&
go(store) //

66

((

get(milk) // pay

get(eggs)

88

any of the 3!=6 permutations for getting items is a valid plan
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Other Planning Techniques

Using Temporal Logic expressions of control knowledge.
Introduced with TLPLAN [Bacchus & Kabanza 2000]
Formulas in LTL like �(pick → ♦drop) (as seen in telingo)

Hierarchical Task Networks (HTN) planning
Different levels: first high-level actions

1 Land-travel from Ourense to Santiago (SCQ)
2 Fly from SCQ to GCN (Arizona)
3 Land-travel from GCN airport to Great Canyon

Then, get a refinement
Land-travel from Ourense to Santiago (SCQ) =

1 Walk to Ourense train station
2 Take train 04175 to Santiago
3 Walk to bus station
4 Take bus XG802 to SCQ
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Other Planning Techniques

Combining Planning and Machine Learning
Learning control rules using Inductive Logic Programming (ILP)
[Leckie & Sukerman 1991] Grasshopper

Learning macro actions, i.e. fixed sequences of actions that
simplify the search. Example in 8-puzzle: push a row to the right
Using Reinforcement learning [Randløv 1999]

Learning the domain description from set of execution traces.
Very recent example using ASP [Rodríguez, Bonet, Romero &
Geffner 2021]

P. Cabalar ( Dept. Computer Science University of Corunna, SPAIN )Unit 5. Temporal Reasoning November 18, 2022 69 / 72



Beyond Classical Planning

Conformant planning: domain is only partially observable
I Knowing: partial initial state + goal description

I Find out: plan (linear sequence of actions) that always reaches the
goal

Non-deterministic actions can also be covered: reduction to an
exogenous variable unknown at the initial state

Complexity raises from PSPACE to EXPSPACE
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Beyond Classical Planning

Contingency planning: domain is only partially observable, but we
have sensing actions (always non-deterministic)

I Knowing: partial initial state + goal description

I Find out: plan = nested conditional sequences of actions that
guarantee reaching the goal

Example of plan: the phone is at the kitchen or at the bedroom

go(kitchen); turn(light ,on); watch;
if at(phone, kitchen) then walk ; pick(phone)
else go(bedroom); pick(phone)

We represent the agent’s beliefs (epistemic reasoning)
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Beyond Classical Planning

Probabilistic Planning: extends non-deterministic actions with
probabilistic information

I Markov Decision Process (MDP): world is fully-observable,
transition only depends on the previous state, not previous history

I Partially Observable MDP (POMDP): world not fully observable,
deal with agent’s beliefs (undecidable in the general case)

Online planning: the environment changes during deliberation or
plan execution � Requires monitoring the plan execution and
detecting the need for replanning

Scheduling: actions may have durations and require consuming
resources. Related to Operations Research techniques such as
Critical Path Method (CPM)
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