
Reasoning and Planning
Unit 5. Temporal Reasoning and Planning

Pedro Cabalar

Dept. Computer Science
University of Corunna, SPAIN

November 18, 2022

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 1 / 72

1 Actions and change

2 Diagnosis

3 Temporal Logic

4 AI Planning

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 2 / 72

Back to our simple example

Lamp and switches revisited

Fluents: up1,up2,up3, light (Boolean).

Actions: toggle1, toggle2, toggle3.

State: a possible configuration of fluent values. Example:
{up1,up2,up3, light}.

Situation: a moment in time. We can just use 0,1,2, . . .

up1 up2 up3 up1 up2 up3 up1 up2 up3

light light light

toggle1 toggle3

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 3 / 72

Reasoning about actions with ASP

Download system telingo (temporal clingo)
We can make groups of rules
#program initial. % At timepoint t=0
...
#program dynamic. % Transition from t-1 to t
...
#program always. % Any timepoint t=0..n-1
...
#program final. % Last timepoint t=n-1
...

Predicate names preceded by ’ refer to timepoint t-1
Predicate names preceded by _ refer to timepoint t=0
Temporal formulas built with &tel{ ... }

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 4 / 72

Reasoning about actions with ASP

% File: switches.lp (domain description)
switch(1..3).
action(tog(X)) :- switch(X).

#program dynamic.
% Effect axioms
h(sw(X),up) :- ’h(sw(X),down), o(tog(X)).
h(sw(X),down) :- ’h(sw(X),up), o(tog(X)).
h(light,off) :- ’h(light,on), o(tog(_)).
h(light,on) :- ’h(light,off), o(tog(_)).

% Executability constraints: none in this case
% Inertia: c(F)= fluent F has changed
h(F,V) :- ’h(F,V), not c(F).
c(F) :- ’h(F,V), h(F,W), V!=W.

% Action generation
1 { o(A): _action(A) } 1.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 5 / 72

RAC goals

We want to solve some typical reasoning problems.

The most usual ones:
Simulation (aka prediction, aka temporal projection):
run a sequence of actions on an initial state

Temporal explanation (aka postdiction):
fill gaps from partial observations

Planning: obtain sequence of actions to reach some goal

Diagnosis: explain unexpected observed results

Verification: check system properties

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 6 / 72

Prediction (simulation, or temporal projection)

Knowing: initial state + sequence of actions

Find out: final state (alternatively sequence of intermediate
states)

up1 up2 up3

light

toggle1 toggle3

? ?

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 7 / 72

Reasoning about actions with ASP

Prediction example
% File: switches-predict.lp (instance of prediction problem)
#program initial.
h(light,off).
h(sw(X),up) :- switch(X).

We assert a sequence of facts using:
% Sequence of performed actions
&tel{

&true
;> o(tog(3))
;> o(tog(1))
;> o(tog(2))
;> o(tog(2))

}.
#show h/2.
#show o/1.

where ;> is a sequence operator
P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 8 / 72

Reasoning about actions with ASP

Prediction example
Calling telingo switches.txt switches-predict.txt

Answer: 1
State 0:
h(light,off) h(sw(1),up) h(sw(2),up) h(sw(3),up)

State 1:
o(tog(3))
h(light,on) h(sw(1),up) h(sw(2),up) h(sw(3),down)

State 2:
o(tog(1))
h(light,off) h(sw(1),down) h(sw(2),up) h(sw(3),down)

State 3:
o(tog(2))
h(light,on) h(sw(1),down) h(sw(2),down) h(sw(3),down)

State 4:
o(tog(2))
h(light,off) h(sw(1),down) h(sw(2),up) h(sw(3),down)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 9 / 72

Postdiction (or temporal explanation)

Knowing: partial observations of states and performed actions

Find out: complete information on states and performed actions

up3 up1 up3 up1 up2 up3

light light light

toggle3

?

?

??

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 10 / 72

Reasoning about actions with ASP

Postdiction example:
% switches-postdict.lp
#program initial.
% Completing unknown facts
1 {h(sw(X),up); h(sw(X),down)} 1 :- switch(X).
1 {h(light,on); h(light,off)} 1.

% Observations: we use a constraint!
:- not &tel{

h(sw(3),up) & h(light,on)
;> h(light,off) & h(sw(1),down) & h(sw(3),up)
;> o(tog(3))

}.

Calling telingo 0 switches.txt switches-postdict.txt we
get 4 possible explanations

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 11 / 72

Planning

Knowing: initial state + goal (partial description of final state)

Find out: plan (sequence of actions) that guarantees reaching the
goal

up1 up2 up3 up1 up2 up3

light light

? ??

? ? ?

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 12 / 72

Reasoning about actions with ASP

Planning example
% File: switches-plan.lp
#program initial.
h(light,on).
h(sw(X),up) :- switch(X).

#program final.
goal :- h(light,on),h(sw(1),down),

h(sw(2),up),h(sw(3),down).
:- not goal.

Calling telingo 0 switches.txt switches-plan.txt we get
two minimal plans of length 2 toggling 1 and 3 or vice versa.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 13 / 72

Planning vs Postdiction

Note that planning seems a type of postdiction. For deterministic
systems, this is true, but . . .

Nondeterministic transition system: fixing current state +
performed action −→ several possible successor states.

For instance, switch 1 up may fail to turn the light on...

up1 up2 up3

up1 up2 up3

light

light

toggle1

up1 up2 up3

light

toggle1

Switch 1 "failed"

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 14 / 72

Planning vs Postdiction

up1 up2 up3

light light

?

? ? ?

For postdiction, one valid explanation is: we performed toggle1,
and it succeeded to turn the light on.

For planning, toggle1 is not a valid plan: it does not guarantee
reaching the goal light . Possible plans are toggle2 or toggle3.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 15 / 72

Exercise

“Elaborating Missionaries and Cannibals Problem” [J. McCarthy]
3 missionaries and 3 cannibals come to a river and find a boat
that holds two. If the cannibals ever outnumber the missionar-
ies on either bank, the missionaries will be eaten. How shall
they cross?

We will use the following fluents:
1 n(G,B) = is the number of persons of group G at bank B.

Ex.: h(n(mis,l),3) = “there are 3 missionaries in the left bank”

2 boat points out the boat bank. Ex. h(boat,l) = “the boat is at
left bank”

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 16 / 72

Exercise: missionaries and cannibals

We will use action:
move(M,C) = move M missionaries and C cannibals.

For simplicity, we include two action attributes moved(mis,N)
and moved(can,N) that point out separatedly how many persons
of each group are moved.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 17 / 72

Exercise: missionaries and cannibals

We begin with types and initial state
#program initial.
% Some types
group(mis;can).
bank(l;r).
opposite(l,r). opposite(r,l).
action(move(M,C)) :- M=0..2, C=0..2, M+C<3, M+C>0.

% Initial state
h(n(G,l),3) :- group(G).
h(n(G,r),0) :- group(G).
h(boat,l).

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 18 / 72

Exercise: missionaries and cannibals

Rules for transitions
#program dynamic.
% Action generation
1 {o(A) : _action(A) } 1.

% Auxiliary (action attributes)
moved(mis,M) :- o(move(M,C)).
moved(can,C) :- o(move(M,C)).

% Executability axioms
:- moved(G,N), ’h(boat,B), ’h(n(G,B),M), N>M.

% Effect axioms (no inertia needed)
h(n(G,B),M+N) :- ’h(n(G,B),M), h(boat,B), moved(G,N).
h(n(G,B),M-N) :- ’h(n(G,B),M), ’h(boat,B), moved(G,N).
h(boat,B1) :- ’h(boat,B), _opposite(B,B1).

Inertia not needed because all fluents are changed

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 19 / 72

Exercise: missionaries and cannibals

Rules for transitions
#program always.
% Missionaries not outnumbered by cannibals
:- h(n(mis,B),M), h(n(can,B),C), C>M, M>0.

#program final.
:- not goal.
goal :- h(n(mis,r),3), h(n(can,r),3).

#show o/1. % We only show performed actions

We execute telingo 0 mc.txt and it will try length
t = 1,2, . . . until a solution is found.
Four solutions of length t = 11 are eventually found.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 20 / 72

Exercise: the Blocks World

Example
Rearrange blocks of same size into goal stacks

We can only move a free block (nothing on top) at a time

We can put it on another block or on the table (it has room for all)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 21 / 72

Exercise: the Blocks World

Fluents:
h(on(B),L) = block B is on location L (a block or the table)

Actions:
o(move(B,L)) = move block B to location L

To specify the goal we use a static predicate:
g(B,L) = block B goal location is L

The problem instance:
blocks(a;b;c;d).
% Initial state
h(on(a),table). h(on(b),table). h(on(c),table). h(on(d),c).
% Goal positions
g(a,b). g(b,d). g(d,table). g(c,table).

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 22 / 72

Exercise: the Blocks World

A blocks world encoding:
#program initial.
location(table). location(B) :- block(B).
#program dynamic.
h(on(B),L) :- o(move(B,L)). % effect axiom
:- o(move(B,_)), ’unclear(B). % executability
:- o(move(_,L)), ’unclear(L). % executability
:- o(move(B,table)), ’h(on(B),table). % control constraint
#program always.
unclear(C) :- h(on(_),C),C!=table.
#program final.
:- _g(B,L), not h(on(B),L). % goal is reached

plus the general patterns:
#program dynamic.
1 {o(A): _action(A) } 1. % action generation
h(F,V) :- ’h(F,V), not c(F). % inertia
c(F) :- h’(F,V),h(F,W),V!=W. % change
#show o/1.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 23 / 72

Exercise: the Blocks World

An efficient encoding (goal oriented) may mean sacrifices in
elaboration tolerance

Strategy 1: restrict available actions
� Allow moving a block to the table or to its destination block

action(move(B,table)) :- block(B).
action(move(B,C)) :- g(B,C).

Strategy 2: reduce generality of inertia. Replace by:
h(on(B),L) :- ’h(on(B),L), not o(move(B,_)).

(Slight) frame problem (what if new actions for moving are defined)

Strategy 3: control executability constraints = they tell you what
(not) to do next, guided by our goal. Ex.: never undo a good tower.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 24 / 72

Exercise: the Blocks World

Never undo a good tower:
We should not start moving A on B, because B is not ready

B will be ready when placed on D, being D ready in its turn

D will be ready when placed on the table

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 25 / 72

Exercise: the Blocks World

The ready auxiliary predicate is recursive
#program always.
ready(table).
ready(B) :- h(on(B),L), _g(B,L), ready(L).

Finally, we can now add the control constraints:
#program dynamic.
% Don’t move a ready block
:- o(move(B,_)), ’ready(B).
% Don’t lay on a non-ready location
:- o(move(_,L)), not ’ready(L).

These changes drastically reduce the search space, but the
representation is now totally guided by goal location, predicate
_g(B,L).

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 26 / 72

1 Actions and change

2 Diagnosis

3 Temporal Logic

4 AI Planning

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 27 / 72

Abductivon as best explanation

Abduction
Knowing: a knowledge base KB + an observed result C

Find out: hypotheses H such that KB ∪ H |= C
� H should be the best explanation

Example: we have C = wetgrass and KB =

rain→ wetgrass
sprinkle ∧ night → wetgrass

glass ∧ fill ∧ push→ wetgrass

We can use H1 = {rain}, � simplest hypothesis
H2 = {sprinkle,night} or H3 = {glass, fill ,push}

If we have KB′ = KB ∪ {¬rain}, the best hypothesis (less
assumptions) becomes H2

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 28 / 72

Abduction in ASP

Atoms are reified: h(A) = atom A holds
We distinguish the abducible atoms (they can form hypotheses)
Generation of hypothesis becomes a choice rule
abducible(rain;sprinkle;night;push;glass;full).
{hyp(A)} :- abducible(A). % generate hypothesis
h(A) :- hyp(A). % any hypothesis A holds

Observations can be incorporated as constraints
h(wetgrass) :- h(rain).
h(wetgrass) :- h(night), h(sprinkle).
h(wetgrass) :- h(glass), h(full), h(push).
:- not h(wetgrass). % observation

We cannot add h(wetgrass) as a fact, or as an abducible atom!
We get 43 explanations! (including hypothesis with all abducible
atoms). Smallest explanations = minimal sets of hypotheses
#minimize{1,A:hyp(A)}.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 29 / 72

Diagnosis

An agent acts in a dynamic environment and observes the results
of her actions.

Sometimes she gets discrepancies:
observations 6= expected result

Diagnosis = search for abductive explanations
I Knowing: a model distinguishing between normal and abnormal

transitions + a partial set of observations (usually implying
abnormal behavior).

I Find out: the minimal set of abnormal transitions that explains the
observations.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 30 / 72

Diagnosis

Example [Balduccini & Gelfond 03]
We have a circuit with lightbulb b and a relay r . The agent can
close s1 causing s2 to close (if r is not damaged). The bulb
emits light if s2 is closed and b is not damaged.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 31 / 72

Diagnosis example

Example [Balduccini & Gelfond 03]
Exogenous action break damages the relay. Action power-
surge damages r , and b too, if the latter is not protected (prot).

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 32 / 72

Diagnosis example

Example [Balduccini & Gelfond 03]
We close s1 but b does not emit light: what has happened?

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 33 / 72

Diagnosis example

Types and domains
#program initial.
switch(s1;s2).
component(relay;bulb).
fluent(relay;light;b_prot).
fluent(S):-switch(S).
fluent(ab(C)) :- component(C).

value(relay,(on;off)).
value(light,(on;off)).
value(S,(open;closed)) :- switch(S).
% Fluents are boolean by default
domain(F,(true;false)) :- fluent(F), not value(F,_).
% otherwise, they take the specified values
domain(F,V) :- value(F,V).

Fluents ab(C) point out that a component is damaged

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 34 / 72

Diagnosis example

Actions are exogenous exog or agent’s agent :
agent(close(s1)).
exog(break;surge).
action(Y):-exog(Y).
action(Y):-agent(Y).

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 35 / 72

Diagnosis example

#program dynamic.
% Inertia
h(F,V) :- ’h(F,V), not c(F).
c(F) :- ’h(F,V), h(F,W), V!=W.

% Direct effects
h(s1,closed) :- o(close(s1)).

#program always.
% Indirect effects
h(relay,on) :- h(s1,closed), h(ab(relay),false).
h(relay,off) :- h(s1,open).
h(relay,off) :- h(ab(relay),true).

h(s2,closed) :- h(relay,on).

h(light,on) :- h(s2,closed), h(ab(bulb),false).
h(light,off) :- h(s2,open).
h(light,off) :- h(ab(bulb),true).

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 36 / 72

Diagnosis example
#program dynamic.
% Executability
:- o(close(S)), ’h(S,closed).

% Malfunctioning
h(ab(bulb),true) :- o(break).
h(ab(relay),true) :- o(surge).
h(ab(bulb),true) :- o(surge), not ’h(b_prot,true).

We use predicates obso and obsh to denote observations
% Observed actions actually occur
o(A) :- obs_o(A).

#program always.
% Check that observations hold
:- obs_h(F,V), not h(F,V).

#program initial.
% Completing the initial state
1 {h(F,V):_domain(F,V)} 1 :- _fluent(F).

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 37 / 72

Diagnosis example

These are the observations:
% A history
&tel {

obs_h(s1,open) & obs_h(s2,open) &
obs_h(b_prot,true) &
obs_h(ab(bulb),false) &
obs_h(ab(relay),false)

;> obs_o(close(s1)) &
obs_h(light,off)

}.

#program dynamic.
% Generate exogenous actions
{ hyp(A): _exog(A) }.

o(A) :- hyp(A).
#show cause/1.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 38 / 72

Diagnosis example

This will provide all possible explanations, but not minimal
diagnoses.
$ telingo 0 diag.lp
Answer: 1
State 0:
State 1:
cause(break)

Answer: 2
State 0:
State 1:
cause(break) cause(surge)

Answer: 3
State 0:
State 1:
cause(surge)

SATISFIABLE

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 39 / 72

Diagnosis example

We look for best explanations:
#minimize {1,A:hyp(A)}.

To obtain all minimal solutions we use the options:
$ telingo --opt-mode=optN -n0 diag.lp

Two minimal solutions are found:
Answer: 1
State 0:
State 1:
cause(surge)

Optimization: 1
Answer: 2
State 0:
State 1:
cause(break)

Optimization: 1
OPTIMUM FOUND

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 40 / 72

1 Actions and change

2 Diagnosis

3 Temporal Logic

4 AI Planning

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 41 / 72

Temporal Reasoning

Until now, temporal expressivenes limited to:
I program sections: initial, dynamic, always, final
I previous situation ’h(sw(X),down)
I initial situation _action(A)
I sequence of actions ;>

Can we go further?

Example: (in the switches planning problem) choose plans where
tog(1) does not occur after tog(3) Obvious solution: auxiliary
predicate
#program dynamic.
moved3 :- o(tog(3)).
moved3 :- ’moved3.
:- o(tog(1)), moved3.

Linear Temporal Logic can do the job requiring
¬(o(tog(3)) ∧ ♦o(tog(1)))

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 42 / 72

Modal Temporal Logic

Linear-time Temporal Logic (LTL)
� (forever), ♦ (eventually), ◦ (next), U (until)

X Decidable inference methods. Satisfiability: PSpace-complete
X Relation to other mathematical models:

algebra, automata, formal languages
X Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)
X Model checking and verification of reactive systems
X Many uses in AI: planning, ontologies, multi-agent systems, . . .
7 Monotonic: action domain representations manifest frame problem

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 43 / 72

Our proposal

Temporal Equilibrium Logic (TEL) [C_&Pérez 07]

TEL = ASP + LTL

ASP: logical characterisation Equilibrium Logic [Pearce 96]

LTL: We add temporal operators �, ♦, ◦, U , R (+ past versions)
Result: Temporal Stable Models for any arbitrary LTL theory.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 44 / 72

(Linear) Temporal Equilibrium Logic

Syntax = propositional plus
I �α = “forever” α
I ♦α = “eventually” α
I ◦α = “next moment” α
I α U β = α “until eventually” β
I α R β = α “release” β

As we had with Equilibrium Logic:

1 A monotonic underlying logic: Temporal Here-and-There (THT)

2 An ordering among models. Select minimal models.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 45 / 72

Sequences

In standard LTL, an interpretation is a (possibly∞)-sequence of
sets of atoms

 {p, q} {p} {q} { } {p, q} . . .

0 1 2 3 4

In THT we will have a (possibly∞)-sequence of HT interpretations

. . .

0 1 2 3 4

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 46 / 72

Sequences

We define an ordering among sequences H ≤ <T when

T0 // T1 // T2 // . . . // Ti // . . .⋃
|

⋃
|

⋃
|
⋃ ⋃

|

H0 // H1 // H2 // . . . // Hi // . . .

Definition (THT-interpretation)
is a pair of sequences of sets of atoms 〈H,T〉 with H ≤ T.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 47 / 72

Temporal Here-and-There (THT)

〈H,T〉, i |= α ⇔ “α is proved at i”
〈T,T〉, i |= α ⇔ “α assumed at i” ⇔ T, i |= α in LTL

An interpretation M = 〈H,T〉 satisfies α at situation i , written
M, i |= α

α M, i |= α when . . .
an atom p p ∈ Hi

∧,∨ as usual

α→ β T, i |= α→ β in LTL and
〈H,T〉, i |= α implies 〈H,T〉, i |= β

◦,�,♦, U , R as in LTL (just deal with timepoints)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 48 / 72

(Linear) Temporal Equilibrium Logic

◦α satisfied in i + 1

α

• // • // • // . . . // • // . . .

�α satisfied for all j ≥ i

α α α α

• // • // • // . . . // • // . . .

♦α satisfied for some j ≥ i

α

• // • // • // . . . // • // . . .

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 49 / 72

(Linear) Temporal Equilibrium Logic

α U β = repeat α until (mandatorily) β

α α α α β

• // • // • // . . . // • // • // . . .

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 50 / 72

(Linear) Temporal Equilibrium Logic

α R β = disjunction of two cases
β U (β ∧ α)

β β β β ∧ α

• // • // • // . . . // • // • // . . .

�β
β β β β β

• // • // • // . . . // • // • // . . .

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 51 / 72

Temporal Equilibrium Models

Definition (Temporal Equilibrium Model)
of a theory Γ is a model T of Γ such that there is no H < T satisfying
〈H,T〉,0 |= Γ.

Temporal Equilibrium Logic (TEL) is the logic induced by temporal
equilibrium models.

Theorem
Deciding whether a temporal theory has some THT-model is
PSPACE-complete.

Theorem
Deciding whether a temporal theory has some temporal stable model
is EXPSPACE-complete.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 52 / 72

Tool abstem allows computing temporal stable models for infinite
traces
Tool telingo focuses on finite traces, closer to practical problem
solving with ASP
Temporal formulas in telingo: we can use expressions inside
&tel{...} with future-ops in heads, past-ops in bodies and any
of them in constraints.

LTL future past
◦p > p < p
◦̂p >: p <: p
♦p >? p <? p
�p >* p <* p
p U q p >? q p <? q
p R q p >* q p <* q
p ∧ ◦q p ;> q p <; q

plus Boolean operators &, |, ~, &true, &false . . .
We can fix the trace length n with &tel{n > &true}

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 53 / 72

Back to our planning example, we forbid
♦(o(tog(3)) ∧ ◦♦o(tog(1)))

#program initial.
h(light,on).
h(sw(X),up) :- switch(X).

#program final.
goal :- h(light,on),h(sw(1),down),

h(sw(2),up),h(sw(3),down).
:- not goal.

#program initial.
:- &tel{ >? (o(tog(3)) ;> >? o(tog(1)))}.

Or we can use instead past operators like:
#program dynamic.
:- o(tog(1)), &tel{ < <? o(tog(3))}.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 54 / 72

Temporal control constraints: they allow disregarding plans
without changing the domain representation towards a goal

Convenient in concurrent planning: some “non-critical" agents
may fill the plan with erratic actions

Example of control constraints:

¬(¬p U d) if you pick (p), do it before dropping (d)
¬♦(p ∧ ◦♦p) never pick twice

:- &tel { ~p >? d }.
:- &tel { >? (p ;> >? p)}.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 55 / 72

1 Actions and change

2 Diagnosis

3 Temporal Logic

4 AI Planning

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 56 / 72

Classical AI Planning

Knowing: initial state + goal (partial description of final state)

Find out: plan (sequence of actions) to reach the goal

Classical AI Planning adds these premises

Discrete: fluents, actions, time points, everything discrete

Deterministic: given a state and a (ground) action, only one
possible outcome

Static: the environment does not change while the agent is
deliberating

Fully observable domain: no missing information

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 57 / 72

Languages for Planning

Languages for planning look for a balance between allowing
efficient processing versus flexibility (elaboration tolerance).

The most influential language has been STRIPS
STanford Research Institute Problem Solver [Fikes & Nilson 1971]

Based on triples with 〈ACTION,PRECON,EFFECT〉
where PRECON and EFFECT are lists of literals

ACTION : move(X ,From,To)
PRECON : on(X ,From), clear(X), clear(To)
EFFECT : on(X ,To), clear(From),¬on(X ,From),¬clear(To) on(X ,To), clear(From)︸ ︷︷ ︸

ADD list

,¬on(X ,From),¬clear(To)︸ ︷︷ ︸
DEL list

(:action move
:parameters (?block ?from ?to)
:precondition (and

(on ?block ?from) (clear ?ob) (clear ?to))
:effect (and

(on ?block ?to) (clear ?from)
(not (on ?block ?from)) (not (clear ?to))))

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 58 / 72

Languages for Planning

Inertia is implicit: all the changes are listed (ADD/DEL lists)

o STRIPS manifests ramification and qualification problems

Existence of plan in propositional STRIPS is PSPACE-complete

STRIPS has been carefully extended to add flexibility without
harming planners efficiency . . .

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 59 / 72

Languages for Planning

PDDL (Planning Domain Description Language) [McDermott
1998]. Used for the International Planning Competition (IPC).

Language versions:

I 2.1: numeric fluents, plan metrics, actions with duration

I 2.2: derived predicates (ramifications), timed exogenous events

I 3.0: state-trajectory constraints (temporal logic), preferences

I 3.0: object fluents (non-numeric multivalued)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 60 / 72

Algorithms: Forward Planning

State-space: 1 search node = 1 state

Start with initial state, end when goal reached

Expanding a node means looking for applicable ground actions

on(a,t) on(b,t) on(c,t)
on(d,c) clear(a)
clear(b) clear(c)

?

?

?

move(X ,From,To)
throws 7 cases

X = a,From = t ,To = b
X = a,From = t ,To = d
X = b,From = t ,To = a
X = b,From = t ,To = d
X = d ,From = c,To = a
X = d ,From = c,To = b
X = d ,From = c,To = t

Branching factor = maximum size of one expand

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 61 / 72

Algorithms: Forward Planning

Pros = simple!
I We can use standard search algorithms
I There are good (domain independent) heuristics

Contras
I Branching factor can be too large

Many modern planners are based on Forward Planning

A good admissible heuristic that underestimates the plan length is
ignoring the delete list [Bonet & Geffner 2001]

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 62 / 72

Algorithms: Backward Planning

Search space: 1 search node = 1 sub-goal = set of states

We start with goal state, end when initial state reached

Expanding a node means looking for relevant actions from effects
to preconditions and jumping to a new sub-goal.
E.g. where did each block come from?

move(X ,From,To)
only 3 possible cases

X = a,From = t ,To = b
X = a,From = c,To = b
X = c,From = a,To = t

on(a,b) on(b,d) on(d,t)
on(c,t) clear(a) clear(c)

?
?
?

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 63 / 72

Algorithms: Backward Planning

Pros
I Goal-directed: explore relevant part of the search space
I Branching factor much lower than Forward Planning

Contras
I Requires dealing with non-ground sub-goals
I Hard to get good heuristics

Goal can be a partial description. E.g. just get on(b, c)

move(X ,From,To)
no hint to ground From

X = b,From,To = c

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 64 / 72

Algorithms: Bounded Horizon

Horizon h = maximum plan length to explore
� Idea: find plans of fixed length h. If no one found, try with h + 1

First introduced in SAT planning [Kautz & Selman 92] with the
SATPLAN planner.

Ground fluent f becomes h + 1 propositional atoms f0, . . . , fh
Planning domain becomes a propositional formula in CNF
A SAT solver is used to obtain plans

CSP planning: domain becomes a constraint satisfaction problem
(CSP). Actions and fluents can be integer variables

ASP planning: domain becomes a logic program and an ASP
solver is used instead. See translator from PDDL to ASP:
� https://github.com/potassco/plasp

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 65 / 72

https://github.com/potassco/plasp

Algorithms: Bounded Horizon

In general, bounded horizon algorithms are incomplete: they
cannot decide non-existence of plan

However, in some cases, upper bounds for h can be obtained and
completeness can be guaranteed.

Example: if a Rubik Cube problem has a solution, the maximum
number of quarter turns required is 26. Thus, try for all h ≤ 26.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 66 / 72

Other Planning Techniques

GRAPHPLAN [Blum & Furst 1995] graph search based on a
(layered) planning graph

I Even layers: 1 node = 1 (ground) fluent fact
I Odd layers: 1 node = 1 (ground) action
I Edges of type: precondition, effect, mutex (mutual exclusion)

Partial-order Planning avoids fixing an ordering among actions,
when it is irrelevant. Example of plan:

get(flour)

&&
go(store) //

66

((

get(milk) // pay

get(eggs)

88

any of the 3!=6 permutations for getting items is a valid plan

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 67 / 72

Other Planning Techniques

Using Temporal Logic expressions of control knowledge.
Introduced with TLPLAN [Bacchus & Kabanza 2000]
Formulas in LTL like �(pick → ♦drop) (as seen in telingo)

Hierarchical Task Networks (HTN) planning
Different levels: first high-level actions

1 Land-travel from Ourense to Santiago (SCQ)
2 Fly from SCQ to GCN (Arizona)
3 Land-travel from GCN airport to Great Canyon

Then, get a refinement
Land-travel from Ourense to Santiago (SCQ) =

1 Walk to Ourense train station
2 Take train 04175 to Santiago
3 Walk to bus station
4 Take bus XG802 to SCQ

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 68 / 72

Other Planning Techniques

Combining Planning and Machine Learning
Learning control rules using Inductive Logic Programming (ILP)
[Leckie & Sukerman 1991] Grasshopper

Learning macro actions, i.e. fixed sequences of actions that
simplify the search. Example in 8-puzzle: push a row to the right
Using Reinforcement learning [Randløv 1999]

Learning the domain description from set of execution traces.
Very recent example using ASP [Rodríguez, Bonet, Romero &
Geffner 2021]

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 69 / 72

Beyond Classical Planning

Conformant planning: domain is only partially observable
I Knowing: partial initial state + goal description

I Find out: plan (linear sequence of actions) that always reaches the
goal

Non-deterministic actions can also be covered: reduction to an
exogenous variable unknown at the initial state

Complexity raises from PSPACE to EXPSPACE

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 70 / 72

Beyond Classical Planning

Contingency planning: domain is only partially observable, but we
have sensing actions (always non-deterministic)

I Knowing: partial initial state + goal description

I Find out: plan = nested conditional sequences of actions that
guarantee reaching the goal

Example of plan: the phone is at the kitchen or at the bedroom

go(kitchen); turn(light ,on); watch;
if at(phone, kitchen) then walk ; pick(phone)
else go(bedroom); pick(phone)

We represent the agent’s beliefs (epistemic reasoning)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 71 / 72

Beyond Classical Planning

Probabilistic Planning: extends non-deterministic actions with
probabilistic information

I Markov Decision Process (MDP): world is fully-observable,
transition only depends on the previous state, not previous history

I Partially Observable MDP (POMDP): world not fully observable,
deal with agent’s beliefs (undecidable in the general case)

Online planning: the environment changes during deliberation or
plan execution � Requires monitoring the plan execution and
detecting the need for replanning

Scheduling: actions may have durations and require consuming
resources. Related to Operations Research techniques such as
Critical Path Method (CPM)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Unit 5. Temporal Reasoning November 18, 2022 72 / 72

	Actions and change
	Diagnosis
	Temporal Logic
	AI Planning

