Reasoning and Planning Unit 4. Relational Reasoning

Pedro Cabalar

Dept. Computer Science
University of Corunna, SPAIN

October 31, 2022

(9) Deductive Databases

Relational Representation

- Atoms = instead of propositions, we have now predicates. They represent relations among entities:

```
neighbour(france,spain). exports(germany,france,cars).
```

- Herbrand Domain = set of individuals, each one uniquely identified by a (lowercase) constant name. E.g.
$D=\{$ germany, france, spain, cars, $\ldots\}$
$\cup\{0,1,2, \ldots,-1,-2, \ldots\}$ plus finite subsets of integer numbers.
- Unique Names Assumption (UNA) = different terms represent different individuals. spain \neq france, spain \neq cars, spain \neq españa, $0 \neq 1$, $0 \neq$ cars
- We can use unary predicates to represent types:
country(spain). country(france). country(germany).
tradegood(cars). tradegood(food).
country(spain; france; germany).

Relational Representation

- A set of facts becomes the extensional database (EDB)!

```
neighbour(spain,france).
neighbour(france,germany).
exports(spain,germany,food).
exports(spain,france,food).
exports(germany,france,cars).
exports(france,spain,cars).
```

Table exports
Table neighbour

C1	C 2
spain	france
france	germany

FROM	TO	GOOD
spain	germany	food
spain	france	food
germany	france	cars
france	spain	cars

Relational Representation

- A query to the EDB becomes a rule with variables.

Variable = name with upcase initial (X, Y, country, ...) universally quantified and denoting arbitrary individuals.
'_' = anonymous variable (different each time it occurs)

```
exgood(G) :- exports(_,_,G). exgood(G) :- exports(X1,X2,G).
```

$\forall X 1, X 2, G(\operatorname{exports}(X 1, X 2, G) \rightarrow \operatorname{exgood}(G))$

- Ex.: "neighbours of France and goods she imports from them" answer (N, G) : neighbour (france, N) , exports (N, france, G).

SQL equivalent is more verbose

```
SELECT neighbour.C2, exports.GOOD FROM neighbour
INNER JOIN exports ON neighbour.C2=exports.FROM
WHERE neighbour.C1=france AND exports.TO=france;
```

Problem: we get no goods from Spain using our previous data! We had neighbour (spain, france) but not the opposite!

Deductive Databases

- Predicate neighbour should be symmetric! We add a rule

```
neighbour(X,Y) :- neighbour(Y,X).
```

- Deductive database: some predicates are intensional or (partially) deduced from rules, rather than extensional (list of facts).
- Ground atom = predicate + constants, no variables. Grounding = replacing variables by all their possible instances. (although it is actually more intelligent than that)

Deductive Databases

Example: the grounding of program

```
neighbour(spain,france) . neighbour(france,germany).
neighbour(X,Y) :- neighbour(Y,X).
```


would potentially yield the rules

```
neighbour(spain,france) . neighbour(france,germany).
neighbour(spain,france) :- neighbour(france,spain).
neighbour(spain,germany) :- neighbour(germany,spain).
neighbour(france,spain) :- neighbour(spain,france).
neighbour(france,germany) :- neighbour(germany,france).
neighbour(germany,spain) :- neighbour(spain,germany).
neighbour(germany,france) :- neighbour(france,germany).
```


Deductive Databases

Example: the grounding of program

```
neighbour(spain,france). neighbour(france,germany).
neighbour(X,Y) :- neighbour(Y,X).
```

would potentially yield the rules, but in practice...

```
neighbour(spain,france). neighbour(france,germany).
neighbour(spain,france) :- neighbour(france,spain).
neighbour(spain,germany) :- neighbour(germany,spain).
neighbour(france,spain) :- neighbour(spain,france).
neighbour(france,germany) :- neighbour(germany,france).
neighbour(germany,spain) :- neighbour(spain,germany).
neighbour(germany,france) :- neighbour(france,germany).
```


Deductive Databases

Example: the grounding of program

```
neighbour(spain,france). neighbour(france,germany).
neighbour(X,Y) :- neighbour(Y,X).
```

would potentially yield the rules, but in practice ...

```
neighbour(spain,france) . neighbour(france,germany).
neighbour(france,spain).
neighbour(germany,france).
```


Deductive Databases

- Datalog: deductive database paradigm using normal logic programs (under stratified negation) with predicates and variables.
\leftrightarrow Remember: stratified implies a unique stable model.
- Datalog is more expressive than SQL, but less expressive than logic programs without the stratification limitation.
- It allows, for instance, defining recursive relations, such as:

```
connected(X,Y) :- neighbour(X,Y).
connected(X,Z) :- neighbour(X,Y), connected(Y,Z).
```

so that we would get connected (spain, germany) even though they are not neighbours.

- Bodies can add conditions on variables $\mathrm{X}!=\mathrm{Z}, \mathrm{X}>\mathrm{Z} *(\mathrm{Y}+1)$, etc.

```
connected(X,Z) :- neighbour (X,Y), connected(Y,Z), X!=Z.
```


Deductive Databases

- Domain independence: answers shouldn't change if we just augment the Herbrand Domain

```
switch(1..3).
p(X,Y) :- X<Y. % ordered pairs of different switches
```

returns $p(1,2), p(1,3), p(2,3)$ if $D=\{1,2,3\}$ but for $D=\{1,2,3,4\}$ we miss $p(1,4), p(2,4), p(3,4)$. The set of possible pairs of integers is infinite!

```
p(X) :- not switch(X). % anything that is not a switch
```

The potential D with non-switches is even worse!

- All variable occurrences in a rule must be safe

Definition (Safety: guarantees domain independence)

A variable is safe if it occurs in a non-negated predicate in the body.

```
p(X,Y) :- X<Y, switch(X), switch(Y).
q(X) :- object(X), not switch(X). % define valid objects!
```


(1) Deductive Databases

2 Answer Set Programming

(3) ASP Applications

Answer Set Programming

- Answer Set Programming (ASP) = we allow normal logic programs (unstratified negation) with predicates and variables.
- In ASP, the stable models are called answer sets.
- Example:

```
pacifist(X) :- quaker(X), not bellicous(X).
bellicous(X) :- republican(X), not pacifist(X).
quaker(nixon) . republican(nixon).
republican(reagan) .
```

Two answer sets:

```
Answer: 1
... bellicous(reagan) bellicous(nixon)
Answer: 2
... bellicous(reagan) pacifist(nixon)
```


An example: Hamiltonian circuits

Definition (HAMILT)

The Hamiltonian Cycle problem, HAMILT, consists in deciding whether a graph contains a cyclic path in a graph that visits each vertex exactly once. HAMILT is an NP-complete problem.

- extensional database mygraph.gph with the graph
- Examples of medium sized graphs (200 nodes, 1250 edges):

```
http://www.cs.uky.edu/ai/benchmark-suite/
hamiltonian-cycle.html
```


An example: Hamiltonian circuits

- Predicate in (X, Y) points out that an edge $X \rightarrow Y$ is in the cycle. We generate arbitrary choices

```
{in(X,Y)} :- edge(X,Y).
```

- Only one outgoing vertex, only one incoming vertex:

```
:- in(X,Y), in(X,Z), Y!=Z.
:- in(X,Z), in(Y,Z), X!=Y.
```

- Disregard disconnected cycles. We use reached (X) meaning that X can be reached from an arbitrary fixed vertex, say 1.

```
reached(X) :- in(1,X).
reached(Y) :- reached(X), in(X,Y).
```

and we forbid unreached vertices:

```
:- vtx(X), not reached(X).
```


An example: Hamiltonian circuits

- Making the call:
clingo 0 hamilt.lp
We obtain two answers:

```
Answer: 1
in(4,3) in(3,1) in(2,4) in(1,2)
Answer: 2
in(4,1) in(3,4) in(2,3) in(1,2)
SATISFIABLE
```


Answer 1 Answer 2

An example: Hamiltonian circuits

- We can split clingo in two steps: grounder gringo + propositional solver clasp.
- Download gringo from potassco.org and make the call

```
$ gringo hamilt.txt | clasp 0
```

- To display the ground program, try the following

```
$ gringo -t hamilt.txt
:-in(1,2),in(1,3).
:-in(1,3),in(1,2).
:-in(2,1),in(2,3).
...
reached(2):-in(1,2).
reached(3):-in(2,3),reached (2).
reached(3):-in(1,3),reached(1).
```

"Real world" (combinatorial) problem
ial)

solutions

Problem instance (EDB)

```
vtx(1). vtx(2). vtx(3). vtx(4).
edge(1, 2). edge (2,3). edge (2,4)
edge(3,1). edge(3,4). edge(4,3).
{in(X,Y)} 1:- edge (X,Y).
```

Problem
specif.
(KB)

\% Answer 1 in $(4,3)$. in $(3,1)$. in $(2,4)$. in $(1,2)$
answer
\% Answer 2
sets
in $(4,1)$.
in $(3,4)$.
in $(2,3)$.
in $(1,2)$.

ASP as a problem solving paradigm

Generate-Define-Test (GDT)

Many problem specifications follow the:
Generate, Define and Test (GDT) methodology
G: Generate candidate solutions with choice rules

```
{in(X,T)} :- edge(X,Y).
```

D: Define: auxiliary predicates when needed for G or T

```
reached(X) :- in(1,X).
reached(Y) :- reached(X), in(X,Y).
```

T: Test: constraints remove unwanted combinations

```
:- in(X,Y), in(X,Z), Y!=Z.
:- in(X,Z), in(Y,Z), X!=Y.
:- vtx(X), not reached(X).
```


ASP vs Prolog

	ASP	Prolog
semantics	several $n \geq 0$ answer sets	unique (canonical) model
problem		
solving	1 answer set $=1$ solution	$=$ $?-\operatorname{graph}(G)$, hamilt (G, x). $x=[(4,3),(3,1),(2,4),(1,2)] ;$ $x=[(4,1),(3,4),(2,3),(1,2)]$
computational power	NP-complete	Turing-complete
language type	specification (exeetion)	programming (flow control: ordering, cut,...)

8 Queens revisited

Example (8-queens problem)

- Arrange 8 queens in a 8×8 chessboard so they do not attack one each other.

Explicit negation

- We can sometimes be interested in a second negation, strong or explicit negation (originally called "classical"). Example:

```
fill :- empty, not fire.
```

risky! we fill when no information on fire, but no guarantee.

- We could use auxiliary atom no_fire ("I'm sure there is no fire")

```
fill :- empty, no_fire.
:- fire, no_fire.
no_fire :- wet.
```

- Explicit negation '-' makes this same effect.

```
fill :- empty, -fire.
-fire :- wet.
```

and the constraint :- fire, -fire is implicit.

Einstein's 5 houses riddle: who keeps ishes as pets?

(1) The Brit lives in the red house.
(2) The Swede keeps dogs as pets.
(3) The Dane drinks tea.
(4) The green house is on the immediate left of the white house.
(5) The green house's owner drinks coffee.
(6) The owner who smokes Pall Mall rears birds.
(7) The owner of the yellow house smokes Dunhill.
(8) The owner living in the center house drinks milk.
(0) The Norwegian lives in the first house.
(10) The Blends smoker is neighbor of the one who keeps cats.
(1) The horse keeper is neighbor of the one who smokes Dunhill.
(12) The owner who smokes Bluemasters drinks beer.
(B) The German smokes Prince.
(44) The Norwegian lives next to the blue house.
(15) The Blends smoker lives next to the one who drinks water.

Pooling and constants

- Pooling: abbreviate several facts in a same atom

```
house(1..5).
color(red;green;blue;white;yellow).
```

is the same than

```
house(1). house(2). house(3). house(4).house(5).
color(red). color(green). color(blue).
color(white). color(yellow).
```

- Constants: can be defined in the file

```
#const numhouses=5.
house (1.. numhouses).
```

or passed as arguments in command line

```
$ clingo -c numhouses=5 einstein.txt
```


Compound terms

- Domain elements can be compound terms using tuples

```
birthdate( (10, july,1980) ).
independence( (4,july,1776) ).
important(D) :- birthdate(D).
important(D) :- independence(D).
birthday( (D,M) ) :- birthdate( (D,M,_) ).
julyevent(D) :- important( (D,july,_) ).
```

- We can also use function symbols as "tuple names":

```
birthdate( date(10,july,1980) ).
independence( date(4,july,1776) ).
important(D) :- birthdate(D).
important(D) :- independence(D).
birthday( day(D,M) ) :- birthdate( date(D,M,_) ).
julyevent(D) :- important( date(D,july,_) ).
```

A warning: day and date above are not predicates! date(2,july,2010). \% No connection with "day" as function!

Care with infinite grounding

A Use function symbols carefully!

```
person(mary).
person(father(X)) :- person(X).
```

The grounding for this program never stops!
In this case, better use a predicate and name each person

```
person(mary).
father(mary,peter).
person(Y) :- person(X), father(X,Y).
```

- A similar care must be taken with arithmetics

```
house (1..5).
greater(X+1,X) :- house(X).
greater(X+1,Y) :- greater(X,Y).
```

causes an infinite grounding, but can add a limit

```
house (1.. 5).
greater(X+1,X) :- house(X), house(X+1).
greater(X+1,Y) :- greater(X,Y), house(X+1).
```


Reification

- Sometimes, different predicates follow a same pattern

```
person(brit;swede; dane;norw;german).
1 { guest(H,X) : person(X) } 1 :- house(H).
:- guest(H,X), guest(H',X), H!=H'.
color(red;green;white;blue;yellow).
1 { paint(H,X) : color(X) } 1 :- house(H).
:- paint(H,X), paint(H',X), H!=H'.
pet(fish;horse;dog;bird;cat).
1 { grows(H,X) : pet(X) } 1 :- house(H).
:- grows(H,X), grows(H',X), H!=H'.
```

person/guest, color/paint, pet/grows have the same roles

Reification

- Reification = res-(thing)-fication-(make)
- Convert predicate name into new object (thing) as argument: "types" = type (person), type (color), type (pet) "values" = person (dane) \rightarrow value (person, dane), color(red) \rightarrow value (color, red) "assignments" = guest $(\mathrm{H}, \mathrm{X}) \rightarrow$ at $(\mathrm{H}$, person, X$)$, paint (H, X) \rightarrow at ($\mathrm{H}, \mathrm{color}, \mathrm{X}$)

```
value (person, (brit;swede; dane; norw; german)).
value (color(red;green;white;blue;yellow)).
value (pet, (fish;horse;dog;bird;cat)).
type(T) :- value(T,_).
1 { at (H,T,X) : value(T,X) } 1 :- house(H),type(T).
:- at (H,T,X), at (H',T,X), H!= H'.
```


New features

- Aggregate = function on sets of values.
- We may have \#sum, \#max, \#min, \#avg, \#count. Example:

```
income(jan,5). income(feb,3).
income (mar,-2). income(apr,10).
total(S) :- #sum{X: income(M, X)} = S.
```

$\{X$: income $(M, X)\}=\{5,3,-2,10\}$ the sum is $S=16$
A warning: sets have no repetitions (repeated values count once)

```
income(may,10). income(jun,10).
```

the set is still $\{5,3,-2,10\}$ and the sum is $S=16$

- We use tuples (the sum applies to the first component):

```
total(S) :- #sum{X,M: income(M,X)} = S.
```

$\{\mathrm{X}, \mathrm{M}:$ income $(\mathrm{M}, \mathrm{X})\}=$
$\{(5$, jan $),(3$, feb $),(-2, \operatorname{mar}),(10, \operatorname{apr}),(10, \operatorname{may}),(10$, jun $)\}$

Optimization

- ASP problem solving: 1 answer set $=1$ solution
- Sometimes we are interested in preferred or optimal solutions

8 Preferred/optimal answer sets we are going to select only some answer set(s)

- Depending on how we conceive the problem, two methods:
- \#minimize/maximize: conceived for optimization
- Weak constraints: conceived for preferences

Optimization

Example of optimization: Travelling Salesman Problem = find Hamiltonian cycle with shorter distance

Reuse hamilt.lp†and adapt the problem instance as follows:

```
vtx(1..4).
edge (1, 2,5). edge (2, 3,10). edge (2,4,6).
edge(3,1,7). edge(3,4,5). edge(4,3,5). edge(4,1,8).
edge(X,Y) :- edge(X,Y,_).
```


Optimization

Example of optimization: Travelling Salesman Problem = find Hamiltonian cycle with shorter distance

In hamilt. 1 p we can get the total distance of the path adding:

```
distance(S) :- #sum{C,X,Y:in(X,Y),edge(X,Y,C) }=S.
#show distance/1.
```

Running clingo 0 hamilt.lp graph1.lp we get 2 solutions
Answer: 1
in $(1,2)$ in $(2,4)$ in $(3,1)$ in $(4,3)$ distance (23) of minimal
Answer: 2
in $(1,2)$ in $(2,3)$ in $(3,4)$ in $(4,1)$ distance (28)

Optimization

- Getting minimal solution by hand is unfeasible:

Easy optimization problems may have millions of (non-optimal) solutions. To guarantee optimality, we should generate all!

- \#minimize declaration = works like a \#sum\{ . . . \} aggregate, but will choose answer sets with a minimum sum

```
#minimize{C,X,Y:in(X,Y), edge(X,Y,C) }.
```

We can also use \#maximize instead.

- The call clingo hamilt.lp graph1.lp will start a loop: (1) find a solution S_{0}; (2) find S_{i+1} better than S_{i} until no one found
- By default, only one optimum is shown. To show all optima, use clingo --opt-mode=optN -no hamilt.lp graph1.lp

Example: try changing fact edge $(2,3,10)$ by edge $(2,3,5)$

Preferences as weak constraints

- Weak constraints = alternative way of selecting answer sets. Equivalent to \#minimize.
- Constraints that we prefer to satisfy

Example (Dinner tables)

- Sit 5 people in 2 tables (with capacities 2 and 3).
- Avoid sitting a person with anybody she hates
- Prefer sitting a person with anybody she likes

Preferences as weak constraints

```
table(t1,2). table(t2, 3).
person (a;b;c;d;e).
hates(a,c). hates(d,e). likes(a,d). likes(c,e).
1 {sit(X,T): table(T,_)} 1:- person(X).
:- table(T,N), #count{X:sit (X,T)}>N.
:- hates(X,Y), sit(X,T), sit(Y,T).
```

clingo 0 dinner.lp = we get 4 solutions

Table t1	Table t2
ad	$b c e$
$a e$	$b c d$
$c d$	$a b e$
$c e$	$a b d$

Strong constraint: they must like each other :- sit(X,T), sit(Y,T), not likes(X,Y). unsatisfiable!

Preferences as weak constraints

```
table(t1, 2). table(t2, 3).
person (a;b;c;d;e).
hates(a,c) . hates(d,e) . likes(a,d). likes(c,e).
1 {sit(X,T): table(T,_)} 1:- person(X).
:- table(T,N), #count{X:sit(X,T) }>N.
:- hates(X,Y), sit (X,T), sit(Y,T).
```

clingo 0 dinner.lp = we get 4 solutions

Table t1	Table t2	Cost
$a d$	$b c c e$	$3+8=11$ \& min
$a e$	$b c c$	$4+9=13$
$c d$	$a b c$	$4+9=13$
$c e$	$a b c$	$3+8=11$ min

Weak constraint: we prefer when they like each other We pay a cost of 1 per each X, Y that dislikes (minimize the cost) :~ sit(X,T), sit(Y,T), not likes(X,Y). [1, X,Y]

Preferences as weak constraints

```
table(t1, 2). table(t2, 3).
person (a;b;c;d;e).
hates(a,c) . hates(d,e) . likes(a,d). likes(c,e).
1 {sit(X,T): table(T,_)} 1:- person(X).
:- table(T,N), #count{X:sit (X,T)}>N.
:- hates(X,Y), sit (X,T), sit(Y,T).
```

clingo 0 dinner.lp = we get 4 solutions

Table t1	Table t2	Cost
$a d$	$b c c e$	$(-1)+(-1)=-2 _$min
$a e$	$b c d$	$0+0=0$
$c d$	$a b e$	$0+0=0$
$c e$	$a b d$	$(-1)+(-1)=-2 \&$ min

Weak constraint: we prefer when they like each other Or we pay a cost of -1 per each X, Y that likes (minimize the cost) :~ sit (X,T), sit(Y,T), likes(X,Y). [-1, X,Y]

Preferences as weak constraints

- We can always use \#minimize or \#maximize instead. Example:

```
#maximize{1,X,Y: sit(X,T), sit(Y,T), likes(X,Y)}.
```

- Preference levels @p specifies a priority (higher = more important). Example: add a second level to dinner problem
- Maximize the likes always
- Likes being equal, I prefer sitting c in $t 2$

```
#maximize{1@2,X,Y: sit(X,T), sit(Y,T), likes(X,Y)}.
:~ sit(c,T), T!=t2. [1@1]
```


(1) Deductive Databases

(2) Answer Set Programming

(3) ASP Applications

ASP solvers

- ASP competition: 7 editions

Last edition (2019): 4 tracks depending on language features

- Most solvers were based on the ASP solver clasp/clingo by the Potassco group (University of Potsdam, Germany) on which professional applications were built

P Potassco branch in A Coruña!

- DLV, WASP (Univ. della Calabria, Italy): the other main solver with many professional applications.
- Both clingo and DLV are two-phase (ground \& solve) native ASP solvers

ASP solvers

Solvers using other strategies:

- Lazy grounding:

ASPerIX (Univ. of Angers, France); Alpha (TUWien, Austria)

- Top-down evaluation (a la Prolog): s (ASP) (Univ. of Texas at Dallas, USA)
- Translation to SAT:

ASSAT (Univ. of Science and Tech., Hong Kong, China); Cmodels (Univ. of Texas at Austin, USA); Univ. of Tampere, Finland [Rankooh, Janhunen 2022]

Outstanding ASP applications (Potassco)

Multi-robot path finding in automated warehouses

Outstanding ASP applications (Potassco)

SBB (Swiss Federal Railways). Solving train scheduling problems

Uses clingo[dl] = clingo + difference logic (integer constraints)

ASP applications: other examples

- Workforce and resource management. Many examples: Swiss Railway SBB, Cargo Ship Port, Hospitals (nurse shifts, room assignment, ...)
- Telecom Italy: Intelligent phone call routing (DLV)
- Phylogenetic networks, Haplotype inference
- Repairing Large Scale Biological Networks
- Explaining and reasoning on natural language, Facebook bAbl challenge (Univ. of Nebraska at Omaha)
- Music composition
- Diagnosis for the Space Shuttle (NASA + Univ. of Lubbock, TX)
- Data integration: INFOMIX (DLV)
- Videogame scenario generation
- Robotics (combination with Robot Operating System, ROS)
- Product Configuration...

ASP applications: other examples

- See more at
E. Erdem, M. Gelfond and N. Leone:

Applications of Answer Set Programming
AI Magazine 37(3): 53-68 (2016)

- And who knows what else soon...

