Reasoning and Planning Unit 3. Rule-based Reasoning

Pedro Cabalar

Dept. Computer Science University of Corunna, SPAIN

October 11, 2022

2 Default negation

3 Equilibrium Logic

Rule-based reasoning

- Rules are a substantial ingredient of commonsense reasoning
- Example:

"fire causes smoke"

smoke if fire smoke :fire

logic programming notation

We sometimes write:

smoke ← fire

fire body smoke head ←

P. Cabalar

Rule-based reasoning

Two possible readings

• Rule firing (bottom-up):

"I make a *fire*, so I get *smoke* as a byproduct"

 $\frac{smoke \leftarrow fire}{smoke} = Modus Ponens$

Better for causal inference (used in Answer Set Programming)

Goal achievement (top-down):
 "How can I get *smoke*? one way is making a *fire*"

goal = smoke? $smoke \leftarrow fire$ rule head found new goal = fire?fire fact found = success!

Goal-oriented backtracking (used in Prolog)

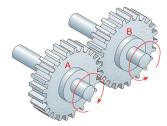
First choice: translate as material implication in classical logic

 $smoke \leftarrow fire \equiv \neg fire \lor smoke$

- Modus Ponens is granted
- ➤ But semantics is not aligned with rule-based reasoning Suppose we only knew KB = {smoke ← fire}

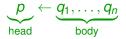
Rule reasoning	Classical models	
<i>fire</i> =false:	{fire, smoke}	derivability?
no way to be derived	{smoke}	derivability?
<i>smoke</i> =false:	Ø	both false 🗸
only derivable if <i>fire</i>	<₽	minimal model

- Minimal models cover (positive) recursion nicely
- Example: two gear wheels



spinA	<i>← spinB</i>
spinB	\leftarrow spinA
Two classical mo	odels
$\{spinA, spinB\}$	unjustified movement!
Ø	nothing moves 🗸
<₽	minimal model

A positive logic program is a set of rules like



or, written in text format

p :- q1, ..., qn.

with $n \ge 0$, where p, q_1, \ldots, q_n are atoms. Commas in the body represent conjunctions.

- Ordering among rules or in the body is irrelevant.
- When n = 0, the rule is called a fact, and we usually omit the \leftarrow .

Positive Logic Programs (semantics)

- Read rule $(p \leftarrow q_1, \dots, q_n)$ as $(q_1 \land \dots \land q_n \rightarrow p)$
- Close World Assumption (CWA) (minimize truth): get the model(s) with ⊆-less true atoms
- In general, we may get several ⊆-minimal models.
 Ex. M(p ∨ q) = {{p}, {q}, {p, q}}, two minimal models {p}, {q}
- Positive programs have exactly one: the ⊆-least model *LM*(*P*).
 Example:

$$egin{array}{ccccccccc} p & s \leftarrow q & b \leftarrow s, a \ q & a \leftarrow b, p & a \leftarrow c \end{array} \ r \leftarrow p, s & a \leftarrow c \end{array}$$

the models are $\{p, q, r, s\}$, $\{p, q, r, s, a, b\}$, $\{p, q, r, s, a, b, c\}$.

Positive Logic Programs (computation)

- The least model can be easily computed by "rule application" (deductive closure).
- Direct consequences operator [van Endem & Kowalski 76]
 T_P(I) = collect all heads in program P whose bodies are true in I

 $T_{P}(\mathcal{I}) := \{H \mid (H \leftarrow B) \in P \text{ and } \mathcal{I} \models B\}$

Compute sequence of interpretations I₀, I₁, I₂,...
 Start with I₀ := Ø (all atoms false)
 Repeat I_{k+1} := T_P(I_k) until we reach a fixpoint I_{k+1} = I_k

Positive Logic Programs (computation)

Go "firing rules" (Modus Ponens) until nothing new is derived

pp	ss ← qq	b ← s <mark>s</mark> ,a
qq	a ← b,pp	a ← c
$rr \leftarrow pp, ss$) 1 1	

 $T_P(\emptyset) = \{p, q\}, T_P(\{p, q\}) = \{p, q, s\}, T_P(\{p, q, s\}) = \{p, q, s, r\}, T_P(\{p, q, s, r\}) = \{p, q, s, r\}$ fixpoint = least model LM(P) ! proved by [van Endem & Kowalski 76]

C Each true atom is justified by a proof by Modus Ponens

$$\frac{p \qquad \frac{q \quad s \leftarrow q}{s} \qquad r \leftarrow p, s}{r}$$

3 Equilibrium Logic

- Goal: incorporating default reasoning in rules
- CWA means false by default. But we cannot check falsity in rules
- Idea: allow negative literals in rule bodies
 "not p" = "no evidence/proof for p" = "¬p can be assumed"
 - A normal logic program is a set of rules of the form:

$$\underbrace{p}_{\text{head}} \leftarrow \underbrace{q_1, \ldots, q_m, \text{not } q_{m+1}, \ldots, \text{not } q_n}_{\text{body}}.$$

with $n \ge m \ge 0$. If m = n (no negations) we get a positive rule. Again, ordering is irrelevant.

Example: "fill the tank if empty and no evidence on fire"

 $\textit{fill} \gets \textit{empty}, \textit{not fire}$

Suppose that the tank is empty indeed:

empty

Expected behaviour:

 No rule to derive *fire*, so we derive *not fire* then we get *fill* by Modus Ponens: final model {*empty*, *fill*}

Default Negation

- A Classical logic reading *empty* \land (*empty* $\land \neg$ *fire* \rightarrow *fill*) with minimal models (CWA) does not suffice!
 - Classically equivalent to *empty* ∧ (*fill* ∨ *fire*). Minimal models: {*empty*, *fill*} but also {*empty*, *fire*}.
 - Assuming there might be a *fire* is ok but there is no proof for *fire* any assumption must be eventually ...

 We expect non-monotonicity. Example: adding the fact *fire* should now derive {*empty*, *fire*} and retract *fill*

- Problem: material implication is not directional
- These formulas are classically equivalent:

 $\begin{array}{lll} \textit{empty} \land \neg \textit{fire} \rightarrow \textit{fill} & \equiv & \textit{empty} \rightarrow \textit{fire} \lor \textit{fill} \\ & \equiv & \textit{empty} \land \neg \textit{fill} \rightarrow \textit{fire} \end{array}$

but writing the latter as a rule

 $\textit{fire} \gets \textit{empty}, \textit{not fill}$

"If empty and no evidence on filling then start a fire" has a quite different meaning!

Default Negation

Sometimes defaults are conflicting. A classical example: Nixon's diamond

- "quakers are normally pacifist" (unless bellicose)
- "republicans are normally bellicose" (unless pacifist)
- "Richard Nixon is a both a Quaker and a Republican"

$$p \leftarrow q, not b$$

 $b \leftarrow r, not p$
 q
 r

There is no constructive way to apply the rules

Adding negation: stable models

 Gelfond, M., and Lifschitz, V. (ICLP 1988) The stable model semantics for logic programming.

Step 1	Step 2
Guess an assumption	Reduce program not's accordingly p
$ \begin{array}{c} $	$p \leftarrow q, \operatorname{not} b^{\top} = a$ $b \leftarrow r, \operatorname{not} p^{\perp}$ stal q r
Default negation: not b	sta

Adding negation: stable models

 Gelfond, M., and Lifschitz, V. (ICLP 1988) The stable model semantics for logic programming.

Step 1	Step 2
Guess an assumption	Reduce program not's accordingly p
	$p \leftarrow q, \textit{not } b \perp$ $b \leftarrow r, \textit{not } p \perp$ q r p, t
Default negation: not r	not

Definition (program reduct)

 $P^{\mathcal{I}}$ = reduct of program P with respect to interpretation \mathcal{I}

$$\begin{array}{l} \mathcal{P}^{\mathcal{I}} & \stackrel{def}{=} \{ & (p \leftarrow q_1, \dots, q_m) \\ & \mid (p \leftarrow q_1, \dots, q_m, \text{not } q_{m+1}, \dots, \text{not } q_n) \in \mathcal{P} \text{ and} \\ & q_j \notin \mathcal{I}, \text{ for all } j = m+1, \dots, n \, \} \end{array}$$

 \mathcal{O} Observation: $P^{\mathcal{I}}$ is positive, it has a least model $LM(P^{\mathcal{I}})!$

Definition (stable model)

 \mathcal{I} is a stable model of program P iff $LM(P^{\mathcal{I}}) = \mathcal{I}$.

M(P)="classical models of P"; SM(P)="stable models of P"

Proposition (Stable models are models) $SM(P) \subseteq M(P)$. Any stable model of P is also a classical model.

When the program is normal (things will change with disjunction):

Proposition (Stable models are minimal classical models) If $\mathcal{I} \in SM(P)$ then there is no $J \in M(P)$, $J \subset \mathcal{I}$.

Proposition (Complexity)

Deciding whether a program P has a stable model, $SM(P) \stackrel{?}{=} \emptyset$, is an **NP**-complete problem.

Stable models

Back to the example. P has 2 rules:

 $\begin{array}{rcl} \textit{fill} & \leftarrow & \textit{empty}, \textit{not fire} \\ \textit{empty} \end{array}$

Three atoms: possible assumptions $\mathcal{I} = 2^3$ $\Im SM(P) \subseteq M(P)$, just check the 3 classical models!

${\cal I}$	$P^{\mathcal{I}}$	$LM(P^{\mathcal{I}})$
{empty, fire}	empty	$\{empty\} \neq \mathcal{I}$ not stable
{ <i>empty</i> , <i>fire</i> , <i>fill</i> }	empty	$\{empty\} \neq \mathcal{I}$ not stable
{ <i>empty</i> , <i>fill</i> }	fill ← empty empty	{empty, fill} stable!

Suppose a spark starts a fire now. *P* has 4 rules:

fill	\leftarrow	empty, not fire
empty		
fire	\leftarrow	spark
spark		

• Only two (classical) models now:

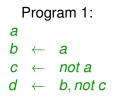
${\cal I}$	$P^{\mathcal{I}}$	$LM(P^{\mathcal{I}})$
{ <i>empty</i> , <i>spark</i> , <i>fire</i> }	empty fire ← spark spark	{ <i>empty</i> , <i>spark</i> , <i>fire</i> } <i>stable</i> !
{ <i>empty</i> , <i>spark</i> , <i>fire</i> , <i>fill</i> }	empty fire ← spark fire	$\{empty, spark, fire\} \neq I$ not stable

Observation: the example shows non-monotonic reasoning!

- Example 1: stable model {*empty*, *fill*} allowed us to conclude *fill*
- Example 2: adding new formulas "a spark started a fire" stable model {*empty*, *spark*, *fire*} retracts previous conclusion (*fill* is not true any more)

Stratified programs

- Dependence graph of a program:
 - nodes = atoms
 - edge $p \rightarrow q$ if \exists rule with p in the head and q in the positive body
 - edge $p \rightarrow q$ if \exists rule with p in the head and q in the negative body
- A normal program is stratified if it has no cycles through negation

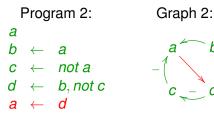


Graph 1:

stratified

Stratified programs

- Dependence graph of a program:
 - nodes = atoms
 - ▶ edge $p \rightarrow q$ if \exists rule with p in the head and q in the positive body
 - edge $p \rightarrow q$ if \exists rule with p in the head and q in the negative body
- A normal program is stratified if it has no cycles through negation



non-stratified!

• When a program is stratified

C Rules can be organized in layers: negation means a layer jump.

Layer 1
$$\begin{cases} a \\ b \leftarrow a \end{cases}$$
 $\{a, b\}$ Layer 2 $\begin{cases} c \leftarrow not a not a \\ \bot \end{bmatrix}$ $\{a, b\}$ Layer 3 $\begin{cases} d \leftarrow b, not c not c \\ \top \end{bmatrix}$ $\{a, b, d\}$

Proposition

A stratified program has a unique stable model |SM(P)| = 1.

Incoherent programs

- If *P* unstratified we may have |*SM*(*P*)| > 1 but also |*SM*(*P*)| = 0! *P* is called incoherent if *SM*(*P*) = Ø This may happen even if *M*(*P*) ≠ Ø (classically consistent).
- Example (Russell's paradox): "make a Catalogue citing of all books without self-citations"

 $\begin{array}{rcl} \textit{citeCciteC} & \leftarrow \leftarrow & \textit{not selfCnot selfC} & \textit{Assume } \mathcal{I} \models \textit{selfC} \textit{assume } \mathcal{I} \mid \textit{selfC} \textit{selfC} \textit{selfC} \textit{assum } \textit{selfC} \textit{selfC} \textit$

• An even simpler example: *problem* \leftarrow *not problem*

Choices and constraints

We can use auxiliary atoms to exploit negative cycles as follows:

• Choice rule: nondeterministic generation of an atom.

Ex: when *spark*, sometimes *fire* and sometimes no

 $\mathit{fire} \leftarrow \mathit{spark}, \mathit{not} \mathit{aux} \qquad \mathit{aux} \leftarrow \mathit{spark}, \mathit{not} \mathit{fire}$

Adding fact *spark* yields {*spark*, *fire*} and {*spark*, *aux*}= {*spark*} if we remove *aux*. Common abbreviation = choice rule:

{ fire } \leftarrow spark

• Constraint: dismiss stable models when a condition holds. If *wet* holds, choosing *fire* is disregarded.

aux ← *wet*, *fire*, *not aux*

Common abbreviation = constraint:

 $\perp \leftarrow wet, fire$ or simply $\leftarrow wet, fire$

Splitting

Atom *p* is defined in *P* when some $(p \leftarrow B) \in P$ (possibly $B = \top$) Some programs *P* can be splitted in two parts P_B , P_T

- the bottom P_B contains no atom defined in P_T
- the top P_T does not define atoms occurring in P_B

({ spark }	Ø
$P_B \left\{ fire \right\} \leftarrow spark$	$\{spark\}$
$P_B \left\{ \begin{array}{l} \{ spark \} \\ \{ fire \} \leftarrow spark \\ \leftarrow wet, fire \end{array} \right\}$	{spark, fire}
$P_T \begin{cases} empty \\ fill \leftarrow empty, not$	$ \begin{array}{l} & \{ \underline{empty}, \underline{fill} \} \\ & \{ \underline{spark}, \underline{empty}, \underline{fill} \} \\ & \{ \underline{spark}, \underline{fire}, \underline{empty} \} \end{array} \end{array} $

• First compute the stable models of the bottom then use each of them for the top

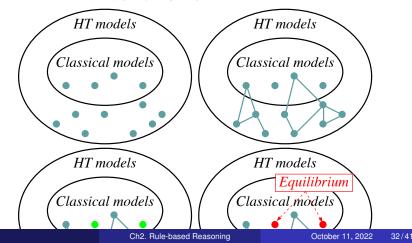


- [GL88] definition of stable models is syntactically limited
 - It relies on a syntactic transformation (reduct)
 - ▶ Connectives cannot be freely combined, e.g. $not (p \leftarrow q)$
- Later definitions extended the reduct to incorporate ∨ in the head and, further, nesting it with commas (∧) and *not*
- A Nesting '-' was not allowed: this connective had no semantics!

A logical characterisation

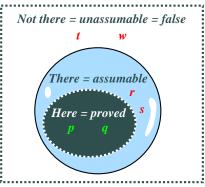
Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

 A non-classical monotonic (intermediate) logic called Here-and-There (HT) [Heyting 30]



Here-and-There

 Interpretation = pairs ⟨H, T⟩ of sets of atoms H ⊆ T Example: H = {p, q}, T = {p, q, r, s}. Intuition:



- Note that we start from: proved \subseteq assumable
- Atoms in *T* \ *H* are just assumed (assumable but not proved)
- When H = T (assumable = proved) we have a classical model.

Satisfaction of formulas

 $\begin{array}{lll} \langle H,T\rangle\models\alpha &\Leftrightarrow \quad \text{``}\alpha \text{ is proved''} \\ \langle T,T\rangle\models\alpha &\Leftrightarrow \quad \text{``}\alpha \text{ assumable''} &\Leftrightarrow \quad T\models\alpha \text{ classically} \end{array}$

- $\langle H, T \rangle \models p$ if $p \in H$ (for any atom p)
- ∧, ∨ as always
- $\langle H, T \rangle \models \alpha \rightarrow \beta$ if both
 - "If α is proved, then β must be proved":
 - $\langle \mathcal{H}, \mathcal{T} \rangle \models \alpha \text{ implies } \langle \mathcal{H}, \mathcal{T} \rangle \models \beta$
 - " $\alpha \rightarrow \beta$ is assumable":

 $\mathcal{T} \models \alpha \rightarrow \beta \text{ classically}$

• Negation $\neg F$ is defined as $F \rightarrow \bot$

Theorem (Per	sistence)		
$\langle {\it H}, {\it T} angle \models lpha$ (pro	oved) implie	es $T \models \alpha$ (assumable)	
Theorem			
$\langle H, T \rangle \models \neg \alpha$	iff	$T \models \neg \alpha$	
Proving $\neg \alpha$	amounts to	assuming $\neg \alpha$	J

Definition (Equilibrium/stable model)

A model $\langle T, T \rangle$ of Γ is an equilibrium model iff

there is no $H \subset T$ such that $\langle H, T \rangle \models \Gamma$.

When this holds, T is called a stable model.

In other words, we cannot leave some assumptions $T \setminus H$ not proved

Here-and-There

- An example: $\alpha = \{\neg b \rightarrow p\}$ (not bellicous implies pacifist)
- The classical models M(¬b → p) = M(b ∨ p) are the next 3:
 T = {p} The only possible subset is H = Ø ⟨H, T⟩ ⊭ ¬b → p because ⟨H, T⟩ ⊨ ¬b but ⟨H, T⟩ ⊭ p That is ⟨Ø, {p}⟩ is not an HT model
 Then {p} is an equilibrium model! (no smaller *H* forms a model)
 - 2 $T = \{b\}$ The only possible subset is $H = \emptyset$ $\langle H, T \rangle \models \neg b \rightarrow p$ because $\langle H, T \rangle \not\models \neg b$ Therefore $\langle \emptyset, \{b\} \rangle$ is an HT model (assumption *b* is not proved) $rac{D}$ Then $\{b\}$ is not in equilibrium
 - T = {b, p} The possible subsets are H = Ø, H = {b} or H = {p}
 All of them HT models because ⟨H, T⟩ ⊭ ¬b
 C Then {b, p} is not in equilibrium

- HT is weaker than classical logic
- For instance, $p \lor \neg p$ is not a tautology
 - = p is either proved or not assumable
 - = it rules out $H = \emptyset$ and $T = \{p\}$ (countermodel)
 - $\langle \emptyset, \{p\} \rangle \not\models p$ because $p \notin H$
 - $\langle \emptyset, \{p\} \rangle \not\models \neg p \text{ because } p \in T$
- In fact p ∨ ¬p ≡ ¬¬p → p which is not valid either ...

 i→ we cannot remove double negation in ¬¬p

Theorem

 $\langle H, T \rangle \models \neg \neg \alpha \quad iff \quad T \models \alpha$

- Captures all syntactic extensions of stable models with propositional connectives (also first-order [Pearce & Valverde 04]).
- Natural representation for:

Logic	Program	Meaning
$\perp \leftarrow \textit{Body}$:- Body.	constraint forbidding Body
$p \lor \neg p \leftarrow Body$	{p} :- Body.	choice rule "If <i>Body</i> then we are free to derive <i>p</i> or not"

• Moreover, covers arbitrary formulas, in a very reasonable way: intuitionistic \subset HT \subset classical

Theorem

Deciding whether a theory $\[Gamma]$ has some equilibrium model is $\Sigma_2^{\mathbf{P}}$ -complete.

 $\Sigma_2^{\mathbf{P}} = \mathbf{NP}^{\mathbf{NP}}$: means **NP** on a Turing machine with an **NP** oracle. This is (conjectured) harder than **NP**.

Same complexity arises even by just adding disjunction in rule heads:

 $p_1 \vee \ldots \vee p_n \leftarrow q_1, \ldots, q_m, not q_{m+1} \ldots not q_k$

Strong equivalence

Under non-monotonicity, equivalence becomes tricky

Program P ₁	Program P ₂
empty	empty
fill \leftarrow empty, not fire	fill
fire	fire
stable model	stable model
{empty, fill} {empty, fire}	$\{empty, fire\} \{empty, fill, fire\}$

Definition (Strong Equivalence)

Two theories P_1, P_2 are strongly equivalent if $P_1 \cup Q$ and $P_2 \cup Q$ have the same equilibrium models for any theory Q.

Theorem ([Lifschitz, Pearce, Valverde 01])

Strong equivalence of equilibrium theories = HT equivalence .

Deciding HT equivalence is **NP**.

Example

Check whether these two programs are strongly equivalent or not

Program P ₁	Program P ₂
$oldsymbol{ ho}$ \leftarrow $\neg oldsymbol{b}$	$\perp \ \leftarrow \ \neg b \land \neg p$
$oldsymbol{ ho} ee \neg oldsymbol{ ho}$	$oldsymbol{ ho} ee \neg oldsymbol{ ho}$