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Rule-based reasoning

Rules are a substantial ingredient of commonsense reasoning

Example:
“fire causes smoke”

smoke if fire smoke :-
fire

logic programming notation

We sometimes write:

smoke ← fire smoke︸ ︷︷ ︸
head

←

fire︸︷︷︸
body
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Rule-based reasoning

Two possible readings
Rule firing (bottom-up):

“I make a fire, so I get smoke as a byproduct”

smoke← fire fire
smoke

= Modus Ponens

Better for causal inference (used in Answer Set Programming)

Goal achievement (top-down):
“How can I get smoke? one way is making a fire”

goal = smoke?
smoke ← fire rule head found

new goal = fire?
fire fact found = success!

Goal-oriented backtracking (used in Prolog)
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Rules as Logical Formulas

First choice: translate as material implication in classical logic

smoke← fire ≡ ¬fire ∨ smoke

Ë Modus Ponens is granted

é But semantics is not aligned with rule-based reasoning
Suppose we only knew KB = {smoke← fire}

Rule reasoning Classical models

fire=false:
no way to be derived

smoke=false:
only derivable if fire

{fire, smoke} derivability?
{smoke} derivability?
∅ both false Ë
� minimal model
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Minimal models and recursion

Minimal models cover (positive) recursion nicely

Example: two gear wheels

spinA ← spinB
spinB ← spinA

Two classical models

{spinA, spinB} unjustified movement!

∅ nothing moves Ë
� minimal model
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Positive Logic Programs (syntax)

A positive logic program is a set of rules like

p︸︷︷︸
head

← q1, . . . ,qn︸ ︷︷ ︸
body

or, written in text format
p :- q1, ..., qn.

with n ≥ 0, where p,q1, . . . ,qn are atoms.
Commas in the body represent conjunctions.

Ordering among rules or in the body is irrelevant.

When n = 0, the rule is called a fact, and we usually omit the←.
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Positive Logic Programs (semantics)

Read rule (p ← q1, . . . ,qn) as (q1 ∧ · · · ∧ qn → p)

Close World Assumption (CWA) (minimize truth):
get the model(s) with ⊆-less true atoms

In general, we may get several ⊆-minimal models.
Ex. M(p ∨ q) = {{p}, {q}, {p,q}}, two minimal models {p}, {q}

Positive programs have exactly one: the ⊆-least model LM(P).
Example:

p
q
r ← p, s

s ← q
a ← b,p

b ← s,a
a ← c

the models are {p,q, r , s}, {p,q, r , s,a,b}, {p,q, r , s,a,b, c}.
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Positive Logic Programs (computation)

The least model can be easily computed by “rule application”
(deductive closure).

Direct consequences operator [van Endem & Kowalski 76]
TP(I) = collect all heads in program P whose bodies are true in I

TP(I) := {H | (H ← B) ∈ P and I |= B}

Compute sequence of interpretations I0, I1, I2, . . .

Start with I0 := ∅ (all atoms false)

Repeat Ik+1 := TP(Ik ) until we reach a fixpoint Ik+1 = Ik
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Positive Logic Programs (computation)

Go “firing rules" (Modus Ponens)
until nothing new is derived

pp
qq
rr ← pp, ss

ss ← qq
a ← b,pp

b ← ss,a
a ← c

TP(∅) = {p,q}, TP({p,q}) = {p,q, s}, TP({p,q, s}) = {p,q, s, r},
TP({p,q, s, r}) = {p,q, s, r} fixpoint = least model LM(P) ! proved by
[van Endem & Kowalski 76]
� Each true atom is justified by a proof by Modus Ponens

p
q s ← q

s
r ← p, s

r
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Default Negation

Goal: incorporating default reasoning in rules

CWA means false by default.
But we cannot check falsity in rules

� Idea: allow negative literals in rule bodies
“not p” = “no evidence/proof for p” = “¬p can be assumed”

A normal logic program is a set of rules of the form:

p︸︷︷︸
head

← q1, . . . ,qm,not qm+1, . . . ,not qn︸ ︷︷ ︸
body

.

with n ≥ m ≥ 0. If m = n (no negations) we get a positive rule.
Again, ordering is irrelevant.
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Default Negation

Example: “fill the tank if empty and
no evidence on fire”

fill ← empty ,not fire

Suppose that the tank is empty indeed:

empty

Expected behaviour:
No rule to derive fire, so we derive not fire
then we get fill by Modus Ponens: final model {empty , fill}
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Default Negation

o Classical logic reading empty ∧ (empty ∧ ¬fire→ fill)
with minimal models (CWA) does not suffice!

Classically equivalent to empty ∧ (fill ∨ fire). Minimal models:
{empty , fill} but also {empty , fire}.

Assuming there might be a fire is ok but there is no proof for fire
� any assumption must be eventually . . .

We expect non-monotonicity. Example: adding the fact fire should
now derive {empty , fire} and retract fill
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Default Negation

Problem: material implication is not directional

These formulas are classically equivalent:

empty ∧ ¬fire→ fill ≡ empty → fire ∨ fill
≡ empty ∧ ¬fill → fire

but writing the latter as a rule

fire← empty ,not fill

“If empty and no evidence on filling then start a fire”
has a quite different meaning!
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Default Negation

Sometimes defaults are conflicting.
A classical example: Nixon’s diamond

“quakers are normally pacifist” (unless bellicose)
“republicans are normally bellicose” (unless pacifist)
“Richard Nixon is a both a Quaker and a Republican”

p ← q,not b
b ← r ,not p
q
r

There is no constructive way to apply the rules
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Adding negation: stable models

Gelfond, M., and Lifschitz, V. (ICLP 1988)
The stable model semantics for logic programming.

Step 1 Step 2 Step 3

Guess an
assumption

Reduce program
not ’s accordingly

Check
proved=assumed

Default negation:
not b

p ← q,not b>
b ← r ,not p⊥
q
r

Min. model: {p,q, r}
= assumption!
stable Ë

Symmetry: {b,q, r}
stable stable too Ë
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Adding negation: stable models

Gelfond, M., and Lifschitz, V. (ICLP 1988)
The stable model semantics for logic programming.

Step 1 Step 2 Step 3

Guess an
assumption

Reduce program
not ’s accordingly

Check
proved=assumed

Default negation:
not r

p ← q,not b⊥
b ← r ,not p⊥
q
r

Min. model: {q, r}
assumption: {p,b,q}
unstable é
p,b unjustified
not r refuted
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Stable models: formal definition

Definition (program reduct)

PI = reduct of program P with respect to interpretation I

PI def
= { (p ← q1, . . . ,qm)

| (p ← q1, . . . ,qm,not qm+1, . . . ,not qn) ∈ P and
qj 6∈ I, for all j = m + 1, . . . ,n }

� Observation: PI is positive, it has a least model LM(PI)!

Definition (stable model)
I is a stable model of program P iff LM(PI) = I.
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Stable models: some properties

M(P)=“classical models of P”; SM(P)=“stable models of P”

Proposition (Stable models are models)
SM(P) ⊆ M(P). Any stable model of P is also a classical model.

When the program is normal (things will change with disjunction):

Proposition (Stable models are minimal classical models)
If I ∈ SM(P) then there is no J ∈ M(P), J ⊂ I.

Proposition (Complexity)

Deciding whether a program P has a stable model, SM(P)
?
= ∅, is an

NP-complete problem.
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Stable models

Back to the example. P has 2 rules:

fill ← empty ,not fire
empty

Three atoms: possible assumptions I = 23

 SM(P) ⊆ M(P), just check the 3 classical models!

I PI LM(PI)

{empty , fire} empty
{empty} 6= I

not stable

{empty , fire, fill} empty
{empty} 6= I

not stable

{empty , fill} fill ← empty
empty

{empty , fill}
stable!
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Stable models

Suppose a spark starts a fire now. P has 4 rules:

fill ← empty ,not fire
empty

fire ← spark
spark

Only two (classical) models now:
I PI LM(PI)

{empty ,
spark , fire}

empty
fire ← spark

spark

{empty , spark , fire}
stable!

{empty , spark ,
fire, fill}

empty
fire ← spark
fire

{empty , spark ,
fire} 6= I

not stable
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Stable models: non-monotonicity

Observation: the example shows non-monotonic reasoning!
Example 1: stable model {empty , fill} allowed us to conclude fill

Example 2: adding new formulas “a spark started a fire” stable
model {empty , spark , fire} retracts previous conclusion (fill is not
true any more)
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Stratified programs

Dependence graph of a program:
I nodes = atoms

I edge p → q if ∃ rule with p in the head and q in the positive body

I edge p −→ q if ∃ rule with p in the head and q in the negative body

A normal program is stratified if it has no cycles through negation

Program 1: Graph 1:
a
b ← a
c ← not a
d ← b,not c

a bww

c
−
GG

d−hh

WW

stratified
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Stratified programs

Dependence graph of a program:
I nodes = atoms

I edge p → q if ∃ rule with p in the head and q in the positive body

I edge p −→ q if ∃ rule with p in the head and q in the negative body

A normal program is stratified if it has no cycles through negation

Program 2: Graph 2:
a
b ← a
c ← not a
d ← b,not c
a ← d

a

��

bww

c
−
GG

d−hh

WW

non-stratified!
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Stratified programs

When a program is stratified
� Rules can be organized in layers: negation means a layer jump.

Layer 1
{

a
b ← a

{a,b}

Layer 2
{

c ← not a not a︸ ︷︷ ︸
⊥

{a,b}

Layer 3
{

d ← b,not c not c︸ ︷︷ ︸
>

{a,b,d}

Proposition
A stratified program has a unique stable model |SM(P)| = 1.
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Incoherent programs

If P unstratified we may have |SM(P)| > 1
but also |SM(P)| = 0! P is called incoherent if SM(P) = ∅
This may happen even if M(P) 6= ∅ (classically consistent).

Example (Russell’s paradox):
“make a Catalogue citing of all books without self-citations”

citeCciteC ←← not selfCnot selfC
selfC ← citeC

Assume I |= selfC Assume I 6|= selfC
proved = ∅ selfC unjustified proved = {selfC, citeC} refuted

An even simpler example: problem← not problem
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Choices and constraints

We can use auxiliary atoms to exploit negative cycles as follows:
Choice rule: nondeterministic generation of an atom.
Ex: when spark , sometimes fire and sometimes no

fire← spark ,not aux aux ← spark ,not fire

Adding fact spark yields {spark , fire} and {spark ,aux}= {spark}
if we remove aux . Common abbreviation = choice rule:

{ fire }← spark

Constraint: dismiss stable models when a condition holds.
If wet holds, choosing fire is disregarded.

aux ← wet , fire,not aux

Common abbreviation = constraint:

⊥ ← wet , fire or simply ← wet , fire
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Splitting

Atom p is defined in P when some (p ← B) ∈ P (possibly B = >)

Some programs P can be splitted in two parts PB, PT

the bottom PB contains no atom defined in PT

the top PT does not define atoms occurring in PB

PB


{ spark }
{ fire }← spark
← wet , fire

∅
{spark}
{spark , fire}

@ . . . . . . . . . . . . . . . . . . . . . . . . .

PT

{
empty
fill ← empty ,not fire

{empty , fill}
{spark ,empty , fill}
{spark , fire,empty}

First compute the stable models of the bottom
then use each of them for the top
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A logical characterisation

[GL88] definition of stable models is syntactically limited
I It relies on a syntactic transformation (reduct)

I Connectives cannot be freely combined, e.g. not (p ← q)

Later definitions extended the reduct to incorporate ∨ in the head
and, further, nesting it with commas (∧) and not

o Nesting ‘←’ was not allowed: this connective had no semantics!
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A logical characterisation

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary
propositional theories. Consists of:

1 A non-classical monotonic (intermediate) logic called
Here-and-There (HT) [Heyting 30]

HT models

Classical models

HT models

Classical models

HT models

Classical models

HT models

Classical models
Equilibrium

2 A selection of (certain) minimal models that yields
nonmonotonicity
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Here-and-There

Interpretation = pairs 〈H,T 〉 of sets of atoms H ⊆ T
Example: H = {p,q},T = {p,q, r , s}. Intuition:

There = assumable

Here = proved
p

r
s

q

wt
Not there = unassumable = false

Note that we start from: proved ⊆ assumable
Atoms in T \ H are just assumed (assumable but not proved)
When H = T (assumable = proved) we have a classical model.
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Here-and-There

Satisfaction of formulas
〈H,T 〉 |= α ⇔ “α is proved”
〈T ,T 〉 |= α ⇔ “α assumable” ⇔ T |= α classically

〈H,T 〉 |= p if p ∈ H (for any atom p)

∧,∨ as always

〈H,T 〉 |= α→ β if both

- “If α is proved, then β must be proved”:
〈H,T 〉 |= α implies 〈H,T 〉 |= β

- “α→ β is assumable”:
T |= α→ β classically

Negation ¬F is defined as F → ⊥
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HT properties

Theorem (Persistence)
〈H,T 〉 |= α (proved) implies T |= α (assumable)

Theorem
〈H,T 〉 |= ¬α iff T |= ¬α
Proving ¬α amounts to assuming ¬α

Definition (Equilibrium/stable model)
A model 〈T ,T 〉 of Γ is an equilibrium model iff

there is no H ⊂ T such that 〈H,T 〉 |= Γ.

When this holds, T is called a stable model.

In other words, we cannot leave some assumptions T \ H not proved
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Here-and-There

An example: α = {¬b → p} (not bellicous implies pacifist)

The classical models M(¬b → p) = M(b ∨ p) are the next 3:
1 T = {p} The only possible subset is H = ∅
〈H,T 〉 6|= ¬b → p because 〈H,T 〉 |= ¬b but 〈H,T 〉 6|= p
That is 〈∅, {p}〉 is not an HT model
� Then {p} is an equilibrium model! (no smaller H forms a model)

2 T = {b} The only possible subset is H = ∅
〈H,T 〉 |= ¬b → p because 〈H,T 〉 6|= ¬b
Therefore 〈∅, {b}〉 is an HT model (assumption b is not proved)
� Then {b} is not in equilibrium

3 T = {b,p} The possible subsets are H = ∅, H = {b} or H = {p}
All of them HT models because 〈H,T 〉 6|= ¬b
� Then {b,p} is not in equilibrium
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Expressiveness

HT is weaker than classical logic

For instance, p ∨ ¬p is not a tautology

= p is either proved or not assumable
= it rules out H = ∅ and T = {p} (countermodel)

I 〈∅, {p}〉 6|= p because p 6∈ H

I 〈∅, {p}〉 6|= ¬p because p ∈ T

In fact p ∨ ¬p ≡ ¬¬p → p which is not valid either . . .
� we cannot remove double negation in ¬¬p

Theorem
〈H,T 〉 |= ¬¬α iff T |= α
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Expressiveness

Captures all syntactic extensions of stable models with
propositional connectives (also first-order [Pearce & Valverde 04]).

Natural representation for:

Logic Program Meaning

⊥ ← Body :- Body. constraint forbidding Body

p ∨ ¬p ← Body {p} :- Body. choice rule
“If Body then we are free
to derive p or not”

Moreover, covers arbitrary formulas, in a very reasonable way:
intuitionistic ⊂ HT ⊂ classical
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Complexity

Theorem
Deciding whether a theory Γ has some equilibrium model is
ΣP

2 -complete.

ΣP
2 = NPNP: means NP on a Turing machine with an NP oracle. This is

(conjectured) harder than NP.

Same complexity arises even by just adding disjunction in rule heads:

p1 ∨ . . . ∨ pn ← q1, . . . ,qm,not qm+1 . . . not qk
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Strong equivalence

Under non-monotonicity, equivalence becomes tricky

Program P1 Program P2
empty

fill ← empty ,not fire
fire

empty
fill
fire

stable model stable model
{empty , fill} {empty , fire} {empty , fire} {empty , fill , fire}

Definition (Strong Equivalence)
Two theories P1,P2 are strongly equivalent if P1 ∪Q and P2 ∪Q have
the same equilibrium models for any theory Q.

Theorem ([Lifschitz, Pearce, Valverde 01])
Strong equivalence of equilibrium theories = HT equivalence .

Deciding HT equivalence is NP.
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Strong equivalence

Example
Check whether these two programs are strongly equivalent or not

Program P1 Program P2

p ← ¬b
p ∨ ¬p

⊥ ← ¬b ∧ ¬p
p ∨ ¬p
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