Reasoning and Planning Unit 2. Propositional Reasoning

Pedro Cabalar

Dept. Computer Science University of Corunna, SPAIN

September 13, 2022

(1) Propositional Logic: Syntax and Semantics

(2) Propositional Reasoning

Propositional Logic: Syntax

- Def. Propositional Signature Σ : set of propositions or atoms. E.g. $\Sigma=\{$ happy, rain, weekend $\}$.
- Def. Propositional language \mathcal{L}_{Σ}, set of well formed formulas (wff).

p	\top	\perp	$\neg \alpha$	
$\alpha \vee \beta$	$\alpha \wedge \beta$	$\alpha \rightarrow \beta$	$\alpha \leftrightarrow \beta$	(α)

where $p \in \Sigma$ and $\alpha, \beta \in \mathcal{L}_{\Sigma}$.

- Alternative notations: implication $\rightarrow, \supset, \Rightarrow$; equivalence $\equiv,=, \leftrightarrow, \Leftrightarrow$
- Precedence: $\equiv, \rightarrow, \vee, \wedge, \neg$. Binary ops. left associative.
- Def. literal $=$ an atom p or its negation $\neg p$.
- Def. theory $=$ set of formulas $\Gamma \subseteq \mathcal{L}_{\Sigma}$.

Propositional Logic: Semantics

- Def. interpretation is a function $\mathcal{I}: \Sigma \longrightarrow\{1,0\}$

Example: \mathcal{I} (happy) $=1, \mathcal{I}($ rain $)=0, \mathcal{I}($ weekend $)=1$

- Alternative representation: set $\mathcal{I} \subseteq \Sigma$ of (true) atoms.

Example: $I=\{$ happy, weekend $\}$

- We extend its use to formulas $\mathcal{I}: \mathcal{L}_{\Sigma} \longrightarrow\{1,0\}$.
$\mathcal{I}(\alpha)=$ replace each $p \in \Sigma$ in α by $\mathcal{I}(p)$ and apply:
- Example: $\mathcal{I}(\neg$ rain $\rightarrow \neg$ weekend) $\mathcal{I}(\neg 0 \rightarrow \neg 1) \mathcal{I}(1 \rightarrow 0)=0$

Propositional Logic: Semantics

- Def. \mathcal{I} satisfies α, written $\mathcal{I} \models \alpha$, iff $\mathcal{I}(\alpha)=1$.
- Satisfaction can also be defined inductively as follows:
i) $\quad \mathcal{I} \neq T \quad$ and $\mathcal{I} \not \vDash \perp$.
ii) $\mathcal{I} \models p \quad$ iff $\mathcal{I}(p)=1$.
iii) $\quad \mathcal{I} \models \neg \alpha \quad$ iff $\mathcal{I} \not \vDash \alpha$.
iv) $\quad \mathcal{I} \models \alpha \wedge \beta \quad$ iff $\mathcal{I} \models \alpha$ and $\mathcal{I} \models \beta$.
v) $\mathcal{I} \models \alpha \vee \beta \quad$ iff $\mathcal{I} \models \alpha$ or $\mathcal{I} \models \beta$ (or both).
vi) $\quad \mathcal{I} \models \alpha \rightarrow \beta \quad$ iff $\mathcal{I} \not \vDash \alpha$ or $\mathcal{I} \models \beta$ (or both).
vii) $\quad \mathcal{I} \models \alpha \equiv \beta \quad$ iff $(\mathcal{I} \models \alpha$ iff $\mathcal{I} \models \beta)$.
- \mathcal{I} is a model of Γ, written $\mathcal{I} \models \Gamma$, iff it satisfies all formulas in Γ.

Propositional Logic: Semantics

- We can define $M(\Gamma)=$ the set of models of a theory (or formula) Γ. Example: $M(a \vee b)=\{\{a, b\},\{a\},\{b\}\}$
- The models of a formula can be inspected by structural induction:

$$
\begin{aligned}
M(\alpha \vee \beta) & =M(\alpha) \cup M(\beta) \\
M(\alpha \wedge \beta) & =M(\alpha) \cap M(\beta) \\
M(\neg \alpha) & =2^{\Sigma} \backslash M(\alpha)
\end{aligned}
$$

- Two formulas α, β are equivalent if $M(\alpha)=M(\beta)$ (same models)

Propositional Logic: Semantics

- From a set S of interpretations: do you know a method to get a formula α s.t. $M(\alpha)=S$?
- Example: find α to cover $M(\alpha)=\{\{a, c\},\{b, c\},\{a, b, c\}\}$
- Does this formula α always exist?

Propositional Logic: Semantics

- Def. relation $\Gamma \models \alpha$ is called logical consequence or entailment and defined as $M(\Gamma) \subseteq M(\alpha)$. Example $\{$ happy, (rain $\rightarrow \neg$ happy $)\} \models \neg$ rain
- If $M(\alpha)=\emptyset$ (no models!), α is inconsistent or unsatisfiable Examples: rain $\wedge \neg$ rain, \perp, \ldots
- If $M(\alpha)=2^{\Sigma}$ (all interpretations are models), α, is valid or a tautology. Examples: rain $\vee \neg$ rain, $T, b \wedge c \wedge d \rightarrow(d \rightarrow b), \ldots$
- We write $\models \alpha$ to mean that α is a tautology

Note: this is $\emptyset \models \alpha$, so we require $M(\emptyset)=2^{\Sigma} \subseteq M(\alpha)$

Propositional Logic: Semantics

Theorem

$\vDash \alpha \rightarrow \beta$ is equivalent to $\alpha=\beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that
α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

p	\leftarrow	$p \wedge q$
p	\rightarrow	$p \vee \neg q$
$p \vee q$	\leftarrow	$p \wedge q$
p	\rightarrow	$(q \rightarrow p)$
$p \wedge \neg q$		$\neg p \wedge q$

(1) Propositional Logic: Syntax and Semantics

(2) Propositional Reasoning

Propositional Reasoning

General types of reasoning:

Deduction, Abduction, Induction

- Deductive reasoning: $K B \models C$ does conclusion C follow from the Knowledge Base $K B$? $K B=\left\{P_{1}, \ldots, P_{n}\right\}$ is a set of premises
- Abductive reasoning: $K B \cup E \models C$ find a minimal set of facts E (the explanation) that allow concluding C
- Inductive reasoning: $K B \cup K B^{\prime} \models C_{i}$ find an extension $K B^{\prime}$ of a (possibly empty) $K B$ with background knowledge generalizing from examples C_{i}

Propositional Deductive Reasoning

> Deductive Reasoning: $\left\{P_{1}, \ldots, P_{n}\right\} \models C$ does conclusion C follow from premises $\left\{P_{1}, \ldots, P_{n}\right\}=K B$ (the Knowledge Base)?

Example: $K B=$ but we need formulas, not sentences!
P_{1} : On weekends, I don't watch $t v(w \rightarrow \neg t v)$
P_{2} : I'm happy when it rains, except in the weekend $(r \wedge \neg w \rightarrow h)$
P_{3} : I'm watching tv but I'm not happy $(t v \wedge \neg h)$
Can I conclude this?
C : it is not raining $(\neg r)$

From human to formal language ...

$A \rightarrow B$	A implies B A is a sufficient condition for B B is a necessary condition for A if A then B B if A A only if B B given that A B provided that A
$A \leftrightarrow B$	A is equivalent to B A if and only if (iff) B
$\begin{aligned} & A \vee B \\ & \neg(A \leftrightarrow B) \end{aligned}$	A or B (inclusive or) A unless B, A except B A or B (exclusive or)

Propositional Reasoning

- Our goal: does C follow from $K B$? $K B \models C$?
- In propositional logic, $\left\{P_{1}, P_{2}, P_{3}\right\} \vDash C$ is the same as checking that the formula $P_{1} \wedge P_{2} \wedge P_{3} \rightarrow C$ is a tautology or, equivalently, that its negation $P_{1} \wedge P_{2} \wedge P_{3} \wedge \neg C$ is inconsistent

Definition (SAT decision problem)

Decision problem SAT $(\alpha) \in\{$ yes, no $\}$ checks whether a formula α has some model. (Time) complexity: NP-complete problem.

- In other words:

$$
\left\{P_{1}, P_{2}, P_{3}\right\} \models C \text { iff } S A T(P 1 \wedge P 2 \wedge P 3 \wedge \neg C)=n o
$$

What does "NP-complete" mean?

Turing machine (TM)

- TM = (theoretical) device that operates on an infinite tape with cells containing symbols in a finite alphabet (including blank ' 0 ')
- The TM has a current state S_{i} among a finite set of states (including 'Halt'), and a head pointing to "current" cell in the tape.
- Its transition function describes jumps from state to next state.

Transition function

- Example: with scanned symbol 0 and state q_{4}, write 1, move Left and go to state q_{2}. That is:

$$
t\left(0, q_{4}\right)=\left(1, L e f t, q_{2}\right)
$$

Decision problems

Definition (Decision problem)

A decision problem consists in providing a given tape input and asking the TM for a final output symbol answering Yes or No.

- Example: SAT = given (an encoding of) a propositional formula, does it have at least one model?
- Example: HALTING = given another TM plus its input, does it stop or not?
- A decision problem is decidable if the TM stops (answering Yes or No) in a finite number of steps.
- Examples: SAT is decidable. HALTING is undecidable.
- A decision problem is in complexity class \mathbf{P} iff the number of steps carried out by the TM is polynomial on the size n of the input.

Non-deterministic TM

- Now, a non-deterministic Turing Machine (NDTM) is such that the transition function is replaced by a transition relation.
- We may have different possibilities for the next step.
- Example: $t\left(0, q_{4}, 1\right.$, Left, $\left.q_{2}\right), t\left(0, q_{4}, 0\right.$, Right, $\left.q_{3}\right)$

Non-deterministic TM

- Keypoint: an NDTM provides an affirmative answer to a decision problem when at least one of the executions for the same input answers Yes.
- A decision problem is in class NP iff the number of steps carried out by the NDTM is polynomial on the size n of the input.
- For SAT, we can build an NDTM that performs two steps:
(1) For each atom, generate 1 or 0 nondeterministically. This provides an arbitrary interpretation in linear time.
(2) Test whether the current interpretation is a model or not. Complexity: ALOGTIME $\subseteq P$

The sequence of these two steps takes polynomial time.

- Any TM is a particular type of NDTM, so $\mathbf{P} \subseteq$ NP trivially, but ...

$$
\mathbf{P} \stackrel{?}{=} \mathbf{N P}
$$

- Unsolved problem: most accepted conjecture $\mathbf{P} \subset N P$, but remains unproved.

It is one of the 7 Millenium Prize Problems
http://www.claymath.org/millennium-problems

* DEAD OR AITIZ *

The Clay Mathematics Institute designated $\$ 1$ million prize for its solution!

Completeness

- A problem X is C-complete, for some complexity class C , iff any problem Y in C is reducible to X in polynomial-time.
- A complete problem is a representative of the class. Example: if an NP-complete problem happened to be in P then $P=N P$.
- SAT was the first problem to be identified as NP-complete (Cook's theorem, 1971).
- SAT is commonly used nowadays for showing that a problem X is at least as complex as NP. To this aim, just encode SAT into X.
- The Complexity Zoo https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Methods for Propositional Reasoning

- First naive method: check all interpretations $\left(2^{4}=16\right)$ one by one (truth table) to obtain a 0 in all cases.
- $\mathcal{I}\left(P_{1} \wedge P_{2} \wedge P_{3} \wedge \neg C\right)=0$ when some conjunct is 0 .

h	$t v$	w	r	$(w \rightarrow \neg t v)$	P_{1}		
$(r \wedge \neg w \rightarrow h)$	P_{2}	P_{3}	$\neg C$				
0	0	0	0	1	1	$\neg h$	r
		\vdots		\vdots	\vdots	0	0
0	1	0	0	1	1	\vdots	\vdots
0	1	0	1	1	0	1	0
0	1	1	0	0	1	1	1
0	1	1	1	0	1	1	0
			1	1			

Propositional Reasoning

- Computational cost is exponential $=2^{n}$ with $n=|\Sigma|$ number of atoms. Can we perform better?
- Not much hope for the worst case: NP-complete!
- However, enumeration of interpretations always forces worst case. We can do better in particular cases.
- In our example: $t v \wedge \neg h$ and r fix the truth of 3 atoms: $\mathcal{I}(h)=0, \mathcal{I}(t v)=1$ and $\mathcal{I}(r)=1$. Only w needs to be checked

$$
\begin{aligned}
& (w \rightarrow \neg t v) & \wedge(r \wedge \neg w \rightarrow h) \\
\equiv & (\neg w \vee \neg t v)(\neg w \vee \neg t v)(\neg w \vee \neg \top) & \wedge(\neg r \vee w \vee h)(\neg r \vee w \vee h \\
\equiv & (\neg w \vee \perp) & \wedge(\perp \vee w \vee \perp) \\
\equiv & \neg w & \wedge \text { inconsistent! }
\end{aligned}
$$

SAT solvers

- SAT solvers: nowadays, SAT is an outstanding state-of-the-art research area for search algorithms. There exist many efficient tools and commercial applications. See www. satlive. com
- SAT keypoint: instead of designing an ad hoc search algorithm, encode the problem into propositional logic and use SAT as a backend.
- SAT solvers represent the input ($K B$ and conclusions) as a set (conjunction) of "clauses", where clause = disjunction of literals. This is called Conjunctive Normal Form (CNF).

Conjunctive Normal Form (CNF)

Getting the CNF. Example:
$(p \leftrightarrow \neg q) \rightarrow \neg(r \wedge \neg s)(p \leftrightarrow \neg q) \rightarrow \neg(r \wedge \neg s)((p \wedge \neg q) \vee(\neg p \wedge q)) \rightarrow \neg(r \wedge \neg s)$
(1) replace $\alpha \rightarrow \beta$ by $\neg \alpha \vee \beta$ and $\alpha \leftrightarrow \beta$ by $(\alpha \wedge \beta) \vee(\neg \alpha \wedge \neg \beta)$
(2) Negation Normal Form (NNF):
apply De Morgan laws until \neg only applied to atoms
(3) apply distributivity \wedge, \vee and associativity to get conjunction of disjunctions

- Warning: distributivity may have an exponential cost. Example $(a \wedge b) \vee(c \wedge d) \vee(e \wedge f) \vee(h \wedge i)$
- Some techniques [Tseitin68] allow generating a CNF in polynomial time but introducing new auxiliary atoms.

Conjunctive Normal Form (CNF)

- If $K B$ is a set of facts and implications involving literals, it is (almost) in CNF!
- Example: just change the sign of left literals in \rightarrow

we get five clauses: C_{3}, C_{4}, C_{5} are unit clauses.
- We will call constraint to the negation of a CNF clause

$$
\underbrace{(w \wedge t v)}_{\neg C_{1}} \underbrace{(r \wedge \neg w \wedge \neg h)}_{\neg C_{2}} \underbrace{\neg t v}_{\neg C_{3}} \underbrace{h}_{\neg C_{4}} \underbrace{\neg r}_{\neg C_{5}}
$$

- Constraints can be easily obtained from implications of literals: change the sign of the right literals in \rightarrow.

