Reasoning and Planning Unit 2. Propositional Reasoning

Pedro Cabalar

Dept. Computer Science University of Corunna, SPAIN

September 13, 2022

Propositional Logic: Syntax

- Def. Propositional Signature Σ : set of propositions or atoms. E.g. $\Sigma = \{happy, rain, weekend\}.$
- Def. Propositional language \mathcal{L}_{Σ} , set of well formed formulas (wff).

where $p \in \Sigma$ and $\alpha, \beta \in \mathcal{L}_{\Sigma}$.

- Alternative notations: implication →, ⊃, ⇒; equivalence ≡, =, ↔, ⇔
- Precedence: $\equiv, \rightarrow, \lor, \land, \neg$. Binary ops. left associative.
- Def. literal = an atom p or its negation $\neg p$.
- Def. theory = set of formulas $\Gamma \subseteq \mathcal{L}_{\Sigma}$.

Propositional Logic: Semantics

- Def. interpretation is a function $\mathcal{I} : \Sigma \longrightarrow \{1, 0\}$ Example: $\mathcal{I}(happy) = 1$, $\mathcal{I}(rain) = 0$, $\mathcal{I}(weekend) = 1$
- Alternative representation: set *I* ⊆ Σ of (true) atoms.
 Example: *I* = {*happy*, *weekend*}
- We extend its use to formulas *I* : *L*_Σ → {1, 0}.
 I(α) = replace each p ∈ Σ in α by *I*(p) and apply:

• Example: $\mathcal{I}(\neg rain \rightarrow \neg weekend) \mathcal{I}(\neg 0 \rightarrow \neg 1) \mathcal{I}(1 \rightarrow 0) = 0$

- Def. \mathcal{I} satisfies α , written $\mathcal{I} \models \alpha$, iff $\mathcal{I}(\alpha) = 1$.
- Satisfaction can also be defined inductively as follows:

i)
$$\mathcal{I} \models \top$$
and $\mathcal{I} \not\models \bot$.ii) $\mathcal{I} \models p$ iff $\mathcal{I}(p) = 1$.iii) $\mathcal{I} \models \neg \alpha$ iff $\mathcal{I} \not\models \alpha$.

iv)
$$\mathcal{I} \models \alpha \land \beta$$
 iff $\mathcal{I} \models \alpha$ and $\mathcal{I} \models \beta$.

- v) $\mathcal{I} \models \alpha \lor \beta$ iff $\mathcal{I} \models \alpha$ or $\mathcal{I} \models \beta$ (or both).
- vi) $\mathcal{I} \models \alpha \rightarrow \beta$ iff $\mathcal{I} \not\models \alpha$ or $\mathcal{I} \models \beta$ (or both).
- vii) $\mathcal{I} \models \alpha \equiv \beta$ iff $(\mathcal{I} \models \alpha \text{ iff } \mathcal{I} \models \beta)$.

• \mathcal{I} is a *model* of Γ , written $\mathcal{I} \models \Gamma$, iff it satisfies all formulas in Γ .

- We can define M(Γ) = the set of models of a theory (or formula) Γ.
 Example: M(a ∨ b) = {{a,b}, {a}, {b}}
- The models of a formula can be inspected by structural induction:

$$M(\alpha \lor \beta) = M(\alpha) \cup M(\beta)$$

$$M(\alpha \land \beta) = M(\alpha) \cap M(\beta)$$

$$M(\neg \alpha) = 2^{\Sigma} \setminus M(\alpha)$$

• Two formulas α , β are equivalent if $M(\alpha) = M(\beta)$ (same models)

- From a set S of interpretations: do you know a method to get a formula α s.t. M(α) = S ?
- Example: find α to cover $M(\alpha) = \{\{a, c\}, \{b, c\}, \{a, b, c\}\}$
- Does this formula α always exist?

- Def. relation Γ ⊨ α is called logical consequence or entailment and defined as M(Γ) ⊆ M(α).
 Example {happy, (rain → ¬happy)} ⊨ ¬rain
- If M(α) = Ø (no models!), α is inconsistent or unsatisfiable Examples: rain ∧ ¬rain, ⊥, ...
- If M(α) = 2^Σ (all interpretations are models), α, is valid or a tautology. Examples: rain ∨ ¬rain, ⊤, b ∧ c ∧ d → (d → b), ...
- We write ⊨ α to mean that α is a tautology Note: this is Ø ⊨ α, so we require M(Ø) = 2^Σ ⊆ M(α)

Theorem

 $\models \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

$$egin{array}{ccccccccc} p \wedge q &
ightarrow & p \wedge q & \ p & \neg & p \wedge q & \ p \wedge q &
ightarrow & p \wedge q & \ p \wedge q &
ightarrow & p \wedge q & \ p \wedge q & \ \rho \wedge \neg q & \neg p \wedge q & \ \end{array}$$

Propositional Logic: Syntax and Semantics

Propositional Reasoning

General types of reasoning:

Deduction, Abduction, Induction

- Deductive reasoning: KB ⊨ C does conclusion C follow from the Knowledge Base KB? KB = {P₁,..., P_n} is a set of premises
- Abductive reasoning: KB ∪ E ⊨ C find a minimal set of facts E (the explanation) that allow concluding C
- Inductive reasoning: KB ∪ KB' ⊨ C_i
 find an extension KB' of a (possibly empty) KB with background knowledge generalizing from examples C_i

Propositional Deductive Reasoning

Deductive Reasoning: $\{P_1, \ldots, P_n\} \models C$ does conclusion *C* follow from premises $\{P_1, \ldots, P_n\} = KB$ (the Knowledge Base)?

Example: *KB* = but we need formulas, not sentences!

- P_1 : On weekends, I don't watch $tv (w \rightarrow \neg tv)$
- P_2 : I'm happy when it rains, except in the weekend $(r \land \neg w \to h)$
- P_3 : I'm watching tv but I'm not happy $(tv \land \neg h)$

Can I conclude this?

C: it is not raining $(\neg r)$

From human to formal language ...

A ightarrow B	A implies B			
	A is a sufficient condition for B			
	B is a necessary condition for A			
	if A then B			
	B if A			
	A only if B			
	B given that A			
	B provided that A			
$A \leftrightarrow B$	A is equivalent to B			
	A if and only if (iff) B			
$A \lor B$	A or B (inclusive or)			
	A unless B, A except B			
$ eg(A \leftrightarrow B)$	A or B (exclusive or)			

- Our goal: does C follow from KB? $KB \models C$?
- In propositional logic, {P₁, P₂, P₃} ⊨ C is the same as checking that the formula P₁ ∧ P₂ ∧ P₃ → C is a tautology or, equivalently, that its negation P₁ ∧ P₂ ∧ P₃ ∧ ¬C is inconsistent

Definition (SAT decision problem)

Decision problem $SAT(\alpha) \in \{yes, no\}$ checks whether a formula α has some model. (Time) complexity: **NP**-complete problem.

• In other words: $\{P_1, P_2, P_3\} \models C \text{ iff } SAT(P1 \land P2 \land P3 \land \neg C) = no.$

What does "NP-complete" mean?

- TM = (theoretical) device that operates on an infinite tape with cells containing symbols in a finite alphabet (including blank '0')
- The TM has a current state *S_i* among a finite set of states (including '*Halt*'), and a head pointing to "current" cell in the tape.
- Its transition function describes jumps from state to next state.

• Example: with scanned symbol 0 and state *q*₄, write 1, move *Left* and go to state *q*₂. That is:

Definition (Decision problem)

A decision problem consists in providing a given tape input and asking the TM for a final output symbol answering *Yes* or *No*.

- Example: *SAT* = given (an encoding of) a propositional formula, does it have at least one model?
- Example: HALTING = given another TM plus its input, does it stop or not?
- A decision problem is decidable if the TM stops (answering *Yes* or *No*) in a finite number of steps.
- Examples: *SAT* is decidable. *HALTING* is undecidable.
- A decision problem is in complexity class **P** iff the number of steps carried out by the TM is polynomial on the size *n* of the input.

Non-deterministic TM

- Now, a non-deterministic Turing Machine (NDTM) is such that the transition function is replaced by a transition relation.
- We may have different possibilities for the next step.
- Example: *t*(0, *q*₄, 1, *Left*, *q*₂), *t*(0, *q*₄, 0, *Right*, *q*₃)

- Keypoint: an NDTM provides an affirmative answer to a decision problem when at least one of the executions for the same input answers *Yes*.
- A decision problem is in class **NP** iff the number of steps carried out by the NDTM is polynomial on the size *n* of the input.
- For *SAT*, we can build an NDTM that performs two steps:
 - For each atom, generate 1 or 0 nondeterministically. This provides an arbitrary interpretation in linear time.
 - ② Test whether the current interpretation is a model or not. Complexity: ALOGTIME ⊆ P

The sequence of these two steps takes polynomial time.

P vs NP

• Any TM is a particular type of NDTM, so $\mathbf{P} \subseteq \mathbf{NP}$ trivially, but . . .

• Unsolved problem: most accepted conjecture P ⊂ NP, but remains unproved.

It is one of the 7 Millenium Prize Problems

http://www.claymath.org/millennium-problems

The Clay Mathematics Institute designated \$1 million prize for its solution!

- A problem X is C-complete, for some complexity class C, iff any problem Y in C is reducible to X in polynomial-time.
- A complete problem is a representative of the class. Example: if an NP-complete problem happened to be in P then P = NP.
- *SAT* was the first problem to be identified as **NP**-complete (Cook's theorem, 1971).
- *SAT* is commonly used nowadays for showing that a problem *X* is at least as complex as **NP**. To this aim, just encode *SAT* into *X*.
- The Complexity Zoo https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Methods for Propositional Reasoning

- First naive method: check all interpretations (2⁴ = 16) one by one (truth table) to obtain a 0 in all cases.
- $\mathcal{I}(P_1 \wedge P_2 \wedge P_3 \wedge \neg C) = 0$ when some conjunct is 0.

				<i>P</i> ₁	P ₂	P_3	$\neg C$
h	tv	W	r	$(w \rightarrow \neg tv)$	$(r \wedge \neg w \rightarrow h)$	$tv \wedge \neg h$	r
0	0	0	0	1	1	0	0
		÷		:	÷	÷	÷
0	1	0	0	1	1	1	0
0	1	0	1	1	0	1	1
0	1	1	0	0	1	1	0
0	1	1	1	0	1	1	1
		1					

Propositional Reasoning

- Computational cost is exponential = 2ⁿ with n = |Σ| number of atoms. Can we perform better?
- Not much hope for the worst case: **NP**-complete!
- However, enumeration of interpretations always forces worst case.
 We can do better in particular cases.
- In our example: $tv \land \neg h$ and r fix the truth of 3 atoms: $\mathcal{I}(h) = 0, \mathcal{I}(tv) = 1$ and $\mathcal{I}(r) = 1$. Only w needs to be checked

$$\begin{array}{rcl} (w \to \neg tv) & \wedge & (r \land \neg w \to h) \\ \equiv & (\neg w \lor \neg tv)(\neg w \lor \neg tv)(\neg w \lor \neg \top) & \wedge & (\neg r \lor w \lor h)(\neg r \lor w \lor h) \\ \equiv & (\neg w \lor \bot) & \wedge & (\bot \lor w \lor \bot) \\ \equiv & \neg w & \wedge & w \text{ inconsistent!} \end{array}$$

- SAT solvers: nowadays, SAT is an outstanding state-of-the-art research area for search algorithms. There exist many efficient tools and commercial applications. See www.satlive.com
- SAT keypoint: instead of designing an *ad hoc* search algorithm, encode the problem into propositional logic and use SAT as a backend.
- SAT solvers represent the input (*KB* and conclusions) as a set (conjunction) of "clauses", where clause = disjunction of literals. This is called Conjunctive Normal Form (CNF).

Conjunctive Normal Form (CNF)

Getting the CNF. Example:

- replace $\alpha \to \beta$ by $\neg \alpha \lor \beta$ and $\alpha \leftrightarrow \beta$ by $(\alpha \land \beta) \lor (\neg \alpha \land \neg \beta)$
- Negation Normal Form (NNF): apply De Morgan laws until ¬ only applied to atoms
- S apply distributivity ∧, ∨ and associativity to get conjunction of disjunctions
 - Warning: distributivity may have an exponential cost. Example
 (a ∧ b) ∨ (c ∧ d) ∨ (e ∧ f) ∨ (h ∧ i)
 - Some techniques [Tseitin68] allow generating a CNF in polynomial time but introducing new auxiliary atoms.

Conjunctive Normal Form (CNF)

- If KB is a set of facts and implications involving literals, it is (almost) in CNF!
- Example: just change the sign of left literals in \rightarrow

we get five clauses: C_3 , C_4 , C_5 are unit clauses.

We will call constraint to the negation of a CNF clause

$$\underbrace{(w \wedge tv)}_{\neg C_1} \underbrace{(r \wedge \neg w \wedge \neg h)}_{\neg C_2} \underbrace{\neg tv}_{\neg C_3} \underbrace{h}_{\neg C_4} \underbrace{\neg r}_{\neg C_5}$$

 Constraints can be easily obtained from implications of literals: change the sign of the right literals in →.