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m What is ASP?
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Answer Set Programming (ASP)

m What is ASP?
ASP is an approach for declarative pt

m What is ASP good for?
Solving knowledge-intense combinato

m What problems are this? — And ind
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Debian, Ubuntu: Linux package cof

Over 13 months in 2016-17 the US Federal Communications
Commission conducted an “incentive auction” to repurpose
radio spectrum from broadcast television to wireless inter-
net. In the end, the auction yielded $19.8 billion, $10.05
billion of which was paid to 175 broadcasters for voluntarily
relinquishing their licenses across 14 UHF channels. Sta-
tions that continued broadcasting were assigned potentially
new channels to fit as densely as possible into the channels
that remained. The government netted more than $7 billion
(used to pay down the national debt) after covering costs.
A crucial element of the auction design was the construc-
tion of a solver, dubbed SATFC, that determined whether
sets of stations could be “repacked” in this way; it needed
to run every time a station was given a price quote. This
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m What is ASP?
ASP is an approach for declarative problem solving
m What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems
m What problems are this?
Problems consisting of (many) decisions and constraints
m What are ASP's distinguishing features?
m High level, versatile modeling language
m High performance solvers
m Any industrial impact?
m ASP Tech companies: dlv systems and potassco solutions
m Anything not so good for ASP?

m Number crunching &
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m Herbrand interpretations
B Fix-point characterizations

m Non-monotonic reasoning

Auto-epistemic and Default logics, Circumscription
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m Main tasks: order fulfillment, i.e.
m routing
m order picking
m replenishment

THREE ENGINEERS, HUNDREDS
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Motivation
Robotic intra-logistic

m Robotics systems for logistics and warehouse
automation based on hundreds of

m mobile robots
m movable shelves

m Main tasks: order fulfillment, i.e.

m routing
m order picking
m replenishment

m Many competing industry solutions:

m Amazon, Dematic, Genzebach, e P RBB01 S, ONE WAREHOUSE

revalutionize distriouton

Gray Orange, Swisslog
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Motivation

Robotic intra-logistic in ASP

routing

time(1..horizon).

direction((X,Y)) :- X=-1..1, Y=-1..1, [X+Y|=1.

nextto((X,Y), (X?,Y?), (X+X’,Y+Y?)) :- position((X,Y)), direction((X’,Y’)), position((X+X’,Y+Y’)).

{ move(R,D,T) : direction(D) } 1 :- isRobot(R), time(T).

position(R,C,T) :- move(R,D,T), position(R,C’,T-1), nextto(C’,D,C) .
:= move(R,D,T), position(R,C ,T-1), not nextto(C ,D,_).

position(R,C,T) :- position(R,C,T-1), not move(R,_,T), isRobot(R), time(T).

moveto(C’,C,T) :- nextto(C’,D,C), position(R,C’,T-1), move(R,D,T).
:- moveto(C’,C,T), moveto(C,C’,T).

;- { position(R,C,T) : isRobot(R) } > 1, position(C), time(T).
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Motivation

Robotic intra-logistic in ASP

routing to shelves
time(1..horizon).

direction((X,Y)) :- X=-1..1, Y=-1..1, [X+Y|=1.
nextto((X,Y), (X?,Y?), (X+X’,Y+Y?)) :- position((X,Y)), direction((X’,Y’)), position((X+X’,Y+Y’)).

{ move(R,D,T) : direction(D) } 1 :- isRobot(R), time(T).

position(R,C,T) :- move(R,D,T), position(R,C’,T-1), nextto(C’,D,C) .
:= move(R,D,T), position(R,C ,T-1), not nextto(C ,D,_).

position(R,C,T) :- position(R,C,T-1), not move(R,_,T), isRobot(R), time(T).

moveto(C’,C,T) :- nextto(C’,D,C), position(R,C’,T-1), move(R,D,T).
:- moveto(C’,C,T), moveto(C,C’,T).

;- { position(R,C,T) : isRobot(R) } > 1, position(C), time(T).

processed(0,A) :- ordered(0,A), shelved(S,A), position(S,C,0), position(R,C,horizon), isRobot(R).
processed(0) :- isOrder(0), processed(0,A) : ordered(0,A).

:- not processed(0), isOrder(0).
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Motivation

Robotic intra-logistic in ASP
routing + transport + delivery

time(1..horizon).

direction((X,Y))

i- X=-1..1, Y=-1..1, [X+Y|=1.

nextto((X,Y), (X’,Y?), (X+X’,Y+Y*)) :- position((X,Y)), direction((X’,Y’)), position((X+X’,Y+Y*)).

{ move(R,D,T) : direction(D) ;
pickup(R,S,T) : isShelf(S) ;
putdown(R,S,T) : isShelf(S) } 1 :- isRobot(R), time(T).

waits(R,T) :- not pickup(R,_,T), not putdown(R,_,T), not move(R,_,T), isRobot(R), time(T).

position(R,C,T)

carries(R,S,T)

serves(R,S,P,T)

position(R,C,T)
carries(R,S,T)

position(s,C,T)
position(s,C,T)

moveto(C’?,C,T)

:= move(R,D,T), position(R,C’,T-1), nextto(C’,D,C).
:- move(R,D,T),  position(R,C ,T-1), not nextto(C, D, ).

:- pickup(R,S,T), position(R,C,T-1), position(s,C ,T-1).
- pickup(R,S,T),  carries(R,_,T-1).
pickup(R,S,T), carries(_,S,T-1).

:- pickup(R,S,T), position(R,C,T-1), position(s,C’,T-1), C != C’.
:- putdown(R,S,T), not carries(R,S,T-1).

:- position(R,C,T), carries(R,S,T), position(P,C), isStation(P).

:- position(R,C,T-1), not move(R,_,T), isRobot(R), time(T).
:- carries(R,S,T-1), not putdown(R,_,T), time(T).

:- position(R,C,T ), carries(R,S,T).
:- position(s,C,T-1), not carries(_,S,T), isShelf(S), time(T).

:- nextto(C’,D,C), position(R,C’,T-1), move(R,D,T).

:- moveto(C’,C,T), moveto(C,C’,T), C < C’.

i~ { position(R,C,T) : isRobot(R) } > 1
:- { position(S,C,T) : isShelf(S) } > 1, position(C), time(T).

, position(C), time(T).
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m Formal accounts of dynamic systems
m temporal logics
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m Answer Set Programming (ASP)
m Temporal equilibrium logic
m language of LTL

m complexity beyond LTL
m infinite traces

m Action languages

B static and dynamic laws
B same complexity as ASP
m finite traces

m Proposal Temporal equilibrium logic over finite traces
~ LTLf by G. De Giacomo and M. Vardi (2013)
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Language

Regular formulas
m Formulas

pur=all|pi®e

where

® ais an atom
® ® is a binary Boolean connective among —, A, V

m Defined connectives
m [ =—-1
BEp=p— 1
oo P=(p—=>P)A [ =)

[ ] J=}
(8 Potassco
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Language

Regular formulas*
m Formulas

pr=all]lp1®¢p

where

® ais an atom
® ® is a binary Boolean connective among —, A, V

m Defined connectives
B =-1
BEp=p— 1
oo P=(p—=>P)A [ =)

* in the logic of Here-and-There (Heyting'32; Godel'32)
(8 Potassco
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Language

Temporal formulas

m Temporal operators

past | ® for previous future | O for next
S for since U for until
T for trigger R for release
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Language

Temporal formulas

m Temporal operators

past | ® for previous future | O for next

S for since
T for trigger

m Temporal formulas

U for until
R for release

pu=alllpi®@e | 00| 1S |1 Tz 0|1 Ups| el Reo

m Defined operators

HBp=1Typ
¢ =TSy

| = 0T
oo =90pVI

Torsten Schaub (KRRQUP)

always before Op=1Reyp
eventually before G =T U
initial F=-0T
weak previous Op =0¢pVF

Temporal Answer Set Programming on Finite Traces

always afterward
eventually afterward
final

weak next
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Language

Examples

m “If we shoot twice with a gun that was never loaded,
it will eventually fail.”

O(shoot N e#shoot A\ Bunloaded — {fail)

m “Why does shooting a loaded gun fail in unloading it?”

O(F — ——(shoot A e@loaded A loaded))

[ 1 =}
(8 Potassco
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Semantics

From models to traces

m Alphabet Set A of atoms
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Semantics

From models to traces

m Alphabet Set A of atoms
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Semantics

From models to traces

m Alphabet Set A of atoms
m Model A set H C A of atoms
m HT-Model A pair (H, T) of set of atomsst HC T C A
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Semantics

From models to traces

m Alphabet Set A of atoms
m Trace A sequence (H;)2_, of sets H; C A

m finite ifA<w
m infiniteif A =w
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Semantics

From models to traces

m Alphabet Set A of atoms

m Trace A sequence (H;)2_, of sets H; C A
m finite fA<w
m infinite if A=w

m Notation

m We often abbreviate (H;)?, by H
m H<Hif H; C H! for i =0..\
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Semantics

From models to traces

Alphabet Set A of atoms

Trace A sequence (H;)2, of sets H; C A

m finite ifA<w
m infiniteif A =w

m Notation

m We often abbreviate (H;)?, by H
m H<Hif H; C H! for i =0..\

m HT-Trace A sequence (H;,T;)2, of pairsst H; C T; C A for i = 0.\

Notation We abbreviate (H;, T;)2, by (H,T)
Note HLS T

(3 Potassco
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Semantics

Satisfaction of regular formulas

An HT-trace (H, T) of length \ over alphabet A satisfies a temporal
formula ¢ at time point k = 0.\, k # w, written (H, T), k |= ¢,
if the following conditions hold:

Yok L

), k = aiff a € Hy, for any atom a € A
HLhkEeAYIff (HT), kEgpand (H,T), k=9
LkEeVYIiff (HT), ki=por (HT), k=
)

ko= ¢ iff (H,T), k= por (H,T) k=,
forall H € {H, T}

FTTETE
4 4444

(3 Potassco
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Semantics

Satisfaction of temporal formulas

Y e @ e v Y

e-———-3e——Se-—--30 o——-Se——Se———3e

A R N N
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Semantics

Satisfaction of temporal formulas

6]

(H,T), k= opiff k>0and (H,T), k-1 = ¢

(H, T), k = ¢S iff for some j = 0..k, we have (H,T),j = v and
(H,T),i =@ forall i =j+1..k
(H,T),
(H,T),

9

)

k = ¢ T4 iff for all j = 0..k, we have (H, T),j |= ¢ or
i = ¢ for some i = j+1..k

)

[ 1 =}
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Semantics

Satisfaction of temporal formulas

(H,T), k |= @ iff k>0and (H,T), k-1 ¢

(H, T), k = ¢S iff for some j = 0..k, we have (H,T),j = 1 and
(H,T),i E ¢ forall i =j+1..k

(H,T), k =@ T iff for all j = 0..k, we have (H,T),j = or
(H,T),i = ¢ for some i = j+1..k

(HT),kEopiff k <Aand (H,T),k+1 ¢

(H, T), k = » U iff for some j = k..\, we have (H, T),j =+ and
(H,T),i = forall i=k.j—1

(H,T), k = R iff for all j = k..\, we have (H, T),j =1 or
(H,T),i = ¢ for some i = k..j—1. 0
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Semantics

Satisfaction of temporal formulas

(H,T), k |= @ iff k>0and (H,T), k-1 ¢

(H, T), k = ¢S iff for some j = 0..k, we have (H,T),j = 1 and
(H,T),i E ¢ forall i =j+1..k

(H,T), k =@ T iff for all j = 0..k, we have (H,T),j = or
(H,T),i = ¢ for some i = j+1..k

(HT),kEopiff k< Xand (H,T),k+1 ¢

(H, T), k = ¢ U iff for some j = k..\, we have (H, T),j =+ and
(H,T),i = forall i=k.j—1

(H,T), k = R iff for all j = k..\, we have (H, T),j =1 or
(H,T),i = ¢ for some i = k..j—1. 0
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Semantics

Satisfaction of (defined) temporal formulas

E(HT) k=T

(H,T),k =By iff (H T),i = forall i =0..k
i (HT), k= #piff (HT),i = o for somei=0.k
E (H,T), k= 1iff k=0

E (H,T), k=00 iff k=0or (HT), k-1 ¢
(H,T),k Qg iff (H,T),i = ¢ for any i = k..
E (HT), k= Opiff (H,T),i = ¢ for some i = k..
E HT),k=Fiff k=X

@ (H,T),kEopiffk=Xor (HT), k+1 ¢

[ 1 =}
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Semantics

Emerging temporal logics

m Temporal logic of here-and-there (THT)
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Semantics

Emerging temporal logics
m Temporal logic of here-and-there (THT)
m Finale

m  OF enforces finite traces
m —OF enforces infinite traces
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Semantics

Emerging temporal logics
m Temporal logic of here-and-there (THT)

m Finale

m  OF enforces finite traces
m —OF enforces infinite traces

m Excluded middle (EM)
m O(aV —a) for each atom ae€ A
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Semantics

Emerging temporal logics

m Temporal logic of here-and-there (THT)

m Finale
m  OF enforces finite traces
m —OF enforces infinite traces

m Excluded middle (EM)
m [(aV —a) for each atom a€ A

Temporal logics stronger than THT
m THT, = THT + {~0F}

THT; = THT + {0F}

LTL = THT + {(EM)}

LTL, = THT,, + {(EM)}

LTLs = THT: + {(EM)}
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Semantics

Emerging temporal logics

m Temporal logic of here-and-there (THT)

m Finale
m  OF enforces finite traces
m —OF enforces infinite traces

m Excluded middle (EM)
m [(aV —a) for each atom a€ A

Temporal logics stronger than THT
m THT, = THT + {~0F}

THT; = THT + {OF}

LTL = THT + {(EM)}

LTL, = THT,, + {(EM)}

LTLs = THT: + {(EM)}

m Note All variants of THT are monotonic !

Torsten Schaub (KRRQUP) Temporal Answer Set Programming on Finite Traces
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Semantics

Temporal equilibrium logic (TEL)

m A total HT-trace (T, T) is an equilibrium model of
a temporal formula ¢, if

(T,T),0= ¢,
(HT),0Fpforal H<T
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Temporal equilibrium logic (TEL)

m A total HT-trace (T, T) is an equilibrium model of
a temporal formula ¢, if

(T,T),0= ¢,
(HT),0Fpforal H<T

m T is called a temporal stable model of ¢
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Semantics

Temporal equilibrium logic (TEL)

m A total HT-trace (T, T) is an equilibrium model of
a temporal formula ¢, if

(T,T),0= ¢,
(HT),0Fpforal H<T

m T is called a temporal stable model of ¢

m Examples

m [(—a — 0a) yields
m (0 {a})* in TEL, and (@ {a})* in TELf
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Semantics

Temporal equilibrium logic (TEL)

m A total HT-trace (T, T) is an equilibrium model of
a temporal formula ¢, if

(T,T),0= ¢,
(HT),0Fpforal H<T

m T is called a temporal stable model of ¢

m Examples
m [(—a — 0a) yields
m (P {a})¥ in TEL, and (@ {a})" in TELs
m O(—0a — a) AD(0a — a) yields
m no model in TEL, but ({a})* in TELs
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Semantics

Temporal equilibrium logic (TEL)

m A total HT-trace (T, T) is an equilibrium model of
a temporal formula ¢, if

(T,T),0= ¢,
(HT),0Fpforal H<T

m T is called a temporal stable model of ¢

m Examples
m [(—a — 0a) yields
m (P {a})¥ in TEL, and (@ {a})" in TELs
m O(—0a — a) AD(0a — a) yields
m no model in TEL, but ({a})* in TELs
m [JQa vyields
m no model in TEL, but (0*{a}) in TELf

Torsten Schaub (KRRQUP) Temporal Answer Set Programming on Finite Traces
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Compilation

Outline

Compilation
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Compilation

Normalform

Temporal literals {a, —a, ®a,—@a|a e A}

Temporal rules

m initial rule B—A
m dynamic rule od(B — A)
m final rule O(F = (B—A))

where B=biA---Ab,and A=a1V---Vay,
and b; and a; are temporal literals for dynamic rules,
and regular literals for initial and final rules

Temporal logic program is a set of temporal rules

(3 Potassco
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Compilation

Normalform

Temporal literals {a, —a, ®a,—@a|a e A}

Temporal rules

m initial rule B—A
m dynamic rule od(B — A)
m final rule O(F = (B—A))

where B=biA---Ab,and A=a1V---Vay,
and b; and a; are temporal literals for dynamic rules,
and regular literals for initial and final rules

Temporal logic program is a set of temporal rules

Theorem Every temporal formula ¢ can be converted into a
temporal logic program THT¢-equivalent to ¢
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Compilation

Example
o [(eloaded A —unloaded — loaded)
0 O(shoot A eloaded A loaded — goal)
O(F — (—goal — 1))
(8 Potassco
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Compilation

Bounded translation
m Temporal literals at time point k

Tk(a) = ak Tk(_‘a) = —ag

Tk (®3) = ak_1 Tk(—®3) = —ak_1
m Temporal rules focusing on B — A at time point k

Tk(r) = 1i(a1) V- - V 1k(am) < 7k(b1) A -+ A 7k(bn)
m Temporal logic program P bounded by finite length A

™(P)= Am(r)[rel(P)}
U{rk(r) | re D(P),k =1.\}
u{n(r)| re F(P)}
(& Potassco
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Compilation

Incremental translation

m Issue build 7\(P) from m\_1(P)

m Method module theory accounting for composition of logic programs
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Compilation

Incremental translation

m Issue build 7\(P) from m\_1(P)

m Method module theory accounting for composition of logic programs

m Translation as before, except for
m translate final rules at time point k as

T;(r) :Tk(al)\/---ka(am) FTk(bl)/\---/\Tk(bn)/\—'qurl

m add gk to each logic program at time point k
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Compilation

Incremental translation

m Issue build 7\(P) from m\_1(P)

m Method module theory accounting for composition of logic programs

m Translation as before, except for
m translate final rules at time point k as

T;(r) :Tk(al)\/---ka(am) (—Tk(bl)/\---/\’i'k(bn)/\—'qk+1

m add g, to each logic program at time point k

[ 1 =}
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Systems
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@ Systems
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Systems

tel

m tel

m iS a preprocessor
m implements the bounded translation

m tel is solver independent
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Systems

tel

m tel

m iS a preprocessor
m implements the bounded translation

m tel is solver independent
m Example
{—a ©O0O(ea—b), OF = (-b— 1))}

is represented as

a.

#next”~ #always+ ( (#previous a) -> b).
#always+ ( #final -> (7 b -> #false)).

Torsten Schaub (KRRQUP) Temporal Answer Set Programming on Finite Traces
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Systems

telingo
m telingo
m extends the full modeling language of clingo
by temporal operators
m implements the incremental translation
m telingo is an extension of clingo
(8 Potassco
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Systems

telingo

m telingo
m extends the full modeling language of clingo
by temporal operators
m implements the incremental translation

m telingo is an extension of clingo

m Primes allow for expressing (iterated) next and previous operators
m ®p(a) and 0qg(b) can be expressed by ’p(a) and q’ (b)
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Systems

telingo

telingo
m extends the full modeling language of clingo
by temporal operators
m implements the incremental translation

telingo is an extension of clingo

m Primes allow for expressing (iterated) next and previous operators
m ®p(a) and 0qg(b) can be expressed by ’p(a) and q’ (b)
m Example “A robot cannot lift a box unless its capacity exceeds
the box’s weight plus that of all held objects”

:- 1ift(R,B), robot(R), box(B,W),
#sum { C : capacity(R,C);
-V,0 : ’holding(R,0,V) } < W.
(88 Potassco
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Systems

telingo's temporal logic programs

m initial rule B—A
m dynamic rule od(B — A)
m final rule O(F—=(B—A))

[ ] J=}
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initial rule

dynamic rule

final rule

m always rule

Torsten Schaub (KRRQUP)

Systems

telingo's temporal logic programs

B—A
od(B — A)
O(F—=(B—A))

0O(B — A)

Temporal Answer Set Programming on Finite Traces
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Systems

telingo's temporal logic programs

m initial rule B—A #program initial.
m dynamic rule oJ(B — A) #program dynamic.
m final rule O(F—(B—A)) #program final.
m always rule (B — A) #program always.
(3 Potassco
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Systems

telingo's temporal logic programs

m initial rule B—A #program initial.
m dynamic rule od(B — A) #program dynamic.
m final rule O(F—=(B—A)) #program final.

m always rule OB — A) #program always.

Example { — a, 0J(ea — b), O(F — (-b— 1)) }
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Systems

telingo's temporal logic programs

m initial rule B—A #program initial.
m dynamic rule od(B — A) #program dynamic.
m final rule O(F—=(B—A)) #program final.

m always rule OB — A) #program always.

can alternatively

Example { — a, 0J(ea — b), O(F — (-b— 1)) }

be represented as

a.

b - ’a.

:- not b.

#program initial. #program always.

#program dynamic.

#program final.

a :- &initial.

:- not b, &final.

Torsten Schaub (KRRQUP)
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Systems

telingo's temporal formulas

m &initial |
m &final F
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Systems

telingo's temporal formulas

® &initial |
m &final F

m &tel { ¢ } for temporal formula ¢
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Systems

telingo's temporal formulas
m &initial |
m &final [~

m &tel { ¢ } for temporal formula ¢
m Temporal operators

past | ® previous future | O next
S since U until
T trigger R release
¢ eventually before O eventually afterward
B always before O always afterward
® weak previous O  weak next
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Systems

telingo's temporal formulas
m &initial |
m &final [~

m &tel { ¢ } for temporal formula ¢
m Temporal operators

past | < previous future | > next
<7 since >? until
<* trigger >*  release
<? eventually before >? eventually afterward
<x always before >x  always afterward
<: weak previous >:  weak next

(3 Potassco

Torsten Schaub (KRRQUP) Temporal Answer Set Programming on Finite Traces 34 /38



Systems

telingo's temporal formulas
m &initial |
m &final [~

m &tel { ¢ } for temporal formula ¢
m Temporal operators

past | < previous future | > next
<7 since >? until
<* trigger >*  release
<? eventually before >? eventually afterward
<x always before >x  always afterward
<: weak previous >:  weak next

m Boolean operators & |
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Systems

telingo's temporal formulas

® &initial |
m &final F

m &tel { ¢ } for temporal formula ¢
m Example
shoot A\ Bunloaded N ®§shoot — L

can be expressed as

:— shoot , &tel { <* unloaded & < <? shoot }.
or
:— &tel { shoot & <* unloaded & < <? shoot }.

(3 Potassco
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Systems

Wolf, sheep, and cabbage

#program always.
item(w;s;c).
opp(l,r). opp(r,1).
eats(w,s). eats(s,c).

#program initial.

at(b,1).
at(X,1) :- item(X).

#program dynamic.

>

everything at the left bank

at(X,A) :- ’at(X,B), m(X), opp(A,B). % effect axiom for moving item X

at(b,A) :- ’at(b,B), opp(A,B).

at(X,A) :- ’at(X,A), not at(X,B),

0 { m(X) : item(X) } 1.

#program always.

:- m(X), ’at(b,A), ’at(X,B),

i- eats(X,Y), at(X,A), at(Y,A),

#program final.
i- at(X,1).

#show m/1.

% boat is always moving

opp(A,B). % inertia

% choose moving at most one item

opp(A,B). % we cannot move item X if at the opposite bank

opp(A,B), at(b,B). % we cannot leave them alone

Torsten Schaub (KRRQUP)
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Systems

telingo's solution

$ telingo version 1.0
Reading from wolf.tel

Solving...
Solving...
Solving...
Solving...
Solving...
Solving...
Solving...
Solving
Answer: 1
State
State
State
State
State
State
State
State
Answer:
State
State
State
State
State
State
State 6:
State 7:
SATISFIABLE

Models
Calls
Time

CPU Time

m(s)
m(w)
m(s)

m(c)

m(s)

m(s)
m(c)
m(s)

m(w)

m(s)

2

8

0.156s (Solving:
0.028s

0.00s)

Torsten Schaub (KRRQUP)
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Summary

Summary

] TELf

m combines HT and LTL on finite traces

reducible to a normal form close to logic programs
naturally accounts for dynamic KRR

advocates past temporal operators

offers embeddings for action languages

readily implementable via ASP

m ASP-based systems for TELy

® https://github.com/potassco/telingo
m https://github.com/potassco/tel
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Summary

Summary

] TELf

m combines HT and LTL on finite traces

reducible to a normal form close to logic programs
naturally accounts for dynamic KRR

advocates past temporal operators

offers embeddings for action languages

readily implementable via ASP

m ASP-based systems for TELy

® https://github.com/potassco/telingo
m https://github.com/potassco/tel

m What's next? Linear dynamic ASP (cf. forthcoming KR'18 paper)
m extension of TEL¢
m offers Golog-style control

[ 1 =}
(8 Potassco
Torsten Schaub (KRRQUP) Temporal Answer Set Programming on Finite Traces 38 / 38


https://github.com/potassco/telingo
https://github.com/potassco/tel

	Motivation
	Introduction
	Language
	Semantics
	Compilation
	Systems
	Summary

