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Solving knowledge-intense combinatorial (optimization) problems
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Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers

Any industrial impact?

ASP Tech companies: dlv systems and potassco solutions

Anything not so good for ASP?

Number crunching
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Motivation

Robotic intra-logistic in ASP
routing

time(1..horizon).

direction((X,Y)) :- X=-1..1, Y=-1..1, |X+Y|=1.

nextto((X,Y),(X’,Y’),(X+X’,Y+Y’)) :- position((X,Y)), direction((X’,Y’)), position((X+X’,Y+Y’)).

{ move(R,D,T) : direction(D) } 1 :- isRobot(R), time(T).

position(R,C,T) :- move(R,D,T), position(R,C’,T-1), nextto(C’,D,C).

:- move(R,D,T), position(R,C ,T-1), not nextto(C ,D,_).

position(R,C,T) :- position(R,C,T-1), not move(R,_,T), isRobot(R), time(T).

moveto(C’,C,T) :- nextto(C’,D,C), position(R,C’,T-1), move(R,D,T).

:- moveto(C’,C,T), moveto(C,C’,T).

:- { position(R,C,T) : isRobot(R) } > 1, position(C), time(T).

processed(O,A) :- ordered(O,A), shelved(S,A), position(S,C,0), position(R,C,horizon), isRobot(R).

processed(O) :- isOrder(O), processed(O,A) : ordered(O,A).

:- not processed(O), isOrder(O).
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Motivation

Robotic intra-logistic in ASP
routing + transport + delivery

time(1..horizon).

direction((X,Y)) :- X=-1..1, Y=-1..1, |X+Y|=1.

nextto((X,Y),(X’,Y’),(X+X’,Y+Y’)) :- position((X,Y)), direction((X’,Y’)), position((X+X’,Y+Y’)).

{ move(R,D,T) : direction(D) ;

pickup(R,S,T) : isShelf(S) ;

putdown(R,S,T) : isShelf(S) } 1 :- isRobot(R), time(T).

waits(R,T) :- not pickup(R,_,T), not putdown(R,_,T), not move(R,_,T), isRobot(R), time(T).

position(R,C,T) :- move(R,D,T), position(R,C’,T-1), nextto(C’,D,C).

:- move(R,D,T), position(R,C ,T-1), not nextto(C, D,_).

carries(R,S,T) :- pickup(R,S,T), position(R,C,T-1), position(S,C ,T-1).

:- pickup(R,S,T), carries(R,_,T-1).

:- pickup(R,S,T), carries(_,S,T-1).

:- pickup(R,S,T), position(R,C,T-1), position(S,C’,T-1), C != C’.

:- putdown(R,S,T), not carries(R,S,T-1).

serves(R,S,P,T) :- position(R,C,T), carries(R,S,T), position(P,C), isStation(P).

position(R,C,T) :- position(R,C,T-1), not move(R,_,T), isRobot(R), time(T).

carries(R,S,T) :- carries(R,S,T-1), not putdown(R,_,T), time(T).

position(S,C,T) :- position(R,C,T ), carries(R,S,T).

position(S,C,T) :- position(S,C,T-1), not carries(_,S,T), isShelf(S), time(T).

moveto(C’,C,T) :- nextto(C’,D,C), position(R,C’,T-1), move(R,D,T).

:- moveto(C’,C,T), moveto(C,C’,T), C < C’.

:- { position(R,C,T) : isRobot(R) } > 1, position(C), time(T).

:- { position(S,C,T) : isShelf(S) } > 1, position(C), time(T).
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Motivation

Formal accounts of dynamic systems

temporal logics
calculi for action and change

Answer Set Programming (ASP)
Temporal equilibrium logic

language of LTL
complexity beyond LTL
infinite traces

Action languages

static and dynamic laws
same complexity as ASP
finite traces

Proposal Temporal equilibrium logic over finite traces

∼ LTLf by G. De Giacomo and M. Vardi (2013)
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Language

Regular formulas

∗

Formulas

ϕ ::= a | ⊥ | ϕ1 ⊗ ϕ2

where

a is an atom
⊗ is a binary Boolean connective among →,∧,∨

Defined connectives

> = ¬⊥
¬ϕ = ϕ→ ⊥
ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

∗ in the logic of Here-and-There (Heyting’32; Gödel’32)
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Language

Temporal formulas

Temporal operators

past • for previous
S for since
T for trigger

future ◦ for next
U for until
R for release

Temporal formulas

ϕ ::= a | ⊥ | ϕ1 ⊗ ϕ2 | •ϕ | ϕ1 S ϕ2 | ϕ1 T ϕ2 | ◦ϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2

Defined operators

�ϕ = ⊥ T ϕ always before
�ϕ = > S ϕ eventually before
I = ¬•> initial

•̂ϕ = •ϕ ∨ I weak previous

�ϕ = ⊥ R ϕ always afterward
♦ϕ = >U ϕ eventually afterward
F = ¬◦> final

◦̂ϕ = ◦ϕ ∨ F weak next
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Language

Examples

“If we shoot twice with a gun that was never loaded,
it will eventually fail.”

�(shoot ∧ •�shoot ∧�unloaded → ♦fail)

“Why does shooting a loaded gun fail in unloading it?”

�(F→ ¬¬(shoot ∧ •loaded ∧ loaded))
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Semantics

From models to traces

Alphabet Set A of atoms

Trace A sequence 〈Hi 〉λi=0 of sets Hi ⊆ A

finite if λ < ω
infinite if λ = ω

Notation

We often abbreviate 〈Hi 〉λi=0 by H
H ≤ H′ if Hi ⊆ H ′

i for i = 0..λ

HT -Trace A sequence 〈Hi ,Ti 〉λi=0 of pairs st Hi ⊆ Ti ⊆ A for i = 0..λ

Notation We abbreviate 〈Hi ,Ti 〉λi=0 by 〈H,T〉
Note H ≤ T
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Semantics

Satisfaction of regular formulas

An HT -trace 〈H,T〉 of length λ over alphabet A satisfies a temporal
formula ϕ at time point k = 0..λ, k 6= ω, written 〈H,T〉, k |= ϕ,
if the following conditions hold:

1 〈H,T〉, k 6|= ⊥
2 〈H,T〉, k |= a iff a ∈ Hk , for any atom a ∈ A
3 〈H,T〉, k |= ϕ ∧ ψ iff 〈H,T〉, k |= ϕ and 〈H,T〉, k |= ψ

4 〈H,T〉, k |= ϕ ∨ ψ iff 〈H,T〉, k |= ϕ or 〈H,T〉, k |= ψ

5 〈H,T〉, k |= ϕ→ ψ iff 〈H′,T〉, k 6|= ϕ or 〈H′,T〉, k |= ψ,
for all H′ ∈ {H,T}
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Semantics

Satisfaction of temporal formulas

•ϕ
ϕ

ϕ S ψ
ψ

ψ ϕ ϕ

ϕ T ψ
ψ ψ

ψ ψ ψ, φ

◦ϕ
ϕ

ϕU ψ
ψ

ϕ ϕ ψ

ϕ R ψ

ψ ψ

ψ ψ ψ,ϕ
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Semantics

Satisfaction of temporal formulas

6 〈H,T〉, k |= •ϕ iff k > 0 and 〈H,T〉, k−1 |= ϕ

7 〈H,T〉, k |= ϕ S ψ iff for some j = 0..k , we have 〈H,T〉, j |= ψ and
〈H,T〉, i |= ϕ for all i = j+1..k

8 〈H,T〉, k |= ϕ T ψ iff for all j = 0..k , we have 〈H,T〉, j |= ψ or
〈H,T〉, i |= ϕ for some i = j+1..k

9 〈H,T〉, k |= ◦ϕ iff k < λ and 〈H,T〉, k+1 |= ϕ

10 〈H,T〉, k |= ϕU ψ iff for some j = k..λ, we have 〈H,T〉, j |= ψ and
〈H,T〉, i |= ϕ for all i = k ..j−1

11 〈H,T〉, k |= ϕ R ψ iff for all j = k ..λ, we have 〈H,T〉, j |= ψ or
〈H,T〉, i |= ϕ for some i = k ..j−1.
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Semantics

Satisfaction of (defined) temporal formulas

12 〈H,T〉, k |= >

13 〈H,T〉, k |= �ϕ iff 〈H,T〉, i |= ϕ for all i = 0..k

14 〈H,T〉, k |= �ϕ iff 〈H,T〉, i |= ϕ for some i = 0..k

15 〈H,T〉, k |= I iff k = 0

16 〈H,T〉, k |= •̂ϕ iff k = 0 or 〈H,T〉, k−1 |= ϕ

17 〈H,T〉, k |= �ϕ iff 〈H,T〉, i |= ϕ for any i = k ..λ

18 〈H,T〉, k |= ♦ϕ iff 〈H,T〉, i |= ϕ for some i = k..λ

19 〈H,T〉, k |= F iff k = λ

20 〈H,T〉, k |= ◦̂ϕ iff k = λ or 〈H,T〉, k+1 |= ϕ
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Semantics

Emerging temporal logics

Temporal logic of here-and-there (THT )

Finale
♦F enforces finite traces
¬♦F enforces infinite traces

Excluded middle (EM)
�(a ∨ ¬a) for each atom a ∈ A

Temporal logics stronger than THT
THTω = THT + {¬♦F}
THTf = THT + {♦F}
LTL = THT + {(EM)}
LTLω = THTω + {(EM)}
LTLf = THTf + {(EM)}

Note All variants of THT are monotonic !
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Semantics

Temporal equilibrium logic (TEL)

A total HT -trace 〈T,T〉 is an equilibrium model of
a temporal formula ϕ, if

1 〈T,T〉, 0 |= ϕ,
2 〈H,T〉, 0 6|= ϕ for all H < T

T is called a temporal stable model of ϕ

Examples

�(¬a→ ◦a) yields

(∅ {a})ω in TELω and (∅ {a})+ in TELf

�(¬◦a→ a) ∧�(◦a→ a) yields

no model in TELω but ({a})+ in TELf

�♦a yields

no model in TELω but (∅∗{a}) in TELf

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 24 / 38



Semantics

Temporal equilibrium logic (TEL)

A total HT -trace 〈T,T〉 is an equilibrium model of
a temporal formula ϕ, if

1 〈T,T〉, 0 |= ϕ,
2 〈H,T〉, 0 6|= ϕ for all H < T

T is called a temporal stable model of ϕ

Examples

�(¬a→ ◦a) yields

(∅ {a})ω in TELω and (∅ {a})+ in TELf

�(¬◦a→ a) ∧�(◦a→ a) yields

no model in TELω but ({a})+ in TELf

�♦a yields

no model in TELω but (∅∗{a}) in TELf

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 24 / 38



Semantics

Temporal equilibrium logic (TEL)

A total HT -trace 〈T,T〉 is an equilibrium model of
a temporal formula ϕ, if

1 〈T,T〉, 0 |= ϕ,
2 〈H,T〉, 0 6|= ϕ for all H < T

T is called a temporal stable model of ϕ

Examples

�(¬a→ ◦a) yields

(∅ {a})ω in TELω and (∅ {a})+ in TELf

�(¬◦a→ a) ∧�(◦a→ a) yields

no model in TELω but ({a})+ in TELf

�♦a yields

no model in TELω but (∅∗{a}) in TELf

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 24 / 38



Semantics

Temporal equilibrium logic (TEL)

A total HT -trace 〈T,T〉 is an equilibrium model of
a temporal formula ϕ, if

1 〈T,T〉, 0 |= ϕ,
2 〈H,T〉, 0 6|= ϕ for all H < T

T is called a temporal stable model of ϕ

Examples

�(¬a→ ◦a) yields

(∅ {a})ω in TELω and (∅ {a})+ in TELf

�(¬◦a→ a) ∧�(◦a→ a) yields

no model in TELω but ({a})+ in TELf

�♦a yields

no model in TELω but (∅∗{a}) in TELf

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 24 / 38



Semantics

Temporal equilibrium logic (TEL)

A total HT -trace 〈T,T〉 is an equilibrium model of
a temporal formula ϕ, if

1 〈T,T〉, 0 |= ϕ,
2 〈H,T〉, 0 6|= ϕ for all H < T

T is called a temporal stable model of ϕ

Examples

�(¬a→ ◦a) yields

(∅ {a})ω in TELω and (∅ {a})+ in TELf

�(¬◦a→ a) ∧�(◦a→ a) yields

no model in TELω but ({a})+ in TELf

�♦a yields

no model in TELω but (∅∗{a}) in TELf

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 24 / 38



Compilation

Outline

1 Motivation

2 Introduction

3 Language

4 Semantics

5 Compilation

6 Systems

7 Summary

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 25 / 38



Compilation

Normalform

Temporal literals {a,¬a,•a,¬•a | a ∈ A}
Temporal rules

initial rule B → A
dynamic rule ◦̂�(B → A)
final rule �(F→ (B → A) )

where B = b1 ∧ · · · ∧ bn and A = a1 ∨ · · · ∨ am
and bi and aj are temporal literals for dynamic rules,
and regular literals for initial and final rules

Temporal logic program is a set of temporal rules

Theorem Every temporal formula ϕ can be converted into a
temporal logic program THTf -equivalent to ϕ
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Compilation

Example

◦̂�(•loaded ∧ ¬unloaded → loaded)

◦̂�(shoot ∧ •loaded ∧ loaded → goal)

�(F→ (¬goal → ⊥))
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Compilation

Bounded translation

Temporal literals at time point k

τk(a) = ak τk(¬a) = ¬ak
τk(•a) = ak−1 τk(¬•a) = ¬ak−1

Temporal rules focusing on B → A at time point k

τk(r) = τk(a1) ∨ · · · ∨ τk(am)← τk(b1) ∧ · · · ∧ τk(bn)

Temporal logic program P bounded by finite length λ

τλ(P) = {τ0(r) | r ∈ I (P) }
∪ {τk(r) | r ∈ D(P), k = 1..λ }
∪ {τλ(r) | r ∈ F (P) }
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Compilation

Incremental translation

Issue build τλ(P) from τλ−1(P)

Method module theory accounting for composition of logic programs

Translation as before, except for

translate final rules at time point k as

τ∗k (r) = τk(a1) ∨ · · · ∨ τk(am)← τk(b1) ∧ · · · ∧ τk(bn) ∧ ¬qk+1

add qk to each logic program at time point k
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Systems

tel

tel

is a preprocessor
implements the bounded translation

tel is solver independent

Example

{ → a, ◦̂�(•a→ b), �(F→ (¬b → ⊥)) }

is represented as

a.

#next^ #always+ ( (# previous a) -> b).

#always+ ( #final -> (~ b -> #false )).
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Systems

telingo

telingo

extends the full modeling language of clingo
by temporal operators
implements the incremental translation

telingo is an extension of clingo

Primes allow for expressing (iterated) next and previous operators

•p(a) and ◦q(b) can be expressed by ’p(a) and q’(b)

Example “A robot cannot lift a box unless its capacity exceeds
the box’s weight plus that of all held objects”

:- lift(R,B), robot(R), box(B,W),

#sum { C : capacity(R,C);

-V,O : ’holding(R,O,V) } < W.
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Systems

telingo’s temporal logic programs

initial rule B → A

dynamic rule ◦̂�(B → A)

final rule �(F→ (B → A) )

always rule �(B → A)

Example { → a, ◦̂�(•a→ b), �(F→ (¬b → ⊥)) }
can alternatively be represented as

#program initial.

a.

#program dynamic.

b :- ’a.

#program final.

:- not b.

#program always.

a :- &initial.

b :- ’a.

:- not b, &final.
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always rule �(B → A) #program always.

Example { → a, ◦̂�(•a→ b), �(F→ (¬b → ⊥)) }
can alternatively be represented as

#program initial.

a.

#program dynamic.

b :- ’a.

#program final.

:- not b.

#program always.

a :- &initial.

b :- ’a.

:- not b, &final.
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Systems

telingo’s temporal formulas

&initial I

&final F

&tel { ϕ } for temporal formula ϕ
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Systems

telingo’s temporal formulas

&initial I

&final F

&tel { ϕ } for temporal formula ϕ

Temporal operators

past • previous
S since
T trigger

� eventually before
� always before

•̂ weak previous

future ◦ next
U until
R release

♦ eventually afterward
� always afterward

◦̂ weak next
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Systems

telingo’s temporal formulas

&initial I

&final F

&tel { ϕ } for temporal formula ϕ

Temporal operators

past < previous
<? since
<* trigger

<? eventually before
<* always before
<: weak previous

future > next
>? until
>* release

>? eventually afterward
>* always afterward
>: weak next
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Systems

telingo’s temporal formulas

&initial I

&final F

&tel { ϕ } for temporal formula ϕ

Temporal operators

past < previous
<? since
<* trigger

<? eventually before
<* always before
<: weak previous

future > next
>? until
>* release

>? eventually afterward
>* always afterward
>: weak next

Boolean operators & | ~
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Systems

telingo’s temporal formulas

&initial I

&final F

&tel { ϕ } for temporal formula ϕ

Example

shoot ∧�unloaded ∧ •�shoot → ⊥

can be expressed as

:- shoot , &tel { <* unloaded & < <? shoot }.

or

:- &tel { shoot & <* unloaded & < <? shoot }.
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Systems

Wolf, sheep, and cabbage

#program always.

item(w;s;c).
opp(l,r). opp(r,l).
eats(w,s). eats(s,c).

#program initial.

at(b,l).
at(X,l) :- item(X). % everything at the left bank

#program dynamic.

at(X,A) :- ’at(X,B), m(X), opp(A,B). % effect axiom for moving item X

at(b,A) :- ’at(b,B), opp(A,B). % boat is always moving

at(X,A) :- ’at(X,A), not at(X,B), opp(A,B). % inertia

0 { m(X) : item(X) } 1. % choose moving at most one item

#program always.

:- m(X), ’at(b,A), ’at(X,B), opp(A,B). % we cannot move item X if at the opposite bank

:- eats(X,Y), at(X,A), at(Y,A), opp(A,B), at(b,B). % we cannot leave them alone

#program final.

:- at(X,l).

#show m/1.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 35 / 38



Systems

telingo’s solution
$ telingo version 1.0

Reading from wolf.tel

Solving ...

Solving ...

Solving ...

Solving ...

Solving ...

Solving ...

Solving ...

Solving ...

Answer: 1

State 0:

State 1: m(s)

State 2:

State 3: m(w)

State 4: m(s)

State 5: m(c)

State 6:

State 7: m(s)

Answer: 2

State 0:

State 1: m(s)

State 2:

State 3: m(c)

State 4: m(s)

State 5: m(w)

State 6:

State 7: m(s)

SATISFIABLE

Models : 2

Calls : 8

Time : 0.156s (Solving: 0.00s)

CPU Time : 0.028s
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Summary

Summary

TELf
combines HT and LTL on finite traces
reducible to a normal form close to logic programs
naturally accounts for dynamic KRR
advocates past temporal operators
offers embeddings for action languages
readily implementable via ASP

ASP-based systems for TELf
https://github.com/potassco/telingo

https://github.com/potassco/tel

What’s next? Linear dynamic ASP (cf. forthcoming KR’18 paper)

extension of TELf
offers Golog-style control
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