
Temporal Answer Set Programming on Finite Traces

Pedro Cabalar, Roland Kaminski, Torsten Schaub, Anna Schuhmann

University of Corunna, Spain University of Potsdam, Germany

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 1 / 38

Outline

1 Motivation

2 Introduction

3 Language

4 Semantics

5 Compilation

6 Systems

7 Summary

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 2 / 38

Motivation

Outline

1 Motivation

2 Introduction

3 Language

4 Semantics

5 Compilation

6 Systems

7 Summary

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 3 / 38

Motivation

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 4 / 38

Motivation

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 4 / 38

Motivation

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 4 / 38

Motivation

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

Examples Sudoku, Configuration, Diagnosis, Music composition,
Planning, System design, Time tabling, etc.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 4 / 38

Motivation

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?
Problems consisting of (many) decisions and constraints

Examples Sudoku, Configuration, Diagnosis, Music composition,
Planning, System design, Time tabling, etc.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 4 / 38

Motivation

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?

Debian, Ubuntu: Linux package configuration
Exeura: Call routing
Fcc: Radio frequency auction
Gioia Tauro: Workforce management
Nasa: Decision support for Space Shuttle
Siemens: Partner units configuration
Variantum: Product configuration

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 4 / 38

Motivation

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?

Debian, Ubuntu: Linux package configuration
Exeura: Call routing
Fcc: Radio frequency auction
Gioia Tauro: Workforce management
Nasa: Decision support for Space Shuttle
Siemens: Partner units configuration
Variantum: Product configuration

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 4 / 38

Motivation

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this? — And industrial ones ?

Debian, Ubuntu: Linux package configuration
Exeura: Call routing
Fcc: Radio frequency auction ��

Gioia Tauro: Workforce management
Nasa: Decision support for Space Shuttle
Siemens: Partner units configuration
Variantum: Product configuration

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 4 / 38

Motivation

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 4 / 38

Motivation

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers

Any industrial impact?

ASP Tech companies: dlv systems and potassco solutions

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 4 / 38

Motivation

Answer Set Programming (ASP)

What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers

Any industrial impact?

ASP Tech companies: dlv systems and potassco solutions

Anything not so good for ASP?

Number crunching

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 4 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Axiomatic characterization

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Axiomatic characterization

Logic programming Negation as failure

Herbrand interpretations
Fix-point characterizations

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Axiomatic characterization

Logic programming Negation as failure

Herbrand interpretations
Fix-point characterizations

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

Extensions of first-order logic
Modalities, fix-points, second-order logic

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

Stable models semantics derived from non-monotonic logics
Alternating fix-point theory

ASP solving
“Stable models = Well-founded semantics + Branch”

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

Stable models semantics derived from non-monotonic logics
Alternating fix-point theory

ASP solving
“Stable models = Well-founded semantics + Branch”

Modeling — Grounding — Solving
Icebreakers: lparse and smodels

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries

Growing dissemination — see last slide —
Constructive logics Equilibrium Logic

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries

Growing dissemination — see last slide —
Constructive logics Equilibrium Logic

Roots: Logic of Here-and-There (Heyting’30), G3 (Gödel’32)

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries

Growing dissemination — see last slide —
Constructive logics Equilibrium Logic

’10 Integration

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries

Growing dissemination — see last slide —
Constructive logics Equilibrium Logic

’10 Integration — let’s see . . .

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 5 / 38

Motivation

Robotic intra-logistic

Robotics systems for logistics and warehouse
automation based on hundreds of

mobile robots
movable shelves

Main tasks: order fulfillment, i.e.

routing
order picking
replenishment

Many competing industry solutions:

Amazon, Dematic, Genzebach,
Gray Orange, Swisslog

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 6 / 38

Motivation

Robotic intra-logistic

Robotics systems for logistics and warehouse
automation based on hundreds of

mobile robots
movable shelves

Main tasks: order fulfillment, i.e.

routing
order picking
replenishment

Many competing industry solutions:

Amazon, Dematic, Genzebach,
Gray Orange, Swisslog

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 6 / 38

Motivation

Robotic intra-logistic

Robotics systems for logistics and warehouse
automation based on hundreds of

mobile robots
movable shelves

Main tasks: order fulfillment, i.e.

routing
order picking
replenishment

Many competing industry solutions:

Amazon, Dematic, Genzebach,
Gray Orange, Swisslog

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 6 / 38

Motivation

Robotic intra-logistic in ASP
routing

time(1..horizon).

direction((X,Y)) :- X=-1..1, Y=-1..1, |X+Y|=1.

nextto((X,Y),(X’,Y’),(X+X’,Y+Y’)) :- position((X,Y)), direction((X’,Y’)), position((X+X’,Y+Y’)).

{ move(R,D,T) : direction(D) } 1 :- isRobot(R), time(T).

position(R,C,T) :- move(R,D,T), position(R,C’,T-1), nextto(C’,D,C).

:- move(R,D,T), position(R,C ,T-1), not nextto(C ,D,_).

position(R,C,T) :- position(R,C,T-1), not move(R,_,T), isRobot(R), time(T).

moveto(C’,C,T) :- nextto(C’,D,C), position(R,C’,T-1), move(R,D,T).

:- moveto(C’,C,T), moveto(C,C’,T).

:- { position(R,C,T) : isRobot(R) } > 1, position(C), time(T).

processed(O,A) :- ordered(O,A), shelved(S,A), position(S,C,0), position(R,C,horizon), isRobot(R).

processed(O) :- isOrder(O), processed(O,A) : ordered(O,A).

:- not processed(O), isOrder(O).

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 7 / 38

Motivation

Robotic intra-logistic in ASP
routing to shelves

time(1..horizon).

direction((X,Y)) :- X=-1..1, Y=-1..1, |X+Y|=1.

nextto((X,Y),(X’,Y’),(X+X’,Y+Y’)) :- position((X,Y)), direction((X’,Y’)), position((X+X’,Y+Y’)).

{ move(R,D,T) : direction(D) } 1 :- isRobot(R), time(T).

position(R,C,T) :- move(R,D,T), position(R,C’,T-1), nextto(C’,D,C).

:- move(R,D,T), position(R,C ,T-1), not nextto(C ,D,_).

position(R,C,T) :- position(R,C,T-1), not move(R,_,T), isRobot(R), time(T).

moveto(C’,C,T) :- nextto(C’,D,C), position(R,C’,T-1), move(R,D,T).

:- moveto(C’,C,T), moveto(C,C’,T).

:- { position(R,C,T) : isRobot(R) } > 1, position(C), time(T).

processed(O,A) :- ordered(O,A), shelved(S,A), position(S,C,0), position(R,C,horizon), isRobot(R).

processed(O) :- isOrder(O), processed(O,A) : ordered(O,A).

:- not processed(O), isOrder(O).

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 7 / 38

Motivation

Robotic intra-logistic

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 8 / 38

Motivation

Robotic intra-logistic in ASP
routing + transport + delivery

time(1..horizon).

direction((X,Y)) :- X=-1..1, Y=-1..1, |X+Y|=1.

nextto((X,Y),(X’,Y’),(X+X’,Y+Y’)) :- position((X,Y)), direction((X’,Y’)), position((X+X’,Y+Y’)).

{ move(R,D,T) : direction(D) ;

pickup(R,S,T) : isShelf(S) ;

putdown(R,S,T) : isShelf(S) } 1 :- isRobot(R), time(T).

waits(R,T) :- not pickup(R,_,T), not putdown(R,_,T), not move(R,_,T), isRobot(R), time(T).

position(R,C,T) :- move(R,D,T), position(R,C’,T-1), nextto(C’,D,C).

:- move(R,D,T), position(R,C ,T-1), not nextto(C, D,_).

carries(R,S,T) :- pickup(R,S,T), position(R,C,T-1), position(S,C ,T-1).

:- pickup(R,S,T), carries(R,_,T-1).

:- pickup(R,S,T), carries(_,S,T-1).

:- pickup(R,S,T), position(R,C,T-1), position(S,C’,T-1), C != C’.

:- putdown(R,S,T), not carries(R,S,T-1).

serves(R,S,P,T) :- position(R,C,T), carries(R,S,T), position(P,C), isStation(P).

position(R,C,T) :- position(R,C,T-1), not move(R,_,T), isRobot(R), time(T).

carries(R,S,T) :- carries(R,S,T-1), not putdown(R,_,T), time(T).

position(S,C,T) :- position(R,C,T), carries(R,S,T).

position(S,C,T) :- position(S,C,T-1), not carries(_,S,T), isShelf(S), time(T).

moveto(C’,C,T) :- nextto(C’,D,C), position(R,C’,T-1), move(R,D,T).

:- moveto(C’,C,T), moveto(C,C’,T), C < C’.

:- { position(R,C,T) : isRobot(R) } > 1, position(C), time(T).

:- { position(S,C,T) : isShelf(S) } > 1, position(C), time(T).

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 9 / 38

Motivation

Robotic intra-logistic

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 10 / 38

Introduction

Outline

1 Motivation

2 Introduction

3 Language

4 Semantics

5 Compilation

6 Systems

7 Summary

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 11 / 38

Introduction

Motivation

Formal accounts of dynamic systems

temporal logics
calculi for action and change

Answer Set Programming (ASP)
Temporal equilibrium logic

language of LTL
complexity beyond LTL
infinite traces

Action languages

static and dynamic laws
same complexity as ASP
finite traces

Proposal Temporal equilibrium logic over finite traces

∼ LTLf by G. De Giacomo and M. Vardi (2013)

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 12 / 38

Introduction

Motivation

Formal accounts of dynamic systems

temporal logics
calculi for action and change

Answer Set Programming (ASP)
Temporal equilibrium logic

language of LTL
complexity beyond LTL
infinite traces

Action languages

static and dynamic laws
same complexity as ASP
finite traces

Proposal Temporal equilibrium logic over finite traces

∼ LTLf by G. De Giacomo and M. Vardi (2013)

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 12 / 38

Introduction

Motivation

Formal accounts of dynamic systems

temporal logics
calculi for action and change

Answer Set Programming (ASP)
Temporal equilibrium logic

language of LTL
complexity beyond LTL
infinite traces

Action languages

static and dynamic laws
same complexity as ASP
finite traces

Useful for representing and reasoning dynamic knowledge?

Proposal Temporal equilibrium logic over finite traces

∼ LTLf by G. De Giacomo and M. Vardi (2013)

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 12 / 38

Introduction

Motivation

Formal accounts of dynamic systems

temporal logics
calculi for action and change

Answer Set Programming (ASP)
Temporal equilibrium logic

language of LTL
complexity beyond LTL
infinite traces

Action languages

static and dynamic laws
same complexity as ASP
finite traces

Useful for representing and reasoning dynamic knowledge?

Proposal Temporal equilibrium logic over finite traces

∼ LTLf by G. De Giacomo and M. Vardi (2013)

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 12 / 38

Introduction

Motivation

Formal accounts of dynamic systems

temporal logics
calculi for action and change

Answer Set Programming (ASP)
Temporal equilibrium logic

language of LTL
complexity beyond LTL
infinite traces

Action languages

static and dynamic laws
same complexity as ASP
finite traces

Useful for representing and reasoning dynamic knowledge?

Proposal Temporal equilibrium logic over finite traces

∼ LTLf by G. De Giacomo and M. Vardi (2013)

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 12 / 38

Introduction

Motivation

Formal accounts of dynamic systems

temporal logics
calculi for action and change

Answer Set Programming (ASP)
Temporal equilibrium logic

language of LTL
complexity beyond LTL
infinite traces

Action languages

static and dynamic laws
same complexity as ASP
finite traces

Proposal Temporal equilibrium logic over finite traces

∼ LTLf by G. De Giacomo and M. Vardi (2013)

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 12 / 38

Introduction

Motivation

Formal accounts of dynamic systems

temporal logics
calculi for action and change

Answer Set Programming (ASP)
Temporal equilibrium logic

language of LTL
complexity beyond LTL
infinite traces

Action languages

static and dynamic laws
same complexity as ASP
finite traces

Proposal Temporal equilibrium logic over finite traces

∼ LTLf by G. De Giacomo and M. Vardi (2013)

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 12 / 38

Language

Outline

1 Motivation

2 Introduction

3 Language

4 Semantics

5 Compilation

6 Systems

7 Summary

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 13 / 38

Language

Regular formulas

∗

Formulas

ϕ ::= a | ⊥ | ϕ1 ⊗ ϕ2

where

a is an atom
⊗ is a binary Boolean connective among →,∧,∨

Defined connectives

> = ¬⊥
¬ϕ = ϕ→ ⊥
ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

∗ in the logic of Here-and-There (Heyting’32; Gödel’32)

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 14 / 38

Language

Regular formulas∗

Formulas

ϕ ::= a | ⊥ | ϕ1 ⊗ ϕ2

where

a is an atom
⊗ is a binary Boolean connective among →,∧,∨

Defined connectives

> = ¬⊥
¬ϕ = ϕ→ ⊥
ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

∗ in the logic of Here-and-There (Heyting’32; Gödel’32)

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 14 / 38

Language

Temporal formulas

Temporal operators

past • for previous
S for since
T for trigger

future ◦ for next
U for until
R for release

Temporal formulas

ϕ ::= a | ⊥ | ϕ1 ⊗ ϕ2 | •ϕ | ϕ1 S ϕ2 | ϕ1 T ϕ2 | ◦ϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2

Defined operators

�ϕ = ⊥ T ϕ always before
�ϕ = > S ϕ eventually before
I = ¬•> initial

•̂ϕ = •ϕ ∨ I weak previous

�ϕ = ⊥ R ϕ always afterward
♦ϕ = >U ϕ eventually afterward
F = ¬◦> final

◦̂ϕ = ◦ϕ ∨ F weak next

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 15 / 38

Language

Temporal formulas

Temporal operators

past • for previous
S for since
T for trigger

future ◦ for next
U for until
R for release

Temporal formulas

ϕ ::= a | ⊥ | ϕ1 ⊗ ϕ2 | •ϕ | ϕ1 S ϕ2 | ϕ1 T ϕ2 | ◦ϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2

Defined operators

�ϕ = ⊥ T ϕ always before
�ϕ = > S ϕ eventually before
I = ¬•> initial

•̂ϕ = •ϕ ∨ I weak previous

�ϕ = ⊥ R ϕ always afterward
♦ϕ = >U ϕ eventually afterward
F = ¬◦> final

◦̂ϕ = ◦ϕ ∨ F weak next

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 15 / 38

Language

Examples

“If we shoot twice with a gun that was never loaded,
it will eventually fail.”

�(shoot ∧ •�shoot ∧�unloaded → ♦fail)

“Why does shooting a loaded gun fail in unloading it?”

�(F→ ¬¬(shoot ∧ •loaded ∧ loaded))

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 16 / 38

Semantics

Outline

1 Motivation

2 Introduction

3 Language

4 Semantics

5 Compilation

6 Systems

7 Summary

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 17 / 38

Semantics

From models to traces

Alphabet Set A of atoms

Trace A sequence 〈Hi 〉λi=0 of sets Hi ⊆ A

finite if λ < ω
infinite if λ = ω

Notation

We often abbreviate 〈Hi 〉λi=0 by H
H ≤ H′ if Hi ⊆ H ′

i for i = 0..λ

HT -Trace A sequence 〈Hi ,Ti 〉λi=0 of pairs st Hi ⊆ Ti ⊆ A for i = 0..λ

Notation We abbreviate 〈Hi ,Ti 〉λi=0 by 〈H,T〉
Note H ≤ T

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 18 / 38

Semantics

From models to traces

Alphabet Set A of atoms

Model A set H ⊆ A of atoms

Trace A sequence 〈Hi 〉λi=0 of sets Hi ⊆ A

finite if λ < ω
infinite if λ = ω

Notation

We often abbreviate 〈Hi 〉λi=0 by H
H ≤ H′ if Hi ⊆ H ′

i for i = 0..λ

HT -Trace A sequence 〈Hi ,Ti 〉λi=0 of pairs st Hi ⊆ Ti ⊆ A for i = 0..λ

Notation We abbreviate 〈Hi ,Ti 〉λi=0 by 〈H,T〉
Note H ≤ T

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 18 / 38

Semantics

From models to traces

Alphabet Set A of atoms

Model A set H ⊆ A of atoms

HT -Model A pair 〈H,T 〉 of set of atoms st H ⊆ T ⊆ A

Trace A sequence 〈Hi 〉λi=0 of sets Hi ⊆ A

finite if λ < ω
infinite if λ = ω

Notation

We often abbreviate 〈Hi 〉λi=0 by H
H ≤ H′ if Hi ⊆ H ′

i for i = 0..λ

HT -Trace A sequence 〈Hi ,Ti 〉λi=0 of pairs st Hi ⊆ Ti ⊆ A for i = 0..λ

Notation We abbreviate 〈Hi ,Ti 〉λi=0 by 〈H,T〉
Note H ≤ T

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 18 / 38

Semantics

From models to traces

Alphabet Set A of atoms

Trace A sequence 〈Hi 〉λi=0 of sets Hi ⊆ A

finite if λ < ω
infinite if λ = ω

Notation

We often abbreviate 〈Hi 〉λi=0 by H
H ≤ H′ if Hi ⊆ H ′

i for i = 0..λ

HT -Trace A sequence 〈Hi ,Ti 〉λi=0 of pairs st Hi ⊆ Ti ⊆ A for i = 0..λ

Notation We abbreviate 〈Hi ,Ti 〉λi=0 by 〈H,T〉
Note H ≤ T

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 18 / 38

Semantics

From models to traces

Alphabet Set A of atoms

Trace A sequence 〈Hi 〉λi=0 of sets Hi ⊆ A
finite if λ < ω
infinite if λ = ω

Notation

We often abbreviate 〈Hi 〉λi=0 by H
H ≤ H′ if Hi ⊆ H ′

i for i = 0..λ

HT -Trace A sequence 〈Hi ,Ti 〉λi=0 of pairs st Hi ⊆ Ti ⊆ A for i = 0..λ

Notation We abbreviate 〈Hi ,Ti 〉λi=0 by 〈H,T〉
Note H ≤ T

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 18 / 38

Semantics

From models to traces

Alphabet Set A of atoms

Trace A sequence 〈Hi 〉λi=0 of sets Hi ⊆ A
finite if λ < ω
infinite if λ = ω

Notation

We often abbreviate 〈Hi 〉λi=0 by H
H ≤ H′ if Hi ⊆ H ′

i for i = 0..λ

HT -Trace A sequence 〈Hi ,Ti 〉λi=0 of pairs st Hi ⊆ Ti ⊆ A for i = 0..λ

Notation We abbreviate 〈Hi ,Ti 〉λi=0 by 〈H,T〉
Note H ≤ T

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 18 / 38

Semantics

From models to traces

Alphabet Set A of atoms

Trace A sequence 〈Hi 〉λi=0 of sets Hi ⊆ A
finite if λ < ω
infinite if λ = ω

Notation

We often abbreviate 〈Hi 〉λi=0 by H
H ≤ H′ if Hi ⊆ H ′

i for i = 0..λ

HT -Trace A sequence 〈Hi ,Ti 〉λi=0 of pairs st Hi ⊆ Ti ⊆ A for i = 0..λ

Notation We abbreviate 〈Hi ,Ti 〉λi=0 by 〈H,T〉
Note H ≤ T

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 18 / 38

Semantics

From models to traces

Alphabet Set A of atoms

Trace A sequence 〈Hi 〉λi=0 of sets Hi ⊆ A
finite if λ < ω
infinite if λ = ω

Notation

We often abbreviate 〈Hi 〉λi=0 by H
H ≤ H′ if Hi ⊆ H ′

i for i = 0..λ

HT -Trace A sequence 〈Hi ,Ti 〉λi=0 of pairs st Hi ⊆ Ti ⊆ A for i = 0..λ

Notation We abbreviate 〈Hi ,Ti 〉λi=0 by 〈H,T〉
Note H ≤ T

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 18 / 38

Semantics

Satisfaction of regular formulas

An HT -trace 〈H,T〉 of length λ over alphabet A satisfies a temporal
formula ϕ at time point k = 0..λ, k 6= ω, written 〈H,T〉, k |= ϕ,
if the following conditions hold:

1 〈H,T〉, k 6|= ⊥
2 〈H,T〉, k |= a iff a ∈ Hk , for any atom a ∈ A
3 〈H,T〉, k |= ϕ ∧ ψ iff 〈H,T〉, k |= ϕ and 〈H,T〉, k |= ψ

4 〈H,T〉, k |= ϕ ∨ ψ iff 〈H,T〉, k |= ϕ or 〈H,T〉, k |= ψ

5 〈H,T〉, k |= ϕ→ ψ iff 〈H′,T〉, k 6|= ϕ or 〈H′,T〉, k |= ψ,
for all H′ ∈ {H,T}

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 19 / 38

Semantics

Satisfaction of temporal formulas

•ϕ
ϕ

ϕ S ψ
ψ

ψ ϕ ϕ

ϕ T ψ
ψ ψ

ψ ψ ψ, φ

◦ϕ
ϕ

ϕU ψ
ψ

ϕ ϕ ψ

ϕ R ψ

ψ ψ

ψ ψ ψ,ϕ

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 20 / 38

Semantics

Satisfaction of temporal formulas

6 〈H,T〉, k |= •ϕ iff k > 0 and 〈H,T〉, k−1 |= ϕ

7 〈H,T〉, k |= ϕ S ψ iff for some j = 0..k , we have 〈H,T〉, j |= ψ and
〈H,T〉, i |= ϕ for all i = j+1..k

8 〈H,T〉, k |= ϕ T ψ iff for all j = 0..k , we have 〈H,T〉, j |= ψ or
〈H,T〉, i |= ϕ for some i = j+1..k

9 〈H,T〉, k |= ◦ϕ iff k < λ and 〈H,T〉, k+1 |= ϕ

10 〈H,T〉, k |= ϕU ψ iff for some j = k..λ, we have 〈H,T〉, j |= ψ and
〈H,T〉, i |= ϕ for all i = k ..j−1

11 〈H,T〉, k |= ϕ R ψ iff for all j = k ..λ, we have 〈H,T〉, j |= ψ or
〈H,T〉, i |= ϕ for some i = k ..j−1.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 21 / 38

Semantics

Satisfaction of temporal formulas

6 〈H,T〉, k |= •ϕ iff k > 0 and 〈H,T〉, k−1 |= ϕ

7 〈H,T〉, k |= ϕ S ψ iff for some j = 0..k , we have 〈H,T〉, j |= ψ and
〈H,T〉, i |= ϕ for all i = j+1..k

8 〈H,T〉, k |= ϕ T ψ iff for all j = 0..k , we have 〈H,T〉, j |= ψ or
〈H,T〉, i |= ϕ for some i = j+1..k

9 〈H,T〉, k |= ◦ϕ iff k < λ and 〈H,T〉, k+1 |= ϕ

10 〈H,T〉, k |= ϕU ψ iff for some j = k..λ, we have 〈H,T〉, j |= ψ and
〈H,T〉, i |= ϕ for all i = k ..j−1

11 〈H,T〉, k |= ϕ R ψ iff for all j = k ..λ, we have 〈H,T〉, j |= ψ or
〈H,T〉, i |= ϕ for some i = k ..j−1.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 21 / 38

Semantics

Satisfaction of temporal formulas

6 〈H,T〉, k |= •ϕ iff k > 0 and 〈H,T〉, k−1 |= ϕ

7 〈H,T〉, k |= ϕ S ψ iff for some j = 0..k , we have 〈H,T〉, j |= ψ and
〈H,T〉, i |= ϕ for all i = j+1..k

8 〈H,T〉, k |= ϕ T ψ iff for all j = 0..k , we have 〈H,T〉, j |= ψ or
〈H,T〉, i |= ϕ for some i = j+1..k

9 〈H,T〉, k |= ◦ϕ iff k < λ and 〈H,T〉, k+1 |= ϕ

10 〈H,T〉, k |= ϕU ψ iff for some j = k..λ, we have 〈H,T〉, j |= ψ and
〈H,T〉, i |= ϕ for all i = k ..j−1

11 〈H,T〉, k |= ϕ R ψ iff for all j = k ..λ, we have 〈H,T〉, j |= ψ or
〈H,T〉, i |= ϕ for some i = k ..j−1.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 21 / 38

Semantics

Satisfaction of (defined) temporal formulas

12 〈H,T〉, k |= >

13 〈H,T〉, k |= �ϕ iff 〈H,T〉, i |= ϕ for all i = 0..k

14 〈H,T〉, k |= �ϕ iff 〈H,T〉, i |= ϕ for some i = 0..k

15 〈H,T〉, k |= I iff k = 0

16 〈H,T〉, k |= •̂ϕ iff k = 0 or 〈H,T〉, k−1 |= ϕ

17 〈H,T〉, k |= �ϕ iff 〈H,T〉, i |= ϕ for any i = k ..λ

18 〈H,T〉, k |= ♦ϕ iff 〈H,T〉, i |= ϕ for some i = k..λ

19 〈H,T〉, k |= F iff k = λ

20 〈H,T〉, k |= ◦̂ϕ iff k = λ or 〈H,T〉, k+1 |= ϕ

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 22 / 38

Semantics

Emerging temporal logics

Temporal logic of here-and-there (THT)

Finale
♦F enforces finite traces
¬♦F enforces infinite traces

Excluded middle (EM)
�(a ∨ ¬a) for each atom a ∈ A

Temporal logics stronger than THT
THTω = THT + {¬♦F}
THTf = THT + {♦F}
LTL = THT + {(EM)}
LTLω = THTω + {(EM)}
LTLf = THTf + {(EM)}

Note All variants of THT are monotonic !

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 23 / 38

Semantics

Emerging temporal logics

Temporal logic of here-and-there (THT)

Finale
♦F enforces finite traces
¬♦F enforces infinite traces

Excluded middle (EM)
�(a ∨ ¬a) for each atom a ∈ A

Temporal logics stronger than THT
THTω = THT + {¬♦F}
THTf = THT + {♦F}
LTL = THT + {(EM)}
LTLω = THTω + {(EM)}
LTLf = THTf + {(EM)}

Note All variants of THT are monotonic !

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 23 / 38

Semantics

Emerging temporal logics

Temporal logic of here-and-there (THT)

Finale
♦F enforces finite traces
¬♦F enforces infinite traces

Excluded middle (EM)
�(a ∨ ¬a) for each atom a ∈ A

Temporal logics stronger than THT
THTω = THT + {¬♦F}
THTf = THT + {♦F}
LTL = THT + {(EM)}
LTLω = THTω + {(EM)}
LTLf = THTf + {(EM)}

Note All variants of THT are monotonic !

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 23 / 38

Semantics

Emerging temporal logics

Temporal logic of here-and-there (THT)

Finale
♦F enforces finite traces
¬♦F enforces infinite traces

Excluded middle (EM)
�(a ∨ ¬a) for each atom a ∈ A

Temporal logics stronger than THT
THTω = THT + {¬♦F}
THTf = THT + {♦F}
LTL = THT + {(EM)}
LTLω = THTω + {(EM)}
LTLf = THTf + {(EM)}

Note All variants of THT are monotonic !

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 23 / 38

Semantics

Emerging temporal logics

Temporal logic of here-and-there (THT)

Finale
♦F enforces finite traces
¬♦F enforces infinite traces

Excluded middle (EM)
�(a ∨ ¬a) for each atom a ∈ A

Temporal logics stronger than THT
THTω = THT + {¬♦F}
THTf = THT + {♦F}
LTL = THT + {(EM)}
LTLω = THTω + {(EM)}
LTLf = THTf + {(EM)}

Note All variants of THT are monotonic !

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 23 / 38

Semantics

Emerging temporal logics

Temporal logic of here-and-there (THT)

Finale
♦F enforces finite traces
¬♦F enforces infinite traces

Excluded middle (EM)
�(a ∨ ¬a) for each atom a ∈ A

Temporal logics stronger than THT
THTω = THT + {¬♦F}
THTf = THT + {♦F}
LTL = THT + {(EM)}
LTLω = THTω + {(EM)}
LTLf = THTf + {(EM)}

Note All variants of THT are monotonic !

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 23 / 38

Semantics

Temporal equilibrium logic (TEL)

A total HT -trace 〈T,T〉 is an equilibrium model of
a temporal formula ϕ, if

1 〈T,T〉, 0 |= ϕ,
2 〈H,T〉, 0 6|= ϕ for all H < T

T is called a temporal stable model of ϕ

Examples

�(¬a→ ◦a) yields

(∅ {a})ω in TELω and (∅ {a})+ in TELf

�(¬◦a→ a) ∧�(◦a→ a) yields

no model in TELω but ({a})+ in TELf

�♦a yields

no model in TELω but (∅∗{a}) in TELf

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 24 / 38

Semantics

Temporal equilibrium logic (TEL)

A total HT -trace 〈T,T〉 is an equilibrium model of
a temporal formula ϕ, if

1 〈T,T〉, 0 |= ϕ,
2 〈H,T〉, 0 6|= ϕ for all H < T

T is called a temporal stable model of ϕ

Examples

�(¬a→ ◦a) yields

(∅ {a})ω in TELω and (∅ {a})+ in TELf

�(¬◦a→ a) ∧�(◦a→ a) yields

no model in TELω but ({a})+ in TELf

�♦a yields

no model in TELω but (∅∗{a}) in TELf

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 24 / 38

Semantics

Temporal equilibrium logic (TEL)

A total HT -trace 〈T,T〉 is an equilibrium model of
a temporal formula ϕ, if

1 〈T,T〉, 0 |= ϕ,
2 〈H,T〉, 0 6|= ϕ for all H < T

T is called a temporal stable model of ϕ

Examples

�(¬a→ ◦a) yields

(∅ {a})ω in TELω and (∅ {a})+ in TELf

�(¬◦a→ a) ∧�(◦a→ a) yields

no model in TELω but ({a})+ in TELf

�♦a yields

no model in TELω but (∅∗{a}) in TELf

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 24 / 38

Semantics

Temporal equilibrium logic (TEL)

A total HT -trace 〈T,T〉 is an equilibrium model of
a temporal formula ϕ, if

1 〈T,T〉, 0 |= ϕ,
2 〈H,T〉, 0 6|= ϕ for all H < T

T is called a temporal stable model of ϕ

Examples

�(¬a→ ◦a) yields

(∅ {a})ω in TELω and (∅ {a})+ in TELf

�(¬◦a→ a) ∧�(◦a→ a) yields

no model in TELω but ({a})+ in TELf

�♦a yields

no model in TELω but (∅∗{a}) in TELf

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 24 / 38

Semantics

Temporal equilibrium logic (TEL)

A total HT -trace 〈T,T〉 is an equilibrium model of
a temporal formula ϕ, if

1 〈T,T〉, 0 |= ϕ,
2 〈H,T〉, 0 6|= ϕ for all H < T

T is called a temporal stable model of ϕ

Examples

�(¬a→ ◦a) yields

(∅ {a})ω in TELω and (∅ {a})+ in TELf

�(¬◦a→ a) ∧�(◦a→ a) yields

no model in TELω but ({a})+ in TELf

�♦a yields

no model in TELω but (∅∗{a}) in TELf

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 24 / 38

Compilation

Outline

1 Motivation

2 Introduction

3 Language

4 Semantics

5 Compilation

6 Systems

7 Summary

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 25 / 38

Compilation

Normalform

Temporal literals {a,¬a,•a,¬•a | a ∈ A}
Temporal rules

initial rule B → A
dynamic rule ◦̂�(B → A)
final rule �(F→ (B → A))

where B = b1 ∧ · · · ∧ bn and A = a1 ∨ · · · ∨ am
and bi and aj are temporal literals for dynamic rules,
and regular literals for initial and final rules

Temporal logic program is a set of temporal rules

Theorem Every temporal formula ϕ can be converted into a
temporal logic program THTf -equivalent to ϕ

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 26 / 38

Compilation

Normalform

Temporal literals {a,¬a,•a,¬•a | a ∈ A}
Temporal rules

initial rule B → A
dynamic rule ◦̂�(B → A)
final rule �(F→ (B → A))

where B = b1 ∧ · · · ∧ bn and A = a1 ∨ · · · ∨ am
and bi and aj are temporal literals for dynamic rules,
and regular literals for initial and final rules

Temporal logic program is a set of temporal rules

Theorem Every temporal formula ϕ can be converted into a
temporal logic program THTf -equivalent to ϕ

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 26 / 38

Compilation

Example

◦̂�(•loaded ∧ ¬unloaded → loaded)

◦̂�(shoot ∧ •loaded ∧ loaded → goal)

�(F→ (¬goal → ⊥))

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 27 / 38

Compilation

Bounded translation

Temporal literals at time point k

τk(a) = ak τk(¬a) = ¬ak
τk(•a) = ak−1 τk(¬•a) = ¬ak−1

Temporal rules focusing on B → A at time point k

τk(r) = τk(a1) ∨ · · · ∨ τk(am)← τk(b1) ∧ · · · ∧ τk(bn)

Temporal logic program P bounded by finite length λ

τλ(P) = {τ0(r) | r ∈ I (P) }
∪ {τk(r) | r ∈ D(P), k = 1..λ }
∪ {τλ(r) | r ∈ F (P) }

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 28 / 38

Compilation

Incremental translation

Issue build τλ(P) from τλ−1(P)

Method module theory accounting for composition of logic programs

Translation as before, except for

translate final rules at time point k as

τ∗k (r) = τk(a1) ∨ · · · ∨ τk(am)← τk(b1) ∧ · · · ∧ τk(bn) ∧ ¬qk+1

add qk to each logic program at time point k

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 29 / 38

Compilation

Incremental translation

Issue build τλ(P) from τλ−1(P)

Method module theory accounting for composition of logic programs

Translation as before, except for

translate final rules at time point k as

τ∗k (r) = τk(a1) ∨ · · · ∨ τk(am)← τk(b1) ∧ · · · ∧ τk(bn) ∧ ¬qk+1

add qk to each logic program at time point k

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 29 / 38

Compilation

Incremental translation

Issue build τλ(P) from τλ−1(P)

Method module theory accounting for composition of logic programs

Translation as before, except for

translate final rules at time point k as

τ∗k (r) = τk(a1) ∨ · · · ∨ τk(am)← τk(b1) ∧ · · · ∧ τk(bn) ∧ ¬qk+1

add qk to each logic program at time point k

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 29 / 38

Systems

Outline

1 Motivation

2 Introduction

3 Language

4 Semantics

5 Compilation

6 Systems

7 Summary

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 30 / 38

Systems

tel

tel

is a preprocessor
implements the bounded translation

tel is solver independent

Example

{ → a, ◦̂�(•a→ b), �(F→ (¬b → ⊥)) }

is represented as

a.

#next^ #always+ ((# previous a) -> b).

#always+ (#final -> (~ b -> #false)).

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 31 / 38

Systems

tel

tel

is a preprocessor
implements the bounded translation

tel is solver independent

Example

{ → a, ◦̂�(•a→ b), �(F→ (¬b → ⊥)) }

is represented as

a.

#next^ #always+ ((# previous a) -> b).

#always+ (#final -> (~ b -> #false)).

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 31 / 38

Systems

telingo

telingo

extends the full modeling language of clingo
by temporal operators
implements the incremental translation

telingo is an extension of clingo

Primes allow for expressing (iterated) next and previous operators

•p(a) and ◦q(b) can be expressed by ’p(a) and q’(b)

Example “A robot cannot lift a box unless its capacity exceeds
the box’s weight plus that of all held objects”

:- lift(R,B), robot(R), box(B,W),

#sum { C : capacity(R,C);

-V,O : ’holding(R,O,V) } < W.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 32 / 38

Systems

telingo

telingo

extends the full modeling language of clingo
by temporal operators
implements the incremental translation

telingo is an extension of clingo

Primes allow for expressing (iterated) next and previous operators

•p(a) and ◦q(b) can be expressed by ’p(a) and q’(b)

Example “A robot cannot lift a box unless its capacity exceeds
the box’s weight plus that of all held objects”

:- lift(R,B), robot(R), box(B,W),

#sum { C : capacity(R,C);

-V,O : ’holding(R,O,V) } < W.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 32 / 38

Systems

telingo

telingo

extends the full modeling language of clingo
by temporal operators
implements the incremental translation

telingo is an extension of clingo

Primes allow for expressing (iterated) next and previous operators

•p(a) and ◦q(b) can be expressed by ’p(a) and q’(b)

Example “A robot cannot lift a box unless its capacity exceeds
the box’s weight plus that of all held objects”

:- lift(R,B), robot(R), box(B,W),

#sum { C : capacity(R,C);

-V,O : ’holding(R,O,V) } < W.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 32 / 38

Systems

telingo’s temporal logic programs

initial rule B → A

dynamic rule ◦̂�(B → A)

final rule �(F→ (B → A))

always rule �(B → A)

Example { → a, ◦̂�(•a→ b), �(F→ (¬b → ⊥)) }
can alternatively be represented as

#program initial.

a.

#program dynamic.

b :- ’a.

#program final.

:- not b.

#program always.

a :- &initial.

b :- ’a.

:- not b, &final.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 33 / 38

Systems

telingo’s temporal logic programs

initial rule B → A

dynamic rule ◦̂�(B → A)

final rule �(F→ (B → A))

always rule �(B → A)

Example { → a, ◦̂�(•a→ b), �(F→ (¬b → ⊥)) }
can alternatively be represented as

#program initial.

a.

#program dynamic.

b :- ’a.

#program final.

:- not b.

#program always.

a :- &initial.

b :- ’a.

:- not b, &final.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 33 / 38

Systems

telingo’s temporal logic programs

initial rule B → A #program initial.

dynamic rule ◦̂�(B → A) #program dynamic.

final rule �(F→ (B → A)) #program final.

always rule �(B → A) #program always.

Example { → a, ◦̂�(•a→ b), �(F→ (¬b → ⊥)) }
can alternatively be represented as

#program initial.

a.

#program dynamic.

b :- ’a.

#program final.

:- not b.

#program always.

a :- &initial.

b :- ’a.

:- not b, &final.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 33 / 38

Systems

telingo’s temporal logic programs

initial rule B → A #program initial.

dynamic rule ◦̂�(B → A) #program dynamic.

final rule �(F→ (B → A)) #program final.

always rule �(B → A) #program always.

Example { → a, ◦̂�(•a→ b), �(F→ (¬b → ⊥)) }

can alternatively be represented as

#program initial.

a.

#program dynamic.

b :- ’a.

#program final.

:- not b.

#program always.

a :- &initial.

b :- ’a.

:- not b, &final.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 33 / 38

Systems

telingo’s temporal logic programs

initial rule B → A #program initial.

dynamic rule ◦̂�(B → A) #program dynamic.

final rule �(F→ (B → A)) #program final.

always rule �(B → A) #program always.

Example { → a, ◦̂�(•a→ b), �(F→ (¬b → ⊥)) }
can alternatively be represented as

#program initial.

a.

#program dynamic.

b :- ’a.

#program final.

:- not b.

#program always.

a :- &initial.

b :- ’a.

:- not b, &final.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 33 / 38

Systems

telingo’s temporal formulas

&initial I

&final F

&tel { ϕ } for temporal formula ϕ

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 34 / 38

Systems

telingo’s temporal formulas

&initial I

&final F

&tel { ϕ } for temporal formula ϕ

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 34 / 38

Systems

telingo’s temporal formulas

&initial I

&final F

&tel { ϕ } for temporal formula ϕ

Temporal operators

past • previous
S since
T trigger

� eventually before
� always before

•̂ weak previous

future ◦ next
U until
R release

♦ eventually afterward
� always afterward

◦̂ weak next

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 34 / 38

Systems

telingo’s temporal formulas

&initial I

&final F

&tel { ϕ } for temporal formula ϕ

Temporal operators

past < previous
<? since
<* trigger

<? eventually before
<* always before
<: weak previous

future > next
>? until
>* release

>? eventually afterward
>* always afterward
>: weak next

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 34 / 38

Systems

telingo’s temporal formulas

&initial I

&final F

&tel { ϕ } for temporal formula ϕ

Temporal operators

past < previous
<? since
<* trigger

<? eventually before
<* always before
<: weak previous

future > next
>? until
>* release

>? eventually afterward
>* always afterward
>: weak next

Boolean operators & | ~

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 34 / 38

Systems

telingo’s temporal formulas

&initial I

&final F

&tel { ϕ } for temporal formula ϕ

Example

shoot ∧�unloaded ∧ •�shoot → ⊥

can be expressed as

:- shoot , &tel { <* unloaded & < <? shoot }.

or

:- &tel { shoot & <* unloaded & < <? shoot }.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 34 / 38

Systems

Wolf, sheep, and cabbage

#program always.

item(w;s;c).
opp(l,r). opp(r,l).
eats(w,s). eats(s,c).

#program initial.

at(b,l).
at(X,l) :- item(X). % everything at the left bank

#program dynamic.

at(X,A) :- ’at(X,B), m(X), opp(A,B). % effect axiom for moving item X

at(b,A) :- ’at(b,B), opp(A,B). % boat is always moving

at(X,A) :- ’at(X,A), not at(X,B), opp(A,B). % inertia

0 { m(X) : item(X) } 1. % choose moving at most one item

#program always.

:- m(X), ’at(b,A), ’at(X,B), opp(A,B). % we cannot move item X if at the opposite bank

:- eats(X,Y), at(X,A), at(Y,A), opp(A,B), at(b,B). % we cannot leave them alone

#program final.

:- at(X,l).

#show m/1.

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 35 / 38

Systems

telingo’s solution
$ telingo version 1.0

Reading from wolf.tel

Solving ...

Solving ...

Solving ...

Solving ...

Solving ...

Solving ...

Solving ...

Solving ...

Answer: 1

State 0:

State 1: m(s)

State 2:

State 3: m(w)

State 4: m(s)

State 5: m(c)

State 6:

State 7: m(s)

Answer: 2

State 0:

State 1: m(s)

State 2:

State 3: m(c)

State 4: m(s)

State 5: m(w)

State 6:

State 7: m(s)

SATISFIABLE

Models : 2

Calls : 8

Time : 0.156s (Solving: 0.00s)

CPU Time : 0.028s

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 36 / 38

Summary

Outline

1 Motivation

2 Introduction

3 Language

4 Semantics

5 Compilation

6 Systems

7 Summary

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 37 / 38

Summary

Summary

TELf
combines HT and LTL on finite traces
reducible to a normal form close to logic programs
naturally accounts for dynamic KRR
advocates past temporal operators
offers embeddings for action languages
readily implementable via ASP

ASP-based systems for TELf
https://github.com/potassco/telingo

https://github.com/potassco/tel

What’s next? Linear dynamic ASP (cf. forthcoming KR’18 paper)

extension of TELf
offers Golog-style control

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 38 / 38

https://github.com/potassco/telingo
https://github.com/potassco/tel

Summary

Summary

TELf
combines HT and LTL on finite traces
reducible to a normal form close to logic programs
naturally accounts for dynamic KRR
advocates past temporal operators
offers embeddings for action languages
readily implementable via ASP

ASP-based systems for TELf
https://github.com/potassco/telingo

https://github.com/potassco/tel

What’s next? Linear dynamic ASP (cf. forthcoming KR’18 paper)

extension of TELf
offers Golog-style control

Torsten Schaub (KRR@UP) Temporal Answer Set Programming on Finite Traces 38 / 38

https://github.com/potassco/telingo
https://github.com/potassco/tel

	Motivation
	Introduction
	Language
	Semantics
	Compilation
	Systems
	Summary

