Reasoning about Trust and Aboutness in the Context of Communication

Robert Demolombe

March 2016

Demolombe Reasoning about Trust and Aboutness in the Context of Con

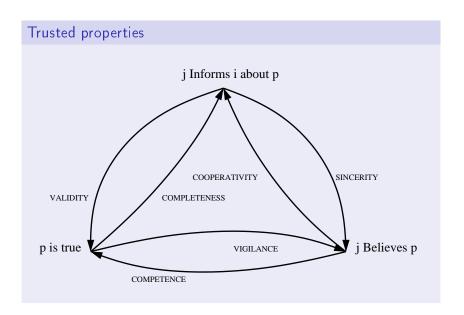
< 同 > < 三 > < 三 >

Definition of restricted trust

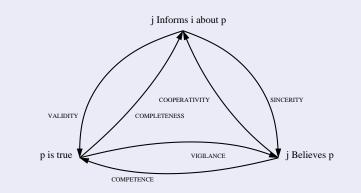
The truster i trusts the trustee j in some property about proposition p

Definition of restricted trust

- The truster i trusts the trustee j in some property about proposition p
- Giulietta trusts Romeo in his sincerity about the fact that Giulietta is very pretty


Definition of restricted trust

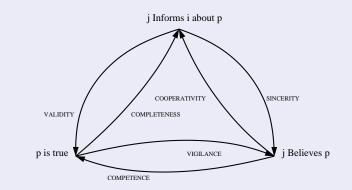
- The truster i trusts the trustee j in some property about proposition p
- Giulietta trusts Romeo in his sincerity about the fact that Giulietta is very pretty
- Giulietta believes that: IF Romeo told her that she is very pretty, THEN Romeo believes that she is very pretty


Trusted properties

Form: IF ... Then ... Relationships between:

- j Informs i about p : Inf_{j,i}(p)
- j Believes p : Bel_j(p)
- ▶ p is true : p

Trusted properties



p: Giulietta is very pretty
SINCERITY: If Romeo Informs Giulietta about p, Then Romeo Believes p
COMPETENCE: If Romeo Believes p, Then p is true
VALIDITY: If Romeo Informs Giulietta about p, Then p is true

ヘロア 人間ア 人間ア 人間アー

3

Trusted properties


```
p: Giulietta is very pretty
VIGILANCE: If p is true, Then Romeo Believes p
COOPERATIVITY: If Romeo Believes p, Then Romeo Informs
Giulietta about p
COMPLETENESS: If p is true, Then Romeo Informs Giulietta
about p
```

p: Classical Propositional Calculus $Bel_i(p)$: KD logic $Inf_{j,i}(p)$: Classical Modal (not Normal) Logic $TrustSinc(i,j,p) \stackrel{\text{def}}{=} Bel_i(Inf_{j,i}(p) \rightarrow Bel_j(p))$ Assumption: perfect communication (OBS) $Inf_{j,i}\phi \rightarrow Bel_i(Inf_{j,i}\phi)$ (OBS') $\neg Inf_{i,i}\phi \rightarrow Bel_i(\neg Inf_{i,i}\phi)$

Formal example

q = Giulietta is in ToulouseRomeo trusts Giulietta in her completeness about q $Bel_R(q \rightarrow Inf_{G,R}(q))$ $\neg Inf_{G,R}(q)$ Entails: $Bel_R(\neg q)$

Formal example

```
q = \text{Giulietta is in Toulouse}

Romeo trusts Giulietta in her completeness about q

Bel_R(q \rightarrow Inf_{G,R}(q))

\neg Inf_{G,R}(q)

Entails: Bel_R(\neg q)

Romeo trusts X in his sincerity about q

Bel_R(Inf_{X,R}(q) \rightarrow Bel_X(q))

Inf_{X,R}(q)

Entails: Bel_R(Bel_X(q))

Entails: Bel_R(\neg q \land Bel_X(q))
```

Trust extended to topics (with Andrew J.I. Jones)

- Giulietta trusts Romeo in his validity about every sentence about the topic modal logic
- If sentence 'p' is about modal logic, then Giulietta trusts Romeo in his validity about the truth of the proposition represented by p

What does it mean that sentence 'p' is about topic t?

Trust extended to topics

"sentence 'p' is about topic t" does not depend on the truth value of proposition pit depends on its meaning

Trust extended to topics

```
"sentence 'p' is about topic t"
does not depend on the truth value of proposition p
it depends on its meaning
```

- "KD is decidable" is about modal logic
- "KD is not decidable" is about modal logic
- "KD is decidable or KD is not decidable" is about modal logic
- "Toulouse is in Spain or Toulouse is not in Spain" is NOT about modal logic

A(t,'p'): the proposition named by 'p' is about the topic t Language of CPC. atoms of CPC + A(t,'p')Models. Two sorts for the interpretation of A(t,'p')Satisfiability. Bochvar's 3 valued logic: true, false, undefined true \lor undefined = undefined

Valid schema: If $\models p \leftrightarrow q$ and 'p' and 'q' same atoms Then $\models A(t,'p') \leftrightarrow A(t,'q')$ Additional schema: $A(t,'p') \rightarrow A(t,'\neg p')$

Valid schema: If $\models p \leftrightarrow q$ and 'p' and 'q' same atoms Then $\models A(t,'p') \leftrightarrow A(t,'q')$ Additional schema: $A(t,'p') \rightarrow A(t,'\neg p')$ Rejected schema: $A(t,'p \land q') \rightarrow A(t,'p') \lor A(t,'q')$ Example: t: bigamy 'p': Romeo is married with Giulietta 'q': Romeo is married with Venus

<ロ> (四) (四) (三) (三) (三)

Trust extended to individuals (with Luis Fariñas del Cerro)

 Romeo trusts Giulietta in her validity about all the sentences which inform about Sorolla

イロト イポト イヨト イヨト 三日

 If p informs about Sorolla, then Romeo trusts Giulietta in her validity about p

What does it means that p informs about Sorolla?

Intuition

p = Sorolla is a Spanish painter p informs about Sorolla $\neg p$ informs about Sorolla $p \lor \neg p$ does not inform about Sorolla

Intuition

p = Sorolla is a Spanish painter p informs about Sorolla $\neg p$ informs about Sorolla $p \lor \neg p$ does not inform about Sorolla q = Sorolla is a Spanish painter or Picasso is a Spanish painter q informs about Sorolla

p does NOT inform about Sorolla iff In any model If we change the truth value of the tuples which contain d and d is the interpretation of Sorolla (or a term which contains Sorolla), Then the truth value of p does not change (except if d is also the interpretation of another term)

Topics and Individuals

Giulietta trusts Romeo in his validity about the sentences which *inform about Gödel* and which are *about the topic* Logic

Topics and Individuals

Giulietta trusts Romeo in his validity about the sentences which inform about Gödel and which are about the topic Logic **Possible extension** Sentences which inform about a relationship between two individuals Romeo loves Giulietta: YES Romeo leaves in Toulouse and AND Giulietta leaves in Chiclana: NO There exist a city x (Romeo leaves in x AND Giulietta leaves in x): YES

Graded Trust (with Leyla Amgoud)

What does it mean that *i* strongly trusts *j*? Strength of *i*'s belief? Regularity level of $Inf_{j,i}(p) \rightarrow Bel_j(p)$? Combination of both: $Bel_i^g(Inf_{j,i}(p) \Rightarrow^h Bel_j(p))$

Conclusion

Many interesting topics to be investigated

Conclusion

Many interesting topics to be investigated with Luis

