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Logical Reasoning and Computation: Essays dedicated to Luis Fariñas del Cerro

Preface

Near the end of 2015, Luis Fariñas del Cerro officially retired as directeur de recherche in the CNRS
and became an Emeritus researcher of the CNRS. The present volume is a Festschrift in his honour
to celebrate Luis’s achievements in science, both as an outstanding scholar as well as a remark-
able and highly successful organiser, administrator and leader in science and technology policy and
management.

The volume contains 15 scientific contributions by 21 authors, among them Luis’s colleagues,
former students and friends. They will be presented at an international workshop, Logical Reasoning
and Computation, to be held at IRIT, Université Paul Sabatier, Toulouse, on March 3-4, 2016. The
volume includes a short scientific biography, written by Philippe Balbiani and Andreas Herzig, that
describes the many different areas of logic and computation where Luis has made significant advances
to the field.

Despite setting a tight deadline for contributions, we received a fantastic response from all the
scholars we contacted. It became clear that Luis is held in great affection and esteem by his students,
co-authors and close collaborators. This is also witnessed by the breadth of Luis’s geographical reach:
this volume alone includes scholars from 10 different countries and 4 continents. Besides scientific
papers, we also received contributions in the form of personal reminiscences, poems and even a song,
that will be presented and performed at the celebratory workshop.

Since Luis has been slowly winding down his administrative responsibilities, he has recently been
able to dedicate a greater effort to research once again, entering with great enthusiasm new and
exciting fields such as computational biology. Luis, we surely speak on behalf of all the contributors
here to wish you enormous success and enjoyment in your new role and we look forward to many
more years of inspiring cooperation with you in the future.

February 2016
Pedro Cabalar
Martín Dieguez
Andreas Herzig
David Pearce
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Logic, Leadership and Enthusiasm:
a Short Biography of Luis Fariñas del Cerro

Philippe Balbiani, Andreas Herzig

Institut de recherche en informatique de Toulouse
Université de Toulouse

Luis studied at the Universidad Complutense de Madrid, where he obtained a Licenciatura in
mathematics in 1972, and later a PhD in mathematics (1982). In between he had joined in 1977
the Laboratoire d’Informatique pour les Sciences de l’Homme of the Centre National de Recherche
Scientifique (CNRS) as a CNRS researcher. The lab being based in Marseille and headed by Mario
Borillo, he prepared his PhD under the supervision of Maurice Nivat at Université Paris VII [1].
When he defended his thesis “Déduction automatique et logique modale” in 1981, he and part of the
Marseille lab had just moved to Toulouse (1980). The small group soon became part of the Langages
et Systèmes Informatiques lab (1982) where Luis defended his habilitation in 1985.

The lab was merged in 1989 with three other Toulouse labs into the Institut de Recherche en
Informatique de Toulouse (IRIT). Luis had already served as the head of its scientific board for
a couple of years when he became IRIT’s director in 1999. During the 12 years of his reign (which
ended in 2011) he managed to restructure the lab in depth and to greatly improve its organisation
and research output. He managed to bundle the 20+ teams into 7 themes and to enlarge IRIT’s
patronages to all four public universities of Toulouse. His success was confirmed by the top “A+”
mark that was given to IRIT in 2010 by national evaluation agency AERES.

Beyond IRIT, Luis was in charge of the scientific strategy of Université Toulouse III Paul
Sabatier (2008-2012), which hosts the main part of IRIT. He was a driving force in the construction
of the Université de Toulouse (now Université Fédérale de Toulouse) which federates the four already
mentioned Toulouse universities and of which he was elected president of the senate in 2012.

Luis made an exceptional career in the CNRS: recruited as chargé de recherche, he became
directeur de recherche in 1991 and was subsequently promoted to première classe and classe ex-
ceptionnelle. He served as directeur adjoint of the newly created CNRS department Sciences et
Technologies de l’Information et de la Communication where he was in charge of international re-
lations (2001-2004) and took up service recently as directeur adjoint scientifique at the Institut des
Sciences de l’Information et de leurs Interactions in 2015.

During his career Luis founded the Applied Logic Group, which merged with the “Langue, Raison-
nement, Calcul group in 2000. The group produced an important number of PhD theses that are
detailed below and grew rapidly. Andreas Herzig was recruited as a chargé de recherche CNRS in
1990 (directeur de recherche since 2004) and Philippe Balbiani in 1991 (directeur de recherche since
2007). Olivier Gasquet obtained a mâıtre de conférences position at UPS in 1994 (professor since
2005) and Dominique Longin a chargé de recherche CNRS position in 2000. When Luis became
director of IRIT, the LILaC group was first headed by Andreas Herzig (2000-2004) and then by
Philippe Balbiani (2004-2015). It is now lead by Dominique Longin and Emiliano Lorini.

In 1990 Luis founded the Journal of Applied Non-Classical Logics (JANCL) and acted as its
Editor-in-Chief until 2014. The JANCL is a major forum for publications covering all aspects of
non-classical logic that is well-established in the fields of philosophical logic, mathematical logic,
theoretical computer science and artificial intelligence. Since its creation the JANCL was a protag-
onist in the domain of non-classical logics, promoting the spreading of novel approaches and their
application.

Luis was involved in numerous projects on the national and European level, including the ES-
PRIT Basic Research Actions “Mechanising Deduction in Logics of Practical Reasoning” (MEDLAR)
and “Defeasible Reasoning and Uncertainty Management” (DRUMS). He also set up the Laboratoire
Européen Associé (LEA) “French-Spanish Laboratory for Advanced Studies in Information, Rep-
resentation and Processing” with Universidad Politécnica de Madrid. Luis was elected a member
of the Académie des Sciences Inscriptions et Belles Lettres de Toulouse in 2014. His international
reputation was confirmed by his election as an ECCAI Fellow in 2005.

Luis’s work covers many areas of logic, centered around non-classical logics. In the sequel we are
going to enumerate the most important topics.

Proof methods and computability of non-classical logics. Everything started with Luis’s PhD thesis,
where he was the first to extend the resolution method to modal logics. This was prolonged in several



publications with Patrice Enjalbert, as well as in the PhD thesis of Marta Cialdea (now professor
at Università degli Studi Roma Tre) about Herbrand property for modal logics [2], Andreas Herzig’s
and Olivier Gasquet’s PhD theses about the translation into first-order logic [3,4]. By the end of the
90s and together with Olivier Gasquet and Andreas Herzig, he got back to a more traditional proof
method for modal logics and started an in-depth investigation of tableaux method. The result was
a very general definition of tableaux procedure based on graph rewriting, ultimately leading to the
implemented tableaux theorem proving platform LoTREC1 and to a tableaux-based introductory
book to modal logics [5].

Further work of Luis included work on paraconsistency, in the framework of the PhD of Mamede
Lima Marques (now professor at Universidade de Brasilia) [6] and in collaboration with Walter
Carnielli from the Unversidade de Campinas, Brazil. Moreover, the proof theory of Epstein’s depen-
dence logic was investigated in the PhD thesis of Valérie Lugardon [7].

Logic programming. During his years in Marseille, Luis interacted with Alain Colmerauer and his
group who at that time were inventing logic programming and PROLOG. This inspired Luis to inves-
tigate extensions of logic programming languages by modal operators. This lead to the metaprogram-
ming framework MOLOG, whose implementation TARSKI was done during the PhD of Jean-Marc
Alliot (now professor at IRIT) [8].

Luis had started an in-depth logical investigation of the notion of negation as failure with Philippe
Balbiani’s PhD thesis [9] whose approach was based on the Gödel-Löb provability logic.

Luis recently got back to the logical foundations of logic programming and more specifically
Answer-Set Programming (ASP): during the PhD of Ezgi Iraz Su he investigated the modal logic
behind equilibrium logic as well as modal extensions of ASP [10]. Further research was done with
his Spanish colleagues Pedro Cabalar, David Pearce and Agust́ın Valverde [11,12].

In the 90s, Luis obtained several results on modal logic programming together with his Finnish
colleague Martti Penttonen [13,14]. A byproduct of this line of work was a general method of pro-
ducing undecidable modal logics (‘grammar logics’) [15].

Non-monotonic reasoning, conditional logics, belief revision. The work on negation as failure in
logic programming opened a research avenue towards non-monotonic reasoning mechanisms. Luis’s
approach was based on conditional logics. While standard modal logics have unary modal opera-
tors, conditional logics have binary modal operators relating two formulas (an antecedent and a
consequent), whence the relation to non-monotonic consequence relations.

The PhD thesis of Philippe Lamarre’s (now professor at Institut National des Sciences Appliquées
in Lyon) provided an embedding of the main existing conditional logics into standard modal logics,
which came as a surprise [16].

The PhD thesis of Gabriella Crocco (now professor in the philosophy department of Aix-Marseille
Université contributed a thorough proof-theoretical analysis of conditional logics and the non-
monotonic reasoning principles [17]. This also lead to the publication of an edited volume [18] that
became a standard reference.

During these years Luis participated in a group of French researchers who conducted a compar-
ative evaluation of non-monotonic reasoning formalisms under the name Léa Sombé, a rewriting of
the French default reasoning statement “Les A sont B” (“the As are Bs”) [19,20,21].

Reasoning about time, actions and knowledge. While the modal operators Luis investigated in the
80s were rather abstract, he subsequently started to work on its most important applications, viz.
the logical modelling of reasoning about time, actions and knowledge.

Things started with a textbook on temporal logics for program verification Luis wrote together
with Eric Audureau and Patrice Enjalbert [22] (Editions Masson). and Säıd Soulhi’s PhD thesis on
reasoning about knowledge and mutual knowledge [23].

The PhD thesis of Pierre Bieber (now researcher at Office national d’Etudes et de Recherches
Aérospatiales (ONERA)) provided a first integrated account of logics of action and knowledge (pre-
cisely, a non-monotonic version: autoepistemic logic) in view of the verification of cryptographic
protocols [24].

The PhD thesis of Christel Seguin (now researcher at ONERA) extended the picture towards
reasoning about intentions and planning [25]. This line of work was later taken up and applied to
speech act theory in the PhD thesis of Dominique Longin, in the framework of a project with France
Télécom on human-machine dialogue systems [26].

1 https://www.irit.fr/Lotrec
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The PhD thesis of Nathalie Chetcuti-Sperandio (now mâıtre de conférences at Université d’Artois)
related the temporal reasoning line of work to proof methods by investigating tableaux for duration
calculus [27].

Further work included Data Analysis Logic DAL that Luis defined with Ewa Orlowska and that
provided a link with rough set theory [28].

Spatial reasoning. In parallel with his investigations on conditional reasoning and tableaux-based
approaches in non-classical logics, in the early 90s Luis became interested by geometrical reasoning.
After he presented an unforgettable talk on that subject to his research group, together with Philippe
Balbiani he started to investigate the possibility of defining a modal logic of space with points and
lines playing the role of possible worlds and with geometrical relationships between them playing
the role of accessibility relations. Then, together with Tinko Tinchev and Dimiter Vakarelov, they
produced in 1994-1997 the first modal logic of incidence geometries [29]. This modal logic has been,
since that time, the starting point of several other modal logics for point-line geometry. At the same
time, Luis became interested by qualitative spatial and temporal reasoning (QSTR). At that time,
the investigation of QSTR amounted to research on Region Connection Calculus and Allen’s calculus.
Together with Philippe Balbiani and their PhD student Jean-François Condotta (PhD in 2000, now
professor in Artois University), Luis developed many new qualitative frameworks for reasoning about
space and time: the rectangle calculus as a two-dimensional variant of Allen’s calculus, the block
algebra, etc. These qualitative frameworks are, by now, parts of many robot navigation systems
based on QSTR [30]. Finally, Luis’ investigations in geometrical reasoning has also given rise to
the book about the mechanization of geometry Eléments de géométrie mécanique [31] written in
collaboration with Philippe Balbiani, Vincent Dugat and the PhD student Anne Lopez [32]. Further
work included the PhD thesis of Claudio Masolo (now CNR researcher at LOA-ISTC Italy) on the
ontology of space and time [33].

Classical logic. Together with Robert Demolombe, Luis worked on abduction problems in classical
first-order logic, alias consequence finding, as well as on the notion of topic in first-order logic.
They recently applied the resulting techniques to reasoning about metabolic networks, within the
framework of the PhD thesis of Naji Obeid [34]. This line of work is currently pursued with Jean-Marc
Alliot and Mart́ın Dieguez.
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l’action. PhD thesis, Université Paul Sabatier, Toulouse (1996)

8. Alliot, J.M.: TARSKI, une machine parallèle pour implanter des extensions de PROLOG. PhD thesis,
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17. Crocco, G.: Fondements logiques du raisonnement contextuel. PhD thesis, Université Paul Sabatier,
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notion de topique. Thèse de doctorat, Université Paul Sabatier, Institut de Recherche en Informatique
de Toulouse (IRIT), Toulouse, France (1999)

27. Chetcuti-Sperandio, N.: Dduction automatique en calcul des dures base sur la mthode des tableaux .
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Dedicated to Luis Fariñas del Cerro

Abstract. We investigate complex algebras of the form ⟨2X , ⟨R⟩, [[S]]⟩ arising from a frame⟨X,R,S⟩ where S ⊆ R, and exhibit their abstract algebraic and logical counterparts.

1 Introduction

Semantics of non-classical logics is provided either in terms of a class of algebras or a class of relational
systems (frames. The theme of finding an equivalent (i.e. validating the same formulas) frame (resp.
and algebraic) semantics once an algebraic (resp. frame) semantics is given has an extensive literature.
One part of the problem – passing from algebraic to frame semantics – is a subject of correspondence
theory [1]. Correspondence theory is well developed for logics whose algebraic semantics is based on
distributive lattices, possibly with additional operators, and require first order definable relations in
the corresponding frames such as standard modal logics, intuitionistic logic, some intermediate and
relevant logics. Less is known for logics based on not necessarily distributive lattices. Equivalence
of the two semantics can be obtained from a discrete duality between the two underlying classes of
structures [2].

In this paper we discuss the problem of finding a frame semantics for logics whose algebraic
semantics is based on what we call PS-algebras. These are Boolean algebras endowed with a normal
and additive operator (a possibility operator) and a co-normal and co-additive operator (a sufficiency
operator).

A special class of PS-algebras are the mixed algebras (MIAs). These were introduced in [3] and
further investigated in [4]. The possibility part and the sufficiency part are related to each other by
a second order property expressed in terms of their respective canonical extensions. We provide an
equivalent characterization of mixed algebras in terms of the relations in their canonical frames.

Mixed algebras are not first order definable, and the complex algebras of their corresponding
frames are not necessarily MIAs, so, MIAs and their frames treated as semantic structures of a
formal language do not provide equivalent semantics for that language. However, for some axiomatic
extensions of PS-algebras there are frames such that the equivalence holds. We discuss two of such
classes, namely, the class of right ideal MIAs and the class of weak MIAs (wMIAs).We provide several
universal-algebraic properties of those classes, in particular, we exhibit the equational class generated
by the class of wMIAs.

Furthermore, we present the logic K# whose algebraic semantics is provided by the class wMIA,
and its frame semantics by the class of wMIA-frames. This logic is based on the logic K˜ of [5],
presented in a form which makes the connection to the algebras clearer. In turn, K˜ was developed
based on the observation that the well known logic K as well as its sufficiency counterpart K⋆
presented in [6] are lacking in expressive power, and “necessity and sufficiency split the modal theory
into two dual branches each of which spreads over less than a half of the Boolean realm” [5]. Finally,
⋆ Ivo Düntsch gratefully acknowledges support by the Natural Sciences and Engineering Research Council of
Canada Discovery Grant 250153 and by the Bulgarian National Fund of Science, contract DID02/32/2009.⋆⋆ Ewa Orłowska gratefully acknowledges partial support from the National Science Centre project DEC-
2011/02/A/HS1/00395.⋆ ⋆ ⋆ Tinko Tinchev gratefully acknowledges support by the Bulgarian National Fund of Science, contract
DID02/32/2009.



using the copying technique of [7] and the concept of special models of [5], we show that one frame
relation suffices for wMIA frames: If ⟨B,f, g⟩ is a wMIA, then there is a frame ⟨X,R⟩ such that⟨B,f, g⟩ and a subalgebra of ⟨2X , ⟨R⟩, [[R]]⟩ satisfy the same equations.

2 General definitions and notation

To make the paper more self–contained we recall a few concepts from Universal Algebra. Readers
familiar with these concepts may skip straight to Section 3. Let F be a signature of algebras, and X
be a set of variables. The set TF(X) of F terms over X is the smallest set such that

1. X ⊆ TF(X),
2. Each constant is in TF(X),
3. If t1, . . . , tn ∈ TF(X) and f ∈ F is n – ary, then f(t1, . . . , tn) ∈ TF(X).
In the sequel we assume that F is fixed, and we shall just write T (X); we also assume that T (X) ≠ ∅.
Furthermore, T (X) will be regarded as the absolutely free algebra over X with signature F, see [8,
p.68].

If t is a term, we write t(x1, . . . , xn) if the variables occurring in t are among x1, . . . , xn. Suppose
that A is an algebra of type F. If t(x1, . . . , xn) ∈ T (X), the term function tA ∶ An → A is defined as
follows:

T1. If t is the variable xi, then tA(a1, . . . , an) = ai.
T2. If f ∈ F is k – ary and t has the form f(t1(x1, . . . , xn), . . . , tk(x1, . . . , xn)), then

tA(a1, . . . , an) = fA(tA1 (a1, . . . , an), . . . , tAk (a1, . . . , an)). (2.1)

tA is called the term function of t (over A). For later use we mention the following fact:

Lemma 1. [8, Theorem 10.3] Let A,B be algebras of the same type and t(x1, . . . , xn) be an n –
ary term.

1. Suppose that ai, bi ∈ A for 1 ≤ i ≤ n and θ is a congruence on A. If aiθbi for all 1 ≤ i ≤ n, then
tA(a1, . . . , an)θtA(b1, . . . , bn).

2. If f ∶ A→B is a homomorphism, then

f(tA(a1, . . . , an)) = tB(f(a1), . . . , f(an)).
An equation (or identity, see [8, Definition 11.1]) is an expression of the form τ ≈ σ, where

τ, σ ∈ T (X). If τ, σ ∈ T (X) are n – ary and a1, . . . , an ∈ A, then the tuple ⟨a1, . . . , an⟩ satisfies the
equation τ ≈ σ if τA(a1, . . . , an) = σA(a1, . . . , an). If τA(a1, . . . , an) = σA(a1, . . . , an) for all tuples⟨a1, . . . , an⟩ ∈ An, we say that τ ≈ σ is true in A, written as A ⊧ τ ≈ σ.

As no generality is lost, we shall tacitly assume that a class of algebras is closed under isomorphic
copies. If K is a class of algebras of the same type we denote by H(K) the collection of all homo-
morphic images of K, by S(K) the collection of all subalgebras of K, and by P(K) the collection of
all products of elements of K. The equational class HSP(K) generated by K is denoted by Eq(K).
Con(A) is the set of all congruences on the algebra A.

Suppose that B = ⟨B,∧,∨,¬,0,1⟩ is a Boolean algebra. With some abuse of language we will
usually identify algebras with their base set if no confusion can arise. Note that a = b if and only if¬((a ∧ ¬b) ∨ (b ∧ ¬a)) = 1, and thus for each equation τ ≈ σ there is an equation τ ′ ≈ 1 such that
B ⊧ τ ≈ σ if and only if B ⊧ τ ′ ≈ 1.

If A ⊆ B and f ∶ B → B is a function, then f[A] = {f(a) ∶ a ∈ A} is the image of A under f . The
dual of f is the mapping f∂ ∶ B → B defined by f∂(a) = ¬f(¬a).

For the background of universal algebra we refer the reader to [8] and for frame and algebraic
semantics of modal logics to [9] or [10].
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3 Possibility and sufficiency algebras

In this section we review the concepts of possibility and sufficiency algebras and their canonical
extensions.

Traditionally, a modality – or an operator [11] – on a Boolean algebra is a function f ∶ B → B
which satisfies f(0) = 0 (normal), and f(a ∨ b) = f(a) ∨ f(b) (additive) for all a, b ∈ B. In recent
years, however, many more operators with different properties have been considered in the study of
modal logics, so that the term may mean almost any intensional operator on B. In this paper we
shall be concerned with the two modalities possibility and sufficiency as well as operators definable
from these and the Boolean operators.

A possibility operator on B is a normal and additive function f ∶ B → B; its dual f∂ is called a
necessity operator. Clearly, a mapping g ∶ B → B is a necessity operator if and only if g(1) = 1 and
g(a ∧ b) = g(a) ∧ g(b) for all a, b, ∈ B. If f is a possibility operator on B, the pair ⟨B,f⟩ is called
a possibility algebra. Dually, if u is a necessity operator on B, the pair ⟨B,u⟩ is called a necessity
algebra.

A sufficiency operator on B is a function g ∶ B → B which satisfies g(0) = 1 (co–normal), and
g(a∨b) = g(a)∧g(b) (co–additive) for all a, b ∈ B. If g is a sufficiency operator on B, the pair ⟨B,g⟩ is
called a sufficiency algebra. To the best of our knowledge, sufficiency operators were first introduced
to modal logic by [12]. In some sense, a sufficiency operator is the “complementary counterpart” to
a possibility operator. This will be made clearer in the next section.

For a Boolean algebra B, we let Bc = 2Ult(B) be its canonical extension [11], and h ∶ B ↪ Bc be
the Stone embedding, i.e. h(a) = {F ∈ Ult(B) ∶ a ∈ F}. If f, g ∶ B → B are operators on B, then two
canonical extensions fσ, gπ ∶ Bc → Bc are defined by

fσ(a) =⋃{⋂{h(f(x)) ∶ x ∈ F} ∶ F ∈ a}, (3.1)
gπ(a) =⋂{⋃{h(g(x)) ∶ x ∈ F} ∶ F ∈ a}. (3.2)

In particular, if F ∈ Ult(B), then
fσ({F}) =⋂{h(f(x)) ∶ x ∈ F}, (3.3)
gπ({F}) =⋃{h(g(x)) ∶ x ∈ F}. (3.4)

There are representation theorems both for possibility and sufficiency algebras:

Theorem 1. Suppose that B is a Boolean algebra.

1. [11] If f is a possibility operator on B, then, fσ is a possibility operator on Bc, and the Stone
mapping h ∶ ⟨B,f⟩↪ ⟨Bc, fσ⟩ is an embedding.

2. [3] If g is a sufficiency operator on B, then, gπ is a sufficiency operator on Bc, and the Stone
mapping h ∶ ⟨B,g⟩↪ ⟨Bc, gπ⟩ is an embedding.

In particular, h(f(a)) = fσ(h(a)) and h(g(a)) = gπ(h(a)) for all a ∈ B.

If f is a possibility operator on B and g a sufficiency operator, we call the structure ⟨B,f, g⟩ a
PS–algebra, and ⟨Bc, fσ, gπ⟩ its canonical extension. Theorem 1 tells us that ⟨Bc, fσ, gπ⟩ is a PS–
algebra, and h is an embedding of PS–algebras. For the rest of this section, we suppose that ⟨B,f, g⟩
is a PS–algebra.

If g is an operator on B we let g∗(a) = g(¬a). Note that g∗ and g are mutually term definable.
Furthermore, g is a sufficiency operator if and only if g∗ is a necessity operator.

Theorem 2. There is a 1 – 1 correspondence between PS – congruences on B and (Boolean) filters
which are closed under f∂ and g∗.
Proof. It is well known (see e.g. [13]) that each Boolean congruence θ is uniquely determined by a
filter Fθ, where

Fθ = {a ∈ B ∶ aθ1},
and, conversely, each filter F uniquely determines a congruence θF on B by

aθF b⇐⇒ (∃t)[t ∈ F and a ∧ t = b ∧ t].
Furthermore, it was shown in [14] that a Boolean congruence θ preserves a necessity operator m if
and only if Fθ is closed under m, i.e. a ∈ Fθ implies m(a) ∈ Fθ. Clearly, θ preserves f if and only if
it preserves f∂ , and θ preserves g if and only if it preserves g∗. Since both f∂ and g∗ are necessity
operators, the claim follows.
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Define a mapping u ∶ B → B by

u(a) = f∂(a) ∧ g∗(a) = f∂(a) ∧ g(¬a). (3.5)

Since both f∂ and g∗ are necessity operators, so is u.
A filter F of B is called a u – filter, if a ∈ F implies u(a) ∈ F for all a ∈ B. Theorem 2 now

immediately implies

Corollary 1. There is a 1 – 1 correspondence between congruences on B and u – filters.

Proof. Let θ be a congruence on ⟨B,f, g⟩; then, Fθ is closed under f∂ and g∗ by Theorem 2. Thus,
if a ∈ Fθ, then f∂(a), g∗(a) ∈ Fθ, and thus, u(a) = f∂(a) ∧ g∗(a) ∈ Fθ, since Fθ is a filter.

Conversely, let F be a u – filter and a ∈ F . Then, u(a) = f∂(a) ∧ g∗(a) ∈ F by the hypothesis,
and thus, f∂(a), g∗(a) ∈ F since F is a filter. Hence, θF is a PS – congruence, again by Theorem 2.

4 Algebras and frames

The set of all binary relations on a set X is denoted by Rel(X); if R1, . . . ∈ Rel(X), the structure⟨X,R1, . . .⟩ is called a frame. For x ∈ X, we let R(x) = {z ∈ X ∶ xRz}. Relational composition and
converse are denoted by ; , respectively by ˘; furthermore, 1′ is the identity relation.

For R ∈ Rel(X), we define two operators on 2X by

⟨R⟩(S) = {x ∶ (∃y)[xRy and y ∈ S]} = {x ∶ R(x) ∩ S ≠ ∅}. (4.1)[[R]](S) = {x ∶ (∀y)[y ∈ S ⇒ xRy]} = {x ∶ S ⊆ R(x)}. (4.2)

We also set

[R](S) = ⟨R⟩∂(S) = {x ∶ R(x) ⊆ S}. (4.3)

It is well known that ⟨R⟩ is a complete possibility operator on the power set algebra of X [11], and
that [[R]] is a complete sufficiency operator [3]. Note that

[[R]](S) = [−R](X ∖ S), (4.4)

so that it may be said that [R] talks about the properties of R, while [[R]] talks about the properties
of −R (see also the discussion in [12]).

The structure ⟨2X , ⟨R⟩⟩ is called the full possibility (P) complex algebra of ⟨X,R⟩, denoted by
CmP (X,R) or just by CmP (X) if R is understood. Similarly, CmS(X) = ⟨2X , [[R]]⟩ is the full
sufficiency (S) complex algebra of ⟨X,R⟩, and CmPS(X) = ⟨2X , ⟨R⟩, [[R]]⟩ is the full PS - complex
algebra of ⟨X,R⟩. A P (S, PS ) complex algebra is an algebra (isomorphic to) a subalgebra of some⟨2X , ⟨R⟩⟩ (⟨2X , [[R]]⟩, ⟨2X , ⟨R⟩, [[R]]⟩).

The question arises whether the canonical extension of a possibility or a sufficiency algebra is
isomorphic to a structure ⟨2U , ⟨R⟩⟩ or ⟨2U , [[R]]⟩ for some frame ⟨U,R⟩. In both cases, the answer
is positive, and the relation in question is uniquely determined:

Theorem 3. 1. [11, Theorem 3.10] If ⟨B,f⟩ is a possibility algebra, then there is, up to isomor-
phism, a unique relation Rf on Ult(B) such that ⟨Rf ⟩ = fσ. This relation is defined by

FRfG⇐⇒ F ∈ fσ({G}). (4.5)

The structure ⟨Ult(B),Rf ⟩ is called the P – canonical frame of ⟨B,f⟩.
2. [3, Proposition 7] If ⟨B,g⟩ is a sufficiency algebra, then there is, up to isomorphism, a unique

relation Rg on Ult(B) such that [[Rg]] = gπ. This relation is defined by

FRgG⇐⇒ F ∈ gπ({G}). (4.6)

The structure ⟨Ult(B),Rg⟩ is called the S – canonical frame of ⟨B,g⟩.
The PS – canonical frame of a PS–algebra ⟨B,f, g⟩ is the structure⟨Ult(B),Rf ,Rg⟩. Theorem 1 and Theorem 3 together now give us the following result:

Theorem 4. Every possibility (sufficiency, PS) algebra is embeddable into the full complex algebra
of its canonical frame.
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This shows that the variety of PS–algebras is canonical in the sense of [15].
Finally in this section we mention an alternative description of the relations Rf and Rg of (4.5),

respectively, (4.6) which does not explicitly use the canonical extension of B:

Lemma 2. 1. ⟨F,G⟩ ∈ Rf ⇐⇒ f[G] ⊆ F .
2. ⟨F,G⟩ ∈ Rg ⇐⇒ F ∩ g[G] ≠ ∅.
Proof. 1. “⇒”: This has been known for some time, see e.g. [16]. Suppose that ⟨F,G⟩ ∈ Rf , i.e.
F ∈ fσ({G}). Then, for all x ∈ G, f(x) ∈ F by (3.3), which implies f[G] ⊆ F .

“⇐”: Suppose f[G] ⊆ F ; we need to show that F ∈ ⋂{h(f(x)) ∶ x ∈ G}. Let x ∈ G; then, f(x) ∈ F
by our hypothesis, and thus, F ∈ h(f(x)).

2. “⇒”: Let ⟨F,G⟩ ∈ Rg, i.e. F ∈ gπ({G}). By (3.4), there is some x ∈ G such that g(x) ∈ F , in
other words, F ∩ g[G] ≠ ∅.

“⇐”: Let F ∩ g[G] ≠ ∅, say, x ∈ G and g(x) ∈ F . Then, F ∈ h(g(x)) ⊆ ⋃{h(f(y)) ∶ y ∈ G} =
gπ({G}).
5 The class MIA

Suppose that ⟨B,f, g⟩ is a PS–algebra. In the general definition, there is no relation between f and
g, and between their associated canonical frames ⟨Ult(B),Rf ⟩ and ⟨Ult(B),Rg⟩. Of course, such
connections may exist: Consider, for example, the condition

f(a) = ¬g(a). (5.1)

It is not hard to see that the corresponding frame ⟨Ult(B),Rf ,Rg⟩ satisfies the condition

Rf = Ult(B)2 ∖Rg, (5.2)

and that the respective representations for algebras satisfying (5.1) and frames satisfying (5.2) hold
(see also Proposition 8 of [3]).

While the possibility algebras are the algebraic models of the logic K and the sufficiency algebras
are the algebraic models of its sufficiency counterpart K⋆ [6], both are limited in their powers of
expression if considered separately. For example, ⟨2X , ⟨R⟩⟩ can express reflexivity by

R is reflexive ⇐⇒ Y ⊆ ⟨R⟩(Y ),
but it cannot express irreflexivity of R. On the other hand, ⟨2X , [[R]]⟩ can express irreflexivity by

R is irreflexive ⇐⇒ [[R]](Y ) ⊆ −Y,
but not reflexivity. Neither ⟨2X , ⟨R⟩⟩ nor ⟨2X , [[R]]⟩ can express antisymmetry on its own, but
together they can [4]:

R is antisymmetric ⇐⇒ ⟨R⟩([[R]](−Y ) ∩ Y ) ⊆ Y.
Thus, it is worthwhile to consider the PS–algebras ⟨2X , ⟨R⟩, [[R]]⟩ obtained from a frame ⟨X,R⟩
with a single distinguished relation. Let us denote the class of complex algebras of this form by
CMIA.

Next, let us step back and consider a PS–algebra B = ⟨B,f, g⟩ as a starting point. In [3], B
was called a mixed algebra (MIA), if in its PS – canonical frame ⟨Ult(B),Rf ,Rg⟩, the relations Rf
and Rg were equal, and therefore, the full complex algebra of its canonical frame was of the form⟨2Ult(B), ⟨R⟩, [[R]]⟩, where R = Rf = Rg; in other words, it is in CMIA. The following result now
follows immediately from Theorem 3:

Theorem 5. [11,3] Let ⟨B,f, g⟩ be a PS–algebra. Then, there is a relation R on Ult(B) such that⟨R⟩ = fσ and [[R]] = gπ if and only if fσ({G}) = gπ({G}) for all G ∈ Ult(B). Furthermore, the
relation R is unique with this property.

The class of mixed algebras is denoted by MIA. Note that the MIA condition Rf = Rg is a second
order axiom. Indeed, it was shown in [4] that MIA is not first order axiomatizable. Observe that B
is a MIA if and only if for all F,G ∈ Ult(B),

f[G] ⊆ F ⇐⇒ F ∩ g[G] ≠ ∅ (5.3)
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by Lemma 2.
Starting with a MIA leads to a canonical frame ⟨Ult(B),Rf ,Rg⟩ with Rf = Rg. On the other

hand, using a frame ⟨X,R⟩ as a starting point and considering the complex algebra ⟨2X , ⟨R⟩, [[R]]⟩
will not necessarily lead to a MIA since not every algebra in CMIA is in MIA, as the following
example shows:

Example 1. This is based on Proposition 14 of [3]: Let X be infinite, and R = 1′. If CmPS(X) is a
MIA, then, by (4.5) and (4.6), we must have R⟨R⟩ = R[[R]].

Suppose that F,G are ultrafilters of 2X . Since R is the identity relation on X, ⟨R⟩(a) = a
for all a ⊆ X, hence, ⟨R⟩[G] ⊆ F if and only if F = G. Suppose that a ∈ G, ∣a∣ > 1. Then,
x ∈ [[R]](a)⇐⇒ a ⊆ R(x) = {x}, and it follows that [[R]](a) = ∅. Thus, if G is non principal, then
G ∩ [[R]][G] = ∅ and it follows that ⟨2X , ⟨R⟩, [[R]]⟩ does not satisfy (5.3).

Similarly, if R = (X ×X) ∖ 1′, then ⟨R⟩(a) = X for all a with ∣a∣ > 1, and thus, ⟨R⟩[G] ⊆ F for
all non–principal G ∈ Ult(2X) and all F ∈ Ult(2X); in particular, ⟨R⟩[G] ⊆ G. On the other hand,[[R]](a) =X ∖ a for all a ⊆X, so that G ∩ [[R]][G] = ∅. ◻

Thus, not every PS – complex algebra of a structure ⟨X,R⟩ is a MIA, and we cannot have a
general discrete duality theorem between PS -frames ⟨X,R,R⟩ and canonical frames of complex
algebras of ⟨2X , ⟨R⟩, [[R]]⟩.

It is unknown which class of frames ⟨X,R⟩ have a full PS–complex algebra in MIA. A general
characterization needs to be second order, since MIA is not first order axiomatizable. The only
general property we know which leads to a MIA is that of right ideal frames. Set 1 =X ×X. A binary
relation R on X is called a right ideal relation, if R ; 1 ⊆ R, and the pair ⟨X,R⟩ is called a right ideal
frame. The following observation is already (implicitly) contained in [17], p. 79:

Lemma 3. R is a right ideal relation if and only if ⟨R⟩(X) = [[R]](X).
Proof. “⇒”: Let x ∈ ⟨R⟩(X); then, R(x) ≠ ∅. If, say, xRy and z ∈ X, then xRy1z, and R ; 1 ⊆ R
implies that xRz. Hence, X ⊆ R(x), and thus, x ∈ [[R]](X). The other direction follows from Lemma
5 below.

“⇐”: Suppose that xRy and z ∈ X; we need to show that xRz. Since xRy, we have R(x) ≠ ∅,
hence, x ∈ ⟨R⟩(X). The hypothesis implies that x ∈ [[R]](X), hence, X ⊆ R(x); in particular, xRz.

A PS–algebra ⟨B,f, g⟩ is called a right ideal algebra if f(1) = g(1).
Lemma 4. A right ideal algebra ⟨B,f, g⟩ is a MIA.

Proof. We have to show the “⇒” direction of (5.3): Suppose that F,G are ultrafilters of B, and that
f[G] ⊆ F . Then, in particular, f(1) ∈ F , and thus, g(1) ∈ F since B is a right ideal algebra. Now,
1 ∈ G implies that F ∩ g[G] ≠ ∅.

Since the complex algebra of a right ideal frame is a right ideal algebra by Lemma 3, we imme-
diately obtain

Theorem 6. The PS – complex algebra of a right ideal frame ⟨X,R⟩ is a right ideal algebra.

The other part of the duality also holds:

Theorem 7. The PS – canonical frame of a right ideal algebra ⟨B,f, g⟩ is a right ideal frame.

Proof. Let X = Ult(B). In view of Lemma 5 below it suffices to show that ⟨R⟩(X) ⊆ [[R]](X).
Let F ∈ ⟨R⟩(X); then, there is some G ∈ X such that FRG. Since B is a MIA, R = Rf , and thus,
f[G] ⊆ F , in particular, f(1) ∈ F . Since B is a right ideal algebra it follows that g(1) ∈ F as well.
We need to show that F ∈ [[R]](X), in other words that X ⊆ R(F ). Let H ∈ X; then, 1 ∈ H and
g(1) ∈ F shows that F ∩ g[H] ≠ ∅, hence, FRgH.

6 The class wMIA

As the class MIA is too narrow to fully describe the properties of the class CMIA, let us start
with the properties of ⟨2X , ⟨R⟩, [[R]]⟩ ∈CMIA. The following observation shows how these algebras
differ from MIAs:
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Lemma 5. 1. For all x ∈X,

⟨R⟩({x}) = [[R]]({x}). (6.1)

2. Let A,B ⊆X such that A ∩B ≠ ∅. Then, [[R]](A) ⊆ ⟨R⟩(B).
Proof. 1. “⊆”: let y ∈ ⟨R⟩({x}), i.e. yRx. Then, {x} ⊆ R(y), which shows that y ∈ [[R]]({x}).

“⊇”: y ∈ [[R]]({x}). Then, {x} ⊆ R(y), and thus yRx. It follows that y ∈ ⟨R⟩({x}).
2. Let x ∈ A ∩B; then, {x} ⊆ A ∩B. Since [[R]] is a sufficiency operator, we have [[R]](A) ⊆[[R]]({x}, and the fact that ⟨R⟩ is a possibility operator implies ⟨R⟩({x} ⊆ ⟨R⟩(B). The conclusion

now follows from (6.1).

Note that ⟨R⟩({x}) = [[R]]({x}) only implies that in the canonical extension of CmPS(X) we
obtain that ⟨R⟩σ(F ) = [[R]]π(F ) only for principal ultrafilters F of CmPS(X). Example 1 shows
that it need not hold for non–principal ultrafilters.

These observations lead to the following definition: A weak mixed algebra (wMIA) is a PS–algebra⟨B,f, g⟩ such that

(∀a, b)[a ∧ b ≠ 0⇒ g(a) ≤ f(b)]. (6.2)

We shall denote the class of weak MIAs by wMIA. Note that, unlike MIA, the class wMIA is first
order axiomatizable, indeed, it is a universal class. There are several characterizations of weak MIAs:

Theorem 8. Let ⟨B,f, g⟩ be a PS–algebra. The following are equivalent:

1. B is a weak MIA.
2. Rg ⊆ Rf .
3. gπ({F}) ⊆ fσ({F}) for all F ∈ Ult(B).
4. (∀a ∈ B)[a ≠ 0⇒ g(a) ≤ f(a)].
Proof. 1. ⇒ 2.: Let F ∩ g[G] ≠ ∅ and a ∈ G with g(a) ∈ F . Suppose that b ∈ G; since a ∈ G as well,
we have a ∧ b ≠ 0. It follows from (6.2) that g(a) ≤ f(b), and g(a) ∈ F now implies that f(b) ∈ F .

2. ⇒ 3.: This follows immediately from the definitions of Rf and Rg in (4.5) and (4.6).
3. ⇒ 1: Suppose that a ∧ b ≠ 0, and assume that g(a) /≤ f(b), i.e. g(a) ∧ ¬f(b) ≠ 0. Then, there

are ultrafilters F,G such that g(a),¬f(b) ∈ F and a, b ∈ G. Then, F ∩ g[G] ≠ ∅, and thus, it follows
from Lemma 2(2) and the definition of Rg that F ∈ gπ({G}). Then, by the hypothesis, F ∈ fσ({G}),
and it follows from the definition of Rf and Lemma 2(1) that f[G] ⊆ F . Since b ∈ G it follows that
f(b) ∈ F , contradicting that ¬f(b) ∈ F .

Finally, we show that 4. ⇒ 1., the other direction being trivial: Suppose that 4. holds, and that
a ∧ b ≠ 0. Then, since g is antitone and f is isotone,

g(a) ≤ g(a ∧ b) 4.≤ f(a ∧ b) ≤ f(b).
This completes the proof.

Observe that Theorem 8(3) shows that every MIA is a weak MIA. Since CmPS(⟨X,R⟩) is a weak
MIA, Theorem 8(2) shows that for all ultrafilters F,G of 2X in a weak MIA

F ∩ [[R]][G] ≠ ∅⇒ ⟨R⟩[G] ⊆ F. (6.3)

Theorem 8(2) suggests that we call a PS–frame ⟨X,R,S⟩ a weak MIA frame, if S ⊆ R. Even
though we use two relations, we have a connection between R and S by S ⊆ R which is one direction
of the MIA condition. Our next result shows the correspondence between weak MIA frames and
weak MIAs:

Lemma 6. 1. The complex algebra of a weak MIA frame is a weak MIA.
2. The canonical frame of a weak MIA is a weak MIA frame.

Proof. 1. Suppose that ⟨X,R,S⟩ is a weak MIA frame. Let ∅ ≠ Y ⊆ X and x ∈ [[S]](Y ). By 8(4) it
is sufficient to show x ∈ ⟨R⟩(Y ). Since x ∈ [[S]](Y ), we obtain Y ⊆ S(x), and therefore, Y ⊆ R(x) by
the hypothesis. It now follows from Y ≠ ∅ that R(x) ∩ Y ≠ ∅, hence, x ∈ ⟨R⟩(Y ).

2. Suppose that ⟨B,f, g⟩ is a weak MIA. By Theorem 8(3) ⟨Ult(B),Rf ,Rg⟩ is a weak MIA frame.

This gives us the representation theorem:

Theorem 9. 1. Each weak MIA frame is embeddable into the canonical frame of its complex alge-
bra.

2. Each weak MIA is embeddable into the complex algebra of its canonical frame.

wMIA is closed under subalgebras and homomorphic images, but not under products, as we
shall see below.
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7 The logic K#

In this section we shall exhibit a logic whose algebraic models are weak MIAs; it is inspired by
the logic K˜ of [5]. The logic K# is a Boolean logic with operators ∧,¬,⊺, a countable set Var of
propositional variables, and two additional unary modalities ◻ and q with duals ◇ and y. Formulas
are recursively defined as usual:

1. ⊺ is a formula.
2. Each p ∈ Var is a formula.
3. If ϕ,ψ are formulas, so are ¬ϕ,ϕ ∧ ψ,◻ϕ,qϕ.
4. No other string is a formula.

The set of formulas of K# is denoted by Fml. If the variables occurring in a formula ϕ are among
p1, . . . , pn, we indicate this by writing ϕ(p1, . . . , pn). We use the usual definitions of the Boolean
connectives �,∨,→,↔. The axiom system for the modal part of K# is as follows:

K – part ◻:⎧⎪⎪⎨⎪⎪⎩
⊢ ◻(ϕ→ ψ)→ (◻ϕ→ ◻ψ),
If ⊢ ϕ then ⊢ ◻ϕ. (7.1)

K⋆ – part q:⎧⎪⎪⎨⎪⎪⎩
⊢ q¬(ϕ→ ψ)→ (q¬ϕ→ q¬ψ)
If ⊢ ϕ, then ⊢ q¬ϕ. (7.2)

Connection:{ If /⊢ (ϕ ∧ ψ)→ � then ⊢ qϕ→◇ψ.´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
wMIA

(7.3)

If Σ ⊆ Fml and ϕ ∈ Fml, then a proof (or derivation) of ϕ from Σ is a finite sequence ϕ1, . . . , ϕn
of formulas such that ϕn = ϕ, and each ϕi ∈ Σ is the result of an application of a rule to one or more
formulas occurring earlier in the sequence. In this case, we write Σ ⊢ ϕ. If Σ = ∅, then we call ϕ a
theorem of K#, and write K# ⊢ ϕ or simply ⊢ ϕ. A set Σ of formulas is called deductively closed if
and only if Σ ⊢ ϕ implies ϕ ∈ Σ for all ϕ ∈ Fml.

7.1 Frame semantics

Frame models have the form M = ⟨X,R,S, v⟩ where S ⊆ R ⊆ X ×X, and v ∶ Var → 2X is a valuation
(often called meaning function) over the propositional variables which is extended over the Boolean
operators in the usual way. With respect to the modal operators, v acts as follows:

x ∈ v(◻ϕ)⇐⇒ R(x) ⊆ v(ϕ), [R] (7.4)
x ∈ v(qϕ)⇐⇒ v(ϕ) ⊆ S(x). [[S]] (7.5)

The base of a model M = ⟨X,R,S, v⟩ is the frame ⟨X,R,S⟩; note that the base of a model is a weak
MIA frame.

We say that a formula ϕ is satisfied in M at x ∈X with respect to v, written as x ⊧v ϕ, if x ∈ v(ϕ).
ϕ is called valid in M , written as M ⊧v ϕ if x ⊧v ϕ for all x ∈ X, i.e. if v(ϕ) = X. If ⟨W,R,S⟩ is the
base of a model of K# we say that ϕ is true in ⟨W,R,S⟩, written as ⟨W,R,S⟩ ⊧ ϕ, if ⟨W,R,S, v⟩ ⊧v ϕ
for all valuations based on ⟨W,R,S⟩. If ϕ is true in all models, we write K# ⊧ ϕ.

If ⟨W,R,S⟩ is the base of a model of K#, we consider its complex algebra ⟨2W , ⟨R⟩, [[S]]⟩. By
Lemma 6, ⟨2W , ⟨R⟩, [[S]]⟩ ∈ wMIA. For a PS–algebra ⟨B,f, g⟩, the structure ⟨Ult(B),Rf ,Rg⟩ is a
base of a model of K# if and only if B is a weak MIA, since S ⊆ R in a model of K#.

Theorem 10. K# is sound and complete with respect to the class of models based on weak MIA
frames.

Proof. Soundness is straightforward, so we just concentrate on completeness. Let W be the set of all
maximal consistent theories of K#. For each t ∈W let

◇t = {◇ϕ ∶ ϕ ∈ t}, (7.6)q¬(t) = {ϕ ∶ q¬ϕ ∈ t}, (7.7)
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and for t1, t2 ∈W , let

t1Rt2 ⇐⇒◇t2 ⊆ t1 (7.8)
t1St2 ⇐⇒ t1 ∩ {qϕ ∶ ϕ ∈ t2} ≠ ∅. (7.9)

Claim 1: ◇t2 ⊆ t1 if and only if {ϕ ∶ ◻ϕ ∈ t1} ⊆ t2:
“⇒”: Let ◻ϕ ∈ t1, and assume that ϕ /∈ t2. Then, ¬ϕ ∈ t2 by maximality of t2. The hypothesis

implies that ◇¬ϕ ∈ t1, and therefore, ¬◻ϕ ∈ t1 by the definition of ◇. This contradicts the consistency
of t1.

“⇐”: Let ϕ ∈ t2 and assume that ◇ϕ /∈ t1. Then, ¬◇ ϕ ∈ t1 by maximality of t1, and therefore,◻¬ϕ ∈ t1 by definition of ◇. It follows from the hypothesis that ¬ϕ ∈ t2, contradicting the consistency
of t2. ◻

Claim 2: q¬(t1) ⊆ t2 if and only if t1 ∩ {qϕ ∶ ϕ ∈ t2} = ∅.
“⇒”: Let ϕ ∈ t2 and qϕ ∈ t1, then ¬ϕ ∈ q¬t1. Since ϕ ∈ t2, it follows that q¬(t1) /⊆ t2.
“⇐”: Let q¬(t1) /⊆ t2; then, there is some ϕ such that q¬ϕ ∈ t1 and ϕ /∈ t2. By maximality of t2

we have ¬ϕ ∈ t2, and therefore, q¬ϕ ∈ t1 ∩ {qψ ∶ ψ ∈ t2}. ◻
Claim 3: S ⊆ R:
Let t1, t2 ∈ W and ⟨t1, t2⟩ ∈ S. By definition of S there is some ϕ ∈ t2 such that qϕ ∈ t1. We

need to show that t1Rt2; thus, let ψ ∈ t2. Since ϕ ∈ t2 we have ϕ ∧ ψ ∈ t2, and since t2 is consistent,/⊢ (ϕ ∧ ψ) → �. Therefore, ⊢ qϕ → ◇ψ by (7.3); in particular, qϕ → ◇ψ ∈ t1. Now, qϕ ∈ t1 andqϕ→◇ψ ∈ t1 imply ◇ψ ∈ t1 by modus ponens. ◻
For each formula ϕ, let v(ϕ) = {t ∈W ∶ ϕ ∈ t}.
Claim 4: v is a valuation:
We only show the claim for the modal operators. For (7.4), let t1 ∈ v(◻ϕ), i.e. ◻ϕ ∈ t1. If t1Rt2,

then ϕ ∈ t2 by Claim 1, and thus, t2 ∈ v(ϕ).
Conversely, suppose that t1 /∈ v(◻ϕ); then ϕ /∈ ◻t1. Since ◻t1 is deductively closed, ◻t1 ∪ {¬ϕ}

is consistent. Hence, there is some maximal consistent theory t2 such that ◻t1 ∪ {¬ϕ} ⊆ t2. Since◻t1 ⊆ t2 we have ⟨t1, t2⟩ ∈ R, and ¬ϕ ∈ t2 implies v(ϕ) /⊆ R(t1).
For 7.5 let t1 ∈ v(qϕ), and suppose that t2 ∈ v(ϕ). Then, ϕ ∈ t2 and qϕ ∈ t1 show that ⟨t1, t2⟩ ∈ S.

Thus, v(ϕ) ⊆ S(t1). Conversely, let t1 /∈ v(qϕ), i.e. qϕ /∈ t1; then, ¬ϕ /∈ q¬(t1). Since q¬ is a necessity
operator and t1 is maximal, the set q¬(t1) is deductively closed, and therefore, q¬(t1) ∪ {ϕ} is
consistent. Suppose that t2 ∈W contains q¬(t1)∪{ϕ}. Then, ⟨t1, t2⟩ /∈ S and t2 ∈ v(ϕ), which implies
v(ϕ) /⊆ S(t1). ◻

It follows from the previous claims that ⟨W,R,S, v⟩ is a model of K#. If K# /⊢ ϕ, there is a
maximal consistent theory t not containing ϕ, i.e. t /∈ v(ϕ). Hence, ⟨W,R,S, v⟩ /⊧ ϕ, and therefore,
K# /⊧ ϕ.
7.2 Algebraic semantics

Let T (Var) be the term algebra over the language of K# with the set Var of variables; in other
words, T (Var) is the absolutely free algebra over the type of PS–algebras generated by Var. Thus,
each formula ϕ(p1, . . . , pn) of K# can be regarded as an element of T (Var).
Lemma 7. Let M = ⟨X,R,S, v⟩ be a model of K#, and Bv = {v(ϕ) ∶ ϕ ∈ Fml}.
1. Bv = ⟨Bv,∩,∪, ∅,X, ⟨R⟩, [[S]]⟩ ∈wMIA.
2. If B is a subalgebra of CmPS(M) and v is a mapping onto a set of generators of B, then B =Bv.

Proof. 1. By definition, the extension of v over T (Var) is a homomorphism T (Var) → CmPS(M),
thus, Bv is a subalgebra of CmPS(M). Since CmPS(M) ∈wMIA and wMIA is a universal class we
obtain Bv ∈wMIA.

2. This follows again from the definition of the extension of v and the fact that v maps Var onto
a set of generators.

The system ⟨M,Bv⟩ is an instance of a general frame of [16], see also Sections 1.4 and 5.5 of [9],
in particular, Example 5.61.

If ϕ(p1, . . . , pn) is a formula, its corresponding term function (as defined in T1 and T2) is de-
noted by τBϕ (x1, . . . , xn). We say that ϕ(p1, . . . , pn) is valid in B, written as B ⊧ ϕ(p1, . . . , pn), if
τBϕ (x1, . . . , xn) ≈ 1. In other words, B ⊧ ϕ(p1, . . . , pn) if and only if τBϕ (v(p1), . . . , v(pn)) = 1 for all
mappings v ∶ Var → B. If K is a class of algebras, then we define K ⊧ ϕ(p1, . . . , pn) if and only if
B ⊧ ϕ(p1, . . . , pn) for all B ∈K.
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Theorem 11. For all formulas ϕ(p1, . . . , pn),
K# ⊧ ϕ(p1, . . . , pn) if and only if WMIA ⊧ ϕ(p1, . . . , pn).

Proof. “⇒”: Suppose that K# ⊧ ϕ(p1, . . . , pn), and that B = ⟨B,f, g⟩ ∈ wMIA. By Theorem
9, we may suppose that B is isomorphic to a complex algebra of a weak MIA frame ⟨X,R,S⟩.
Then, ⟨X,R,S⟩ ⊧ ϕ(p1, . . . , pn) implies v(ϕ(p1, . . . , pn)) = X for all valuations v ∶ Fml → 2X , and
therefore, in particular, τBϕ (v(p1), . . . , v(pn)) = 1 for all mappings v ∶ Var → B. It follows that
Cm(X) ⊧ ϕ(p1, . . . , pn), and therefore, B ⊧ ϕ(p1, . . . , pn).

“⇐”: Suppose that wMIA ⊧ ϕ(p1, . . . , pn), and that ⟨X,R,S⟩ is a weak MIA frame with full
complex algebraB. SinceB ∈wMIA andwMIA ⊧ ϕ(p1, . . . , pn), we have τBϕ (v(p1), . . . , v(pn)) =X
for all mappings v ∶ Var → B. Since the extension of v over formulas is the term definition of ϕ this
implies ⟨X,R,S, v⟩ ⊧ ϕ(p1, . . . , pn).

Together with Theorem 10 we obtain the following algebraic completeness theorem:

Theorem 12. If ϕ is a formula in K#, then K# ⊢ ϕ if and only if Eq(wMIA) ⊧ ϕ.
8 The equational class generated by wMIA

In this section we shall describe the equational class generated by wMIA and thus, we can give a
full algebraic characterization of the logic K#. First, we show that a weak MIA is a discriminator
algebra. Recall the mapping u ∶ B → B defined in (3.5), namely,

u(a) = f∂(a) ∧ g(¬a). (8.1)

It will turn out that u∂ is the unary discriminator. We have chosen to start with u as this mapping
will be important later.

Theorem 13. Let ⟨B,f, g⟩ be a PS–algebra. Then, B is a weak MIA if and only if

u(a) = ⎧⎪⎪⎨⎪⎪⎩
1, if a = 1,

0, otherwise.
(8.2)

Proof. “⇒”: First, consider a = 1. Then,

u(1) = f∂(1) ∧ g(0) = ¬f(0) ∧ g(0) = 1,

since f(0) = 0, and g(0) = 1. Next, let a ≠ 1. Then, ¬a ≠ 0, and

g(¬a) ≤ f(¬a) By Theorem 8¬f(¬a) ∧ g(¬a) = 0

f∂(a) ∧ g(¬a) = 0

u(a) = 0,

“⇐”: Suppose that a ≠ 0. By Theorem 8 it suffices to show that g(a) ≤ f(a). From a ≠ 0 it follows
that ¬a ≠ 1, and thus, u(¬a) = 0 by the hypothesis. Now, by the definition of u,

u(¬a) = 0⇐⇒ f∂(¬a) ∧ g(a) = 0⇐⇒ ¬f(a) ∧ g(a) = 0⇐⇒ g(a) ≤ f(a).
This completes the proof.

Theorem 13 gives us yet another characterization of weak MIAs among PS–algebras.

Corollary 2. Each weak MIA is a discriminator algebra.

Proof. Let B be a weak MIA. We show that B has a unary discriminator, i.e. there is a mapping
t ∶ B → B for which

t(a) = ⎧⎪⎪⎨⎪⎪⎩
0, if a = 0,

1, otherwise.

Indeed, set t(a) = u∂(a) = ¬u(¬a). Then, t fulfills the condition.

Mixed Algebras and their Logics

14



Observe that it follows that wMIA is not an equational class, since every discriminator algebra is
simple. To describe Eq(wMIA) we shall relax the condition that u∂ is the unary discriminator to
the fact that u is an S5 necessity operator. Call a PS–algebra a ⟨B,f, g⟩ a K#–algebra if u satisfies
the following conditions:

u(a) ≤ a, (8.3)
u(a) ≤ u(u(a)), (8.4)

a ≤ u(u∂(a)). (8.5)

The class of K#–algebras is denoted by KMIA. The motivation for these algebras comes from the
axiom system of the logic K˜ of [5].

It follows immediately from Theorem 13 that a weak MIA satisfies (8.3) – (8.5). Since KMIA is
an equational class and wMIA is not, the inclusion wMIA ⊆ KMIA is strict. It may be instructive
to present a concrete example:

Example 2. Suppose that ∣B∣ > 2, and let f be the identity on B and g be the Boolean complement.
Then, f is a possibility operator, g is a sufficiency operator, and therefore, ⟨B,f, g⟩ is a PS–algebra.
Furthermore, f = f∂ , and, for all a ∈ B,

u(a) = f∂(a) ∧ g(−a) = a ∧ g(−a) = a, (8.6)

and thus, u∂ = u. Clearly, u satisfies (8.3) – (8.5), but is not a weak MIA. ◻
The next result exhibits the precise connection between wMIA and KMIA:

Theorem 14. Eq(wMIA) = KMIA.

Proof. We shall show that

1. KMIA is semisimple, i.e. every subdirectly irreducible K# algebra is simple, and
2. The simple elements of KMIA are in wMIA.

Then, by Birkhoff’s Theorem (see e.g. [8, Theorem 11.12]), every K# algebra is isomorphic to a
subdirect product of weak MIAs, and thus, it is in the equational class generated by wMIA. The
other direction follows from wMIA ⊆ KMIA.

Let ⟨B,f, g⟩ ∈ KMIA be subdirectly irreducible. By Corollary 1, the congruences of B are in
1 – 1 correspondence with the u – filters of B, and therefore, ⟨B,u⟩ is subdirectly irreducible in
the class of all Boolean algebras with an additional necessity operator. By (8.3) and (8.4) we have
u(a) = a ∧ u(a) ∧ u(u(a)) ∧ . . . ∧ un(a), and therefore,

(∃c ≠ 1)(∀a ≠ 1)u(a) ≤ c (8.7)

by Rautenberg’s criterion [18, p. 155]. By (8.4) we may suppose that u(c) = c. Assume that c ≠ 0.
Then, ¬c ≠ 1, and

¬c ≤
(8.5)

u(u∂(¬c)) = u(¬u(c)) =
u(c)=c u(¬c) ≤

(8.7)
c, (8.8)

a contradiction. It follows that u(a) = 0 for all a ≠ 1, and, clearly, u(1) = 1. Hence, B is in wMIA
by Theorem 13.

We close this section by showing that KMIA is closed under canonical extensions by describing the
canonical frames. Call a frame ⟨X,R,S⟩ a KMIA frame if R ∪ −S is an equivalence relation.

Theorem 15. 1. Let ⟨B,f, g⟩ be in KMIA, and ⟨Ult(B),Rf ,Rg⟩ be its canonical frame. Then,
Rf ∪ −Rg is an equivalence relation.

2. Let ⟨X,R,S⟩ be a KMIA frame. Then, ⟨2X , ⟨R⟩, [[S]]⟩ is in KMIA.

Proof. 1. Let w be the dual of u; then, by the properties of u, w is normal additive closure operator
in which every open set is closed. It is well known from the properties of S5 that the canonical
relation Rw on Ult(B) is an equivalence relation. Note that ⟨F,G⟩ ∈ Rw if and only if w[G] ⊆ F .
We are going to show that Rw = Rf ∪ −Rg:

“⊆”: Assume that this is not true, i.e. that there are F,G ∈ Ult(B) such that
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1. ⟨F,G⟩ ∈ Rw, i.e. (∀a)[a ∈ G implies f(a) ∨ ¬g(a) ∈ F ].
2. ⟨F,G⟩ /∈ Rf , i.e. (∃b)[b ∈ G and f(b) /∈ F ].
3. ⟨F,G⟩ ∈ Rg, i.e. (∃c)[c ∈ G and g(c) ∈ F ].
Let d = b ∧ c; then, d ≤ b. Since d ∈ G we have f(d) ∨ ¬g(d) ∈ F . If f(d) ∈ F , then d ≤ b implies
f(b) ∈ F , contradicting 2. If, on the other hand, ¬g(d) ∈ F , then d ≤ c implies g(c) ≤ g(d), since g is
antitone. It follows from 3. that g(d) ∈ F , also a contradiction.

“⊇”: Let ⟨F,G⟩ ∈ Rf ; then f[G] ⊆ F . Suppose that a ∈ G. Then, f(a) ∈ F implies f(a)∨¬g(a) ∈ F ,
since F is a filter. It follows that ⟨F,G⟩ ∈ Rw, and consequently, Rf ⊆ Rw. Next, assume that−Rg /⊆ Rw. Then, there is some pair ⟨F,G⟩ such that F ∩ g[G] = ∅ and w[G] /⊆ F . The latter implies
that there is some a ∈ G with w(g) /∈ F . By definition of w this implies in particular that ¬g(a) /∈ F ,
thus, g(a) ∈ F , since F is prime. Together with a ∈ G this contradicts F ∩ g[G] = ∅.

2. Let ⟨X,R,S⟩ be a KMIA frame, and define the mapping [U]] ∶ 2X → 2X by [U]](Y ) =[R](Y ) ∩ [[S]](−Y ). We need to show that [U]] satisfies (8.3) – (8.5):
(8.3): Let x ∈ [U]](Y ). Then, x ∈ [R](Y ) and x ∈ [[S]](−Y ). By definition of [R] and [[S]], this

implies R(x) ⊆ Y and −Y ⊆ S(x). Since R ∪ −S is reflexive, we obtain xRx or x(−S)x. If xRx, then
R(x) ⊆ Y implies x ∈ Y . If x(−S)x, then x /∈ S(x), in particular, x /∈ −Y .

(8.4): Let x ∈ [U]](Y ). As above, we have R(x) ∪ −S(x) ⊆ Y . We need to show that x ∈[U]][U]](Y ), in other words, x ∈ [R][U]](Y ) ∩ [[S]](−[U]](Y )).
1. x ∈ [R][U]](Y ): Assume not. Then, R(x) /⊆ [U]](Y ), and so there is some y such that xRy and
y /∈ [R](Y ) ∩ [[S]](−Y ).
(a) y /∈ [R](Y ): Then, R(y) /⊆ Y , and there is some z such that yRz and z /∈ Y . This implies that

xRyRz, and the transitivity of R ∪−S implies that xRz or x(−S)z. Since R(x)∪−S(x) ⊆ Y
we obtain z ∈ Y , a contradiction.

(b) y /∈ [[S]](−Y ). Then, −Y /⊆ S(y), and there is some z such that z /∈ Y and y(−S)z. Again by
transitivity of R ∪ −S we obtain x(R ∪ −S)z which again by R(x) ∪ −S(x) ⊆ Y contradicts
z /∈ Y .

Thus, x ∈ [R][U]](Y ).
2. x ∈ [[S]](−[U]](Y )): First, note that

x ∈ [[S]](−[U]](Y ))⇐⇒ −[U]] ⊆ S(x)⇐⇒ (∀y)[y /∈ [U]](Y ) implies xSy]⇐⇒ (∀y)[x(−S)y implies y ∈ [U]](Y )]⇐⇒ (∀y)[x(−S)y implies y ∈ [R](Y ) ∩ [[S]](−Y )].
Thus, let x(−S)y.
(a) y ∈ [R](Y ): Assume not; then, there exists some z such that yRz and z /∈ Y . Thus, x(−S)yRz,

and the transitivity of R ∪ −S implies that ⟨x, z⟩ ∈ R ∪ −S. It follows that z ∈ Y by R(x) ∪−S(x) ⊆ Y , a contradiction.
(b) y ∈ [[S]](−Y ): Assume not; then, there is some z such that z /∈ Y and y(−S)z. As in the

previous case we obtain ⟨x, z⟩ ∈ R ∪ −S which implies z ∈ Y , a contradiction.
It follows that [U]] satisfies (8.4).

(8.5): Let x ∈ Y ; we need to show that x ∈ [R][U]]∂(Y ) ∩ [[S]][U]](−Y ).
1. x ∈ [R][U]]∂(Y ): Assume not; then, there is some y such that xRy and y /∈ [U]]∂(Y ). The latter

implies that y /∈ ⟨R⟩(Y )∪−[[S]](Y ), i.e. R(y)∩Y = ∅ and Y ⊆ S(y). Since R∪−S is symmetric,
xRy implies yRx. Now, R(y) ∩ Y = ∅ implies x /∈ Y , a contradiction.

2. x ∈ [[S]][U]](−Y ): Assume not; then, there is some y such that y ∈ [U]](−Y ) and x(−S)y. The
first condition implies that R(y)∩Y = ∅ and Y ⊆ S(y). Since x ∈ Y , we obtain ySx. On the other
hand, x(−S)y implies y(−S)x, a contradiction.

Thus, the PS–complex algebra of a KMIA frame is in KMIA.

This is similar to the situation that S5 is characterized by the class of frames ⟨X,R⟩ where R
is an equivalence, as well as by the class ⟨X,R⟩, where R is the universal relation on X. K# is
characterized by frames ⟨X,R,S⟩ where R ∪ −S is an equivalence (corresponding to KMIA) and
also by frames ⟨X,R,S⟩ where R ∪ −S is the universal relation (corresponding to wMIA).
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9 Special models

Now we return to the initial theme of the paper, namely, complex algebras ⟨2X , ⟨R⟩, [[R]]⟩ arising
from a PS-frame ⟨X,R,S⟩ where R = S. We shall call a model ⟨X,R,S, v⟩ of K# with R = S special.
Two models M = ⟨X,R,S, v⟩ and M ′ = ⟨X ′,R′, S′, v′⟩ are called modally equivalent if for all ϕ ∈ Fml,

M ⊧ ϕ⇐⇒M ′ ⊧ ϕ. (9.1)

The following result was first mentioned for the logic K˜ [5]. Its proof uses the copying method
introduced by Vakarelov, see e.g. [7]. We show it for K# since the construction is slightly simpler.

Theorem 16. Let M = ⟨X,R,S, v⟩ be a model of K#. Then, M is modally equivalent to a special
model M = ⟨X,R, v⟩.
Proof. Observe that the fact that M = ⟨X,R,S, v⟩ is a model of K# implies that R ∪ −S = X2, and
we need to find a model M = ⟨X,R,S, v⟩ in which R ∩ −S = ∅; in this case, R = S and the model M
is special.

Let M ′ = ⟨X ′,R′, S′, v′⟩ be an isomorphic copy of M with X ∩X ′ = ∅, and set X = X ∪X ′. For
x ∈X, denote its corresponding element inX ′ by x′. The valuation v is defined by v(ϕ) = v(ϕ)∪v′(ϕ).
The relations R and −S (and thus, implicitly, the relation S) on X are defined by cases. The idea of
the construction of R and S is to “separate” pairs ⟨x, y⟩ which are in the intersection of R and −S,
i.e. to remove those pairs which prevent R = S. Let x, y ∈X and consider the following cases:

1. ⟨x, y⟩ ∈ R ∩ −S: Then, xRy′, x′Ry,x−Sy, x′−Sy′.
2. ⟨x, y⟩ ∈ S: Then, xRy,xRy′, x′Ry,x′Ry′.
3. ⟨x, y⟩ ∈ −R: Then, x−Sy, x−Sy′, x′−Sy, x′−Sy′.
Since S ⊆ R, these are all possibilities for ⟨x, y⟩ ∈ X2. If sRt or s−St are not specified above, we
suppose the default that s−Rt and sSt. Clearly, R∩−S = ∅, i.e. R ⊆ S. Furthermore, it is not hard,
if somewhat tedious, to show that R ∪ −S = X2, i.e. S ⊆ R, so that altogether R = S. Since M and
M ′ are isomorphic, M and M are modally equivalent with respect to the Boolean operators and ◻.
This was shown, mutatis mutandis, by [7, Lemma 5.1.]. All that is left to show is x ⊧v qϕ if and only
if x ⊧v qϕ for all x ∈X.

“⇒”: Let x ⊧v qϕ. Then, by definition, y ∈ v(ϕ) implies xSy, i.e. −S(x)∩v(ϕ) = ∅. Using 1. or 3.
above we show that x ⊧ v q ϕ. If −S(x) ∩ v(ϕ) ≠ ∅, then there is some y ∈X such that y ∈ v(ϕ) and
x − Sy by 1. or 3. above. This contradicts x ⊧v qϕ. If −S(x) ∩ v′(ϕ) ≠ ∅, then there is some y′ ∈ X ′
such that y′ ∈ v′(ϕ) and x−Sy′ by 1. or 3. above. Since x−Sy′ if and only if x′−Sy′ and therefore
x − Sy by 1. or 3., we again arrive at a contradiction.

“⇐”: Suppose that x ⊧v qϕ. Then, −S(x) ∩ v(ϕ) = −S(x) ∩ (v(ϕ) ∪ v′(ϕ)) = ∅, and therefore,
since −S(x) ⊆ −S(x), we obtain −S(x) ∩ v(ϕ) = ∅.

Since S = R, the model M = ⟨X,R,S, v⟩ is a special model of the form ⟨X,R, v⟩.
Based on the previous considerations, we finally show that one canonical relation is enough for

the equational class of generated by some wMIA:

Theorem 17. Let B = ⟨B,f, g⟩ ∈ wMIA. Then, there is some frame⟨X,R⟩ such that ⟨B,f, g⟩ and
a subalgebra of ⟨2X , ⟨R⟩, [[R]]⟩ satisfy the same equations.

Proof. By the Löwenheim – Skolem Theorem we may suppose that B is at most countable, and by
Theorem 4, we may suppose that B is a subalgebra of ⟨2X , ⟨R⟩, [[S]]⟩ for some weak MIA frame⟨X,R,S⟩.

Let T = {an ∶ n ∈ N} be a set of generators of B, and define v ∶ Var → T by v(pn) = an.
Since T generates B, the extension v of v over the Lindenbaum – Tarski algebra L is a surjective
homomorphism onto B.

Consider the model M = ⟨X,R,S, v⟩, then, B = Bv in the sense of Lemma 7, and M ⊧ ϕ if
and only if Bv ⊧ ϕ for all ϕ ∈ Fml. Suppose that M ′ = ⟨X ′,R′, S′, v′⟩ is modally equivalent to M ,
where M ′ is a special frame. Since the theorems of a model correspond to the equational theory of
its general frame, it follows that Eq(Bv) = Eq(Bv′).
Corollary 3. KMIA is the equational class generated by CMIA.
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Hypothesis Generation in Linear Temporal Logic for Clauses in a
Restricted Syntactic Form
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Abstract. The interactions among the components of a biological system can be given a logical repre-
sentation, that is useful for reasoning about them. One of the relevant problems that may be raised in this
context is finding what would explain a given behaviour of some component; in other terms, generating
hypothesis that, when added to the logical theory modeling the system, imply that behaviour. Temporal as-
pects have to be taken into account, in order to model the causality relationship that may link the behaviour
of a given component to that of another one.
This paper presents a hypothesis generation method for linear temporal logic theories whose formulae have
a restricted syntactic form, which is however sufficient to model biological systems. The method exploits
the duality between hypothesis generation and consequence finding and is based on a resolution system
proposed by Cavalli and Fariñas del Cerro in 1984.

1 Introduction
1.1 The true motivation
A few years ago, I had the occasion to meet Luis again after a long time and we said to ourselves that it would
have been nice to join again our research work on some common topic. As a matter of fact, Luis tried a couple
of times to draw my interest on some of his ongoing works, but without success (my fault!). Recently, he sent
me some email messages asking whether I had any idea on how to extend classical abduction algorithms to
propositional temporal logic, since it would be useful for his research on the logical modeling of biological
systems.

Comme tu sais nous travaillons sur la modélisation logique des systèmes biologiques, dans ce contexte
nous avons besoins de l’abduction. [. . . ]
J’ai besoins de faire de l’abduction sur une logique propositionnelle avec la possibilité de l’expression
du temps. [. . . ]
Pour la modélisation nous avons besoins du temps, puisque pour chaque réaction nous devons changer
d’état.1
When I’ve been invited to submit a paper to LF2015, I have decided to try to do my homework. The paper

presents an hypothesis generation method for linear temporal logic theories whose formulae have a restricted
syntactic form, slightly extending the very basic form of a simple example given by Luis. To keep even more
in theme with the LF2015 symposium, the method is based on a resolution system proposed by Ana R. Cavalli
and Luis in 1984.

1.2 A more scientific motivation
In some recent works [1,2], R. Demolombe, N. Obeid and Luis propose a logical model of the series of bio-
chemical reactions that may occur within a cell of a biological system. Cellular and molecular interactions can
be graphically represented by means of diagrams calledmolecular interaction maps. Since such networks may
involve many proteins and enzymes, and are consequently very complex, it is important to be able to reason
about them. A logical model of these networks can be used to perform query answering by use of deduction,
but also some form of abductive reasoning. For instance, since the maps used by biologists define causal re-
lationships between different kinds of proteins, one may be interested in finding out which proteins should be
activated or inhibited in order to obtain a given effect (e.g., in the case of research about cancer, the effect is
to obtain the death of a cancer cell).

The formalism used in [2] tomodel metabolic networks is based on a fragment of first order logic. However,
in the context of hypothesis generation, some form of temporal reasoning is needed. Let us consider a simple
example (thanks to R. Demolombe):
1 “As you know, we are working on the logical modeling of biological systems. In this context we need abduction. [. . . ] I
need abduction in a propositional logic with the possibility to express time. [. . . ] We need time because we change state
at every reaction.”



We may have a protein of type A that can activate a protein of type B, which means that if A is
activated, then B is activated. Then, we may have that protein B can inhibit protein A, which means
that if B is activated, then A is inhibited.
In this example, if A is activated, then B is activated and A is inhibited. The conclusion is that A is
both activated and inhibited, which is physically impossible (and which is logically inconsistent in
our model).
The basic reason of this inconsistency is that time is ignored in the model. Indeed, if time is taken into
account, the reasoning is: A is activated and next B is activated and next A is inhibited. Then, there
is no more inconsistency because A is activated is consistent with next(next(A is inhibited)).

1.3 The temporal language needed to model biological systems
When I asked Luis to better specify the temporal language needed for their aims, his answer, with a photo in
attachment (see Figure 1.1), was, in his usual speedy style:

Voici un exemple. Nous avons le langage avec next et nécessaire, sans axiome d’induction et les règles
sont de la forme comme dans la photo.
L’idée est de trouver quelque chose de type résolution modale ou tableaux pour faire de l’abduction
pour ce type des formules. Et, si possible, que ça soit une extension naturelle desméthodes d’abduction
pour le calcul propositionnel (après voir si nous pouvons traiter le même problème mais cette fois avec
une axiome d’induction entre le next et le nécessaire).2
Envoyé de mon iPad

Fig. 1.1. Voici un exemple

This was all I had as the specification of the problem to be addressed: since LF2015 should be a surprise
for Luis, I have not dared asking him more information. I asked some clarification to Robert Demolombe, who
kindly explained me a little bit why temporal abduction would be of help, but I didn’t want to bother him too
much.

In the rest of this paper, linear temporal logic is briefly presented (Section 2), followed by a description
of hypothesis generation problems (Section 3). Section 4 is the core of this work, presenting the syntactic
restrictions on temporal formulae dealt with and the hypothesis generation method for such formulae. Some
properties of the underlying resolution system are stated (and proved in the Appendix). Finally, Section 5
concludes this work.
2 “Here is an example. We have the language with next and always, without induction axiom, and the rules have the form
shown in the photo. The idea is to find something like modal resolution or tableaux, in order to perform abduction for this
kind of formulae. And, if possible, it should be a natural extension of the abduction methods for propositional calculus
(afterwards we shall see if we can face the same problem but with an induction axiom linking next with always).”
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2 Linear Temporal Logic

The language of propositional linear temporal logic (LTL) considered in this work contains only unary future
time temporal operators:□ (now and always in the future), ◊ (either now or sometimes in the future), and○
(in the next state). Among the propositional connectives, ¬ (negation), ∧ (conjunction) and ∨ (disjunction) are
taken as primitive. The model of time underlying LTL is a countably infinite sequence of states (a time frame),
that can be identified with IN. Its elements are called time points. An interpretation  is a function mapping
each time point i to the set of propositional letters true at i. The satisfiability relationi ⊧ A, for i ∈ IN (A is
true at time point i in the interpretation ), is inductively defined as follows:
1. i ⊧ p iff p ∈(i), for any propositional letter p in the language.
2. i ⊧ ¬A iff i ̸⊧ A.3. i ⊧ A ∧ B iff i ⊧ A and i ⊧ B.4. i ⊧ A ∨ B iff either i ⊧ A ori ⊧ B.5. i ⊧ □A iff for all j ≥ i, j ⊧ A.6. i ⊧ ◊A iff there exists j ≥ i such that j ⊧ A.7. i ⊧ ○A iff i+1 ⊧ A.

Truth is satisfiability in the initial state: a formula A is true in  (and  is a model of A) iff 0 ⊧ A.Truth of sets of formulae is defined as usual. If S is a set of formulae and A is a formula, A is a logical
consequence of S (S ⊧ A) iff for every interpretation and k ∈ IN: ifk ⊧ S thenk ⊧ A. Two formulae
A and B are logically equivalent iff A ⊧ B and B ⊧ A.

The standard axiomatic system for LTL is obtained by adding the following axioms A1-A5 and the infer-
ence rule R to any axiomatization of classical propositional logic:

A1. □(A → B)→ (□A → □B)
A2. ○(A→ B)→ (○A → ○B)
A3. ○¬A ≡ ¬○A
A4. □A→ (A ∧○□A)
A5. □(A → ○A)→ (A → □A)
R. A

□A

3 Hypothesis Generation

Hypothesis generation consists in finding what, in the context of a given background knowledge T , would ex-
plain something that is not a consequence of T . Hypothesis generation is strictly related to abductive reasoning,
a natural form of reasoning performed by an agent when new evidence informs her knowledge: an abductive
inference is drawn when the truth of the sentence explaining the new evidence is “derived”, i.e., it is added
to the knowledge base. In general there may be different sentences explaining the same evidence, so some of
them are rejected before the inference is performed. In other terms the inference is drawn when the agent is
convinced that any other sentence is not plausible enough, compared with the chosen one, to be accepted as
an explanation.

In the pure logical account of abduction, an abductive problem (in a given logic ) is specified by a theory
T and a sentence F to be explained (the explanandum); it is solved by finding a sentence E (among the
best ones, according to some given preference criteria), such that T ∪ {E} ⊧ F . It is moreover assumed
that T ̸⊧ F and T ̸⊧ ¬F , i.e., F is consistent with T . When viewed in these terms, there is an obvious
duality between hypothesis generation and consequence finding (and between abduction and deduction): if T
is the background theory, in the context of which a given fact F has to be explained, then the problem can
be addressed by searching for a formula E such that T ∪ {¬F } ⊧ ¬E. This amounts to T ∪ {E} ⊧ F , i.e, E
explains F in the context of T . In other words, hypothesis generation can be reduced to consequence finding
(up to a certain extent).

In both contexts, the formula looked for must satisfy additional conditions. In the logical approach to
abduction, such conditions generally include minimality with respect to logical consequence: a formula E is a
“relevant explanation” of F in the context of a theory T , only if T ∪ {E} ⊧ F (i.e., E is an explanation of F )
and there is no weaker explanation of F : for every formula E′, if T ∪{E′} ⊧ F and E ⊧ E′, then also E′ ⊧ E.
In other terms, weaker explanations are preferred to stronger ones.

On the side of consequence finding, a stronger consequence is preferred to a weaker one: A is a “relevant
consequence” of a set S of formulae only if for every consequence B of S, if B ⊧ A, then also A ⊧ B. Though
this may be seen as a “maximality” condition, it amounts to minimality w.r.t. subsumption when looking for
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clauses implied by a given set of clauses S, in classical logic: a “relevant consequence” of S is a clause C that
is a consequence of S and is not subsumed by any other clause C ′ such that S ⊧ C ′.

Getting back to hypothesis generation, there are additional requirements to be fulfilled by relevant expla-
nations, in order to rule out trivial ones: a relevant explanationE of F in the background theory T is a minimal
explanation of F such that
A. T ̸⊧ ¬E: if T ∪ {E} is inconsistent, E is a trivial explanation of any fact.
B. E ̸⊧ F : since T ∪ {F } ⊧ F , F is an explanation of F itself in T . If E is a minimal explanation of F in

T , then E ⊧ F implies F ⊧ E, i.e., E and F are logically equivalent. This would also make E a trivial
explanation.

Consequently, when hypothesis generation is reduced to consequence finding, the two conditions A and B
must be additionally considered.

Several proof-theoretical methods have been proposed for both consequence and hypothesis generation.
Many of them are based on resolution (see, for instance, [3,4,5]), others on semantic tableaux and sequent
calculi [6,7].

4 The hypothesis generation method

The problem of computing abductive explanations for LTL theories is very hard to face. In fact, it is not easy
to adopt methodologies based on resolution or tableau methods, like can be done for classical logic [6,3,4,5] or
even modal logics [7], because both resolution and tableau-based proof systems for temporal logics are among
the most complex ones for modal logics. The hypothesis generation method proposed in this work exploits
the very simple form of formulae making up theories modeling the behaviour of biological systems, and both
explananda and explanations. In this restricted context, the problem becomes much simpler.

The method exploits the duality between hypothesis generation and consequence finding, and is based on
resolution. In order to properly define the minimality condition, a suitable notion of subsumption for temporal
clauses (in the considered restricted syntactical form) is defined. Hypothesis generation is reduced to derive
the “relevant” consequences of the set of clauses obtained by adding the negation of the explanandum F to the
background theory T . Relevant consequences are those which are not subsumed by any other consequence of
T ∪ {¬F } and are derived by using both ¬F and some clause in T . The latter condition is required in order to
satisfy the non triviality conditions A and B given in Section 3.

4.1 The syntactic restrictions

The important restrictions in the LTL language used to state the background theory and the negation of the
explanandum are:
1. there are no occurrences of the ◊ operator; and
2. the □ operator never occurs in the scope of any logical operator.
The next definition introduces the syntactical form allowed for clauses (flat clauses) occurring in a resolution
proof. The notation ○n abbreviates a sequence of n occurrences of the ○ operator.
Definition 1 (Flat clauses). A modal literal is a formula of the form ○nl where n ≥ 0 and l is a classical
literal (i.e., either an atom or the negation of an atom).

A flat clause is either:
– an initial clause, of the form L1 ∨⋯ ∨ Lk where L1,… , Lk are modal literals and k ≥ 1, or
– an always clause, of the form □(L1 ∨⋯ ∨ Lk) where L1,… , Lk are modal literals and k ≥ 1.

Calligraphic lowercase letters (l,p,q, possibly with subscripts) will be used to denote classical literals, while
for modal literals the meta-symbolsL andM (possibly with subscripts) will be used. As usual, disjunctions of
literals are treated as sets, i.e., the order in which literals occur is irrelevant, and they are assumed to contain
no repetitions. Flat clauses will sometimes be simply called clauses, when there is no risk of confusion.

Facts to be explained are assumed to have the form ◊(L1 ∧⋯ ∧Lk), where L1,… , Lk are modal literals.
Consequently, the negation of an explanandum is equivalent to a flat clause.

The subsumption relation for flat clauses is defined next.
Definition 2 (Subsumption). Let C and C ′ be flat clauses. The clause C is subsumed by C ′ if one of the
following cases holds (where disjunctions are treated as sets):
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– C = L1 ∨⋯ ∨ Lk ∨M1 ∨⋯ ∨Mn, for n ≥ 0, and C ′ = L1 ∨⋯ ∨ Lk;
– C = ○mL1 ∨⋯ ∨○mLk ∨M1 ∨⋯ ∨Mn, for some m, n ≥ 0, and C ′ = □(L1 ∨⋯ ∨ Lk);
– C = □(○mL1 ∨⋯ ∨○mLk ∨M1 ∨⋯ ∨Mn), for some m, n ≥ 0, and C ′ = □(L1 ∨⋯ ∨ Lk).

For instance, both ○p ∨ ○2¬p ∨ q and □(○2p ∨ ○3¬p ∨ q) are subsumed by □(p ∨ ○¬p). Subsumption
between two initial clauses amounts to the subset relationship, like in classical propositional logic. It is worth
noting that the subsumption relation is transitive.

4.2 The basic resolution rules for flat clauses
In order to give a compact formulation of the resolution rules, it is useful to define the complement of a modal
literal.
Definition 3 (Complement). Let L be a modal literal. The complement of L, ∼L, is defined as follows:

– if L = p, where p is an atom, then ∼L = ¬p;
– if L = ¬p, where p is an atom, then ∼L = p;
– if L = ○M , whereM is a modal literal, then ∼L = ○∼M . In other terms, ∼○nl = ○n∼l, where l is a
classical literal.

The resolution rules adopted in this work simplify, taking advantage of the flat clause form, the rules
introduced by Cavalli and Fariñas del Cerro [8].
Definition 4 (Basic Resolution Rules). Let L,L1,… , Ln,M1,… ,Mm be modal literals and k ≥ 0. The
resolution system includes the following rules:

□(L ∨ L1 ∨⋯ ∨ Ln) □(○k∼L ∨M1 ∨⋯ ∨Mm)
□(○kL1 ∨⋯ ∨○kLn ∨M1 ∨⋯ ∨Mm)

(R1)

□(L ∨ L1 ∨⋯ ∨ Ln) ○k∼L ∨M1 ∨⋯ ∨Mm

○kL1 ∨⋯ ∨○kLn ∨M1 ∨⋯ ∨Mm
(R2)

L ∨ L1 ∨⋯ ∨ Ln ∼L ∨M1 ∨⋯ ∨Mm
L1 ∨⋯ ∨ Ln ∨M1 ∨⋯ ∨Mm

(R3)

The two modal literals L and ○k∼L in R1 and R2, and L and ∼L in R3 are called the literals resolved upon
in the inference.

In addition to the above rules, a simplification rule is added, allowing one to replace empty disjunctions
and clauses made of the □ operator dominating an empty disjunction with ⊥. Simplification will be applied
implicitly. In what follows, R1-R3 will denote the resolution system consisting of the three rules of Definition
4 (and simplification), and the symbol ⊢R1−R3 is used to denote derivability in such a system.
Example 1. Consider the simple example of Figure 1.1, where an explanation for◊p is to be looked for in the
theory T = {□(¬p∨q∨○t),□(¬p∨e∨○t),□(q∨○p),□(e∨○p)}. A complete deduction from T ∪{¬◊p}
is:

1) □(¬p ∨ q ∨○t) (in T)
2) □(¬p ∨ e ∨○t) (in T)
3) □(q ∨○p) (in T)
4) □(e ∨○p) (in T)
5) □¬p (negation of the explanandum)
6) □ q (from 3 and 5)
7) □ e (from 4 and 5)
8) □(e ∨○q ∨○2t) (from 1 and 4)
9) □(e ∨○e ∨○2t) (from 2 and 4)
10) □(q ∨○q ∨○2t) (from 1 and 3)
11) □(q ∨○e ∨○2t) (from 2 and 3)

The four clauses of lines 8-10, beyond being consequences of T alone, are subsumed by other clauses in the
derivation (8 and 11 are subsumed by both 7 and 6, 9 is subsumed by 7 and 10 by 6), so they are ignored for
hypothesis generation and should not even be added to the derivation.

The derivation of 6 makes use both of some clause in T and of clause 5, and the same holds for 7, therefore
they are used to generate the two explanations◊¬q and◊¬e, i.e. the negations of clauses 6 and 7, respectively.
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Example 2. Consider the theory T = {□(¬p∨ q ∨○r),□(¬s∨○p)} and the explanandum◊r. A (complete)
deduction from T and the negation of the explanandum is the following:

1) □(¬p ∨ q ∨○r) (in T)
2) □(¬s ∨○p) (in T)
3) □¬r (negation of the explanandum)
4) □(¬p ∨ q) (from 1 and 3)
5) □(¬s ∨○q ∨○2r) (from 1 and 2)
6) □(¬s ∨○q) (from either 2 and 4, or 3 and 5)

Clause 5 is a consequence of T , since in its derivation no use is made of clause 3, therefore its negation would
be a trivial explanations. On the contrary, 4 and 6 depend both on T and the negation of the explanandum,
therefore their negations constitute the two explanations found for ◊r, i.e., ◊(¬q ∧ p) and ◊(s ∧○¬q).

4.3 Refutational completeness
The rules R1-R3 are special cases of the general resolution rules defined in [8]. The latter are defined for
formulae in a clause form, that will be here called CF-clauses. CF-clauses include flat clauses, but not vice-
versa (CF-clauses are expressively complete for LTL). In order to address the problem of the refutational
completeness for flat clauses of the system R1-R3, it is reduced to the resolution calculus defined in [8], that
will henceforth be called CF and is given a brief description below, limited to what is relevant for the treatment
of flat clauses.

The resolution rule of CF, when restricted to act on to CF-clauses without any occurrence of the◊ operator,
can be reformulated as follows. If C1 and C2 are clauses, Σ(C1, C2) ⊳ C denotes a Σ-reduction step of C1 and
C2 and is recursively defined by the following Σ-reduction rules:3
(a) Σ(p,¬p) ⊳ ⊥;
(b) Σ(D1 ∨D2, F ) ⊳ Σ(D1, F ) ∨D2;(c) Σ(○E,○F ) ⊳ ○Σ(E, F );
(d) Σ(□E,∇F ) ⊳ ∇Σ(E, F ) where ∇ ∈ {□,○};
(e) Σ(□E, F ) ⊳ Σ(E, F );
(f) Σ(□E, F ) ⊳ Σ(□□E, F ).
The reflexive and transitive closure of ⊳ is denoted by ⊳∗: Σ(C1, C2) ⊳∗ C iff C is a clause and there is a
sequence of Σ-reduction steps Σ(C1, C2)⊳⋯⊳ C . Two clauses C1 and C2 are resolvable if Σ(C1, C2)⊳∗C for
some clause C . The simplification of a clause C is obtained by recursively replacing F for every subformula
of the form ⊥ ∨ F , and ⊥ for every subformula of the form □⊥ and ○⊥. If C1 and C2 are resolvable, then a
CF-resolvent R(C1, C2) of C1 and C2 is the simplification of some C such that Σ(C1, C2) ⊳∗ C .When restricted to act on flat clauses, the system CF and R1-R3 are equivalent. Below, the symbol ⊢CFdenotes derivability in the calculus CF.
Theorem 1. If S ∪ {C} is a set of flat clauses, then:

1. if S ⊢CF C , then S ⊢R1−R3 C ′ for some flat clause C ′ that is logically equivalent to C;
2. if S ⊢R1−R3 C , then S ⊢CF C ′ for some clause C ′ that is logically equivalent to C .

As a consequence:
Corollary 1. The resolution system consisting of the rules R1-R3 is sound and refutationally complete for flat
clauses.

The proof of these results and the following ones can be found in the Appendix.
Example 3. Let us consider, for instance, the unsatisfiable set

S = {p,□(¬p ∨○p),○2¬p}.

The following derivation shows that  ⊢R1−R3 ⊥.
1) □(¬p ∨○p) (in S)
2) p (in S)
3) ○2¬p (in S)
4) ○p (from 1 and 2)
5) ○2p (from 1 and 4)
6) ⊥ (from 3 and 5)

3 In [8], other reduction rules are included, but they all act on CF-clauses containing the ◊ operator, that is absent in flat
clauses.
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In general, every clause of the form○np can be derived from {p,□(¬p ∨○p)}. Therefore any set of the form
{p,□(¬p ∨○p),○n¬p} can be refuted.

4.4 A weak form of implicational completeness

In order to study the derivational strength of the resolution calculus R1-R3, a translation is defined, mapping
each flat clause into a first-order monadic formula. The translation simplifies the standard one (see, for instance,
[9]), again taking advantage of the syntactical restrictions. In particular, since the □ operator only occurs as
the outermost logical symbol in a flat clause, it acts as a sort of global modality, and there is no need to use an
order relation in the target language.

Definition 5 (Translation). Let P be a set of propositional atoms, andP the first-order language containing
a unary predicate symbol p for each p ∈ P , a constant a and a unary functional symbol f .

The (auxiliary) mapping �∗ maps a first-order term ofP and a disjunction of modal literals into a formula
of P , and is defined as follows:
– �∗(t, p) = p(t), if p ∈ P ;
– �∗(t,¬p) = ¬p(t), if p ∈ P ;
– �∗(t,○L) = �∗(f (t), L), if L is a modal literal;
– �∗(t, A ∨ B) = �∗(t, A) ∨ �∗(t, B)

Flat clauses are translated into classical first-order clauses of P by means of the mapping � defined as
follows:

– �(L1 ∨⋯ ∨ Lk) = �∗(a, L1 ∨⋯ ∨ Lk);
– �(□(L1 ∨⋯ ∨ Lk)) = �∗(x, L1 ∨⋯ ∨ Lk).

When translating a set S of flat clauses, a different variable is used for each clause in S.

For instance, if C = p ∨ ○q ∨ ○2¬r (an initial clause), �(C) = p(a) ∨ q(f (a)) ∨ ¬r(f (f (a))), while
�(C ′) = p(x) ∨ q(f (x)) ∨ ¬r(f (f (x))) for the always clause C ′ = □(p ∨○q ∨○2¬r).

By use of the above defined translation, the relation between classical and temporal subsumption can be
established. We recall that, in classical logic, a clause C subsumes a clause C ′ if there exists a substitution �
such that C� ⊆ C ′.
Theorem 2. A flat clause C subsumes a flat clause C ′ if and only if �(C) (classically) subsumes �(C ′).

The correspondence between the temporal and classical settings established by the translation � applies
also to the resolution calculus consisting of the three rules R1-R3. As a matter of fact, such rules are just a
rewriting of the classical resolution rule. In what follows, the symbol ⊢FOL denotes derivability by classical
resolution in first-order logic. Analogously, while ⊧ denotes logical consequence in LTL, logical consequence
in first-order logic is denoted by ⊧FOL. As usual, a classical clause is intended to be universally closed; in
particular, �(C1),… , �(Cn) ⊧FOL �(C) stands for ∀�(C1),… ,∀�(Cn) ⊧FOL ∀�(C), where ∀A is the universal
closure of A.

Theorem 3. If C1,… , Cn, C are flat clauses, then C1,… , Cn ⊢R1−R3 C if and only if �(C1),… , �(Cn) ⊢FOL
�(C).

Theorem 3 allows one to exploit results holding for classical logic, such as the implicational completeness
of resolution:

Theorem 4 (Lee [10]). Let S be a set of classical clauses and C a non valid clause. If S ⊧FOL C , there is a
clause C ′ subsuming C such that C ′ is derivable from S by (classical) resolution.

The strict correspondence between classical resolution and the temporal rules R1-R3 implies a weak form
of completeness w.r.t. consequence finding:

Theorem 5. If C1,… , Cn, C are flat clauses, C is not valid and �(C1),… , �(Cn) ⊧FOL �(C), then there exists
a clause C ′ subsuming C such that C1,… , Cn ⊢R1−R3 C ′.
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4.5 Coping with the induction axiom
As a consequence of Theorem 5 and Corollary 1, the translation given in Definition 5 enjoys the following
general property: if �(C1),… , �(Cn) ⊧FOL �(C), then C1,… , Cn ⊧ C . The converse, obviously, does not hold:for instance, p,□(¬p ∨○p) ⊧ □p, but p(a),∀x(¬p(x) ∨ p(f (x)) ̸⊧FOL ∀xp(x). As a matter of fact, the rules
R1-R3 do not allow one to derive the flat clause □p from p and□(¬p ∨○p).

So, the system consisting of the three rules R1-R3 only is implicationally incomplete. Such rules in fact
do not take into account what makes LTL different from FOL, i.e. the induction axiom (axiom A5 of Section
2):□(A→ ○A)→ (A→ □A).

It is worth pointing out that there is no contradiction with Corollary 1: the negation of the induction ax-
iom cannot be refuted in R1-R3 just because it cannot be expressed as a set of flat clauses (i.e. {A,□(¬A ∨
○A),◊¬A} is not a set of set of flat clauses). However, it could be expressed by use of an infinite disjunction:

A ∧□(A → ○A) ∧
⋁
n≥0

○n¬A

Therefore, whenA is amodal literal the negation of the induction axiom could be (infinitely) refuted by refuting
all the sets of flat clauses {A,□(¬A∨○A),○n¬A} for every n ≥ 0. As a matter of fact, each of such sets can
be refuted in R1-R3 (see Example 3).

To the aim of gaining implicational completeness, the restricted syntax of flat clauses can be exploited
again. Here, the □ operator only occurs as the outermost logical symbol, and consequence finding is also
restricted to flat clauses. In this context, the induction axiom can be taken into account by adding the following
induction rule:

L1 ∨⋯ ∨ Lk □(∼L1 ∨○L1 ∨⋯ ∨○Lk) … □(∼Lk ∨○L1 ∨⋯ ∨○Lk)
□(L1 ∨⋯ ∨ Lk)

(Ind)

It is worth observing that the following inference would also be correct:
L1 ∨⋯ ∨ Lk ∨Q □(∼L1 ∨○L1 ∨⋯ ∨○Lk) … □(∼Lk ∨○L1 ∨⋯ ∨○Lk)

Q ∨□(L1 ∨⋯ ∨ Lk)

but its conclusion is not a flat clause. Analogously, although□(p∨q),□(¬q∨○q) ⊧ □(p∨□q), the conclusion
could not be derived just because it is not a flat clause.

Let RES be the proof system consisting of the rules R1-R3 and Ind, and let ⊢RES denote derivability in
RES. It may be hypothesized that RES is complete for LTL w.r.t. consequence finding restricted to flat clauses.

Conjecture. If C1,… , Cn, C are flat clauses, C is not valid and C1,… , Cn ⊧ C , then there exists a clause C ′
subsuming C such that C1,… , Cn ⊢RES C ′.

4.6 Non termination
The calculus RES does not enjoy the termination property, even if the generation of clauses subsumed by
other clauses in the proof is blocked. A simple example of non-terminating derivation can be extracted from
Example 3: if T = {□(p→ ○p), p}:

□(¬p ∨○p)
□(¬p ∨○p)

□(¬p ∨○p) p
○p (R2)

○○p (R2)

○○○p (R2)

⋮

Derivations may not terminate even if the application of rule R2 is blocked when the induction rule Ind can
be applied. For instance, from T = □(¬p ∨ ○p) every clause of the form □(¬p ∨ ○np), for n ≥ 1, can be
generated, and none of them is subsumed by the others:

□(¬p ∨○p)
□(¬p ∨○p)

□(¬p ∨○p) □(¬p ∨○p)
□(¬p ∨○2p)

(R1)

□(¬p ∨○3p)
(R1)

□(¬p ∨○4p)
(R1)

⋮
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As a matter of fact, □(¬p ∨ ○p) has an infinite number of logical consequences. They are all implied by
□(¬p ∨□p), but the latter is not a flat clause.

The hypothesis generation method based on RES has been given a prototype implementation, where termi-
nation is forced by setting a bound on the maximal length of sequences of the○ operator dominating classical
literals.

5 Concluding Remarks
This paper presents a hypothesis generation method for linear temporal logic, when formulae are restricted to
clauses in a very simple form. The method is based on a resolution system, called RES, whose rules simplify
those presented in [8]. The calculus RES is refutationally complete and enjoys a weak form of implicational
completeness. Its full implicational completeness is still an open question.

Different resolution methods for LTL have been defined in the literature and some of them could be taken
as the basis for a hypothesis generation method. For instance, it would be worth considering the resolution
system defined by Abadi and Manna [11], which deals with formulae in non-clausal form. Although in the
present setting this might raise unnecessary complications, the approach deserves to be carefully analyzed to
see whether the syntactic restrictions on flat clauses could be relaxed.

Other methods are not well suited as a basis for hypothesis generation. For instance, the temporal logic
programming system presented in [12] is restricted to act on temporal horn clauses, where only a positive
literal may occur, and cannot therefore express temporal clauses as defined in Section 4.

One of the other main resolution systems for LTL has been defined by Fisher et al. (see, for instance, [13]).
It deals with clauses in separated normal form (SNF), which have one of the following forms:
– initial clauses:□(start → l1∨⋯∨ln)where start is a distinguished propositional letter whose semantics
is given by the condition that i ⊧ start if and only if i = 0;

– step clauses: □(l1 ∧⋯ ∧ ln → ○(p1 ∨⋯ ∨pk))
– sometime clauses: □(l1 ∧⋯ ∧ ln → ◊l)

Here, li,pi and l are classical literals, which may include⊤ and⊥. Every LTL formula can be rewritten into a
conjunction of SNF-clauses. The transformation involves the introduction of new propositional symbols; con-
sequently, in order to use the calculus for hypothesis generation, the explanations extracted from a derivation
should be re-converted back to formulae in the original language, and this may not be straightforward.

Assume, however, that the modal literals in the clauses of the background theory T and the negation of the
explanandum have no nesting of the ○ operator. In this case, the only transformation needed to obtain SNF-
clauses would be rewriting formulae of the form □D, where D is a disjunction of classical literals (without
any literal of the form○l) into the conjunction of the two SNF-clauses□(start → D) and□(⊤ → ○D). In
particular, if the explanandum has the form◊(l1 ∧⋯∧ln), its negation is rewritten as the conjunction of the
two SNF-clauses□(start → l1 ∨⋯ ∨ ln) and □(⊤→ ○(l1 ∨⋯ ∨ ln)).In the hypothesis generation problems considered in this work, the set of SNF-clauses to be considered
are only initial and step clauses, since sometime clauses are absent. Therefore, it is sufficient to consider the
so-called step resolution rules of the resolution calculus given by Fisher et al., i.e.:

□(start → D1 ∨ p) □(start → D2 ∨ ¬p)
□(start → D1 ∨D2)

□(C1 → ○(D1 ∨ p)) □(C2 → ○(D2 ∨ ¬p))
□(C1 ∧ C2 → ○(D1 ∨D2))

where each Ci is a conjunction of literals and each Di a disjunction of literals (beyond a merge rule that is not
worth stating here).

This calculus is not complete for consequence finding. Consider, for instance the set S = {□(q →
○p),□q}. The first formula, C1 = □(q → ○p), is an SNF-clause and the second one is rewritten into the
conjunction of C2 = □(start → q) and C3 = □(⊤→ ○q). From these SNF-clauses, no clause set equivalent
to□○p can be derived, although S ⊧ □○p (and, in fact, S ⊢R1−R4 □○p). This is due to the fact that literals
resolved upon always occur in the right-hand side of SNF-clauses, so that the only negative occurrence of q
(in C1) cannot be resolved against any of the two positive occurrences of q (in C2 and C3).As far as future work is concerned, the problem of the full implicational completeness of the resolution
calculus RES defined in this paper should be addressed. Moreover, possible refinements of RES can be studied,
based on implicational complete resolution strategies. Such strategies can be identified by exploiting Theorem
3 and corresponding results in classical logic (for instance, [4,5,14]), as well as the fact that the derivation
of any relevant consequence (whose negation is a relevant explanation) must make use of the negation of the
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explanandum. The results that will hopefully be obtained would allow one to enhance the present prototype
implementation of the system, so that it can be experimented on complex examples, taken from domains
modeling biological systems.
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1 Proofs
Proof of Theorem 1: If S ∪ {C} is a set of flat clauses, then: (1) if S ⊢CF C , then S ⊢R1−R3 C ′ for some
flat clause C ′ that is logically equivalent to C; (2) if S ⊢R1−R3 C , then S ⊢CF C ′ for some clause C ′ that is
logically equivalent to C .
Proof. In order to ease readability, the Σ-reduction rules of the calculus CF are reported here:
(a) Σ(p,¬p) ⊳ ⊥;
(b) Σ(D1 ∨D2, F ) ⊳ Σ(D1, F ) ∨D2;(c) Σ(○E,○F ) ⊳ ○Σ(E, F );
(d) Σ(□E,∇F ) ⊳ ∇Σ(E, F ) where ∇ ∈ {□,○};
(e) Σ(□E, F ) ⊳ Σ(E, F );
(f) Σ(□E, F ) ⊳ Σ(□□E, F ).

Let S ∪ {C} be a set of flat clauses.
1. We first prove that if S ⊢CF C , then S ⊢R1−R3 C ′ for some clause C ′ that is logically equivalent to C .

Observe, beforehand, that if Σ(C1, C2) ⊳∗ C for a given clause C , then the sequence of Σ-reduction steps
leading to C necessarily ends with an application of the reduction rule (a) to a pair of complementary
literals l and ∼l occurring inC1 andC2, respectively. Such literals l and ∼l are called the literals resolved
upon in the inference leading from C1 and C2 to the simplification of C .
Furthermore, once the two clauses C1 and C2 are given, and the literals l and ∼l resolved upon are
identified, the clause C such that Σ(C1, C2) ⊳∗ C , by menas a sequence of Σ-reduction steps ending with
an application of the rule (a) to l and ∼l, is unique.
Assume now that C1 and C2 are resolvable temporal clauses and that R(C1, C2) is a CF-resolvent of C1and C2, obtained by simplifying a clause C such that Σ(C1, C2)⊳∗ C . The following reasoning shows thata clause logically equivalent to C can be derived from C1 and C2 by use of the rules R1-R3. Three cases
are considered.
– C1 andC2 are both initial clauses. ThenC is obtained fromC1 andC2 by application of theΣ-reductionrules (a)-(c). In particular, rule (b) is applied until a clause of the form Σ(L,M)∨D is obtained, where
L and M are modal literals. Then rule (c) is applied until a clause of the form ○nΣ(p,¬p) ∨ D is
obtained, which finally leads to D, by use of rule (a). Therefore, L andM have the forms ○np and
○n¬p, respectively. In other terms, they are complementary modal literals, and the resolution rule R3
can be applied to obtain D.

– C1 and C2 are both always clauses. Assume that the literals resolved upon are l and ∼l. It may be
assumed, w.l.o.g., that C1 = □(○nl ∨ D1) and C2 = □(○k○n∼l ∨ D2). Then the base step (a) of
the Σ-reductions, applied to the given literals, can be reached as follows (where the reduction symbol
⊳ is indexed by the applied Σ-reduction rule):

Σ(C1, C2) ⊳∗f Σ(□
kC1, C2) = Σ(□□k(○nl ∨D1),□(○k○n∼l ∨D2))

⊳d □Σ(□k(○nl ∨D1),○k○n∼l ∨D2)
⊳b □(Σ(□k(○nl ∨D1),○k○n∼l) ∨D2)
⊳∗d □(○

kΣ(○nl ∨D1,○n∼l) ∨D2)
⊳b □(○k(Σ(○nl,○n∼l) ∨D1) ∨D2)
⊳∗c □(○

k(○nΣ(l, ∼l) ∨D1) ∨D2)
⊳a □(○k(○n⊥ ∨D1) ∨D2)

If D1 = L1 ∨⋯ ∨ Lm, by applying the resolution rule R1 to C1 and C2 the clause □(○kL1 ∨⋯ ∨
○kLm ∨D2) is obtained, which is logically equivalent to the last CF-clause of the above Σ-reductionsteps.

– C1 is an always clause and C2 an initial one. Assume that the literals resolved upon are l, occurring
in C1, and ∼l, occurring in C2. I.e., C1 = □(○nl ∨D1) and C2 = ○k○n∼l ∨D2. Then the the basestep (a) of the Σ-reductions, applied to the given literals, can be reached as follows:

Σ(C1, C2) ⊳∗f Σ(□
k−1C1, C2) = Σ(□k(○nl ∨D1),○k○n∼l ∨D2)

⊳b Σ(□k(○nl ∨D1),○k○n∼l) ∨D2
⊳∗e ○

kΣ(○nl ∨D1,○n∼l) ∨D2
⊳b ○

k(Σ(○nl,○n∼l) ∨D1) ∨D2
⊳∗c ○

k(○nΣ(l, ∼l) ∨D1) ∨D2
⊳a ○

k(○n⊥ ∨D1) ∨D2

If D1 = L1 ∨ ⋯ ∨ Lm, by applying the resolution rule R2 to C1 and C2, the clause ○kL1 ∨ ⋯ ∨
○kLm ∨D2 is obtained, which is logically equivalent to the last clause of the above Σ-reductions.

Logical Reasoning and Computation: Essays dedicated to Luis Fariñas del Cerro

29



2. For the other direction, let us assume that C1, C2 ⊢R1−R3 C . The reduction steps shown in the three casesconsidered above show that C1, C2 ⊢CF C ′ for some clause C ′ logically equivalent to C . ⊓⊔

Proof of Corollary 1:The resolution system consisting of the rules R1-R3 is sound and refutationally complete
for flat clauses.

Proof. If S ⊢R1−R3 C , then by Theorem 1 S ⊢CF C . Since CF is sound, S ⊧ C , hence the resolution system
consisting of the rules R1-R3 is sound.

Since CF is refutationally complete, if S is unsatisfiable, then S ⊢CF ⊥. Therefore, if S ∪ {C} is a set offlat clauses, S ⊢R1−R3 ⊥ follows from Theorem 1 and the fact that ⊥ can be derived from any contradictory
flat clause by use of the simplification rules.
Proof of Theorem 2: A flat clause C subsumes a flat clause C ′ if and only if �(C) (classically) subsumes
�(C ′).

Proof. Three cases are considered, according to the forms of C and C ′. We consider here only the case when
C and C ′ are both always clauses, the others being similar. In this case, if a clause C is subsumed by C ′, then
they have the forms:

C = □(○m○p1l1 ∨⋯ ∨○m○pklk ∨M1 ∨⋯ ∨Mn)
C ′ = □(○p1l1 ∨⋯ ∨○pklk)

(1)
where m, p1,… , pk ≥ 0 and l1,… ,lk are classical.In this case, �(C) and �(C ′) have the forms

�(C) = l1(fm(f p1 (x))) ∨⋯ ∨ lk(fm(f pk (x))) ∨D
= l1(f p1 (fm(x))) ∨⋯ ∨ lk(f pk (fm(x))) ∨D

�(C ′) = l1(f p1 (y)) ∨⋯ ∨ lk(f pk (y))
(2)

where f n(t) stands for the term f (f (… (f (t)))) with n applications of the functional symbol f to the term t.
If � = {fm(x)∕y}, then �(C ′)� ⊆ �(C), therefore �(C ′) classically subsumes �(C).

For the converse, assume that �(C ′) classically subsumes �(C), i.e., �(C ′)� ⊆ �(C) for some substitution �.
Since C and C ′ are always clauses, there is a single variable x occurring in C and a single variable y occurring
inC ′; moreover, every literal in �(C) contains x and every literal in �(C) contains y. Therefore, � = {fm(x)∕y}
for somem, and �(C) and �(C ′) have the forms shown in (2). As a consequence C and C ′ have the forms given
in (1), i.e., C is subsumed by C ′. ⊓⊔

Proof of Theorem 3: If C1,… , Cn, C are flat clauses, then C1,… , Cn ⊢R1−R3 C if and only if
�(C1),… , �(Cn) ⊢FOL �(C).

Proof. The proof is by induction on the lenght of the derivations. The base case is obvious in both directions.
For the induction step, it must be proved that C is derivable from C1 and C2 by one of the rules R1-R3 if andonly if �(C) is a classical resolvent of �(C1) and �(C2).
(⇒) Three cases are considered, according to the applied rule. We only show here the treatment of the rule R1,

the others being similar. In this case:
C1 = □(○pl ∨○p1p1 ∨⋯ ∨○pnpn)
C2 = □(○k○p∼l ∨○q1q1 ∨⋯ ∨○qmqm)
C = □(○k○p1p1 ∨⋯ ∨○k○pnpn ∨○q1q1 ∨⋯ ∨○qmqm)

(where l,p1,… ,pn,q1,… ,qm are classical literals) and
�(C1) = l(f p(x)) ∨p1(f p1 (x)) ∨⋯ ∨pn(f pn (x)))
�(C2) = ∼l(fk(f p(y))) ∨q1(f q1 (y)) ∨⋯ ∨qm(f qm (y))

= ∼l(f p(fk(y))) ∨q1(f q1 (y)) ∨⋯ ∨qm(f qm (y))

The two classical clauses generate the resolvent
A = p1(f p1 (fk(y))) ∨⋯ ∨pn(f pn (fk(y))) ∨q1(f q1 (y)) ∨⋯ ∨qm(f qm (y))
= p1(fk(f p1 (y))) ∨⋯ ∨pn(fk(f pn (y))) ∨q1(f q1 (y)) ∨⋯ ∨qm(f qm (y))

by use of the mgu � = {fk(y)∕x} of l(f p(x)) and l(f p(fk(y))). Since A = �(C), we are done.
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(⇐) First of all, we observe that factorization can never be applied to a clause �(C). In fact, if C is an initial
clause, �(C) contains no variables, and if C is an always clause, all the literals in �(C) contain the same
variable, so no subset of its literals can be unified (unless it is a singleton).
So, it is sufficient to show that if �(C) is a binary resolvent of �(C1) and �(C2), then C1, C2 ⊢R1−R3 C .Assume that

�(C1) �(C2)
�(C)

by use of classical resolution. Different cases are considered, according to whether both C1 and C2 arealways clauses, or one or both of them are initial clauses. We deal here only with the first case, the others
being similar.
If both C1 and C2 are always clauses, �(C1) and �(C2) have the forms

�(C1) = p1(f p1 (x)) ∨⋯ ∨pn(f pn (x))
�(C2) = q1(f q1 (y)) ∨⋯ ∨qm(f qm (y))

where pi and qj are classical literals. We may assume, w.l.o.g., that p1(f p1 (x)) and q1(f q1 (y)) are thecomplementary literals resolved upon, and that p1 ≤ q1. Consequently, f q1 (y) = f p1 (f q1−p1 (y)) and the
m.g.u. of p1(f p1 (x)) and the complement of q1(f q1 (y)) is � = {f q1−p1 (y)∕x}. Therefore, if k = q1 − p1,the binary resolvent of �(C1) and pi(C2) is

A = p2(f p2 (fk(y))) ∨ …pn(f pn (fk(y))) ∨q2(f q2 (y)) ∨ …qm(f qm (y))
= p2(fk(f p2 (y))) ∨⋯ ∨pn(fk(f pn (y))) ∨q2(f q2 (y)) ∨⋯ ∨qm(f qm (y))

Let now C = □(○k○p2p2 ∨ ⋯ ∨ ○k○pnpn ∨ ○q1q1 ∨ ⋯ ∨ ○qmqm). Clearly, A = �(C) and, since
q1 = k + p1, C is derivable from C1 and C2 by application of the rule R1:

□(○p1p1 ∨⋯ ∨○pnpn) □(○k○p1q1 ∨○q2q2 ∨⋯ ∨○qmqm)
□(○k○p2p2 ∨⋯ ∨○k○pnpn ∨○q2q2 ∨⋯ ∨○qmqm)

⊓⊔

The proof of Theorem 5 exploits the following intermediate result.
Lemma 1. Let C1,… , Cn be flat clauses. If �(C1),… , �(Cn) ⊢FOL A, then there exists a flat clause C such
that A = �(C).

Proof. The proof is by induction on the length of the derivation of A from �(C1),… , �(Cn). If A = �(Ci) forsome i = 1,… , n, then the result trivially holds. For the induction step, it must be shown that for any (classical)
resolvent A of two clauses �(C1) and �(C2) there exists a flat clause C such that A = �(C).

By definition, any flat clause C has the following property:
(�) either (i) �(C) is variable-free, or (ii) �(C) contains a single variable x which occurs in every literal of

�(C).
In fact, when C is an initial clause, �(C) is variable-free; if C is an always clause, then (ii) holds.

We first show that property � is preserved:
(1) if A is a classical resolvent of �(C1) and �(C2), then A enjoys �.
If either C1 or C2 (or both) are initial clauses, then either �(C1) or �(C2) (or both) are variable-free and so arealso their resolvents.

Otherwise, let C1 and C2 be always clauses, where the variable x occurs in every literal of �(C1), y occursin every literal of �(C2), and let p(f n(x)) ∈ �(C1) and q(fk(y)) ∈ �(C2) be the literals resolved upon. We
may assume, w.l.g., that n ≤ k. Then the mgu of the two literals is {fm(y)∕x} for m = k− n. Consequently, y
is the only variable occurring in the resolvent A of �(C1) and �(C2), and it occurs in every literal of A.

Then, we show that
(2) if A is a classical clause satisfying property �, then there exists a flat clause C such that A = �(C).
If A is variable free, then it has the form

A = l1(f p1 (a)) ∨⋯ ∨ ln(f pn (a))

If C = ○p1l1 ∨⋯ ∨○pnln, then A = �(C).
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Otherwise, A satisfies (ii), hence it has the form
A = l1(f p1 (x)) ∨⋯ ∨ ln(f pn (x))

If C = □(○p1l1 ∨⋯ ∨○pnln), then A = �(C).Finally: if A is a resolvent of �(C1) and �(C2), then (1) implies that it satisfies �. Consequently, by (2),
there exists a flat clause C such that A = �(C). ⊓⊔

Proof of Theorem 5: If C1,… , Cn, C are flat clauses, C is not valid and �(C1),… , �(Cn) ⊧FOL �(C), thenthere exists a clause C ′ subsuming C such that C1,… , Cn ⊢R1−R3 C ′.

Proof. If C is not valid, then clearly �(C) is not valid either. In fact, a pair of complementary classical
literals in �(C) corresponds to a pair of complementary modal literals in C . Hence, if C is not valid and
�(C1),… , �(Cn) ⊧FOL �(C), then by Theorem 4, there exists a clause A subsuming �(C) such that �(C1),… ,
�(Cn) ⊢FOL A. By Lemma 1, there exists a temporal clauseC ′ such thatA = �(C ′), i.e. �(C1),… , �(Cn) ⊢FOL
�(C ′). Since �(C ′) subsumes �(C), by Theorem 2, C ′ subsumes C . Finally, by Theorem 3, C1,… , Cn ⊢R1−R3
C ′. ⊓⊔
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Abstract. Information is acquiring crucial importance in our time, since the introduction
of the so-called information society in the late 1970’s characterized by the massive presence
of information in our everyday life. Science of Information and more specifically the field of
Architecture of Information (AI) plays a significant role in the analysis, criticism and in the
building of new systems for a suitable use of Information in this new society. We briefly survey
the main AI features, and their role in this context, particularly the fundamental aspects of AI
proposed by the so-called Brasília Group. We highlight, as an AI-domain solution example, a
project dealing with formal ontologies implemented in Classical and Modal Logic Programming.
It is a formal language for discourse representation supported by ontological entities, able
to handle deductions concerning domain ontologies. From the metamodeling paradigm, the
language allows treating heterogeneous ontologies, which can be described as instances of one
or more foundational ontologies. The language supports classical and modal features sustained
by proof notions based on the Modal Logic Programming paradigm. Finally, it formalizes a
systematization of the endurant fragment of the Unified Foundational Ontology (UFO), so
as to compose part of the theoretical framework underlying the proposal, and to serve as an
example of its instantiation.

Key-words: information architecture, ontologies, modal logic programming, formal language

1 Introduction
Information is acquiring crucial importance in our time, since the introduction of the so-called
information society in the late 1970’s characterized by the massive presence of information in our
everyday life. As a result, it is perceived that a scientific understanding of society development in the
information age has yet to be unraveled and that, to this moment, a science for, about and by the
information society is still nonexistent. In this context, Science of Information and more specifically
the field of Architecture of Information (AI) plays a significant role in the analysis, criticism and the
building of new systems for the proper use of information in this new society.

In recent years, the volume of mediated information technology has grown dramatically, and it
seems that this growth is far from over, steadily increasing society’s technological capacity to store,
communicate, and to process information. The way humans interact with the world, what they think,
feel and believe, is supported by their sensory perceptions. Much of this background has been and
remains built on a rich set of mediated information technology. What we perceive and how we perceive
the world has a substantial influence on the construction of what we are, how we behave, and how we
relate to other human beings. However, the experience of reality for us is something accessible only
through internal mechanisms of perception and thought, which produce a personal and subjective
interpretation of objective reality.

The purpose of this paper is to present some conceptual aspects of AI as proposed by Brasília’s
group in [1] and to report a significant event that has shown unusual applications in AI project of
research, development and innovation. This project is an implementation of a formal language that
supports discourses based on ontologies. We highlight, as an AI-domain solution example, a project
that deals with formal ontologies implemented in classical and modal Logic Programming: a formal
language for discourse representation supported by ontological entities, able to handle deductions
concerning domain ontologies (cf. [2]). Following the metamodeling paradigm, the language allows
the specification of heterogeneous ontologies, which can be expressed as instances of one or more
foundational ontologies. The language supports classic and modal constructions sustained by proof
notions based on the Modal Logic Programming paradigm. Finally, as an example, it formalizes the
endurant fragment of the Unified Foundational Ontology (UFO) (cf. [3]), which can be used to specify
domain ontologies based on UFO.



2 Credentials

In the early 1990’s, the biologist Peter Marijuán from the University of Zaragoza, Spain, and the
biophysicist Michael Earl Conrad (1941 to 2000), from the State University of Wayne, Michigan,
started a Community of Information Science. Scientists around the world and from different disciplines
have been brought together to discuss the concept of information from a transdisciplinary perspective.
Since then this Community has held several international conferences: 1994 in Madrid, 1996 in Vienna,
2005 in Paris, 2010 in Beijing, 2013 in Moscow and the ISIS Summit 2015 in Vienna.

Efforts were made towards creating an organization to focus, develop and promote transdisciplinary
approaches to information. In Paris, a group of scientists met in July 2005, at the 3rd International
Conference on the Foundations of Information Science (FIS). In the final meeting, participants agreed
to extend the work of the FIS-Group, create an institute and further assemble, coordinate and
correlate the past and current theoretical work on information. Members decided to call the newly
expanded field Science of Information, not to be confused with the term “Information Science”, which
sometimes was known as the advancement “library”. The new field takes into account a more recent
and larger perspective, covering various academic disciplines and new fields of interest.

In August 2010, during the 4th International Conference on the Foundations of Information
Science (FIS), the first scientific conference on the topic Towards a New Science of Information was
held. A committee was created to prepare the foundation of a Social Information Science Institute
(SISI) with the purpose of advancing global and collaborative studies in Science of Information,
Information Technology, and the Information Society. Also creating shared conceptual frameworks
and implementing them in practice to contribute and to meet the challenges of the information age,
and holding conferences in the field (cf. [4]).

The idea of Architecture of Information proposed by M. Lima–Marques follows the same scientific
framework. Since its origin, it was designed considering the criticism of the industry’s activities. In
this general context, the AI was being used in a reductionist way, and applied almost exclusively to
website solutions (cf. [5]).

The newly proposed AI is a design methodology applied to any information environment, under-
stood as a space in a particular context, consisting of content flow, and serving a community of users.
The purpose of the Arquitetura da Informação is to enable the efficient flow of information through
information environments design, (cf. [6]).

AI is transdisciplinary3 and has several professionals involved in its implementation. It applies
methods and concepts arising from the new Science of Information and areas such as Philosophy,
Mathematics, Logic, Linguistics, Computer Science, Cognitive Science, Business Administration,
Economics, Library, Archival, among others. AI is a composition involving process, practice, and
domain knowledge. It’s a discipline where the practice strengthens and promotes its development (cf.
[8]).

These are the objectives of AI: to develop semantically relevant information environments, in
particular, contexts to meaning communities; to model information in environments that enable their
design, management and sharing by users; and to promote improved communication, collaboration,
and exchange of experiences.

AI is based on a humanistic vision where people, the subjects, are central to the creation of
solutions, for which technology is, a necessary support. AI should be in agreement with the information
requirements of those who use it, and need information at the right time (cf. [9]).

AI is a discipline whose object is information configuration (cf. [2]), i.e., its structure in appropriate
phenomena. From a technological perspective, AI can be seen as a set of methods and techniques
for designing information environments. The models developed to create AI depart from theoretical
concepts and transformed into the information system: a collection of interrelated components –
hardware, software, procedures, and databases, among others. These elements work together to
act in the information life cycle, characterized by the steps: collection, description, organization,
storage, retrieval, access, re-packaging, use, archiving, preservation, prevention, and destruction.
Thus, information technology is the infrastructure that materializes each of these perspectives. The
construction of such a system requires:

a) the determination of the configuration information in distinct spaces;
b) the implementation of acts that guide the development of necessary transformations;

and
3 Transdisciplinarity is a process in which there is a convergence between disciplines, accompanied by mutual
integration of individual disciplinary epistemology (cf. [7]).
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c) the development of valid solutions within AI models suitable for each particular purpose.

AI, from the perspective of social organizations or of the information society, can be associated
with a world view, seen as a set of actions applied to a given information space to turn it into the
information system. Currently, the information model domain is vital to an organization’s survival.
The whole economic structure is mounted on patterns of information. Mastering the information
lifecycle from its origin, its organizational patterns, its representations of appropriate models that
enable the understanding of phenomena and decision-making, has been the constant endeavor of
organizations since the late twentieth century. However, the amount of information has proved too
large for the human ability to consume. The profusion of information and its relevance to specific
issues stirred up the development of technology and science of information and, more specifically, of
AI as a tool to reduce the spread of information and make it more suitable for human understanding.

AI, as a discipline, refers to a systematic effort to identify patterns and to place methods for
information space configuration, whose purpose is the representation and manipulation of information;
and the establishment of relationships linking its linguistic entities (cf. [8]).

In [10] the authors defend the proposal of AI as a discipline and introduce a methodological
approach based on van Gigch and Pipino (cf. [11]). This important step for building a new field
announces an international trend in understanding its foundations. AI must assimilate elements of
space, time, structure, semantics, and context; deepen the understanding of the nature of information
and apply these results to critical problems in society.

While this information society has peculiarities that lead to the creation of a new scientific field,
its primary characteristic is still maintained: people, human individuals who share experiences with
each other, based on information. Although information is the bias of this new society, its subject
matter is the people and the relationship they have with information. One of the ways people express
this behavior is through speech, written or spoken, about the world experience.

In this sense, logic studies regarding the reasoning in a manner that take into account particular
aspects of individuals and societies, as epistemic and society logics are instruments that promote
understanding and the description of information phenomena in the context of human agents. AI
combines logics and information to provide systems which enable the representation and manipulation
of spaces for designing information environments to support human’s common endeavors: speeches
about the information phenomena they experience.

Therefore, in the context of AI development models applied to societies, we are building solutions
that use modal logics to reason about speeches done by agents in the context of the conceptual modeling
of reality. Conceptual Modeling is an area that applies Ontology results to develop descriptions of
reality, usually based on some foundational ontology. Mostly, these ontologies operate as a reference
and as a base ideology. Discourses concerning reality must be delivered with conceptual support
given by these theories about the world. Epistemic logics can be applied to reason with reference
to these speeches. Logic programming systems developed from the results of Luiz Fariñas del Cerro
with Molog are employed to make an executable version of the results of investigations on ontologies,
speeches, and modal logics. Primarily, it uses the works of Linh Anh Nguyen, (cf. [12]), with MProlog
to prototype logic systems supporting the description of domain ontologies based on foundational
meta-models. MProlog is a complementary approach to Molog that specializes in serial modal and
multimodal systems. The characteristic of seriality is especially useful in epistemic reasoning systems
suitable for the architectural approach of the information society. The following section describes
those results.

3 Ontoprolog

The idea of speech is related to the speech act of the subject (cf. [13]) of a society of agents, about a
particular reality. Speech acts are instruments of action on reality. By experiencing the reality of the
universe of discourse, the subject is directly influenced by it, and by the speech the subject performs.
Whereas the speech itself becomes part of that reality projected by the subject. Aforementioned
shows a continuous and corresponding feedback process of objects over reality. So in that context, the
speech is not free of ideologies, it can be interpreted as a way to act, to act on the other: it is an
instrument of action in the world.

The discourse about reality (speech acts) is a description of objects by the subject. In his
speech, information is indistinguishable from the object itself and the content of the communication.
Information is the foundational element of speech, whereas information carries the speech relationship
with reality. The description of objects, when performed in a systematic manner, is an ontology. Thus,
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information supports the ontological commitment grounding the definition of an ontology concerning a
reality. In this sense, information is also communicated through speech, therefore performing speeches
denotes ontology over information.

The systematization of a speech can be induced by a conceptual formalization process, based upon
a description of the ontological commitments and standards of meanings shared by the subjects of
the speeches. Formal languages are appropriate in this process, as they allow us to highlight concepts
and relationships between concepts that are the basis for understanding the meaning of a speech.

The idea behind the Ontologies proposal is that they act as a semantic reference to the discourse.
Ontologies should reflect real patterns of meaning, captured from ontological commitments, and
sustained by a particular logic. However, to produce a discourse is also necessary to build an ontology
(a new one), which should be of a specific domain, and which carries the worldview of the reference
ontology. For this reason, it is important that everything on the dependencies among ontologies is
semantically clear.

Ontoprolog is a formal language built to describe discourses based on ontologies. Reference
ontologies can be constructed from a generic metamodel. Domain specific ontologies can be specified
using on general ontologies. The system is anchored on a logical framework of Logic Programming
and uses classical and modal reasoning. Ontoprolog features includes:

– a formal textual language, i.e. a basis for well-founded description of speeches covering
subject experiences by ontological entities;

– a set of semantic and syntactic rules of the language, based on the proof framework of
classical Programming in Logic;

– a set of modal extensions provided by MProlog to the base language for dealing with
speeches based on multi-agent semantics as proposed by Nguyen (cf. [14]).

Here we present a solution implemented in Ontoprolog to exemplify its applicability. Let’s use an
ontology found in the literature: the Unified Foundational Ontology (UFO-A) (cf. [3]). The UFO-A is
an ontology used as a reference in the conceptual modeling area for building domain-specific ontologies.
In Ontoprolog, it is defined as an instance of a general metamodel. Accordingly, it can be used to
describe particular ontology. Therefore, the framework defines a specification of UFO-A, a set of
syntactic sugar, built by language, and a set of rules to validate extended universal ontologies and its
particular ontology. The results are shown in [2] and are not detailed in this section.

Ontoprolog language is based on Prolog operators. In its grammar, sentences are syntactically
designed to be recognized as the standard program. Therefore, it is possible to insert any ontology
specifications in any Prolog program, including existing ones. Further, Prolog operators allow language
extensions be performed relatively quickly. Therefore, expansions can be created to enrich the
expressivity of the language. Regarding pragmatics of language, grammar was designed so that a user
can apply the Ontoprolog specification in real conceptual modeling sessions, as intelligible as a lingua
franca in a community of users.

From a technical point of view, the use of operators in implementing syntax allows representation
and direct access to parse trees. Accordingly, lexical analysis of a language internally built on logic
programming is automatically created. Thus, it is possible to construct sentences of the language
that are equally sentences of a standard Prolog program, including the ability to make unification
of sentences based on syntactic tree combined operators. So, initially, a base syntax that is able to
express primary language constructs is conceived. This basic syntax is shown in Code 1 through
EBNF rules (Extended Backus-Naur Form). The rating is based on the standard proposed in [15]:

Code 1. Ontoprolog EBNF syntax definition
ONTOLOG_SPECIFICATION ::= SENTENCE +

SENTENCE ::= ( DISJOINT | INSTANCE | PARTIAL_SUBSUMPTION | COMPLETE_SUBSUMPTION |
PROPERTY_ASSOCIATION | PROPERTY_ASSIGNMENT | SUBSETS | REDEFINES | POWER_TYPE | META ) ’.’

DISJOINT ::= ’disjoint ’ ’[’ ATOM (’,’ ATOM)* ’]’

INSTANCE ::= ( ATOM | ’disjoint ’ ’[’ ATOM (’,’ ATOM )* ’]’ ) ’::’ ( INSTANTIABLE_ENTITY | ’[’
ATOM (’,’ ATOM )* ’]’ )

PARTIAL_SUBSUMPTION ::= ( ATOM | ’disjoint ’? ’[’ ATOM ( ’,’ ATOM )* ’]’ ) ( ’::’
INSTANTIABLE_ENTITY )? ( ’extends ’ | ’extend ’ ) ( ATOM | ’[’ ATOM ( ’,’ ATOM )* ’]’ )

COMPLETE_SUBSUMPTION ::= ( ATOM | (’disjoint ’? ’[’ ATOM ( ’,’ ATOM)* ’]’ ) ) ( ’::’
INSTANTIABLE_ENTITY )? ’cover’ ATOM

PROPERTY_ASSOCIATION ::= ’property ’ ( ATOM | ’[’ ATOM (’,’ ATOM )* ’]’ ) ’on’ (
ENTITY_WITH_PROPERTY | ’[’ ENTITY_WITH_PROPERTY (’,’ ENTITY_WITH_PROPERTY )* ’]’ )

PROPERTY_ASSIGNMENT ::= PROPERTY_TYPE ’at’ ENTITY_IN_RELATION ’:=’ VALUE
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VALUE ::= ANY_PROLOG_TERM

SUBSETS ::= PROPERTY_TYPE ’at’ ENTITY_IN_RELATION ’subsets ’ PROPERTY_TYPE ’at’ ENTITY_IN_RELATION

REDEFINES ::= PROPERTY_TYPE ’at’ ENTITY_IN_RELATION ’redefines ’ PROPERTY_TYPE ’at’
ENTITY_IN_RELATION

POWER_TYPE ::= ’powertype ’ ( ENTITY_PT | ’[’ ENTITY_PT (’,’ ENTITY_PT )* ’]’ ) ’classifying ’ (
ATOM | ’[’ ATOM ( ’,’ ATOM )* ’]’)

META ::= ’meta’ ( META_PROPERTY | ’[’ META_PROPERTY (’,’ META_PROPERTY)* ’]’ ) ’on’ ( ( ATOM
’at’ )? ( ( ’extensions ’ | ’transitive ’? ’direct ’? ’instances ’ ) ’of’ )? )? (
ENTITY_WITH_META | ’[’ ENTITY_WITH_META (’,’ ENTITY_WITH_META )* ’]’ )

META_PROPERTY ::= ANY_PROLOG_TERM

INSTANTIABLE_ENTITY ::= ATOM

PROPERTY_TYPE ::= ATOM

ENTITY_IN_RELATION ::= ATOM

ENTITY_WITH_PROPERTY ::= ATOM

ENTITY_WITH_META ::= ENTITY_WITH_PROPERTY

ENTITY_PT ::= ENTITY_WITH_PROPERTY | ATOM ’at’ ATOM

ATOM ::= [a-z][a-zA-Z0-9]* | "’" [^’]* "’"

A valid instance of the grammatical structure presented in Code 1 is called Ontoprolog Specification.
Therefore, from the presented definition, a specification (ONTOPROLOG_SPECIFICATION) is a non empty
set of sentences (SENTENCE). Sentences can be from different syntactic categories but always end with
a full stop. The first, DISJOINT, is defined with the operator disjoint followed by a list of atoms
separated by commas and brackets. The same thought applies to other syntactic categories, which
define the EBNF rules. The semantics of an Ontoprolog specification is called theory and is given by
the structure
OT = 〈C,G,R,H〉, such that:

a) C is a finite set, and not empty, of entities that hold ontological relations with the world;
b) G is a finite set, and possibly empty, of logical entities that do not require an ontological

commitment to the described universe but are part of the universe of theoretical meta-
objects about reality;

c) R is a finite set, and non-empty, of positive and negative rules defined on relations of
H. These rules regulate the notion of logical consequence obtained from the semantic
relations;

d) H is a finite set, and not empty, of relations between instances of objects C∪G represented
by a set of primitive predicate symbols. The relations are presented in the form of Horn
clauses and are called semantic relations.

The assignment of meaning to the syntactic constructs created as instances of the grammatical
definitions in Code 1 is performed using translations between such syntax and to a set of semantics
relations of H. It is essentially an approach driven by the syntax where semantics is defined by
induction on the structure of language syntax. That is, using production rules; semantics is assigned to
each possible combination of the syntactic constructs. Translation is a kind of denotational semantic,
based on [16, p. 91]. Meaning that “there is a semantic clause for each syntactic basic category” and
“to each method of constructing composite elements (the syntactic category) there is a semantic
clause defined regarding semantic function, this one is applied to the immediate constituents of the
composite members.”

The definite clauses of R are divided into two categories of rules: positive rules and semantic
validation rules, these defined as negative predicates written as positive rules. The positive rules are
positive predicates denoting transitive closures and relations derived from the fact base. Derived
relations are written in the form h← ϕ, where h is the consequent of the implication, called the head,
which consists precisely of an atom, and ϕ is a schema conjunction as ψ1 ∧ . . . ∧ ψn for n > 0, where
ψi is literal possibly negative. The set of all clauses of the same predicate symbol p on the head is
called the definition of p. Therefore, a rule p can be defined as a disjoint set of literals. For the sake
of space limitations, all predicative definitions contained in an Ontoprolog theory are not presented
in this paper.

Each semantic validation rule represents defined queries that attempt to prove that certain
unwanted property occurs. Therefore, to check if a particular relation is unreflective, there must
be a semantic validity rule that tries to show that there is, at least, one reflective instance of that
particular relation. If this rule (or a negative rule written in positive form) cannot be established,
then, due to the assumption of the closed world inherent in all program Prolog, it is assumed in a
non monotonic manner, the opposite, namely that such a relation is unreflective.
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Considering that a :: b. is a Ontoprolog sentence, grammar instance of Code 1:
a :: b =⇒ dio(a, b)

a) a :: b is a sentence (syntactic) valid on Prolog where :: is an infix operator, so that
a :: b. is a fact (note the full stop added to the sentence);

b) dio(a, b) is a semantic relation that denotes (partially)4 the meaning of the sentence a
:: b, where dio/2 is a mnemonic for direct instance of ; and

c) =⇒ represents a function that translates sentences into semantics relations.

Therefore, there is a clear separation between Ontoprolog syntax and semantics, where syntax is
described by EBNF rules, and semantics is provided by combining the following:

a) semantic translation: the =⇒ represents a type of denotational semantics given by
translation of sentences. They are represented by syntax trees from combining operators.
It makes up a group of relations (terms/Horn Clauses), representing the semantics of
translated sentences;

b) semantic validation rules and notion of consistency: the validity of rules only occur
on the side of the semantic relations, and govern the validity of the models produced
by these relations. Because these rules are written in a positive way, and still denote
negative conditions, a theory is consistent when none of the rules succeeds, i.e. when
none of them are true, or when neither “is the case”.

Under the ontology description language, in fact, “consistency” is not related to a purely classical
contradiction in the sense of being present in a statement and its negation (cf. [17]). A discussion on
several senses of the notion of consistency is found in [18]. In Ontoprolog, there is not an explicit
negation of the claims. Negations take place by the negation as failure of the closed world assumption.
However, within the Ontoprolog’s meta-Logic, we express the notion of consistency as validity
regarding the rules.

In Ontoprolog’s meta-logic, the consistency notion is defined as rules created based on definitions
that may not be true in a particular model. For example, if we define that NT is a rule that indicates
that an appropriate relation can not be transitive, and it is the case that an instance of the Y relation
be transitive, therefore that instance of Y relation is “inconsistent”, or “incompatible” or “invalid”
concerning the NT rule. In other words, if it occurs in a particular model something that makes the
NT (or any rule) true, then it is not the case that all rules are false. Therefore, the model is considered
“inconsistent” because there is, at least, a “contradiction” with the rules. I see that in this sense, the
Ontoprolog’s meta-logical system is purely classical, and contradiction implies inconsistency.

However, under the ontology description language, i. e., under the system built on that classic
paradigm, we have a non-classical system in which the notion of consistency is different. Although the
statements about ontologies do not have negation, they can participate under validity notions that
change about ontological models that they are inserted. This situation occurs because they are in a
non-monotonic system, i. e., new statements could avoid deductions already made. Moreover, when
we employ modalities, a particular ontology relation may be consistent with a set of statements of a
particular agent, but may be inconsistent when, from a current world, it has access to statements
base of another agent (in other accessible possible world). But it can be valid again when another
world becomes accessible, and so on.

Another issue is that it does not say in Ontoprolog that “it is not the case that X and not X”.
It is expressed, always in positive form, relationships between entities. In turn, these instances of
relations, in a certain world, can denote situations that imply a contradiction to some rule. However,
for the Ontoprolog system, the rules themselves may be in a non-classical paradigm, as indeed occurs
in the modal system, without necessarily changing interpretations of ontologies.

The rewriting of certain cases in the grammar defined in Code 1 is presented to exemplify how
the translation semantics is defined. According to syntactic categories, grammar for describing the
relation of disjoint concepts is represented by the operator disjoint (DISJOINT in Code 1), and
denotes that a list of ontological entities T1, . . . , Tn are disjoint. The operator disjoint is translated
into semantic predicate dd/1, as follows:

4 Add entity(a) and entity(b) in relations denoting the meaning of a :: b.
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Jdisjoint [T1, . . . , Tn]K
=⇒

dd(J[T1, . . . , Tn]Ktl)
J[T1, . . . , Tn]Kentity

where:

– J [ T1, . . . , Tn ] Ktl =⇒ [ JT1Kt, . . . , JTnKt ]

– J [ T1, . . . , Tn ] Kentity =⇒ entity(JT1Kt)., . . . , entity(JTnKt).

– JTKt =⇒ T, if atom(T ) is the case for any T , and atom/1 happens, if the only parameter
is qualified as atom by the definition of ATOM in Code 1, and T does not coincide with a
Prolog operator

The Definition 1 exemplifies how a semantic validation rule is defined in the system. In this
case, ngrule/1 is a predicate that defines a semantic validation rule. Therefore, if all other semantic
validity rules do not succeed, the theory is said to be “consistent with the rules.” In [2] one can find
all semantic validation rules, and all cases of syntax translation function in the semantic relations of
Ontoprolog’s basis.

Definition 1 (Rules for dd/1).
dd/1 imposes constraints on the relations of the dio/2 and deo/2, so that no entity can instantiate

or extend simultaneously, two disjoint types. The following rules define the relations dd/1:

– be I the entities list instantiated by E. No two 〈i1, i2〉 ∈ I can be disjoint:

ngrule(dio_disjoint_types)←setof(IT, dio(E, IT ), I),
disjoint_types(I).

– be I the extended entities lists by E. No pair 〈i1, i2〉 ∈ I can be disjoint:

ngrule(deo_disjoint_types)←setof(IT, deo(E, IT ), I),
disjoint_types(I).

In Ontoprolog, the speeches are formalized as theories, instances of a metamodel, which can be an
ontology or just a metatheory with basic logic elements. In this case, it is called hypertypes metatheory
and contains most foundation concepts used to define ontologies. This metatheory is created from the
Aristotelian Square and, so it contains, at least, two bases entities: type: are elements independent
on each other, and property: are moments, and so, are dependents of types.

As an example, Code 2 is a description of an ontology as expressed in Ontoprolog. It outlines
the specification of a single speech, described as an instance of a fundamental metatheory named
hypertypes metatheory. This example shows slotProperties, whose fields are instances of type.

Code 2. “Sinatra” specification
1:- include(’../../../ ontoprolog/ontoprolog ’).

3% properties
[nome , data_morte] :: slotProperty.

% type theory
7criatura :: type.

pessoa :: type extends criatura.

disjoint [vivo , morto] :: type extends criatura.
11

property nome on pessoa.
property data_morte on morto.

15pessoa_viva :: type extends [pessoa , vivo].
pessoa_morta :: type extends [pessoa , morto].

% individual theory
19lauro :: pessoa_viva.

nome at lauro := ’lauro cesar’.

sinatra :: [pessoa_morta , vivo].
23

:- otp_compile ,
check_semantics.

Logical Reasoning and Computation: Essays dedicated to Luis Fariñas del Cerro

39



Code 3 shows the output of the semantic evaluation of Code 2. The predicate opt_compile/0 is
the implementation of the translation filter, that produces the clauses which indicate the semantic
relations. The predicate check_semantics/0, in turn, applies the rules of validity produced by the
filter and verifies the notion of consistency of the conceptual model. As expected, the evaluation
mechanism of the theory denoted by specification finds out that there is an inconsistency about the
concept sinatra, caught by the rule dio_disjoint_types (Definition 1). In this case, sinatra can
not simultaneously instantiate types pessoa_morta and vivo, once they are disjoint concepts. The
result shows the mechanism that defines the notion of consistency within the theories of Ontoprolog.

Code 3. Output of Code 2

1
2Compilation of the ontoprolog specification was successful.

Checking semantics using negative rules of the current Ontoprolog theories ...
---------------------------------------------------

6Checking ngrule /3...
sinatra:

-> "sinatra" instantiates disjoint types "[pessoa_morta ,vivo]". (dio_disjoint_types)

10---------------------------------------------------

Based on the specification and in the theory, it is possible to build programs that use information
about ontologies. Applications within systems can use this ontological structure description as input
to decisions and evaluations of relevant rules in particular contexts.

The modal extension of Ontoprolog replaces the underlying classical logic evaluation of sentences
by one of the serial modal systems from MProlog. In this case, the grammar sentences, defined
in Code 1 are added to modal contexts. For reasoning about the discourse of different subjects, it
uses the system KD45m for the doxastic semantics of multiple agents. As a general rule consistency
evaluation, it is considered that each speech and its conjunction should be valid on the reference
ontology used by subjects. Therefore, the key requirement refers to the fact that discourse should be
related to the same universe of discourse, based on the same ontological commitment, to be able to
identify consistencies and inconsistencies.

The syntactic form to be used in the modal context specification varies from the deductive system
chosen. In this case, the option is to use the serial system KD45m, in which the agents do not have
access to the knowledge base of the others. In this system, the modalities have syntactic forms, bel(i)
γ and pos(i) γ. They are interpreted as “the agent i beliefs that γ is true” and “γ is considered
possible by the agent i”, respectively5, where 3 is a sentence Prolog whatsoever.

Following Code 4, there are two groups of sentences for each speech regarding claims of a subject
on the same shared reality. In the code, the first subject, identified as 1, exposes the concepts of
living_person and dead_person. Moreover, this agent securely exposes that sinatra is an instance
of dead_person. This certainty of the first agent is explained by the use of the modal operator bel.
The second group of statements consists of the agent’s claims idenfied by 2. The agent 2 adds an
important restriction on the concepts living_person and dead_person by indicating that these are
disjoint concepts. Thus, according to the Definition 1, direct or indirect instances of these entities
can not instantiate simultaneously living_person and dead_person entities. Finally, agent 2 says
that sinatra is an instance of living_person. But he does this in a hesitante way, so he uses the
operator pos. Importantly, due to the presence of the (D) axiom, all that is known certainly (bel) is
also known possibly (pos).

Code 5 operates as a modal program controller. Line 2 embeds the framework of Ontoprolog-Modal,
consisting of the inclusion of MProlog6 library and Ontoprolog. Line 5 refers to epistemic modal
calculations library included in the belief.cal. In this library, the system KD45m and others are
defined. Line 8 effectively queries the modal program, described by Code 4. The lines between 10 and
22 defines the predicate otp_m_compile/0, which consists in:

a) producing a list LMA with the sentences Ontoprolog asserted by the agent 1;

b) producing a list LMB with the sentences Ontoprolog asserted by the agent 2;

c) producing a set LMB with the union of the lists LMA and LMB. Since it is a set,
LMB does not have repeated assertions;

5 This is the text version for universal (2) and existential (3) with doxastic interpretation.
6 The MProlog is adapted so that it can be used with the framework of Ontoprolog.
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d) producing a line LC with all the classical sentences present in the program. This is
necessary to retrieve the base of facts, which contains the Metatheory of hypertypes
underlining all Ontoprolog specifications;

e) producing a set LCMAB with the union of LMAB and LC; and

f) compiling the set of sentences LCMAB as Ontoprolog specification.

Finally, the lines 23:24 effectively run the predicate otp_m_compile/0 and the predicate check_-
semantics/0, used to verify the consistency of the model produced by the specification. Code 6
contains the output from running Code 5.

Code 4. “Sinatra” Modal specification – MProlog file

1% Modal Epistemic Logic
2:- calculus cKD45m.

:- set_option(current_calculus , cKD45m).

% -----
6% 1

% -----
% type theory
[bel (1)] : otp(person :: type).

10[bel (1)] : otp([ living_person , dead_person] :: type extends person).

% individual theory
[pos (1)] : otp(sinatra :: dead_person).

14
% -----
% 2
% -----

18% type theory
[bel (1)] : otp(person :: type).
[bel (1)] : otp(disjoint [living_person , dead_person] :: type extends person).

22% individual theory
[pos (2)] : otp(sinatra :: living_person).

Code 5. “Sinatra” Modal specification – Prolog file

1% Include ONTOPROLOG -MODAL libraries
:- include(’../../../ ontoprolog/ontoprolog -m’).

% Consult calculi
5:- consult_calculi(’../../../ ontoprolog/modal/mprolog2 -custom/belief.cal’).

% Consult modal program
:- mconsult(’modal_sentence_cKD45m_sinatra.mpl’).

9
% denec
otp_m_compile :-

write(’Getting candidate modal sentences ...’), nl,
13findall(A, mcall([pos(1)] : otp(A)), LMA),

findall(B, mcall([pos(2)] : otp(B)), LMB),
util_append(LMA , LMB , LMAB),

17write(’Getting candidate classical sentences ...’), nl,
setof(S, otp_classic_sentence(S), LC),
util_append(LMAB , LC, LCMAB),

21otp_compile(LCMAB).

:- otp_m_compile , % denec
check_semantics.

Code 6. Output of Code 5 semantic

1
Compilation of the Ontoprolog specification was successful.

4Checking semantics using negative rules of the current Ontoprolog theories ...
---------------------------------------------------
Checking ngrule /3...
sinatra:

8-> "sinatra" instantiates disjoint types "[dead_person ,living_person]". (dio_disjoint_types)

The output shows that the consistency check based on the rules of semantics verification of the
form ngrule/n identifies a consistency problem on the concepts dead_person and living_person.
This kind of result shows the ability to perform global inconsistency verification theories denoted by
the conjunction of the individual specifications speech of each agent, i.e., agents identified as 1 and 2.
The mechanism assists in the process of reaching agreements about reality, insofar as it exposes the
inconsistency in the speeches of the agents.

The sort of modal approach to the treatment of ontologies with Ontoprolog is one of the modal
treatment strategies discussed in [2]. In that text, other approaches are discussed, for example relating
to the insertion modal semantics, not only the specifications, as in the present case, but also in the
context of theories denoted by them.
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4 Outcome

Results through the application of modal logic, software engineering, and artificial intelligence, as some
presented with Ontoprolog are examples of information models for automated reasoning, collaboration
and exchange of experiences amongst people. Thus, this article explored the purpose of developing
semantically relevant information environments of Architecture of Information, as a discipline, in
which the object is information. In this sense, AI plays a crucial role in such initiatives in order to
guide approaches through modeling information.
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Abstract. In this paper we study the introduction of modal past temporal operators in Tem-
poral Equilibrium Logic, an hybrid formalism that mixes linear-time modalities and logic
programs interpreted under stable models and their characterisation in terms of Equilibrium
Logic.

1 Introduction

Many scenarios of commonsense reasoning require the combination of two central dimensions in
Knowledge Representation (KR): Temporal Reasoning and Non-Monotonic Reasoning (NMR). Due
to the strong connection between NMR and Logic Programming (LP), one interesting possibility
for this aim is to rely on the literature on (temporal) modal extensions of LP. This research area
dates back to the eighties with several approaches (see survey [1]), starting with the seminal work by
Luis Fariñas del Cerro [2] on the MOLOG system, that introduced different types of modalities into
Prolog. Other extensions [3,4,5] were specifically focused on enriching LP with temporal modalities
as those handled in Linear-time Temporal Logic (LTL) [6,7]: ◻ standing for “always,” ◇ standing for
“eventually” or ◯ standing for “next.” However, most of them imposed some syntactic restrictions
and disregarded the use of default negation. For instance, the system TEMPLOG [4] introduced a
particular syntax where temporal modalities could be used in the rule bodies or as the general scope
of the rule conditional in a restricted manner. An example of a TEMPLOG rule is:

◻(p← ◯q ∧◇r) (1.1)

As shown in [8], this syntax had the semantic advantage of yielding a unique, least Herbrand model
for any TEMPLOG program, as happens with positive logic programs in the non-temporal case.
Unfortunately, these syntactic limitations make this type of formalisms not suitable for our original
purposes in KR. On the one hand, the absence of default negation is a serious drawback that prevents
the representation of defaults and NMR. On the other hand, even if we focus on the temporal
perspective, the way in which modal operators are used in TEMPLOG is not natural in terms of a
commonsense description of a dynamic domain. Take the rule (1.1) as an example. This expression
may make sense under a top-down Prolog reading: at any moment, to fulfil goal p we need to satisfy
q at the next state and r at some point in the future. However, if we use a bottom-up reading, more
common in causal laws used in action languages, (1.1) would assert that if q holds at the next state
and r occurs in a future situation, then p is always caused to be true now. What makes an expression
of this kind look unnatural is that, excepting in science fiction scripts1, commonsense causal laws
normally describe the cause-effect relations from past to future, not the other way around. For
instance, if we want to express that pushing a button lights a lamp in the next situation, unless we
can prove that it is broken, we would require a rule like:

◻(◯light← push ∧ ¬broken) (1.2)

which cannot be represented in TEMPLOG, since it does not allow rule heads with ◯ or ◇ operators,
and cannot deal with default negation ¬.

Part of the syntactic limitations present in the temporal LP approaches from the eighties were
mostly due to the fact that a satisfactory semantics for default negation in (non-temporal) LP
was not successfully proposed until the last part of the decade. In 1988, Gelfond and Lifschitz [10]

1 As an interesting formal classification of time-travel narratives, see [9].



defined the stable model semantics that eventually gave rise to a new LP paradigm called Answer Set
Programming (ASP) [11,12], becoming nowadays one of the most successful frameworks for practical
problem solving and KR. Moreover, as shown in [13], stable models can be logically characterised
in terms of Equilibrium Logic [13], a formalism that defines a model selection criterion for the
(monotonic) intermediate logic of Here-and-There (HT) [14]. The equilibrium logic characterisation
has eventually allowed the definition of stable models [15] for arbitrary theories without syntactic
limitations.

In principle, the extension of HT to the temporal case could be designed as an example of
intuitionistic (or intermediate) modal approach, as in [16] and also studied by Luis Fariñas and
Andrés Raggio in [17]. In order to obtain a temporal extension of Equilibrium Logic, one further
needs to generalise the model minimisation from the latter to temporal (intuitionistic) interpretations.
Such an extension of Equilibrium Logic to incorporate LTL modal operators was, in fact, proposed
in a series of papers [18,19,20] under the name of Temporal Equilibrium Logic (TEL). TEL defines a
temporal stable model semantics for any arbitrary theory, and so, it allows free combinations of the
temporal operators and LP constructs. In this way, (1.2) is now representable in TEL and behaves
like a standard ASP program containing the rules:

light(I + 1)← push(I),¬broken(I)
for any integer I ≥ 0. Moreover, we can represent other expressions that are not representable in ASP
(unless we add auxiliary atoms) such as:

◻(◯◇light← push ∧ ¬broken)
meaning this time that the light will be eventually on, but perhaps with a delay of n ≥ 1 of situations.
Although a prover has been built [21] to compute temporal stable models for arbitrary (propositional)
temporal theories, such a syntactic flexibility is not so exploited in practice. If we look at the usual
encoding of action scenarios in TEL, rules like (1.1) (directed from future to past) simply do not
occur. In fact, this has led to the definition of a particular syntactic subset, called splittable [22]
temporal logic programs, where formulas are constraints like ◻(�← ϕ) or have the form:

◻(◯α ← ◯β ∧ γ) (1.3)

where α is a disjunction of literals (an atom or its negation), and β and γ are conjunctions of literals.
For instance, (1.2) is in splittable form. The temporal stable models for a splittable program can
always be represented as LTL models of another temporal theory2 and so can be computed [23] using
an LTL model checker as a backend.

Splittable programs cover most examples of transition-based action domains in the literature
and allow an arbitrary use of temporal operators in constraints. However, their expressiveness for
describing causal laws is limited to (1.3) where the use of temporal operators is rather restrictive.
Moreover, as discussed before, even if they are extended to allow more expressive operators in the
rule body, as in (1.1), the expressions we obtain seem awkward because they would describe causation
from future to past.

A more natural choice for handling expressive modalities in causal laws would be using past
operators in the rule bodies (that express the law precondition) and using future operators for the
rule heads or for the constraints describing the valid narratives. As an example, suppose that the
lamp takes a pair of situations to “warm up” if we pushed the button for the first time:

◻(◯◯light ← push ∧⊟¬push) (1.4)

where ⊟ stands for “it has always been true.” Of course, we can represent this example without past
operators if we introduce an auxiliary predicate to remember that push has been true before:

◻(◯◯light ← push ∧ ¬pushed)◻(◯pushed ← push)◻(◯pushed ← pushed)
However, in the general case, past operators allow much more flexible and compact queries on the
past narrative without the need of introducing auxiliary atoms, which may become a potential source
of errors in the specification.

2 It is still unknown whether this property also holds for any TEL theory or not.
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Another justification for the introduction of past operators relies on the fact that recent imple-
mentations of ASP solvers for incremental [24] and stream reasoning [25] which allow multiple-shot
execution of the solver, can exploit the search done in previous shots if the time variable in the rules
refers to the current instant in the head and previous instants in the body. For instance, for this
purpose, we would rather be interested in representing (1.4) as the equivalent formula:

◻(light ← ⊖⊖(push ∧⊟¬pushed))
where ⊖ means “in the previous state.”

It has been proved [26,27] that LTL with past operators it can be translated into an equivalent
pure future formula evaluated at the beginning of the path. Still, as shown in [28], any LTL with
past is exponentially more succinct3 than pure-future LTL.

In this paper, we consider an extension of TEL (and THT) to include past operators and show
that this extension can be reduced to pure future TEL by a translation that introduces auxiliary
atoms.

2 Temporal Equilibrium Logic with past operators

2.1 Syntax

The logic of Linear Temporal Here-and-There (THT) is defined as follows. We start from a finite
set of atoms LV called the propositional signature. The syntax of THT is the one from propositional
LTL which we recall below. A temporal formula ϕ is defined as:

ϕ ∶∶= � ∣ p ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ ϕ1 → ϕ2 ∣ ◯ϕ1 ∣ ◻ϕ1 ∣◇ϕ1 ∣ ϕ1 U ϕ2 ∣ ϕ1 R ϕ2 ∣⊖̂ϕ1 ∣ ⊖ϕ1 ∣ ⊟ϕ1 ∣xϕ1 ∣ ϕ1S ϕ2 ∣ ϕ1T ϕ2

where ϕ1 and ϕ2 are temporal formulas in their turn and p is any atom. Negation is defined as¬ϕ def= ϕ → � whereas ⊺ def= ¬�. Note that ‘¬’ will stand for default negation in all non-monotonic
formalisms described in this paper. Concerning to temporal modalities, the operators can be defined
in terms of U , R, S and T :

◇ϕ def= ⊺ U ϕ ◻ϕ def= � R ϕxϕ def= ⊺ S ϕ ⊟ϕ def= � T ϕ

Operator ◻ is read “forever” and ◇ stands for “eventually” or “at some future point.” We define the
following notation for a finite concatenation of ◯’s and ⊖’s operators as follows:

◯0ϕ
def= ϕ ◯iϕ def= ◯(◯i−1ϕ) (with i ≥ 1)⊖0ϕ
def= ϕ ⊖iϕ def= ⊖(⊖i−1ϕ) (with i ≥ 1)

2.2 Semantics

An LTL-interpretation is an infinite sequence of sets of atoms H0,H1, . . . with Hi ⊆ At, i ≥ 0. Given
two LTL-interpretations H and T, we write H ≤ T to stand for Hi ⊆ Ti for all i ≥ 0. As usual, H < T
represents H ≤ T and H ≠ T, that is, the inclusion relation holds in all states but is strict Hj ⊂ Tj
for some j ≥ 0. A THT-interpretation M is a pair of LTL-interpretations M = ⟨H,T⟩, respectively
standing for here and there, such that H ≤ T. An interpretation M = ⟨H,T⟩ is said to be total when
H = T.

Definition 1 (THT-Satisfaction). We say that an interpretation M=⟨H,T⟩ satisfies a formula
ϕ at state k ∈ N, written M, k ⊧ ϕ, when the following recursive conditions hold:

1. M, k ⊧ p iff p ∈Hk, for any p ∈ At.
2. M, k ⊧ ϕ ∧ ψ iff M, k ⊧ ϕ and M, k ⊧ ψ.

3 Assuming that no auxiliary atoms are introduced.
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3. M, k ⊧ ϕ ∨ ψ iff M, k ⊧ ϕ or M, k ⊧ ψ.
4. M, k ⊧ ϕ→ ψ iff for all H′ ∈ {H,T}, ⟨H′,T⟩, k /⊧ ϕ or ⟨H′,T⟩, k ⊧ ψ.
5. M, k ⊧ ◯ϕ iff M, k + 1 ⊧ ϕ.

6. M, k ⊧ ⊖̂ϕ iff {M, k − 1 ⊧ ϕ if k > 0
false if k = 0

7. M, k ⊧ ⊖ϕ iff {M, k − 1 ⊧ ϕ if k > 0
true if k = 0

8. M, k ⊧ ϕ U ψ iff there is j ≥ k s.t. M, j ⊧ ψ and M, i ⊧ ϕ for all i, k ≤ i < j.
9. M, k ⊧ ϕ R ψ iff for all j ≥ k s.t. M, j ⊧ ψ or M, i ⊧ ϕ for some i, k ≤ i < j.

10. M, k ⊧ ϕ S ψ iff there is j, 0 ≤ j ≤ k s.t. M, j ⊧ ψ and M, i ⊧ ϕ for all i, j < i ≤ k.
11. M, k ⊧ ϕ T ψ iff for all j, 0 ≤ j ≤ k s.t. M, j ⊧ ψ or M, i ⊧ ϕ for some i, j < i ≤ k.
12. never M, k ⊧⊥. ⊠

In particular, the following LTL valid formulas are also THT valid:

ϕ U ψ ↔ ψ ∨ (ϕ ∧◯(ϕ U ψ)) (1.5)

ϕ R ψ ↔ ψ ∧ (ϕ ∨◯(ϕ R ψ)) (1.6)

ϕ S ψ ↔ ψ ∨ (ϕ ∧⊖(ϕ S ψ)) (1.7)

ϕ T ψ ↔ ψ ∧ (ϕ ∨⊖(ϕ T ψ)) (1.8)

A formula ϕ is THT-valid if M,0 ⊧ ϕ for any M. An interpretation M is a THT-model of a theory
Γ , written M ⊧ Γ , if M,0 ⊧ ϕ, for all formula ϕ ∈ Γ . It is not difficult to see that THT-satisfaction
for a total interpretation ⟨T,T⟩ collapses to LTL-satisfaction for T. As a result:

Observation 1 ⟨T,T⟩ ⊧ Γ in THT if and only if T ⊧ Γ in LTL. ⊠
Some total models will be said to be in equilibrium if they satisfy the following minimality condition
in their “here” component.

Definition 2 (temporal equilibrium model). A total THT-interpretation ⟨T,T⟩ is a temporal
equilibrium model of a theory Γ if ⟨T,T⟩ ⊧ Γ and there is no H < T, such that ⟨H,T⟩ ⊧ Γ . ⊠
Since a temporal equilibrium model is a total model ⟨T,T⟩, by Observation 1, it corresponds to an
LTL model T we will call temporal stable model.

Definition 3 (temporal stable model). If ⟨T,T⟩ is a temporal equilibrium model of a theory Γ
then T is called a temporal stable model of Γ (or TS-model, for short). ⊠
Observation 2 Given M = {H,T} and a pair of formulas ϕ,ψ, if M(ϕ) = M(ψ) then also T(ϕ) =
T(ψ). ⊠

We can alternatively represent any interpretation M = ⟨H,T⟩ by seeing each mi = ⟨Hi, Ti⟩ as
a three-valued mapping mi ∶ V → {0,1,2} so that, for any atom p, mi(p) = 0 when p /∈ Ti (the
atom is false), mi(p) = 2 when p ∈ Hi (the atom is true), and mi(p) = 1 when p ∈ Ti ∖ Hi (the
atom is undefined). We can then define a valuation for any formula ϕ, written4 M(ϕ), by similarly
considering which formulas are satisfied by ⟨H,T⟩ (which will be assigned 2), not satisfied by ⟨T,T⟩
(which will be assigned 0) or none of the two (which will take value 1). By Mi(ϕ) we mean the
3-valuation of ϕ induced by the temporal interpretation Mi, that is, M shifted i positions.

Definition 4. From the definitions in the previous section, we can easily derive the following con-
ditions:

1. Mi(p) def= mi(p)
2. Mi(ϕ ∧ ψ) def= min{Mi(ϕ),Mi(ψ)}; Mi(ϕ ∨ ψ) def= max{Mi(ϕ),Mi(ψ)}
3. Mi(ϕ→ ψ) def= {2 if Mi(ϕ) ≤ Mi(ψ)

Mi(ψ) otherwise

4. Mi(◯ϕ) def= Mi+1(ϕ)
4 We use the same name M for a temporal interpretation and for its induced three-valued valuation function

– ambiguity is removed by the way in which it is applied (a structure or a function on formulas).
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5. Mi(⊖ϕ) def= {Mi−1(ϕ) if i > 0
2 if i = 0

6. Mi(⊖̂ϕ) def= {Mi−1(ϕ) if i > 0
0 if i = 0

7. Mi(ϕ U ψ) def= max{ min{Mj(ψ),Mk(ϕ) ∣ i ≤ k < j} ∣ j ≥ i}
8. Mi(ϕ R ψ) def= min{ max{Mj(ψ),Mk(ϕ) ∣ i ≤ k < j} ∣ j ≥ i}
9. Mi(ϕ S ψ) def= max{ min{Mj(ψ),Mk(ϕ) ∣ j < k ≤ i} ∣ j ≤ i}

10. Mi(ϕ T ψ) def= min{ max{Mj(ψ),Mk(ϕ) ∣ j < k ≤ i} ∣ j ≤ i}
Under this alternative three-valued definition, an interpretation M satisfies a formula ϕ when

M(ϕ) = 2. When M = ⟨T,T⟩, its induced valuation will be just written as T(ϕ) and obviously
becomes a two-valued function, that is T(ϕ) ∈ {0,2}. A pair of useful observations:

Observation 3 For any interpretation M, M ⊧ ϕ↔ ψ iff M(ϕ) = M(ψ) whereas, M ⊧ ◻(ϕ↔ ψ)
iff for all i ≥ 0, Mi(ϕ) = Mi(ψ).

Example 1 (from [29]). While in TEL we can express, for instance, that any request is eventually
granted: ◻ (request→◇grant)
with past-time modalities, we can express that a grant should be preceeded by a request

◻ (grant→xrequest)
3 Translating TEL into Quantified Equilibrium Logic

Quantified Equilibrium Logic [30] (QEL) extends Equilibrium Logic to the first-order case. As in the
propositional setting, QEL defines a selection of models among those from the monotonic logic of
Quantified Here and There (QHT).

The definition of QHT is based on a first order language denoted by L = ⟨C,F,P ⟩, where C, F
and P are three disjoint sets that represent constants, functions and predicates, respectively. Given
a domain D we define the sets:

– AtD(C,P ) stands for all atomic instances that can be formed from ⟨C ∪D,F,P ⟩.
– TD(C,F ) all ground terms that can be obtained from ⟨C ∪D,F,P ⟩.

A QHT-interpretation5 is a tuple M = ⟨(D,σ) , Ih, It⟩ such that

– σ ∶ TD(C,F ) → D is a mapping from ground terms into elements of the domain satisfying that
σ(d) = d if d ∈D

– Ih, It are two sets of ground atoms from AtD(C,P ) such that Ih ⊆ It.
Given two QHT interpretations,M = ⟨(D,σ), Ih, It⟩ andM′ = ⟨(D′, σ′), I ′h, I ′t⟩, we say thatM ≤M′
iff D = D′, σ = σ′, It = I ′t and Ih ⊆ I ′h. If, additionally, Ih ⊂ I ′h we say that the relation is strict
(denoted by M <M′).
Definition 5 (QHT semantics from [30]). The satisfaction relation for a QHT interpretationM = ⟨(D,σ), Ih, It⟩ is defined as follows:

– M ⊧ ⊺, M /⊧ �
– M ⊧ p(τ1,⋯, τn) iff p(σ(τ1),⋯, σ(τn)) ∈ Ih
– M ⊧ τ = τ ′ iff σ(τ) = σ(τ ′).
– M ⊧ ϕ ∧ ψ iff M ⊧ ϕ and M ⊧ ψ
– M ⊧ ϕ ∨ ψ iff M ⊧ ϕ or M ⊧ ψ
– M ⊧ ϕ→ ψ iff M /⊧ ϕ or M ⊧ ψ, and ⟨(D,σ), It, It⟩ ⊧ ϕ→ ψ
– M ⊧ ∀x, ϕ(x) iff M ⊧ ϕ(d), for all d ∈D
– M ⊧ ∃x, ϕ(x) iff M ⊧ ϕ(d), for some d ∈D ⊠

5 We assume here a version of QHT taking static domain and decidable equality. Briefly, this means that
the domain D is common to worlds h and t and that equality is a “decidable” predicate, that is, it satisfies
the excluded middle axiom (x = y) ∨ ¬ (x = y).
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As usual, we say that a QHT-interpretationM is a model of a first order theory Γ iffM ⊧ φ for
all φ ∈ Γ .

Definition 6 (quantified equilibrium model from [30]). Let ϕ be a QHT formula. A QHT total
interpretation M is a first-order equilibrium model of ϕ if M ⊧ ϕ and there is no model M′ <M
of ϕ. ⊠

For our purposes, it is convenient to define a particular subclass of QHT theories. We define the
fragment of QHT called monadic here-and-there with inequality, MHT(≤), by syntactically restricting
all predicates to monadic, excepting a binary predicate ≤. Moreover, we also fix the domain D to
be the set of natural numbers D = N so that ≤ captures the standard ordering among them. We
consider the time constant 0 to stand for the initial situation. Given that both the domain and the
interpretation of ≤ are fixed, interpretations will only vary for ground atoms in At(N, P ), that is, those
formed with the set of monadic predicates P and elements from N. Then, MHT(≤) interpretations
can be simply given by pairs ⟨H,T ⟩ with H ⊆ T ⊆ At(N, P ).

As usual, we write x > y to stand for ¬(x ≤ y). We will also use the following abbreviations:

∀x ≥ t. ϕ def= ∀x(t ≤ x→ ϕ)∃x ≥ t. ϕ def= ∃x(t ≤ x ∧ ϕ) ∀x ∈ [t, z). ϕ def= ∀x(t ≤ x ∧ x < z → ϕ)∃x ∈ [t, z). ϕ def= ∃x(t ≤ x ∧ x < z ∧ ϕ)
Fragment MHT(≤) imposes exactly the same restrictions on QHT than the so-called monadic first-
order logic with inequality, FOL(≤), does on classical First-Order Logic (FOL). This subclass of FOL
was used by Kamp in his famous theorem [6] where he proved that LTL is exactly as expressive as
FOL(≤), so that we can actually see the former as a fragment of the latter. This result was separated
into two directions: proving that LTL can be translated into FOL(≤) and vice versa. For the first
direction, Kamp defined the following translation from modal formulas into quantified first-order
expressions:

Definition 7 (Kamp’s translation). Kamp’s translation for a temporal formula ϕ and a timepoint
t ∈ N, denoted by [ϕ]t, is recursively defined as follows:

[�]t def= �
[p]t def= p(t), with p ∈ At.

[¬α]t def= ¬[α]t
[α ∧ β]t def= [α]t ∧ [β]t
[α ∨ β]t def= [α]t ∨ [β]t
[α → β]t def= [α]t → [β]t

[◯α]t def= [α]t+1
[α U β]t def= ∃x ≥ t. ([β]x ∧ ∀y ∈ [t, x). [α]y)
[α R β]t def= ∀x ≥ t. ([β]x ∨ ∃y ∈ [t, x). [α]y)

[⊖α]t def= [α]t−1
[α S β]t def= ∃ 0 ≤ x ≤ t. ([β]x ∧ ∀y ∈ (x, t]. [α]y)
[α T β]t def= ∀ 0 ≤ x ≤ t. ([β]x ∨ ∃y ∈ (x, t]. [α]y)

where [α]t+1 and [α]t−1 are, respectively, abbreviations of

∃y ≥ t. ([α]y ∧ ¬∃z(t < z ∧ z < y)) (1.9)

∃y ≤ t. ([α]y ∧ ¬∃z(y < z ∧ z < t)). (1.10)

⊠
Note how, per each atom p ∈ At in the temporal formula ϕ, we get a monadic predicate p(x) in the
translation.

The effect of this translation on the derived operators ◇, ◻, x and ⊟ yields the quite natural
expressions:

[◻α]t ≡ ∀x ≥ t. [α]x [◇α]t ≡ ∃x ≥ t. [α]x[⊟α]t ≡ ∀x ≤ t. [α]x [xα]t ≡ ∃x ≤ t. [α]x
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Definition 8 (THT-MHT(≤) interpretation correspondence). Given a THT interpretation
M = ⟨H,T⟩ on a signature LV , we say that the MHT(≤)-interpretation M = ⟨H,T ⟩ corresponds to
M iff

– p ∈Hi iff p(i) ∈H, for all i ∈ N.

– p ∈ Ti iff p(i) ∈ T , for all i ∈ N. ⊠
We now prove that when considering this model correspondence, Kamp’s translation allows us to
translate a THT theory into a corresponding QHT one.

Theorem 1. Let ϕ be a THT formula built on a set of atoms LV , M = ⟨H,T⟩ a THT-interpretation
on LV and M = ⟨H,T ⟩ its corresponding MHT(≤)-interpretation from Definition 8. It holds that:

∀i ∈ N, M, i ⊧ ϕ iff M ⊧ [ϕ]i.
⊠

Proof. We proceed by structural induction.

– If ϕ = � then [ϕ]i = � and the result is straightforward.

– If ϕ = p is an atom, then [p]i = p(i) and we get the chain of equivalent conditions: M, i ⊧ p ⇔
p ∈Hi ⇔ p(i) ∈H ⇔M ⊧ p(i).

– If ϕ = α ∧ β we get:
M, i ⊧ α ∧ β ⇔M, i ⊧ α and M, i ⊧ α⇔M ⊧ [α]i and M ⊧ [β]i (induction on α,β)⇔M ⊧ [α]i ∧ [β]i⇔M ⊧ [α ∧ β]i

– The proof for ϕ = α ∨ β is analogous to the one for α ∧ β.

– If ϕ = α → β we get:

M, i ⊧ α → β⇔ for any w ∈ {H,T}, ⟨w,T⟩, i /⊧ α or ⟨w,T⟩, i ⊧ β
Now, since the THT-interpretation ⟨T,T⟩ also corresponds to the MHT(≤)
interpretation ⟨T ,T ⟩ we can apply induction on subformulas, so that we continue with the
equivalent conditions:

( for any w ∈ {H,T }, ⟨w,T ⟩ /⊧ [α]i or ⟨w,T ⟩ ⊧ [β]i)⇔ (⟨H,T ⟩ ⊧ [α → β]i) .
– If ϕ = ◯α we get the equivalent conditions:

M, i ⊧ ◯α⇔M, i + 1 ⊧ α⇔M ⊧ [α]i+1 (by induction)⇔M ⊧ [◯α]i
– If ϕ = ⊖α we get the equivalent conditions:

M, i ⊧ ⊖α⇔M, i − 1 ⊧ α⇔M ⊧ [α]i−1 (by induction)⇔M ⊧ [⊖α]i
– If ϕ = α U β we get the equivalent conditions:

M, i ⊧ α U β ⇔ ∃k s.t. k ≥ i and M, k ⊧ β and ∀j ∈ {i, . . . , k − 1}, M, j ⊧ α⇔ ∃k s.t. k ≥ i and M ⊧ [β]k and ∀j ∈ {i, . . . , k − 1}, M ⊧ [α]j6⇔ ∃k s.t. k ≥ i and M ⊧ [β]k and ∀j if i ≤ j < k then M ⊧ [α]j⇔M ⊧ [α U β]i.
– The proof for ϕ = α R β is analogous to the one for α U β.

– If ϕ = α S β we get the equivalent conditions:
M, i ⊧ α S β ⇔ ∃k s.t. 0 ≤ k ≤ i and M, k ⊧ β and ∀j ∈ {k + 1, . . . , i}, M, j ⊧ α⇔ ∃k s.t. 0 ≤ k ≤ i and M ⊧ [β]k and ∀j ∈ {k + 1, . . . , i}, M ⊧ [α]j7⇔ ∃k s.t. 0 ≤ k ≤ i and M ⊧ [β]k and ∀j if k < j ≤ i then M ⊧ [α]j⇔M ⊧ [α S β]i.

– The proof for ϕ = α T β is analogous to the one for α S β.

Corollary 1. Let T be a temporal interpretation, T its corresponding first-order interpretation and
ϕ some temporal formula. Then, T is a TS-model of ϕ iff T is a stable model of [ϕ]0. ⊠
6 Here we apply the induction hypothesis on α and β.
7 As happens in the proof for the operator U , this step of the proof comes from the application of the

induction hypothesis on α and β.
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4 Removing past operators

Proposition 1. For any THT formulas ϕ and ψ built on the signature LV , the following formulas
are tautologies en THT.
(T. 1) (⊖ϕ↔ ⊺)
(T. 2) (⊖̂ϕ↔ �)
(T. 3) (ϕSψ↔ ψ)
(T. 4) (ϕT ψ↔ ψ)
(T. 5) ◻ (◯⊖ϕ↔ ϕ)
(T. 6) ◻ (◯ (ϕSψ)↔ (◯ψ ∨ (◯ϕ ∧ ϕSψ)))
(T. 7) ◻ (◯ (ϕT ψ)↔ (◯ψ ∧ (◯ϕ ∨ ϕT ψ))).

Proof. (T. 1)-(T. 4) follow directly from Definition 1, we following prove the cases (T. 5)-(T. 7).
(T. 5)

M0 (◻ (◯⊖ϕ↔ ϕ)) = 2 ⇔ ∀i ≥ 0,Mi(◯⊖ϕ) = Mi(ϕ)⇔ ∀i ≥ 0,Mi+1(⊖ϕ) = Mi(ϕ)⇔ ∀i ≥ 0,Mi(ϕ) = Mi(ϕ)⇔ ⊺
(T. 6)

M0 (◻ (◯ (ϕSψ)↔ (◯ψ ∨ (◯ϕ ∧ ϕSψ)))) = 2⇔ ∀i ≥ 0 Mi (◯ (ϕSψ)) = Mi (◯ψ ∨ (◯ϕ ∧ ϕSψ))⇔ ∀i ≥ 0 Mi (◯ (ϕSψ)) =max{Mi+1 (ψ) ,min{Mi+1 (ϕ) ,Mi (ϕSψ)}}⇔ ∀i ≥ 0 Mi (◯ (ϕSψ)) =max{Mi+1 (ψ) ,min{Mi+1 (ϕ) ,Mi+1 (⊖ (ϕSψ))}}⇔ ∀i ≥ 0 Mi (◯ (ϕSψ)) =max{Mi+1 (ψ) ,Mi+1 (ϕ ∧⊖ (ϕSψ))}⇔ ∀i ≥ 0 Mi (◯ (ϕSψ)) = Mi+1 (ψ ∨ (ϕ ∧⊖ (ϕSψ))) .
Finally, by applying (1.7) we conclude:

∀i ≥ 0 Mi (◯ (ϕSψ)) = Mi+1 (ϕSψ)⇔ ⊺.
(T. 7)

M0 (◻ (◯ (ϕT ψ)↔ (◯ψ ∧ (◯ϕ ∨ ϕT ψ)))) = 2⇔ ∀i ≥ 0 Mi (◯ (ϕT ψ)) = Mi (◯ψ ∧ (◯ϕ ∨ ϕT ψ))⇔ ∀i ≥ 0 Mi (◯ (ϕT ψ)) =min{Mi+1 (ψ) ,max{Mi+1 (ϕ) ,Mi (ϕT ψ)}}⇔ ∀i ≥ 0 Mi (◯ (ϕT ψ)) =min{Mi+1 (ψ) ,max{Mi+1 (ϕ) ,Mi+1 (⊖ (ϕT ψ))}}⇔ ∀i ≥ 0 Mi (◯ (ϕT ψ)) =min{Mi+1 (ψ) ,Mi+1 (ϕ ∨⊖ (ϕT ψ))}⇔ ∀i ≥ 0 Mi (◯ (ϕT ψ)) = Mi+1 (ψ ∧ (ϕ ∨⊖ (ϕT ψ))) .
Finally, by applying (1.8) we conclude:

∀i ≥ 0 Mi (◯ (ϕT ψ)) = Mi+1 (ϕT ψ)⇔ ⊺.
Definition 9 (Labelling). Let γ and χ be two THT formulas in LV such that the latter is of the
form ⊖ϕ, ⊖̂ϕ, ϕSψ or ϕT ψ. We define γχLχ

on VL = LV ∪ {Lχ}, with Lχ being a fresh atom, as

follows:

γχLχ
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� if γ = �
p if γ = p ∈ LV
◯ϕχLχ

if γ = ◯ϕ
ϕχLχ

⊙ ψχLχ
if γ = ϕ⊙ ψ and ⊙ ∈ {∧,∨,→,U ,R}

⊖(ϕχLχ
) if γ = ⊖ϕ and γ /= χ

⊖̂(ϕχLχ
) if γ = ⊖̂ϕ and γ /= χ

(ϕχLχ
) S (ψχLχ

) if γ = ϕSψ and γ /= χ
(ϕχLχ

) T (ψχLχ
) if γ = ϕT ψ and γ /= χ

Lχ if γ = χ
Broadly speaking, γχLχ

results from replacing every occurrence of χ by Lχ in the subformulas of γ. ⊠
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Definition 10. Given a THT formula χ in LV , of the form ⊖ϕ, ⊖̂ϕ, ϕSψ or ϕT ψ and a THT
interpretation (in three-valued form) M, we denote by Me the following THT interpretation built on
VL = LV ∪ {Lχ}:

Me
i (p) = {Mi(χ) if p = Lχ

Mi(p) if p ∈ LV (1.11)

⊠
With χ we define df(χ) as follows:

df(χ) def=
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
◻(◯Lχ ↔ ϕ) ∧ (Lχ ↔ ⊺) if γ = ⊖ϕ;◻(◯Lχ ↔ ϕ) ∧ (Lχ ↔ �) if γ = ⊖̂ϕ;◻(◯Lχ ↔ ◯ψ ∨ (◯ϕ ∧Lχ) ) ∧ (Lχ ↔ ψ) if γ = (ϕ S ψ);◻(◯Lχ ↔ ◯ψ ∧ (◯ϕ ∨Lχ) ) ∧ (Lχ ↔ ψ) if γ = (ϕ T ψ).

From Proposition 1 and the definition of Me, it is easy to determine that df(χ) is always a tautology
in Me.

Lemma 1. Let γ and χ be two THT formulas in LV such that the latter is of the form ⊖ϕ, ⊖̂ϕ,
ϕSψ or ϕT ψ. If M is a model of γ then the THT interpretation on VL, Me defined before satifies
that M = Me ∩ V and also:

Me ⊧ {γχLχ
} ∪ {df(χ)}.

Proof. For any atom p ∈ LV and i ≥ 0, Me
i (p) = Mi(p), thus, the valuations for atoms in M and Me

coincide, which means that M = Me ∩V . Furthermore, since γ does not have labels and M ⊧ γ, this
means that

M0(γ) (1.11)= Me
0(γ) = 2.

On the other hand, if γ = χ we get that

Me
0(γχLχ

) = Me
0(Lχ) = M0(χ) = 2.

To prove that Me satisfies the translation, it remains to be shown that Me ⊧ df(γ). This proof comes
directly from Proposition 1 and the fact that Me

i (Lχ) = Mi(χ), for all i ≥ 0.

Lemma 2. Let γ be a THT formula in LV and M a THT interpretation such that

Me ⊧ {γχLχ
} ∪ {df(χ)}.

For any THT formula χ of the form ⊖ϕ, ⊖̂ϕ, ϕSψ or ϕT ψ and any i ≥ 0, the following property
holds:

Me
i (γχLχ

) = Me
i (γ).

Proof. We use structural induction on γ.

1. When the subformula γ has the shape ⊺, � or an atom p this is trivial, since γχLχ
= γ by definition.

2. When γ = ϕ ●ψ for any connective ● ∈ {∧,∨,→}, then the proof follows from Definition 4 and by
applying induction on ϕχLχ

and ψχLχ
.

To finish the proof, notice that df(χ) is always a tautology in Me.

3. When γ = ◯ϕ:
Me

i ((◯ϕ)χLχ
) = Me

i (◯ϕχLχ
)= Me

i+1(ϕχLχ
)= Me

i+1(ϕ) (induction)= Me
i (◯ϕ)

4. γ = (ϕ U ψ): we get
Me

i ((ϕ U ψ)χLχ
) = Me

i ((ϕ)χLχ
U (ψ)χLχ

)= max{min{Me
j(ψχLχ

),Me
k(ϕχLχ

) ∣ i ≤ k < j} ∣ j ≥ i}= max{min{Me
j(ψ),Me

k(ϕ) ∣ i ≤ k < j} ∣ j ≥ i} (induction)= Me
i (ϕUψ)
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5. The proof for γ = ϕRψ is similar to the one presented in the previous case.
6. γ = ⊖ϕ: here we must consider two cases; when γ /= χ and γ = χ. In the former case proceed as

follows:
Me

i ((⊖ϕ)χLχ
) = Me

i (⊖(ϕ)χLχ
) (γ /= χ)= Me

i−1((ϕ)χLχ
)= Me

i−1(ϕ) (induction)= Me
i (⊖ϕ)

while if ⊖ϕ = χ and i = 0, we have that:
Me

0((⊖ϕ)χLχ
) = Me

0(Lχ) (χ = γ)= Me
0(⊺) df(χ)= Me
0(⊖ϕ). ((T. 1) from Prop. 1)

When i > 0:
Me

i ((⊖ϕ)χLχ
) = Me

i (Lχ) (χ = γ)= Me
i−1(◯Lχ)= Me
i−1(ϕ) df(χ)= Me
i (⊖ϕ) (Definition 4)

7. γ = ⊖̂ϕ: following the same reasoning as above, for the cases γ /= χ and γ = χ (with i > 0), the
argument we used coincides with the case γ = ⊖ϕ. The proof for the remaining case, γ = χ and
i = 0 is presented below:

Me
0((⊖̂ϕ)χLχ

) = Me
0(Lχ) (χ = γ)= Me
0(�) df(χ)= Me
0(⊖̂ϕ) ((T. 2) from Prop. 1)

8. γ = ϕSψ: as in the previous cases, if γ /= χ we have that:
Me

i ((ϕ S ψ)χLχ
) = Me

i ((ϕ)χLχ
S (ψ)χLχ

) (χ /= γ)= max{min{Me
j(ψχLχ

),Me
k(ϕχLχ

) ∣ j < k ≤ i} ∣ j ≤ i}= max{min{Me
j(ψ),Me

k(ϕ) ∣ j < k ≤ i} ∣ j ≤ i} (induction)= Me
i (ϕSψ).

On the other hand, if γ = χ and i = 0, we have that:
Me

0((ϕ S ψ)χLχ
) = Me

0(Lχ) (χ = γ)= Me
0(ψ) df(χ)= Me
0(ϕSψ). ((T. 3) from Prop. 1)

However, in the case i > 0 we can only prove that:
Me

i ((ϕ S ψ)χLχ
) = Me

i (Lχ) (χ = γ)= Me
i−1(◯Lχ)= Me
i−1(◯ψ ∨ (◯ϕ ∧Lχ)) (df(χ))= max{Me

i−1(◯ψ),min{Me
i−1(◯ϕ),Me

i−1(Lχ)}}= max{Me
i (ψ),min{Me

i (ϕ),Me
i−1(Lχ)}}.

Unfortunately, we cannot get rid of Lχ, since χ itself is the formula to be proved in the induction
step. To prove that Me

i (Lχ) = Me
i (χ), we will equivalently show that

∀i ≥ 0 Me
i (Lχ) = Me

i (ϕSψ).
For the base case (i = 0) we proceed as follows:

Me
0(Lχ) = Me

0(ψ) (df(χ))= Me
0(ϕS ψ) ((T. 3) from Prop. 1).

For the inductive step we have:
Me

i (Lχ) = Me
i−1(◯Lχ)= Me
i−1(◯ψ ∨ (◯ϕ ∧Lχ)) (df(χ))= max{Me

i (ψ), min{Me
i (ϕ),Me

i−1(Lχ)}}= max{Me
i (ψ), min{Me

i (ϕ),Me
i−1(ϕS ψ)}} (Induction)= Me

i (ψ ∨ (ϕ ∧ ⊖(ϕS ψ))) (Equivalence (1.7))= Me
i (ϕS ψ).

9. The proof for γ = ϕT ψ is similar to the proof for γ = ϕSψ.

Theorem 2. Let γ in LV be a formula and χ one of its subformulas whose form is ⊖ϕ, ⊖̂ϕ, ϕSψ
or ϕT ψ. It holds that:

{M ∣ M ⊧ γ} = {Me ∩ V ∣ Me ⊧ {γχLχ
} ∪ {df(χ)}.

Proof. The ‘⊆’ inclusion immediately follows from Lemma 1. For proving the ‘⊇’ inclusion, suppose
that we have Me such that Me ⊧ γχLχ

∧df(χ). By Lemma 2 we conclude that Me
0(γ) = Me

0(γχLχ
) = 2,

so Me is a model of γ. Since γ is a formula in LV , it follows that Me ∩ V ⊧ γ. ⊠
Corollary 2. Given a past-THT formula γ on LV , every past operator in γ can be removed by
introducing auxiliary atoms.

Temporal Equilibrium Logic with Past Operators

52



5 Conclusions

In this paper we have presented an extension of Temporal Equilibrium Logic (TEL) that introduces
the use of past modalities. We have defined the syntax and semantics of this extension and provided
a translation that, by introducing auxiliary atoms, allows removing past modalities and using the
original version of TEL exclusively dealing with future operators.

The immediate future work will be focused on the implementation of these operators in the tool
STeLP and the study on complexity of the current translation. We also plan to study the potential
application as a high-level language for incremental ASP.
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help to avoid Contrary-to-Duty Paradoxes in Legal

Ontologies
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Abstract. In this article we show how Hans Kelsen jurisprudence and Intuitionistic logic are
used to avoid the well-known contrary-to-duty (CTD) paradoxes, such as Chisholm paradoxes
and its variants. This article uses an intuitionistic version of the ALC description logic, named
iALC, to show how an ontology based on individually valid legal statements is able to avoid
CTDs by providing models to them.

1 Introduction

Prof. Luis Fariñas del Cerro wrote a bunch of articles reporting the results he obtained by designing
logics for very interesting and specific purposes. The elegance of the underlying ideas and the pre-
sentation form is out of discussion. Many researchers in logic would like to have his ability to extract
logic from facts and their relationships, building new judgments. One of the authors of this article
ever tried to be able to have this resulting research. When we were invited to contribute to prof. Luis
Fariñas del Cerro Festschrifft this become the opportunity to report to the master maybe the only
research that we conduct on the lines of defining a logic for a specific formalization. In this article,
we report our results in the last seven years in the designing logics for legal ontologies.

Classical Logic has been widely used as a basis for ontology creation and reasoning in many
domains. These domains naturally include Legal Knowledge and Jurisprudence. As we expect, con-
sistency is an important issue for legal ontologies. However, due to their inherently normative feature,
coherence (consistency) in legal ontologies is more subtle than in other domains. Consistency, or ab-
sence of logical contradictions, seems more difficult to maintain when more than one law system
can judge a case, what we call a conflict of laws. There are some legal mechanisms to solve these
conflicts such as stating privileged fori or other ruling jurisdiction. In most of the cases, the conflict
is solved by admitting a law hierarchy or a law precedence, rather better, ordering on laws. Under
these precedence mechanisms, coherence is still a major issue in legal systems. Each layer in this
legal hierarchy has to be consistent. Since consistency is a direct consequence of how one deals with
the logical negation, negation is also a main concern in legal systems. Deontic Logic, here considered
as an extension of Classical Logic, has been widely used to formalize the normative aspects of the
legal knowledge. There is some disagreement on using deontic logic, and any of its variants, to this
task. Since a seminal paper by Alchourron & Martino [1], the propositional aspect of laws has been
under discussion. In [1], in full agreement with Hans Kelsen jurisprudence, they argue that laws are
not to be considered as propositions. The Kelsenian approach to Legal Ontologies considers the term
“ontologies on laws” more appropriate than “law ontology”. In previous works, we showed that Clas-
sical logic is not adequate to cope with a Kelsenian based Legal Ontology. Because of the ubiquitous
use of Description Logic for expressing ontologies nowadays, we developed an Intuitionistic version
of Description Logic particularly devised to express Legal Ontologies. This logic is called iALC. In
this article, we show how iALC avoids some Contrary-to-duty paradoxes, as Chisholm paradox and
other paradoxes that appear in deontic logic, such as the good samaritan and the knower. For these
paradoxes, we provide iALC models. Finally, we discuss the main role of the intuitionistic negation in
this issue, finding out that its success may be a consequence of its paracomplete logical aspect. This
investigation opens the use of other paracomplete logics in accomplishing a logical basis for Kelsenian
legal ontologies, as a complementary solution to those based on paraconsistent logics, see [20].

2 A brief discussion on Kelsenian Jurisprudence and its logic

A very important task in jurisprudence (legal theory) is to make precise the use of the term “law”,
the individuation problem, and it is one of the most fundamental open questions in jurisprudence.



It requires firstly answering the question “What is to count as one complete law?” ([26]). There are
two main approaches to answer this question. One approach is to consider “the law” as the result of
a natural process that yields a set of norms responsible for stating perfect social behavior. Another
approach is to consider “the law” as a set of individual legal statements, each of them created to
enforce a positively desired behavior in the society. As a consequence, in the first approach, the
norms say what are the best morally speaking accepted state of affairs in a particular society, while,
in the second approach, each legal statement rules an aspect of the society that the legislature wants
to enforce the behavior. The first is more related to what is called Natural Law and the last to Legal
positivism. We can say that the Legal positivism is closer to the way modeling is taken in Computer
Science. In the natural approach to the law, it is even harder to define a system of laws than the legal
positivism. The natural approach demands stronger knowledge of the interdependency between the
underlying legal statements than legal positivism. Because of that, the natural approach, in essence,
is harder to be shared with practical jurisprudence principles, since they firstly are concerned to
justify the law, on an essentially moral basis. This justification is quite hard to maintain from a
practical point of view.

The coherence of “the law” in both approaches is essential. A debate on whether coherence is
built-in by the restrictions induced by Nature in an evolutionary way, or whether coherence should
be an object of knowledge management, seems to be a long debate. Despite that, legal positivism
seems to be more suitable to Legal Artificial Intelligence. From the logical point of view, the natural
approach is harder to deal with than the positivist one. When describing a morally desired state-of-
affairs, the logical statements take the form of propositions that has as a model best of the moral
worlds. Deontic logic is suitable to be used to fulfill this task. However, a legal statement (“a law”)
is essentially an individual sentence that can also be seen as an order (mandatory command), and
hence, it is not a proposition at all. As a consequence, deontic logic is not appropriate to be used in
knowledge bases. Besides that, [30] shows that deontic logic does not properly distinguish between
the normative status of a situation from the normative status of a norm (rule). We think that the best
jurisprudence basis for Legal ontologies and reasoning is Legal positivism. Thus, we will be talking a
legal ontology as an ontology about (individual) laws, and not an ontology on “the law”.

Hans Kelsen initialized the Legal positivism tradition in 1934 (for a contemporary reference see
[18]). He used this positive aspect of the legislature to define a theory of pure law and applied it to the
problem of transfer citizen’s rights and obligations from one country to other when crossing boarders.
He produces a quite good understanding of what nowadays we denominate Private International
Law. This achievement was so important that in many references on international law, Kelsen
jurisprudence is the basis for discussions on conflict-of-laws derived from different statements coming
from different fori. 3

In what follows we introduce the main terminology and concepts of Kelsenian jurisprudence that
we use in this article. We can summarize Kelsen theory of pure law in three principles:

1. According to what was discussed above, individually valid legal statements are the first-class
citizens of our ontology. Thus, only inhabitants of the Legal knowledge base are individual laws,
see [17], supra note 5, pp 9-10 4. For example, if it is the case that Maria is married with John,
and, this was legally celebrated, then “Maria-married-with-John” is an individually valid legal
statement, and hence, it is a member of the Legal Ontology;

2. Kelsen also says that that the validity of a legal norm can only be provided concerning the
validity of another, and higher, one. So, n1, a norm, is legally valid if, and only if, it was created
or promulgated in agreement with other, and higher, legally valid norm, n2. This justification
induces a precedence relationship between norms that is transitive, that is, if n1 precedes n2,
and, n2 precedes n3, then n1 recedes n3; 5

3. There is a mechanism for relating laws from one Legal system to another, the so-called “choice-
of-law rule”. This mechanism is very important to the development of a concept of International
Law. Assume that Mary-is-married-with-John is an individual legal statement in legal system
A. Assume also that Mary is a citizen of a country adopting legal system B. Is there any legal
statement in B ensuring that Mary is married in B? Well, this depends on B itself, but there

3 “It is one of Kelsen’s frequently repeated doctrines that conflict of norms, in the absence of a normative
procedure for resolving the conflict, shatters the concept of a unified system”, is highly emphasized in
Hughes [14], for example, and it is one of the principles most cited when Kelsen jurisprudence is presented.

4 Kelsen takes norms and valid norms as synonyms. To say that a legal norm is valid is to say that it exists,
is affirmed by Kelsen

5 See [17], supra note 5, p. 196-7. This can be also found in [16], supra note 5, p. 110-1.
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is a way to connected the individual law Mary-is-married-with-John in A to Mary-is-married-
with-John in B. In some legal systems, this is accomplished by what Kelsen denominated “a
connection”. As shown in the following quotation from [16], page 247, the connection between
the laws of A and B is made by reference, but, in fact, each law belongs to its respective legal
system. In this specific case we can consider Mary-is-married-with-John in system A is connected
to Mary-is-married-with-John in legal system B the connection Lex Loci Celebrationis.

... the law of one State prescribes the application of the law of another State, and
the latter does not object or demand it. It has no right to do so since it is not really its
own law which is applied by the other State. THe latter applies norms of its own law.
The fact that these norms have the same contents as corresponding norms of another
State does not concern the latter...Since the specific technique of these norms consists
in “referring” to the norms of another system and by so doing incorporating norms of
identical contents into their own legal system, it would be more justifiable to call them
“reference rules”... The reference rule, that is ... the norm regulating the application of
foreign law, may be distinguished from the norm to be applied, that is, the norm referred
to. Only the former is a norm of private international law. But from a functional point
of view, the one is essentially connected with the other.

Nowadays it is a common terminology in Private International Law the use of the connecting
factors or legal connections between individual laws in a different legal system. Only to enumerate
some of them: Lex-Domicilii, Lex-Patriae, Lex-loci-contratum, Lex-loci-solutionis, and etc.

There is a philosophical problem with the principle 2 above. It demands the existence of basic
laws. These basic laws do not have their validity/existence as a consequence of other more basic laws.
Kelsen name these basic laws Grundnorms. Their validity is based on legislature acts and in a certain
sense is derived from the sovereign of the State. It is out of the scope of this article to discuss such
problem in Kelsen’s jurisprudence. We take as granted that Kelsen jurisprudence can adequately
support most of the existent legal systems, a definitively not an unreal working hypothesis.

From the three principles above, we have some very simple ontological commitments:

commitI Individuals are laws;
commitII There is a transitive and reflexive relationship between individual laws that reflects the

natural precedence relationship between laws;
commitIII There are legal connections between individual laws in different legal systems or between

different fori in the same broader legal system.

From these commitments, we derive the basic constructs of the logic iALC. In the first place,
our legal ontology relates concepts to legal systems. Description logics uses nominals to refer to
individuals. So, an expression as i : A, stands for i is an individual law, belonging to the legal system
A, a concept.

From commitment 2 we consider an expression as i � j standing for the individual law i legally
precedes individual law j. The subsumption relationship A ⊆ B, from description logic, denotes
that A is a legal subsystem of B. One could interpret this relation as the inclusion relationship. 6

We discuss the implications of using negated contents together with Kelsenian jurisprudence in the
following. This can be found in [10,11,13,12] too.

Under the classical setting, a negated concept ¬A denotes the “set” of all inhabitants of the
domain that do not belong to the interpretation of A. Under ontological commitment 2 there is no
individual law that does not exist in, belong to, the domain. Since norms and laws are not proposi-
tions, it is a complete nonsense to negate a law. As we already seen, we can negate a concept on laws.
Consider the collection of all Brazilian individual laws. Call it BR. In a classical setting BR t¬BR
is the universe of laws. Thus, any law that it is not in BR has to be a law outside BR, that is,
belonging to ¬BR. For example, if Peter is 17 years old, it is not liable according to the Brazilian
law. Is Peter− is− liable a valid law at all? If so, it has to belong to ¬BR. Using Kelsen in a classical
setting, individual laws not belonging to a concept automatically belong to its complementary con-
cept. The problem with this is that it is possible to create laws outside a jurisdiction or forum by the
very simple act of considering or experimenting a legal situation. Nowadays in Brazil, the parliament
is discussing the liability under the 16 years. By the simple fact of discussing the validity of their
corresponding individual laws, we are forced to accept they exist outside the Brazilian legal system.
We do not consider this feature appropriate to legal ontology definition. Dealing with negations every

6 In Classical ALC this is just the case, but we shown here that classical reasoning it is not a good choice
for dealing with legal ontologies
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time we assume the existence of a law may bring unnecessary complexity to legal ontology definition.
Because the precedence relationship between laws, cf. ontological commitment 2, there is a natural
alternative to classical logic, the intuitionistic logic (IL). According to IL semantics, i : ¬A, iff, for
each law j, such that i � j, it is not the case that j : A. This semantics means that i does not provide
any legal support for any individual law belong to A, which agrees with Kelsen jurisprudence on the
hierarchy of individual laws.

Commitment 2 gives rise to expressions of the form m Lex-Loci-Celebrationis m, where m is
Mary-is-married-with-John and Lex-Loci-Celebrationis is a legal connection. Thus, if Abroad is the
concept that represents all laws in Portugal, then the concept ∃ Lex−Loci−Celebrationis Portugal
represents the Brazilian individual laws stating that Portuguese marriage is valid in Brazil. The
private international law of any country is a collection of laws stated in similar ways for every
possible legal connection. In [11] it is shown in detail a judicial case deriving that a renting contract
is solving a conflict of laws in space through private international law.

3 Some philosophical discussion on the ontological criteria taken on
using Kelsen in legal ontologies

We base our work on two ontological criteria: 7 1- Ontological Commitment (due to W.Quine),
our logical approach is ontologically committed to Valid Legal Statements only. The only nominals
occurring in our logic language are valid individual laws, and; 2-Ontological Parsimony, which is
strongly related to Quine’s ontological commitment too, with a mention of its stronger version also
known as Occam’s Razor, here denoted as OR. The second criteria is based on: “One ‘easy’ case where
OR can be straightforwardly applied is when a theory T, postulates entities which are explanatorily
idle. Excising these entities from T produces a second theory, T*, which has the same theoretical
virtues as T but a smaller set of ontological commitments. Hence, according to OR, it is rational to
pick T* over T.”

We observe that nominals, representing individuals, denote only valid individual laws and nothing
in the iALC language described in the following section, is committed with non-valid individual laws,
according to the second ontological criterion above, we do not have to consider non-valid individual
laws. Technically speaking there is no element in the iALC language able to denote an invalid
individual law in any model of any iALC theory. If something is a valid individual law regarded some
legal system in some place in the world, then this individual belongs to our semantic universe.

This philosophical basis allows us to have only sets of valid individuals as semantics for iALC
theories. Thus, as the a reviewer have already observed, this implies that ¬A is the set of individual
laws holding outside Brazil, and the classical negation is not adequate to denote this set. If we get
¬A meaning “individual laws that do not hold in Brazil”, the set of laws being a proper subset of the
universe, and A is the conjunctive property “laws + holds in A”. Then the complement, ¬A would
be all elements of the universe which are either not a valid individual law or do not hold in Brazil.
But there is no way to take the semantics in this way, for the semantics we get from our ontological
commitment 2 is given by “The individual valid laws holding outside of Brazil”.

Finally, concerning contradictory individual laws, they can coexist in the same universe, since
they are there because they hold in distinct legal systems. In fact they are apparently contradictory.
For example, “There is death penalty” and “Death sentence is not allowed” can coexist, since there
are countries where each of these legal statement are valid. Concretely: “There is death penalty”:Iran
and “Death sentence is not allowed”:Brazil.

4 The Logic iALC
Classical Description Logic has been widely used as a basis for ontology creation and reasoning in
many knowledge specific domains, including Legal AI.

An adequate intuitionistic semantics for negation in a legal domain comes to the fore when we
take legally valid individual statements as the inhabitants of our legal ontology. This allows us to
elegantly deal with particular situations of legal coherence, such as conflict of laws, as those solved by
Private International Law analysis. In [12,11,13] we present an Intuitionistic Description Logic, called
iALC for Intuitionistic ALC (for Attributive Language with Complements, the canonical classical
description logic system). A labeled sequent calculus for iALC based on a labeled sequent calculus for

7 see Quine’s “On What there is” article and http://plato.stanford.edu/entries/simplicity, for ex-
ample to a primer ontological criteria
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ALC [24], was also presented. In these previous articles, we discussed the jurisprudence foundation
of our system, and show how we can perform a coherence analysis of “Conflict of Laws in Space” by
means of iALC. This conflict happens when several laws can be applied, with different outcomes, to
a case depending on the place where the case occurs. Typical examples are those ruling the rights of
a citizen abroad.

In [11], the semantics of iALC presented followed the framework for constructive modal logics
presented by Simpson [28] and adapted to description languages by Paiva [6]. We applied this logic
to the problem of formalizing legal knowledge.

Description Logics are an important knowledge representation formalism, unifying and giving a
logical basis to the well known AI frame-based systems of the eighties. Description logics are very
popular right now. Given the existent and proposed applications of the Semantic Web, there has been
a fair amount of work into finding the most well-behaved system of description logic that has the
broadest application, for any specific domain. Description logics tend to come in families of logical
systems, depending on which concept constructors you allow in the logic. Since description logics
came into existence as fragments of first-order logic chosen to find the best trade-off possible between
expressiveness and tractability of the fragment, several systems were discussed and in the taxonomy
of systems that emerged the ALC has come to be known as the canonical one. The basic building
blocks of description logics are concepts, roles and individuals. Think of concepts as unary predicates
in usual first-order logic and of roles as binary predicates, used to modify the concepts.

As discussed in [6], considering versions of constructive description logics makes sense, both from
a theoretical and from a practical viewpoint. There are several possible and sensible ways of defining
constructive description logics, whether your motivation is natural language semantics (as in [6]) or
Legal AI (as in [12]). As far as constructive description logics are concerned, Mendler and Scheele
have worked out a very compelling system cALC [21], based on the constructive modal logic CK [2]),
a favorite8 system of ours. However in this note we follow a different path and describe a constructive
version of ALC, based on the framework for constructive modal logics developed by Simpson (the
system IK) in his phd thesis [28] (For a proof-theoretic comparison between the constructive modal
logics CK and IK one can see [25]).

Our motivation, besides Simpson’s work, is the framework developed by Braüner and de Paiva in
[3] for constructive Hybrid Logics. We reason that having already frameworks for constructive modal
and constructive hybrid logics in the labelled style of Simpson, we might end up with the best style
of constructive description logics, in terms of both solid foundations and ease of implementation.
Since submitting this paper we have been told about the master thesis of Clément [5] which follows
broadly similar lines. Clément proves soundness and completeness of the system called iALC and
then provides a focused version of this system, a very interesting development, as focused systems
are, apparently, very useful for proof search.

Our Sequent Calculus for iALC was first presented in [7] where we briefly described the immediate
properties of this system and most importantly we discuss a case study of the use of iALC in legal
AI.

This article corrects and extends the presentation of iALC appearing in all previous articles. It
points out the difference between iALC and the intuitionistic hybrid logic presented in [6]. Com-
pleteness and soundness proofs are revised. A discussion on the computational complexity of iALC
is also taken.

5 Intuitionistic ALC

The iALC logic is based on the framework for intuitionistic modal logic IK proposed in [28,8,23].
These modal logics arise from interpreting the usual possible worlds definitions in an intuitionistic
meta-theory. As we will see in the following paragraphs, ideas from [3] were also used, where the
framework IHL, for intuitionistic hybrid logics, is introduced. iALC concepts are described as:

C,D ::= A | ⊥ | > | ¬C | C uD | C tD | C v D | ∃R.C | ∀R.C
where C,D stands for concepts, A for an atomic concept, R for an atomic role. We could have used
distinct symbols for subsumption of concepts and the subsumption concept constructor but this
would blow-up the calculus presentation. This syntax is more general than standard ALC since it
includes subsumption v as a concept-forming operator. We have no use for nested subsumptions,
but they do make the system easier to define, so we keep the general rules. Negation could be defined

8 This system has categorical semantics, which are not very easy to obtain for modal logics.
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via subsumption, that is, ¬C = C v ⊥, but we find it convenient to keep it in the language. The
constant > could also be omitted since it can be represented as ¬⊥.

A constructive interpretation of iALC is a structure I consisting of a non-empty set ∆I of entities
in which each entity represents a partially defined individual; a refinement pre-ordering �I on ∆I ,
i.e., a reflexive and transitive relation; and an interpretation function ·I mapping each role name
R to a binary relation RI ⊆ ∆I × ∆I and atomic concept A to a set AI ⊆ ∆I which is closed
under refinement, i.e., x ∈ AI and x �I y implies y ∈ AI . The interpretation I is lifted from atomic
concepts to arbitrary concepts via:

>I =df ∆
I

⊥I =df ∅
(¬C)I =df {x | ∀y ∈ ∆I .x � y ⇒ y 6∈ CI}

(C uD)I =df C
I ∩DI

(C tD)I =df C
I ∪DI

(C v D)I =df {x | ∀y ∈ ∆I .(x � y and y ∈ CI)⇒ y ∈ DI}
(∃R.C)I =df {x | ∃y ∈ ∆I .(x, y) ∈ RI and y ∈ CI}
(∀R.C)I =df {x | ∀y ∈ ∆I .x � y ⇒ ∀z ∈ ∆I .(y, z) ∈ RI ⇒ z ∈ CI}

Following the semantics of IK, the structures I are models for iALC if they satisfy two frame
conditions:

F1 if w ≤ w′ and wRv then ∃v′.w′Rv′ and v ≤ v′
F2 if v ≤ v′ and wRv then ∃w′.w′Rv′ and w ≤ w′

The above conditions are diagrammatically expressed as:

w′
R //

(F1)

v′

w
R //

≤

OO

v

≤

OO and w′
R //

(F2)

v′

w
R //

≤

OO

v

≤

OO

Our setting simplifies [21], since iALC satisfies (like classical ALC) ∃R.⊥ = ⊥ and ∃R.(C tD) =
∃R.C t ∃R.D.

Building up from the Simpson’s constructive modal logics (called here IML), in [3], it is introduced
intuitionistic hybrid logics, denoted by IHL. Hybrid logics add to usual modal logics a new kind of
propositional symbols, the nominals, and also the so-called satisfaction operators. A nominal is
assumed to be true at exactly one world, so a nominal can be considered the name of a world.
If x is a nominal and X is an arbitrary formula, then a new formula x :X called a satisfaction
statement can be formed. The satisfaction statement x :X expresses that the formula X is true at
one particular world, namely the world denoted by x. In hindsight one can see that IML shares with
hybrid formalisms the idea of making the possible-world semantics part of the deductive system.
While IML makes the relationship between worlds (e.g., xRy) part of the deductive system, IHL
goes one step further and sees the worlds themselves x, y as part of the deductive system, (as they
are now nominals) and the satisfaction relation itself as part of the deductive system, as it is now a
syntactic operator, with modality-like properties. In contrast with the above mentioned approaches,
ours assign a truth values to some formulas, also called assertions, they are not concepts as in [3], for
example. Below we define the syntax of general assertions (A) and nominal assertions (N) for ABOX
reasoning in iALC. Formulas (F ) also includes subsumption of concepts interpreted as propositional
statements.

N ::= x : C | x : N A ::= N | xRy F ::= A | C v C

where x and y are nominals, R is a role symbol and C is a concept. In particular, this allows x : (y : C),
which is a perfectly valid nominal assertion.

Definition 1 (outer nominal). In a nominal assertion x : γ, x is said to be the outer nominal of
this assertion. That is, in an assertion of the form x : (y : γ), x is the outer nominal.

We write I, w |= C to abbreviate w ∈ CI which means that entity w satisfies concept C in the
interpretation I9. Further, I is a model of C, written I |= C iff ∀w ∈ I.I, w |= C. Finally, |= C means

9 In IHL, this w is a world and this satisfaction relation is possible world semantics
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∀I.I |= C. All previous notions are extended to sets Φ of concepts in the usual universal fashion.
Given the hybrid satisfaction statements, the interpretation and semantic satisfaction relation are
extended in the expected way. The statement I, w |= x : C holds, if and only if, ∀zx �I x . I, zx |= C.
In a similar fashion, I, w |= xRy holds ,if and only if, ∀zx � x.∀zy � y.(xIx , z

I
y ) ∈ RI . That is, the

evaluation of the hybrid formulas does not take into account only the world w, but it has to be
monotonically preserved. It can be observed that for every w′, if xI � w′ and I, x′ |= α, then
I, w′ |= α is a property holding on this satisfaction relation.

In common reasoning tasks the interpretation I and the entity w in a verification goal such as
I, w |= δ are not given directly but are themselves axiomatized by sets of concepts and formulas.
Usually we have a set Θ 10 of formulas and the set Γ of concepts. Accordingly:

Definition 2. We write Θ,Γ |= δ if it is the case that:

∀I.((∀x ∈ ∆I .(I, x |= Θ))

⇒ ∀(Nom(Γ, δ)).∀z � Nom(Γ, δ).(I, z |= Γ ⇒ I, z |= δ) (1.1)

where z denotes a vector of variables z1, . . . , zk and Nom(Γ, δ) is the vector of all outer nominals
occurring in each nominal assertion of Γ ∪ {δ}. x is the only outer nominal of a nominal assertion
{x : γ}, while a (pure) concept γ has no outer nominal.

A Hilbert calculus for iALC is provided following [23,28,8]. It consists of all axioms of intuitionistic
propositional logic plus the axioms and rules displayed in Figure 1.1. The Hilbert calculus implements
TBox-reasoning. That is, it decides the semantical relationship Θ, ∅ |= C. Θ has only formulas as
members.

0. all substitution instances of theorems of IPL

1. ∀R.(C v D) v (∀R.C v ∀R.D)

2. ∃R.(C v D) v (∃R.C v ∃R.D)

3. ∃R.(C tD) v (∃R.C t ∃R.D)

4. ∃R.⊥ v ⊥
5. (∃R.C v ∀R.C) v ∀R.(C v D)

MP If C and C v D are theorems, D is a theorem too.

Nec If C is a theorem then ∀R.C is a theorem too.

Fig. 1.1. The iALC axiomatization

A Sequent Calculus for iALC is also provided. The logical rules of the Sequent Calculus for iALC
are presented in Figure 1.2. 11 The structural rules and the cut rule are omitted but they are as
usual. The δ stands for concepts or assertions (x : C or xRy), α and β for concept and R for role.
∆ is a set of formulas. In rules p-∃ and p-∀, the syntax ∀R.∆ means {∀R.α | α ∈ concepts(∆)},
that is, all concepts in ∆ are universal quantified with the same role. The assertions in ∆ are kept
unmodified. In the same way, in rule p-N the addition of the nominal is made only in the concepts
of ∆ (and in δ if that is a concept) keeping the assertions unmodified.

The propositional connectives (u,t,v) rules are as usual, the rule t2-r is omitted. The rules are
presented without nominals but for each of these rules there is a counterpart with nominals. For
example, the rule v-r has one similar:

∆,x : α⇒ x : β
n-v-r

∆⇒ x : (α v β)

The main modification comes for the modal rules, which are now role quantification rules. We
must keep the intuitionistic constraints for modal operators. Rule ∃-l has the usual condition that
y is not in the conclusion. Concerning the usual condition on the ∀-r rule, it is not the case in this
system, for the interpretation of the a nominal assertion in a sequent is already implicitly universal
(Definition 2).

10 Here we consider only acycled TBox with v and ≡.
11 The reader may want to read Proof Theory books, for example, [29,4,22,9].
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∆, δ ⇒ δ ∆, x : ⊥ ⇒ δ

∆, xRy ⇒ y : α
∀-r

∆⇒ x : ∀R.α
∆, x : ∀R.α, y : α, xRy ⇒ δ

∀-l
∆,x : ∀R.α, xRy ⇒ δ

∆⇒ xRy ∆⇒ y : α
∃-r

∆⇒ x : ∃R.α
∆, xRy, y : α⇒ δ

∃-l
∆,x : ∃R.α⇒ δ

∆, α⇒ β v-r
∆⇒ α v β

∆1 ⇒ α ∆2, β ⇒ δ v-l
∆1,∆2, α v β ⇒ δ

∆⇒ α ∆⇒ β u-r
∆⇒ α u β

∆,α, β ⇒ δ
u-l

∆,α u β ⇒ δ

∆⇒ α t1-r
∆⇒ α t β

∆,α⇒ δ ∆, β ⇒ δ
t-l

∆,α t β ⇒ δ

∆, α⇒ β
p-∃∀R.∆, ∃R.α⇒ ∃R.β

∆⇒ α p-∀∀R.∆⇒ ∀R.α

∆⇒ δ p-N
x : ∆⇒ x : δ

Fig. 1.2. The System SCiALC : logical rules

Theorem 1. The sequent calculus described in Fig. 1.2 is sound and complete for TBox reasoning,
that is Θ, ∅ |= C if and only if Θ ⇒ C is derivable with the rules of Figure 1.2.

The completeness of our system is proved relative to the axiomatization of iALC, shown in
Figure 1.1. The proof is presented in Section 6.

The soundness of the system is proved directly from the semantics of iALC including the ABOX,
that is, including nominals. The semantics of a sequent is defined by the satisfaction relation, as
shown in Definition 2. The sequent Θ,Γ ⇒ δ is valid if and only if Θ,Γ |= γ. Soundness is proved
by showing that each sequent rule preserves the validity of the sequent and that the initial sequent
is valid. This proof is presented in Section 7.

We note that although we have here fixed some inaccuracies in the presentation of the iALC
semantics in [7], the system presented here is basically the same, excepted that here the propositional
rules are presented without nominals. Given that, the soundness of the system proved in [7] can be
still considered valid without further problems. Note also that the proof of soundness provides in
Section 7 is regarded the full language of iALC. It considers nominals and assertion on nominals
relationship, that is it concerns ABOX and TBOX. The proof of completeness is for the TBOX only.
A proof of completeness for ABOX can be done by the method of canonical models. For the purposes
of this article, we choose to show the relative completeness proof with the sake of showing a simpler
proof concerning TBOX.

6 The completeness of SCiALC system

We show the relative completeness of SCiALC regarding the axiomatic presentation of iALC presented
in Figure 1.1. To prove the completeness of SCiALC it is sufficient to derive in SCiALC the axioms
1–5 of iALC. It is clear that all substitution instances of IPL theorems can also be proved in SCiALC
using only propositional rules. The MP rule is a derived rule from the SCiALC using the cut rule.
The Nec rule is the p-∀ rule in the system with ∆ empty. In the first two proofs below do not use
nominals for given better intuition of the reader about the use of rules with and without nominals.
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Axiom 1:

α⇒ α β ⇒ β v-l
α v β, α⇒ β

p-∃∀R.(α v β),∃R.α⇒ ∃R.β v-r∀R.(α v β)⇒ ∃R.α v ∃R.β
Axiom 2:

α⇒ α β ⇒ β v-l
α v β, α⇒ β

p-∀∀R.(α v β),∀R.α⇒ ∀R.β v-r∀R.(α v β)⇒ ∀R.α v ∀R.β
Axiom 3:

xRy, y : ⊥ ⇒ x : ⊥ ∃-l
x : ∃R.⊥ ⇒ x : ⊥ v-r⇒ x : (∃R.⊥ v ⊥)

Axiom 4:

x : ∃R.α⇒ x : ∃R.α t1-r
x : ∃R.α⇒ x : (∃R.α t ∃R.β)

x : ∃R.β ⇒ x : ∃R.β t2-r
x : ∃R.β ⇒ x : (∃R.α t ∃R.β)

t-l
x : ∃R.(α t β)⇒ x : (∃R.α t ∃R.β)

Axiom 5:

xRy, y : α⇒ y : α xRy, y : α⇒ xRy
∃-r

xRy, y : α⇒ x :∃R.α
xRy, y : α, y : β, ∀R.β ⇒ y : β

∀-l
xRy, y : α, x :∀R.β ⇒ y : β v-l

x : (∃R.α v ∀R.β), xRy, y : α⇒ y : β
∀-r

x : (∃R.α v ∀R.β), xRy ⇒ y : (α v β)
∀-r

x : (∃R.α v ∀R.β)⇒ x : ∀R.(α v β) v-r⇒ x : [(∃R.α v ∀R.β) v ∀R.(α v β)]

7 Soundness of SCiALC system

In this section we prove that.

Proposition 1. If Θ,Γ ⇒ δ is provable in SCiALC then Θ,Γ |= γ.

Proof: We prove that each sequent rule preserves the validity of the sequent and that the initial
sequents are valid. The definition of a valid sequent (Θ,Γ |= γ) is presented in Definition 2.

The validity of the axioms is trivial. We first observe that any application of the rules v-r, v-l,u-
r,u-l, t1-r,t2-r, t-l of SCiALC where the sequents do not have any nominal, neither in Θ nor in Γ ,
is sound regarded intuitionistic propositional logic kripke semantics, to which the validity definition
above collapses whenever there is no nominal in the sequents. Thus, in this proof we concentrate in
the case where there are nominals. We first observe that the nominal version of v-r, the validity of
the premises includes

∀(Nom(Γ, δ)).∀z � Nom(Γ, δ).(I, z |= Γ ⇒ I, z |= δ)

This means that Γ holds in any worlds z � x for the vector x of nominals occurring in Γ . This
includes the outer nominal xi in δ (if any). In this case the semantics of v is preserved, since z
includes zi � xi. With the sake of a more detailed analysis, we consider the following instance:

x : α1, y : α2 ⇒ x : β v-r
α1 ⇒ x : α2 v β

Consider an iALC structure I = 〈U ,�, RI . . . , CI〉 In this case, for any I and any z1, z2 ∈ UI
if z1 � xI , z1 � yI , such that, I, zi |= α1 and I, zi |= α2, we have that I, zi |= x : β, since the
premise is valid, by hypothesis. In this case, by the semantics of v we have I, zi |= x : α1 v β. The
conclusion of the rule is valid too.

The argument shown above for the v-r rule is analogous for the nominal versions of v-r, v-l,u-
r,u-l, t1-r,t2-r, t-l. Consider the rule ∀-r.
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∆,xRy ⇒ y : α ∀-r
∆⇒ x : ∀R.α

Since the premise is valid we have that if ∀zx � xI , ∀zy � yI , (zx, zy) ∈ RI then ∀zy �
yI .I, zy |= γ. This entails that xI ∈ (∀R.γ)I , for xI � xI . We observe that by the restriction on the
rule application, y does not occur in ∆, it only occurs in xRy and y : α. The truth of these formulas
are subsumed by ∀R.γ. The conclusion does not need to consider them any more. The conclusion
is valid too. Another way to see its soundness is to prove that if xRy ⇒ y : α is valid, then so is
⇒ x : ∀R.α. This can be show by the following reasoning:

∀xI∀yI∀zx∀zy(zx � xI → (zy � yI → ((zx, zy) ∈ RI → I, zy |= y : α)))

that is the same as:

∀xI∀yI∀zx∀zy(zx � xI → (zy � yI → ((zx, zy) ∈ RI → I, yI |= α)))

Using the fact that ∀yI(yI � yI), we obtain:

∀xI∀zx(zx � xI → ∀yI((zx, y
I) ∈ RI → I, yI |= α))

The above condition states that ⇒ x : ∀R.α is valid.

∀xI∀yI∀zx∀zy(zx � xI → (zy � yI → ((zx, zy) ∈ RI → I, zy |= y : α)))

Consider the rule ∀-l:

∆,x : ∀R.α, y : α, xRy ⇒ δ ∀-l
∆,x : ∀R.α, xRy ⇒ δ

As in the ∀-r case, we analyze the simplest validity preservation: if x : ∀R.α ∧ xRy is valid, then
so is x : ∀R.α ∧ y : α ∧ xRy. The first condition is:

∀xI∀yI∀zx(zx � xI → ∀zy(zy � yI →
((I, zy |= x : ∀R.α) ∧ (I, zy |= x : ∀R.α) ∧ ((zx, zy) ∈ RI)→

(I, zy |= y : α) ∧ (I, zx |= y : α)))) (1.2)

Using zy = yI , eliminating zx from the term, and, using the fact that I, zy |= y : α is valid, iff,
I, yI |= α , we obtain

∀xI∀yI∀zx(zx � xI → ∀zy(zy � yI →
((I, zy |= x : ∀R.α) ∧ (I, zy |= x : ∀R.α) ∧ ((zx, zy) ∈ RI)→

(I, y |= α)))) (1.3)

Consider the semantics of ∃R.α:

(∃R.α)I =df {x | ∃y ∈ UI .(x, y) ∈ RI and y ∈ αI}
and the following rule:

∆⇒ xRy ∆⇒ y : α ∃-r
∆⇒ x : ∃R.α

We can see that the premises of the rule entails the conclusion. The premises correspond to the
following conditions:

∀xI∀yI∀zx(zx � xI → ∀zy(zy � yI → ((zx, zy) ∈ RI)))

and
∀yI∀zy(zy � yI → ((I, zy |= y : α)))

Instantiating in both conditions zy = yI and zx = xI , this yields (xI , yI) ∈ RI , such that I, yI |= α,
so I, zx |= xI : ∃R.α. Thus, ∃-r is sound. The soundness of ∃-l is analogous to ∀-l.
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Finally, it is worth noting that, for each rule, we can derive the soundness of its non-nominal
version from the proof of soundness of its nominal version. For instance, the soundness of the nominal
version of rule t-l depends on the diamond conditions F1 and F2. The soundness of its non-nomimal
version, is a consequence of the soundness of the nominal version.

The rules below have their soundness proved as a consequence of the following reasonings in
first-order intuitionistic logic that are used for deriving the semantics of the conclusions from the
semantics of the premises:

(p-∃) ∀x(A(x) ∧B(x)→ C(x)) |= ∀xA(x) ∧ ∃xB(x)→ ∃xC(x);
(p-∀) (A(x) |= B(x)) implies ∀y(R(y, x)→ A(x)) |= ∀y(R(y, x)→ B(x));
(p-N) if A |= B then for every Kripke model I and world xI , if I, xI |= A then I, xI |= B.

∆,α⇒ β
p-∃∀R.∆,∃R.α⇒ ∃R.β

∆⇒ α p-∀∀R.∆⇒ ∀R.α
∆⇒ δ p-N

x : ∆⇒ x : δ

8 Chisholm paradox in iALC

The paradoxes discussed in this section are known from the literature as contrary-to-duty paradoxes.
They are deontic paradoxes under SDL formalization. Usually, there is a primary norm/law/obligation
and a secondary norm that comes to effect when the primary obligation is violated. The form of these
normative and intuitively coherent situations are in general hard to find a consistent deontic formal-
ization. Because of that they are called paradoxes. A typical example of contrary-to-duty paradox
appeared in [19]:

1. It ought to be that Jones goes to the assistance of his neighbors.
2. It ought to be that if Jones does go then he tells them he is coming.
3. If Jones doesn’t go, then he ought not tell them he is coming.
4. Jones doesn’t go.

– This certainly appears to describe a possible situation. 1-4 constitute a mutually consistent and
logically independent set of sentences.

– (1) is a primary obligation, what Jones ought to do unconditionally. (2) is a compatible-with-
duty obligation, appearing to say (in the context of 1) what else Jones ought to do on the
condition that Jones fulfills his primary obligation. (3) is a contrary-to-duty obligation (CTD)
appearing to say (in the context of 1) what Jones ought to do conditional on his violating his
primary obligation. (4) is a factual claim, which conjoined with (1), implies that Jones violates
his primary obligation.

We firstly remember the deontic approch to law and its logic. Differently of ours, it takes laws as
propositions. Thus, a norm or law is an obligatory proposition, such as “You must pay your debits”
or “It is obligatory to pay the debits”. As a proposition each norm has a truth value. The underlying
logic classical. If φ is a proposition then Oφ is a proposition too. Oφ intuitively means φ must be the
case ,or It is obligatory that φ. The paradoxes that we discuss in this work appear just when laws
are taken as propositions. They show them up from the most basic deontic logic Standard Deontic
Logic (SDL). SDL is a modal logic defined by von Wright19951 [31] and, according to the modal
logic terminology on the names of axioms, it is defined by the following set of axioms. The formulas
of SDL include the modality O.

TAUT all tautologies of the language. This means that if φ is a propositional tautology then the
substitution of p for any SDL formula is an SDL tautology too;

OB-K O(p→ q)→ (Op→ Oq)
OB-D Op→ ¬O¬p
MP if ` p and ` p→ q then ` q
OB-NEC if ` p then ` Op

SDL is just the normal modal logic D or KD, with a suggestive notation expressing the intended
interpretation. From these, we can prove the principle that obligations cannot conflict, NC of SDL,
¬(Op ∧O¬p) (see [31])

The following set of formulas is a straightforward formalization of Chisholm paradox in SDL.

1. Op
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2. O(p→ q)
3. ¬p→ O¬q
4. ¬p

The intuitive meaning of each formula is according the following table, where p is “Jones go to
the assistance of his neighbours” and q is “Jones tells his neighbours he is going”.

It ought to be that Jones go to
the assistance of his neighbours. O(p)

It ought to be that if Jones does go then
he tells them he is going. O(p→ q)
If Jones doesn’t go, then

he ought not tell them he is going. ¬p→ Ob(¬q)
Jones doesn’t go. ¬p

Using the deductive power of SDL we can perform the following derivation of a SDL contradiction.

– from (2) by principle OB-K we get Op→ Oq,
– and then from (1) by MP, we get Oq;
– but by MP alone we get O¬q from (3) and (4).
– From these two conclusions, by PC, we get Oq ∧O¬q , contradicting NC of SDL.

Assertion 1-4, from Chisholm paradox, leads to inconsistency per SDL. But, 1-4 do not seem
inconsistent at all, the representation cannot be a faithful one. We discuss this in the sequel. For
reasons that will become clear, we take Chisholm paradox as stated above in natural language,
instead of its SDL version. We use the same letters to denote the propositions/laws as used in the
deontic representation of the paradox, for a better comparison.

In first law in the paradox, i.e., the law state in item 1 is a nominal in iALC, and hence it is a
Kripke world in our model. The same can be said about item 2. The state-of-affairs, expressed in
iALC, is simply the assertions: l1 : > and l2 : >. Note that this assertions only state that there are
two laws l1 and l2 in the legal universe. Since a Kripke model for intuitionistic logic is a Heyting
algebra, and hence it is a lattice too, there must be the meet of these two worlds. This is represented
in the model by law l0, intuitively stating that it is obligatory to do what law l1 and law l2 state.
Item 3 of the paradox is a conditional that generally states that if some proposition is truth then some
law exists. This is a rather hard expression in judicial terms. Laws exist by promulgation only, they
do not have their existence conditioned to anything but their own promulgation. This conditional
expression can be raised in a legislative discussion only. But even in this exceptional case, the raising
of paradoxes, as the one under discussion, advices that such use should be avoided. What item 3
says, instead, is simply that ¬p holds in the world l3 that is the law cited as the consequent of the
conditional. Finally, as the model is a lattice, there must be a world l4 that represents the law that
it is the conjunctive law related to l0 and l3, in the same way l0 is related to l1 and l2. Now, in l4, it
is ensured that ¬p holds by the intuitionistic interpretation of the negation. As a result the model
depicted in the diagram below is a model for what is known by Chisholm paradox. Thus, it is not a
paradox when expressed in iALCin a kelsenian way.

1. The law l1, originally Op
2. The law l2, originally O(p→ q)
3. From (3), ¬p→ O¬q, we have l3 : ¬p. If we had O¬q → ¬p the translation would be the same.

That is, l3 is O¬q.
4. The law l0 that represents the infinum of l1 and l2.

The following diagram shows the model to Chisholm paradox discussed above. Remember that
if x : A then ∀x′ ≥ x, x′ : A.

l1 |= > l2 |= >

l0 |= >
�

dd

�

::

l3 |= ¬p

l4 6|= p

�

dd

�

::
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9 Conclusion

In this article, we shown how intuitionistic logic and Kelsen’s jurisprudence can be used to ex-
press Chisholm paradox faithfully. A key fact in providing a logical model to this paradox is that
laws/norms are not taken as propositions. For example, in the explanation above on building the
model, if we turn back to deontic expression of laws, we will have that l1 is Op and l2 is O(p→ q),
but we cannot derive that l3 is O(q). l3 is of course the meet (u) between l1 and l2, as a meet it
is strongly connection to O(l1) ∧ O(l2) ↔ O(l1 ∧ l2), which is a SDL valid formula. Thus, l3 is the
norm O(l1 ∧ l2), that is an obligation. However, now remembering what norms l1 and l2 are in this
particular case, l3 is the meeting O(p) ∧ O(p → q) that it is O(p ∧ (p → q)). This conclusion, how-
ever, does not entail that in l3 can be identified with O(q), since our implication is the intuitionistic
implication. This very last aspect of joining Kelsen jurisprudence and iALCalso helps to avoid other
deontic paradoxes.

Jorgensen’s Dilemma [15] offers a question, in fact, a dilemma, whether there is, in fact, any
deontic logic. The question follows this path: 1) Norms/laws deal with evaluative sentences; 2)
Evaluative sentences are not the kind of sentence that can be true or false; 3) Thus, how there is a
logic of evaluative sentences? 4) Logic has as goal to define what can be drawn from whatever, and;
5) A sentence follows from a set of sentences on a basis of the relationship between the truth of the
sentences in question. Thus, there is no deontic logic. What we have shown in this article, is that
deontic logic is possible by considering the logic of norms as a logic on norms, instead. This reading
is just what we do in legal ontologies.

Only to estimate the range of our approach for solving semantical (contrary-to-duty) paradoxes.
The free choice permission paradox reported on [27]) is derived from Jorgensen dilemma. Consider
the tautology p→ p∨ q. We have by necessity SDL rule that O(p→ p∨ q) is derivable in SDL by the
axiom K we have O(p)→ O(p∨q). On the other hand, by contra-positive we have ¬(p∨q)→ ¬p, so,
and hence O(¬(p ∨ q))→ O(¬q), and by contra-positive again, we obtain ¬O(¬q)→ ¬O(¬(p ∨ q)).
Taking ¬O(¬φ) as permitted φ, rather better P (φ), we draw P (p) → P (p ∨ q). The free choice
paradox, based on the fact rule that if P (p ∨ q) holds then P (p) ∧ P (q). If we accept the free choice
permission, so to say the formula P (p ∨ q)→ then(P (p) ∧ P (q)). As p→ (p ∨ q), then by what was
observed above, P (p)→ P (p∨ q), then by the free choice permission, we draw that P (p)→ P (p∧ q),
for any q. In summary, in the presence of the free choice permission axiom, we can derive that
P (p) → P (q) for every q, which should not happen. However, if we use iALC together with Kelsen
jurisprudence, and hence intuitionistic logic, we cannot derive all the steps above. Anyway, our
definition of permission is different from what is discussed in this paragraph, see below. We can see
that many paradoxes that are based on the axiom K are not paradoxes anymore.

We have to touch some aspects that are very well-known in the deontic approach. One is the
deontic concept of permission. This case is modeled by observing that in a society regulated by law,
permission is nothing more than an obligation of the State. The State promulgates what is allowed.
Concerning prohibitions, the foundation is analogous. However, some subtle and theoretical problems
may arise if one wants to recover the definition of forbidden (F ) regarding the very well-known duality
F (p) ≡ O(¬p). This discussion will be the subject of another article.

Finally, we would like to comment that professor Farinas del Cerro taught us that the research
on logic and AI, mainly the first should be approached by solving part-by-part the problem and
elegantly putting everything together. Well, we learned the first part of this technique, by following
him by reading his articles. We think that in the first part, so to say finding a good foundation on
legal ontologies, one that comes from the domain itself, namely Kelsen jurisprudence. Concerning
the second part, that is to put everything together in an elegant way, we known that we are far from
it. Another thing that we might have learned from prof. Farinas is that in this case, it is a matter of
time to have the work in a more mature stage. We hope we reach this stage.
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Abstract. We present in this note a plea for Barcan Formula. This view connects Barcan Formula with a
modal principle that normalizes the ∀-Introduction rule of quantificational logic.

1 Introduction

R. C. Barcan introduced a modal system as “an extension of the Lewis calculus S2 to include quantification”[1].
The axiom schema 11 of this system is
^(∃α)A J (∃α)^A
Hereafter, as it is usual, Barcan Formula (BF) will be the equivalent formula
BF: ∀x�ϕ(x)→ �∀xϕ(x)
In quantified modal logic1, BF occupies an outstanding and discussed place[3]. One reason lies in the

fact that its converse is a theorem of QK2. Therefore, in systems in which BF holds, ∀� and �∀ become
equivalent. This equivalence could be regarded as a tool to replace de re modalities and protect modal logic
from criticism.

The problems BF arises can be separated into three levels:

1. Proof-theory: what modal axioms and/or modal inference rules suffice to prove -or, they are incompatible
with- BF.

2. Model-theory: what properties of the models of modal logic yield valid BF.
3. Ontology: what ontological commitments, with regard to individuals and their properties, are assumed in

accepting BF.

This last level is what has caused more discussions. Several authors have disputed the philosophical prob-
lems -contingency, actualism, possibilism,. . . - directly or indirectly connected with BF[2,4]. It is also the level
where the different positions are difficult to reconcile, because the commitments about modalities that are ac-
ceptable for some logician or philosopher could be excessive for another one, and the ontological preferences
are frequently not founded on logical reasons.

2 A minimum modal principle to prove Barcan Formula

Prior proved that BF is a theorem of QS5[7]. Lemmon -according to Prior- proved that BF is a theorem of a
weaker system than QS5: QB, the so called “Brouwersche” modal logic. BF is neither provable in QS4, nor,
therefore, in QT. BF cannot be added to QL[6].

However, if Q is a standard first order logic3, BF is provable in a modal system weaker than QB, because
the axiom schema T is not necessary in the deduction of BF. The deduction of BF in [5] uses only:

? Luis Fariñas del Cerro introduced me in modal logics. I thank his kind intellectual support and his friendship.
1 See [5] for terminology. The modal systems we shall mention here are obtained from the inference rule

N: if ` α, then ` �α
and the axiom schemata
K: �(α→ β)→ (�α→ �β)
T: �α→ α

B(rouwer): α→ �^α
4: �α→ ��α
5: ^α→ �^α
L(öb): �(�α→ α)→ �α
PL is a propositional logic. Q is a first order logic.
QK=Q+N+K. QT=QK+T. QB=QT+B. QS4=QT+4. QS5=QT+5. QL=QK+L.
4 is a theorem of QS5 and QL.

2 �∀xϕ(x)→ ∀x�ϕ(x) is obtained from the standard rules for quantifiers, N and K.
3 The condition that Q is a standard first order logic is not superfluous. If Q* is a first order logic without free variables

in their axiom schemata, for instance, then BF is unprovable in Q*S5 (Kripke).



(a) An axiom schema and an inference rule for quantifiers (the standard ones),
(b) A modal axiom equivalent to B,
(c) The inference rules:
(c.1) ` α→ β⇒` ^α→ ^β
(c.2) ` ^α→ ^β⇒` α→ �β
It is immediate that (c.1) is proved from N and K, and (c.2) is proved from N and B.
Is B a minimum modal axiom to prove BF? It seems so, if the quantified axioms and rules of Q are:
(UE) ∀(x)α→ α
(UI) ` α→ β⇒` α→ ∀xβ(x), x not free in α
We do not present a strict proof, but an argument only. Our reasoning is as follows.
We search for a set δ1, . . . , δn of formulas such that
` ∀x�ϕ(x)→ δ1
` δn−1 → δn

` δn → �∀xϕ(x)
At a first step in the deduction of BF, we have
(f) ` ∀x�ϕ(x)→ �ϕ(x), from (UE).
The ∀-introduction in the consequent of (f) firstly requires the �-elimination using some principle as
(1) ` µ�α→ α,
where µ is a sequence of modal operators.
Moreover, if µ , ∅, the following rule has to be added:
(2) ` α→ β⇒` µα→ µβ
From the axiom (1), the rule (2), and (f),
(g) ` µ∀x�ϕ(x)→ ϕ(z)
(h) ` µ∀x�ϕ(x)→ ∀xϕ(x), from (g), (UI).
(i)` �µ∀x�ϕ(x)→ �∀xϕ(x), from N, K.
Now, for obtaining BF we need a principle equivalent to
(3) ` α→ �µα
What is the minimal modal axiom that satisfies the above principles (1), (2), (3)?

– Case µ = ∅
(1) is the axiom schema T; (2) holds. But (3) is not admissible as a modal principle. T+(3) collapse the
modality because ` α↔ �α

– Case µ = � .
(1) is obtained from T, and (2) from N. But (3) is not admissible because ` α↔ ��α

– Case µ = ^
(2) is obtained from N, and K. (1) and (3) are equivalent. They both express modal principles that may be
admitted.

Hence, (1) or (3) seem to be a minimal axiom schema that, added to QK, proves BF.

3 Validity of Barcan Formula: Two Ways

In standard possible world semantics, broadly, if we suppose BF is false we find the following scene:
(i) ∀x�ϕ(x) is true at w0 , and
(ii) ∃x¬ϕ(x) is true at some w j, and
(iii) w0Rw j .
We have to find ways to generate a contradiction.
From (ii) we have, for a new variable z,
(iv) ¬ϕ(z) is true at w j .
From (i) we have
(v) �ϕ(z) is true at w0 .
By the necessity rule, we could have
(vi) ϕ(z) is true at w j,
but nothing guarantees that the entity z denotes in (iv) is the same entity z denotes in (vi) -which is the

same entity z denotes in w0-, unless every individual of the quantificational domain of w j is included into the
quantificational domain of w0.

The validity of BF requires to have the semantical means to displace a selected individual -or a set of
individuals- from a world to another. The scope of a universal quantifier must be moved from the world it
appears to every accessible world. This can be achieved in two ways:

(a) By the symmetry of R: w jRwk ⇒ wkRw j .
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(b) Without restrictive conditions on R, by the inclusion of the domain of each world into the domain of
the worlds to which it is accessible: w jRwk ⇒ D(wk) ⊆ D(w j) .

Condition (a) implies the condition (b).
The validity of BF does not require R is reflexive, according to our proof above, where T was not used.

Actually, the validity of BF needs the condition (b) only; symmetry is a way to obtain it.
If we search for a minimum semantic principle that validates BF, the question arises whether (a) or (b) are

the most appropriate principle.
The minimum modal requisite for a technical treatment of de re modalities forces us only to accept the

following principle:
(c) the domain of w j has to be included into the domain of wk, if w jRwk.
The reason is that x has to belong to the domain of every wk that w jRwk, for evaluating ϕ(x) as true -false-

at wk, when �ϕ(x) is true -false- at w j.
The (c) principle does not suffice for the validity of BF without either
(1) additional properties of R -e.g. the (a) way above-, or
(2) additional requirements on the domains of accessible worlds -the (b) way.
BF itself allows only an interchange between quantifiers and modal operators, whereas the axiom schema

B expresses that all truth is necessarily possible. The modal range (i.e. concerning modal laws) of BF seems
more restricted than the modal range of B. In standard modal logic if we accept B as a means to equal
the domains of accessible worlds, we have to accept also ϕ(t)→ �^ϕ(t) as theorem, for any formula without
quantifiers. A fact -or a choice- about quantifiers only (BF) does not have to drag whatever formula. Therefore,
it seems rather natural to ask whether BF could be proved in a modal system different from QK+B. The most
elemental answer, but lacking in interest, is to add BF to QK. This answer, however, does not clear up what
new principles of reasoning, on quantification and modalities, we are actually adding to N and K when BF
becomes provable. What is the logical principle underlying BF?

4 Barcan Formula and ∀-Introduction Rule

Following ideas introduced by Gödel in his famous paper (1931), we could interpret the N rule as saying that �
partially defines the deducibility4. However, we can not say that � strongly defines some kind of deducibility,
because there is no rule that specifies the behavior of � with regard to the undeducible formulas. No rule of
type 0 α⇒` ¬�α exists in standard modal logics. In QT, for example, the rule ` ¬α⇒` ¬�α is valid; but we
obtain ¬�α formulas as theorems, only if we have already ¬α as a theorem, and not, as a general case, if 0 α
merely. Therefore, � only captures partially the undeducibility. This is the case also in QB and QS5.
� partially defines the deducibility. This is true in any modal system that has the N rule. We could assume

that K formalizes into the modal logic the proof method that corresponds to MP. Similarly, we could think to
add a modal axiom that formalizes the ∀-I rule. This modal axiom is the equivalent to K with regard to MP:

G: �(α→ β)→ �(α→ ∀xβ(x)), x not free in α.
If we define Q replacing the ∀-I rule for the axiom schema
∀x(α→ β)→ (α→ ∀xβ(x)), x not free in α
and the rule
(UI*): ` ϕ(x)⇒` ∀xϕ(x)
then, we add the modal axiom:
(G*): �ϕ(x)→ �∀xϕ(x)
BF is provable from G (G*).
For the case G:
�(α→ ϕ)→ �(α→ ∀xϕ(x)) ` ∀x�ϕ(x)→ �∀xϕ(x), x not free in α
A proof follows:
(i) ϕ(x)→ (ϕ(z)→ ϕ(z)), by PL
(ii) �ϕ(x)→ �(ϕ(z)→ ϕ(x)), from N, K
(iii) ∀x�ϕ(x)→ �ϕ(x), from ∀-E
(iv) ∀x�ϕ(x)→ �(ϕ(z)→ ϕ(x)), from (ii), (iii)
(v) ∀x�ϕ(x)→ �(ϕ(z)→ ∀xϕ(x)), from (iv), QN
(vi) ∀x�ϕ(x)→ (�ϕ(z)→ �∀xϕ(x)), from (v), K

4 P partially defines P in M if and only if:
if P(α) holds, then `M P(α)t.
P strongly defines P in M if and only if:
P partially defines P in M, and if P(α) does not hold, then `M ¬P(α)t.
t is some assignment or translation.
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(vii) ∀x�ϕ(x)→ �ϕ(z), from ∀-E
(viii) ∀x�ϕ(x)→ �∀xϕ(x), from (vi), (vii)
For the case G* the proof is immediate
�ϕ(x)→ �∀xϕ(x) ` ∀x�ϕ(x)→ �∀xϕ(x)
We obtain BF in the modal system QK+G.
What advantage do we get against the QK+B alternative? Since we impose restrictions on the world

domains and not on the properties of the accessibility relation, we need fewer commitments on the properties
of broad modalities, and quantifier-free modal formulas are not biased when we choose only BF.
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Abstract. In the ordinary modal language, KD and KT are the modal logics respectively
determined by the class of all serial frames and the class of all reflexive frames. In this paper,
we demonstrate that KD and KT are nullary.

1 Introduction

The unification problem in a logical system L can be defined as follows: given a formula φ(x1, . . . , xn),
determine whether there exists formulas ψ1, . . . , ψn such that φ(ψ1, . . . , ψn) is in L. The research on
unification was motivated by a closely related and more general decision problem, namely the admis-

sibility problem for rules of inference: given a rule φ1(x1,...,xn),...,φm(x1,...,xn)
ψ(x1,...,xn)

, decide whether for all

formulas χ1, . . . , χn, if φ1(χ1, . . . , χn), . . ., φm(χ1, . . . , χn) are in L then ψ(χ1, . . . , χn) is in L. The
admissibility problem for rules was put forward by Friedman [15] who asked whether there exists a
decision procedure for deciding whether a given rule preserves validity in intuitionistic logic.
Friedman’s problem was solved by Rybakov [23,24] who demonstrated that the admissibility problem
in intuitionistic logic and modal logic S4 is decidable. See also [20,26,30] for a study of unification and
inference rules for modal logics. Later on, Ghilardi [17], proving that intuitionistic logic has a finitary
unification type, yielded a new solution of Friedman’s problem, seeing that deciding whether a given
rule preserves validity in intuitionistic logic is equivalent to checking whether the finitely many max-
imal unifiers of its premises are unifiers of its conclusion. See also [19] for a study of unification and
most general unifiers in modal logics. With respect to the complexity issue, Jerábek [21] established
the coNEXPTIME-completeness of the admissibility problem for several intermediate logics and
several K4-extensions, in contrast with the admissibility problem for modal logics contained in K4
which is undecidable if one considers a language with the universal modality [31]. See also [16] for a
study of unifiability in extensions of K4.
Is the situation better if the language is restricted? Cintula and Metcalfe [11] considered the negation-
implication fragment of intuitionistic logic and proved that the associated admissibility problem was
PSPACE-complete. Unification of concept terms has been introduced by Baader and Narendran [6]
as a tool for detecting redundancies in knowledge bases. In this respect, Baader and Küsters [3]
established the EXPTIME-completeness of the unification problem in the description logic FL0

whereas Baader and Morawska [4,5] established the NPTIME-completeness of the unification prob-
lem in the description logic EL.
Tense logics and epistemic logics provide formalisms for expressing properties about programs, time,
knowledge, etc. Within their context, Dzik [13,14] has studied the relationships between the uni-
fication type of a fusion of modal logics and the unification types of the modal logics composing
this fusion. The unification type of applied non-classical logics such as common knowledge logics and
linear temporal logics has also been studied by Babenyshev and Rybakov [7] and Rybakov [27,28,29].
Nevertheless, very little is known about the unification problem in some of the most important de-
scription and modal logics considered in Computer Science and Artificial Intelligence. For example,
the decidability of the unification problem for the following description and modal logics remains
open: description logic ALC, modal logic K, multimodal variants of K, sub-Boolean fragments of
modal logics.
In the ordinary modal language, the modal logics KD and KT are the least normal logics respec-
tively containing the formulas 2x → 3x and 2x → x. They are also the modal logics determined
by the class of all frames (W,R) such that R is serial on W and the class of all frames (W,R) such
that R is reflexive on W . Seeing that 2⊥, 2>, 3⊥ and 3> are, respectively, equivalent in KD and
KT to ⊥, >, ⊥ and >, it is a well-known fact that KD-unification and KT -unification are in NP .
As for the unification type of KD and KT , in this paper, following a line of reasoning suggested by
Jerábek [22] within the context of the modal logic K, we demonstrate that KD and KT are nullary.



2 Syntax

Let V AR be an at most countable set of propositional variables (with typical members denoted x,
y, etc) and PAR be an at most countable set of propositional parameters (with typical members
denoted p, q, etc). In this paper, we will always assume that V AR 6= ∅. The set L of all formulas
(with typical members denoted φ, ψ, etc) is inductively defined as follows:

– φ, ψ ::= x | p | ⊥ | ¬φ | (φ ∨ ψ) | 2φ.

We write φ(x1, . . . , xn) to denote a formula whose variables form a subset of {x1, . . . , xn}. The
Boolean connectives >, ∧, → and ↔ are defined by the usual abbreviations. Let 3 be the modal
connective defined as follows:

– 3φ ::= ¬2¬φ.

For all parameters p, the modal connective [p] is defined as follows:

– [p]φ ::= 2(p→ φ).

For all parameters p, the modal connective [p]k is inductively defined as follows for each k ∈ IN:

– [p]0φ ::= φ,
– [p]k+1φ ::= [p][p]kφ.

For all parameters p, the modal connective [p]<k is inductively defined as follows for each k ∈ IN:

– [p]<0φ ::= >,
– [p]<k+1φ ::= [p]<kφ ∧ [p]kφ.

We adopt the standard rules for omission of the parentheses.

Example 1. φ = (x → p) ∧ (x → [p]x) is a readable abbreviation for the less readable formula
¬(¬(¬x ∨ p) ∨ ¬(¬x ∨2(¬p ∨ x))).

The degree of a formula φ (in symbols deg(φ)) is inductively defined as follows:

– deg(x) = 0,
– deg(p) = 0,
– deg(⊥) = 0,
– deg(¬φ) = deg(φ),
– deg(φ ∨ ψ) = max{deg(φ),deg(ψ)},
– deg(2φ) = deg(φ) + 1.

A substitution is a function σ associating to each variable x a formula σ(x). We shall say that
a substitution σ is closed if for all variables x, σ(x) is a variable-free formula. For all formulas
φ(x1, . . . , xm), let σ(φ(x1, . . . , xm)) be φ(σ(x1), . . . , σ(xn)). The composition σ◦τ of the substitutions
σ and τ associates to each variable x the formula τ(σ(x)).

Example 2. If φ is the formula considered in Example 1 and σp is the substitution defined by σp(x) =
p then σp(φ) = (p→ p) ∧ (p→ [p]p).

Example 3. If φ is the formula considered in Example 1, k ∈ IN and σk is the substitution defined
by σk(x) = p ∧ [p]<kx ∧ [p]k⊥ then σk(φ) = (p ∧ [p]<kx ∧ [p]k⊥ → p) ∧ (p ∧ [p]<kx ∧ [p]k⊥ →
[p](p ∧ [p]<kx ∧ [p]k⊥)).

3 Semantics

A frame is a relational structure of the form F = (W,R) where W is a nonempty set of states (with
typical members denoted s, t, etc) and R is a binary relation on W . A model based on a frame
F = (W,R) is a relational structure of the form M = (W,R, V ) where V is a function associating
to each variable x a set V (x) of states and to each parameter p a set V (p) of states. The relation
“formula φ is true in model M at state s” (in symbols M, s |= φ) is inductively defined as follows:

– M, s |= x iff s ∈ V (x),
– M, s |= p iff s ∈ V (p),
– M, s 6|= ⊥,
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– Ms |= ¬φ iff M, s 6|= φ,
– M, s |= φ ∨ ψ iff either M, s |= φ, or M, s |= ψ,
– M, s |= 2φ iff for all states t ∈W , if sRt then M, t |= φ.

Let C be a class of frames. We shall say that a formula φ is C-valid (in symbols C |= φ) if for all frames
F = (W,R) in C, for all models M = (W,R, V ) based on F and for all states s ∈W , M, s |= φ.

Example 4. The following formulas are valid in the class of all frames:

– [p]p,
– [p]<kx ∧ [p]k⊥ → [p]([p]<kx ∧ [p]k⊥).

Let C be a class of frames. We shall say that a substitution σ is C-equivalent to a substitution τ
(in symbols σ 'C τ) if for all variables x, C |= σ(x) ↔ τ(x). We shall say that a substitution σ is
more C-general than a substitution τ (in symbols σ �C τ) if there exists a substitution υ such that
σ ◦ υ 'C τ .

4 Unification problem

Let C be a class of frames. We shall say that a formula φ is C-unifiable if there exists a substitution
σ such that C |= σ(φ). In that case, σ is a C-unifier of φ.

Example 5. Let C be a class of frames. If φ is the formula considered in Example 1 then the substi-
tution σp considered in Example 2 is a C-unifier of φ.

Example 6. Let C be a class of frames. If φ is the formula considered in Example 1 and k ∈ IN then
the substitution σk considered in Example 3 is a C-unifier of φ.

Given a class C of frames, an important question is the following:

C-unification: given a formula φ, decide whether φ is C-unifiable.

Let CKD be the class of all serial frames and CKT be the class of all reflexive frames.

Proposition 1. If PAR = ∅ then CKD-unification and CKT -unification are in NP .

Proof. Suppose PAR = ∅.
CKD-unification: Hence, in CKD, every variable-free formula is equivalent to ⊥ or >. This is a
well-known fact. It partly follows from the fact that 2⊥, 2>, 3⊥ and 3> are, respectively, CKD-
equivalent to ⊥, >, ⊥ and >. Thus, every closed substitution σ is CKD-equivalent to a substitution τ
such that for each variable x, τ(x) = ⊥ or τ(x) = >. Moreover, if a formula φ possesses a CKD-unifier
then φ possesses a closed CKD-unifier. This follows from the fact that for all CKD-unifiers σ of φ
and for all closed substitutions τ , σ ◦ τ is a closed CKD-unifier of φ. Consequently, for all formulas
φ, the following conditions are equivalent: φ is CKD-unifiable; there exists a CKD-unifier σ of φ such
that for all variables x, σ(x) = ⊥ or σ(x) = >. Hence, for all formulas φ(x1, . . . , xn), to decide
whether φ(x1, . . . , xn) is CKD-unifiable, it suffices to nondeterministically guess ψ1, . . . , ψn ∈ {⊥,>}
and to determine whether φ(ψ1, . . . , ψn) is CKD-equivalent to ⊥ or >. Obviously, this can be done
in polynomial time.
CKT -unification: Similar to CKD-unification.

The decidability status of CKD-unification and CKT -unification are unknown when PAR 6= ∅. Let
CS5 be the class of all partitions.

Proposition 2. If PAR = ∅ then CS5-unification is in NP .

Proof. Similar to the proof of Proposition 1.

CS5-unification remains decidable when PAR 6= ∅. See Balbiani and Gencer [9] for details. Let CAlt1
be the class of all deterministic frames.

Proposition 3. CAlt1-unification is in PSPACE.

Proof. See [10].

Let CK4 be the class of all transitive frames, CS4 be the class of all reflexive transitive frames and
CGL be the class of all transitive well-founded frames.

Proposition 4. 1. CK4-unification is decidable.
2. CS4-unification is decidable (in NP when PAR = ∅).
3. CGL-unification is decidable.

Proof. See [18].

As for the decidability status of unification in the class CK of all frames, it is unknown.
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5 Unification type

Let C be a class of frames. We shall say that a set Σ of unifiers of a unifiable formula φ is complete
if for all unifiers σ of φ, there exists a unifier τ of φ in Σ such that τ �C σ. An important question
is the following: when a formula is unifiable, has it a minimal complete set of unifiers? When the
answer is “yes”, how large is this set? We shall say that a unifiable formula

– φ is nullary if there exists no minimal complete set of unifiers of φ,
– φ is infinitary if there exists an infinite minimal complete set of unifiers of φ but there exists no

finite one,
– φ is finitary if there exists a finite minimal complete set of unifiers of φ but there exists no with

cardinality 1,
– φ is unitary if there exists a minimal complete set of unifiers of φ with cardinality 1.

We shall say that

– C is nullary if there exists a nullary formula,
– C is infinitary if every unifiable formula is either infinitary, or finitary, or unitary and there exists

a infinitary formula,
– C is finitary if every unifiable formula is either finitary, or unitary and there exists a finitary

formula,
– C is unitary if every unifiable formula is unitary.

Proposition 5. If PAR 6= ∅ then CKD is nullary.

Proof. See Section 6.

The unification type of CKD is unknown when PAR = ∅.
Proposition 6. CS5 is unitary.

Proof. See [2].

Proposition 7. CAlt1 is nullary.

Proof. See [10].

Proposition 8. 1. CK4 is finitary.
2. CS4 is finitary.
3. CGL is finitary.

Proof. See [18].

As for the unification type of CK , it is nullary [22].

6 Some nullary modal logics

In this section, we will always assume that PAR 6= ∅. Let C be a class of frames. Let φ = (x →
p) ∧ (x → [p]x) be the formula considered in Example 1. Let Σ = {σp} ∪ {σk : k ∈ IN} where σp
is the substitution defined by σp(x) = p and considered in Example 2 and for all k ∈ IN, σk is the
substitution defined by σk(x) = p ∧ [p]<kx ∧ [p]k⊥ and considered in Example 3. By Examples 5
and 6, we know that Σ is a set of unifiers of φ.

Lemma 1. Let k, l ∈ IN. If k ≤ l then σl �C σk.

Proof. Suppose k ≤ l. Let υ be the substitution defined by υ(x) = x ∧ [p]k⊥. The reader may easily
verify that C |= υ(σl(x))↔ σk(x). Hence, σl �C σk.

Lemma 2. Let k, l ∈ IN. If k < l then σk 6�C σl.

Proof. Suppose k < l and σk �C σl. Let υ be a substitution such that σk ◦ υ 'C σl. Hence,
C |= υ(σk(x))↔ σl(x). Thus, C |= p ∧ [p]<lx ∧ [p]l⊥ → [p]k⊥. Consequently, C |= p ∧ [p]l⊥ → [p]k⊥:
a contradiction.

Lemma 3. Let σ be a substitution. The following conditions are equivalent:
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1. σp ◦ σ 'C σ.
2. σp �C σ.
3. C |= σ(x)↔ p.

Proof. (1.⇒ 2) : By definition of �C .
(2.⇒ 3) : Suppose σp �C σ. Let υ be a substitution such that σp ◦ υ 'C σ. Hence, C |= υ(σp(x))↔
σ(x). Thus, C |= σ(x)↔ p.
(3.⇒ 1) : Suppose C |= σ(x)↔ p. Hence, C |= σ(σp(x))↔ σ(x). Thus, σp ◦ σ 'C σ.

Lemma 4. Let k ∈ IN. Let σ be a unifier of φ. The following conditions are equivalent:

1. σk ◦ σ 'C σ.
2. σk �C σ.
3. C |= σ(x)→ [p]k⊥.

Proof. (1.⇒ 2) : By definition of �C .
(2.⇒ 3) : Suppose σk �C σ. Let υ be a substitution such that σk ◦ υ 'C σ. Hence, C |= υ(σk(x))↔
σ(x). Thus, C |= σ(x)→ [p]k⊥.
(3. ⇒ 1) : Suppose C |= σ(x) → [p]k⊥. Since σ is a unifier of φ, therefore C |= σ(x) → p and
C |= σ(x) → [p]σ(x). Hence, C |= σ(x) → [p]<kσ(x). Since C |= σ(x) → [p]k⊥ and C |= σ(x) → p,
therefore C |= σ(x)→ σ(σp(x)). Now, we consider the following 2 cases.
Case k = 0: Thus, C |= [p]k⊥ → σ(x).
Case k ≥ 1: Consequently, C |= [p]<kσ(x)→ σ(x).
In both cases, C |= σ(σp(x)) → σ(x). Since C |= σ(x) → σ(σp(x)), therefore C |= σ(σp(x)) ↔ σ(x).
Hence, σp ◦ σ 'C σ.

Lemma 5. Let σ be a unifier of φ. If C = CKD or C = CKT then one of the following conditions
holds:

1. σp �C σ.
2. There exists k ∈ IN such that σk �C σ.

Proof. Suppose C = CKD or C = CKT and none of the above conditions holds. By Lemmas 3 and 4,
C 6|= σ(x) ↔ p and C 6|= σ(x) → [p]deg(σ(x))⊥. Since σ is a unifier of φ, therefore C |= σ(x) → p. Let
F = (W,R) and F ′ = (W ′, R′) be frames in C, M = (W,R, V ) and M′ = (W ′, R′, V ′) be models
based respectively on F and F ′ and s ∈ W and s′ ∈ W ′ be states such that M, s 6|= p → σ(x)
and M′, s′ 6|= σ(x) → [p]deg(σ(x))⊥. Hence, M, s |= p, M, s 6|= σ(x), M′, s′ |= σ(x) and M′, s′ 6|=
[p]deg(σ(x))⊥. Let t′0, . . . , t

′
deg(σ(x)) ∈W ′ be states such that t′0 = s′ and for all i ∈ IN, if i < deg(σ(x))

then t′iR
′t′i+1 and t′i+1 ∈ V ′(p). Since C = CKD or C = CKT , therefore without loss of generality,

we may assume that t′0, . . . , t
′
deg(σ(x)) is the shortest p-path in W ′ between t′0 and t′deg(σ(x)). Let

M′′ = (W ′′, R′′, V ′′) be the model defined as follows:

– W ′′ = W ∪W ′,
– R′′ = R ∪R′ ∪ {(t′, s)},
– V ′′ = V ∪ V ′.

Since M, s |= p and M, s 6|= σ(x), therefore M′′, s |= p and M′′, s 6|= σ(x). Since t′0, . . . , t
′
deg(σ(x))

is the shortest p-path in W ′ between t′0 and t′deg(σ(x)), M′, s′ |= σ(x), t′0 = s′ and for all i ∈ IN,

if i < deg(σ(x)) then t′iR
′t′i+1 and t′i+1 ∈ V ′(p), therefore M′′, s′ |= σ(x). Since σ is a unifier of

φ, therefore C |= σ(x) → [p]σ(x). Since M′′, s |= p and M′′, s′ |= σ(x), therefore M′′, s |= σ(x): a
contradiction.

Lemma 6. If C = CKD or C = CKT then Σ is a complete set of unifiers of φ.

Proof. By Lemma 5.

Lemma 7. If C = CKD or C = CKT then there exists no minimal complete set of unifiers of φ.

Proof. Suppose C = CKD or C = CKT and there exists a minimal complete set of unifiers of φ. Let
Γ be a minimal complete set of unifiers of φ. Let γ ∈ Γ be such that γ �C σ0. Since C = CKD or
C = CKT , therefore by Lemma 6, let σ ∈ Σ be such that σ �C γ. Now, we consider the following 2
cases.
Case σ = σp: Since γ �C σ0, therefore σ �C σ0. Let υ be a substitution such that σ ◦ υ 'C σ0.
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Hence, C |= υ(σ(x))↔ σ0(x). Thus, C |= ¬p: a contradiction.
Case σ = σk for some k ∈ IN: Let γ′ ∈ Γ be such that γ′ �C σk+1. Since σ �C γ, therefore
by Lemma 1, γ′ �C γ. Since Γ is a minimal complete set of unifiers of φ, therefore γ′ = γ. Since
γ′ �C σk+1 and σ �C γ, therefore σk �C σk+1. Since k < k + 1, therefore by Lemma 2, σk 6�C σk+1:
a contradiction.

Finally, we obtain the

Proposition 9. CKD and CKT are nullary.

Proof. By Lemma 7.

7 Additional comments

In the context of modal logics, classes of frames such as the ones underlying K, KD and KT give
rise to quite similar sets of valid formulas for what concerns axiomatization and decidability. Putting
known results adapted from [2,12,13,18,22] together with new ones enables us to establish basic
facts and outline open problems. See Tab. 1.1. While the study of K, KD and KT has now limited
mathematical interest for what concerns axiomatization and decidability, considering unification
types in modal logics is justified from applied perspectives: methods for deciding the unifiability
of formulas can be used to improve the efficiency of automated theorem provers [8]; deciding the
unifiability of formulas like φ↔ ψ helps us to understand what is the overlap between the properties
φ and ψ correspond to [2]; in description logics, unification algorithms are used to detect redundancies
in knowledge-based systems [1]. One readily observes that, while attacking the above-mentioned
problems, little, if anything, from the standard tools in modal logics (canonical models, filtrations,
etc) is helpful. In order to successfully solve them, new techniques in modal logics must be developed
and much remains to be done. The study of unification types in modal logics has still many secrets
to reveal.

Class of frame PAR Computability Type

CKD = ∅ in NP (Proposition 1) ?

CKT = ∅ in NP (Proposition 1) ?

CS5 = ∅ in NP (Proposition 2) unitary ([2])

CAlt1 = ∅ in PSPACE ([10]) nullary ([10])

CK4 = ∅ decidable ([25]) finitary ([18])

CS4 = ∅ in NP (Proposition 2) finitary ([18])

CGL = ∅ decidable ([25]) finitary ([18])

CK = ∅ ? nullary ([22])

CKD 6= ∅ ? nullary (Proposition 9)

CKT 6= ∅ ? nullary (Proposition 9)

CS5 6= ∅ decidable ([9]) unitary

CAlt1 6= ∅ in PSPACE ([10]) nullary ([10])

CK4 6= ∅ decidable ([25]) finitary ([18])

CS4 6= ∅ decidable ([25]) finitary ([18])

CGL 6= ∅ decidable ([25]) finitary ([18])

CK 6= ∅ ? nullary ([22])

Table 1.1.
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3. Baader, F., Küsters, R.: Unification in a description logic with transitive closure of roles. In Nieuwebhuis,
R., Voronkov, A. (editors): Logic for Programming and Automated Reasoning. Springer (2001) 217–232.

4. Baader, F., Morawska, B.: Unification in the description logic EL. In Treinen, R. (editor): Rewriting
Techniques and Applications. Springer (2009) 350–364.

5. Baader, F., Morawska, B.: SAT encoding of unification in EL. In Fermüller, C., Voronkov, A. (editors):
Logic for Programming, Artificial Intelligence, and Reasoning. Springer (2010) 97–111.

6. Baader, F., Narendran, P.: Unification of concept terms in description logics. Journal of Symbolic Com-
putation 31 (2001) 277–305.

7. Babenyshev, S., Rybakov, V.: Unification in linear temporal logic LTL. Annals of Pure and Applied Logic
162 (2011) 991–1000.

8. Babenyshev, S., Rybakov, V., Schmidt, R., Tishkovsky, D.: A tableau method for checking rule admissibility
in S4. Electronic Notes in Theoretical Computer Science 262 (2010) 17–32.
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Abstract. We introduce a multimodal logic for order of magnitude reasoning which includes
the notions of closeness and negligibility, we provide an axiom system which is sound and
complete.

1 Introduction

There are some multimodal logics for order of magnitude reasoning dealing with the relations of
negligibility and comparability, see for instance [2,4,8]; however, as far as we know, the only published
reference on the notion of closeness in a logic-based context is [6], where the notions of closeness
and distance are treated using Propositional Dynamic Logic, and their definitions are based on the
concept of qualitative sum; specifically, in [6] two values are assumed to be close if one of them
can be obtained from the other by adding a small number, and small numbers are defined as those
belonging to a fixed interval.

In this work, we consider a new logic-based alternative to the notion of closeness in the context
of multimodal logics. Our notion of closeness stems from the idea that two values are considered to
be close if they are inside a prescribed area or proximity interval. This idea applies to the situations
described in the previous paragraph, although it may differ from other intuitions based on distances
since it leads to an equivalence relation, particularly, transitivity holds. Neither reflexivity nor sym-
metry of closeness generate any discussion among the different authors, but transitivity does. The
original notion of closeness given by Raiman in [9] allows a certain form of transitivity which he had
to tame by using a number of arbitrary limitations to avoid an unrestricted application of chaining.
This arbitrariness was criticized in [1], in which a fuzzy set-based approach for handling relative
orders of magnitude was introduced. It is remarkable to note that the criticism was made against the
arbitrary limitations on chaining the relation, or the impossibility of considering suitable modified
versions of transitivity, but not on transitivity per se.

The limitations stated above do not apply to our approach, which can be seen as founded on the
notion of granularity as given in [7], which was already suggested in [11]. The main difficulties in
accepting closeness as a transitive relation arise in a distance-based interpretation because, then, its
unrestricted use would collapse the relation since all the elements would be close. As stated above,
our notion will be based not on distance but on membership to a certain element of a given set
of proximity intervals, since our driving force is to define an abstract framework for dealing with
natural or artificial barriers.

On the other hand, the negligibility notion provided in this paper is a slight generalization of the
one given in [5] where, following the line of other classical approaches, for instance [10], the class
of 0 is considered to be just a singleton. This choice makes little sense in a qualitative approach,
since considering the class of 0 to be just a singleton would require to have measures with infinite
precision. Instead, we consider the qualitative class inf of infinitesimals which, of course, will be all
close to each other. Note that these infinitesimals will be interpreted as numbers indistinguishable
from 0 in the sense that their difference cannot be measured, not in the sense of hyperreal numbers.

In this work, we introduce a multimodal logic for order of magnitude reasoning which manages
the notions of closeness and negligibility, then an axiom system is introduced which is sound and
complete.

2 Preliminary definitions

We will consider a subset of real numbers (S, <) divided into the following qualitative classes:

nl = (−∞,−γ) ps = (+α,+β]

nm = [−γ,−β) inf = [−α,+α] pm = (+β,+γ]

ns = [−β,−α) pl = (+γ,+∞)



−γ γ−β β−α α

nl nm ns inf ps pm pl

Fig. 1.1. Proximity intervals.

Note that all the intervals are considered relative to S.
The labels correspond to “negative large” (nl), “negative medium”(nm), “negative small”(ns),

“infinitesimals”(inf), “positive small” (ps), “positive medium” (pm) and “positive large” (pl). It is
worth to note that this classification is slightly more general than the standard one [10], since the
qualitative class containing the element 0, i.e. inf, needs not be a singleton; this allows for considering
values very close to zero as null values in practice, which is more in line with a qualitative approach
where accurate measurements are not always possible.

We will consider each qualitative class to be divided into disjoint intervals called proximity inter-
vals, as shown in Figure 1.1. The qualitative class inf is itself one proximity interval.

Definition 1. Let (S, <) be the set of numbers introduced above.

– An r-proximity structure is a finite set I(S) = {I1, I2, . . . , Ir} of intervals in S, such that:
1. For all Ii, Ij ∈ I(S), if i 6= j, then Ii ∩ Ij = ∅.
2. I1 ∪ I2 ∪ · · · ∪ Ir = S.
3. For all x, y ∈ S and Ii ∈ I(S), if x, y ∈ Ii, then x, y belong to the same qualitative class.
4. inf ∈ I(S).

– Given a proximity structure I(S), the binary relation of closeness c is defined, for all x, y ∈ S,
as follows: x c y if and only if there exists Ii ∈ I(S) such that x, y ∈ Ii.

Notice that, by definition, the number of proximity intervals is finite, regardless of the cardinality
of the set S. This choice is justified by the applications (the number of values we can consider is
always finite) and the nature of the measuring devices that after reaching a certain limit, they do
not distinguish among nearly equal amounts; for instance, consider the limits to represent numbers
in a pocket calculator, thermometer, speedometer, etc.

The informal notion of negligibility we will use in this paper is the following: x is said to be
negligible with respect to y if and only if either (i) x is infinitesimal and y is not, or (ii) x is small
(but not infinitesimal) and y is sufficiently large. Formally:

Definition 2. The binary relation of negligibility n is defined on (S, <) as x n y if and only if one
of the following situations holds:

(i) x ∈ inf and y /∈ inf,

(ii) x ∈ ns ∪ ps and y ∈ nl ∪ pl.

3 A logic for closeness

In this section, we will use as special modal connectives
−→� and

←−� to deal with the usual ordering

<, so
−→�A and

←−�A have the informal readings: A is true for all numbers greater than the current
one and A is true for all number less than the current one, respectively. Two other modal operators
will be used, �c for closeness, where the informal reading of �c A is: A is true for all number close to
the current one, and �n for negligibility, where �n A means A is true for all number with respect to the
current one is negligible.

The alphabet of the language L(MQ)P is defined by using a stock of atoms or propositional vari-
ables, V, the classical connectives ¬,∧,∨ and→; the constants for milestones α−, α+, β−, β+, γ−, γ+;
a finite set C of constants for proximity intervals, C = {c1, . . . , cr} 1; the unary modal connectives−→� ,
←−� , �n , �c , and the parentheses ‘(’ and ‘)’. We define the formulas of L(MQ)P as follows:

A = p | ξ | ci | ¬A | (A ∧A) | (A ∨A) | (A→ A) | −→�A | ←−�A | �n A | �c A

where p ∈ V, ξ ∈ {α+, α−, β+, β−, γ+, γ−} and ci ∈ C. In order to refer to any constant for positive
milestones as α+ we will use ξ+ and for negative ones as β− we will use ξ−.

1 There are at least as many elements in C as qualitative classes.
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The mirror image of a formula A is the result of replacing in A each occurrence of
−→� ,
←−� , α+, β+

and γ+ respectively by
←−� ,
−→� , α−, β− and γ− and reciprocally. We will use the symbols

−→♦ ,←−♦ ,♦c ,♦n
as abbreviations, respectively, of ¬−→�¬, ¬←−�¬, ¬�c ¬ and ¬�n ¬. Moreover, we will introduce nl, . . . pl

as abbreviations for qualitative classes, for instance, ps for (
←−♦α+ ∧ −→♦β+) ∨ β+. By means of qc we

denote any element of the set {nl, nm, ns, inf, ps, pm, pl}.
The cardinality r of the set C of constants for proximity intervals will play an important role

since it, somehow, encodes the granularity of the underlying logic. This implies that, actually, we are
introducing a family of logics which depend parametrically on r.

Definition 3. A multimodal qualitative frame for L(MQ)P (a frame, for short) is a tuple Σ =
(S,D, <, I(S),P), where:

1. (S, <) is an ordered subset of real numbers.
2. D = {+α,−α,+β,−β,+γ,−γ} is a set of designated points in S satisfying −γ < −β < −α <

+α < +β < +γ.
3. I(S) is an r-proximity structure.
4. P is a bijection (called proximity function), P : C −→ I(S), that assigns to each proximity

constant c a proximity interval.

Definition 4. Let Σ be a frame for L(MQ)P , a multimodal qualitative model on Σ (a MQ-model,
for short) is an ordered pairM = (Σ, h), where h is a meaning function (or, interpretation) h : V −→
2S. Any interpretation can be uniquely extended to the set of all formulas in L(MQ)P (also denoted by
h) by means of the usual conditions for the classical Boolean connectives and the following conditions:

h(
−→�A) = {x ∈ S | y ∈ h(A) for all y such that x < y}

h(
←−�A) = {x ∈ S | y ∈ h(A) for all y such that y < x}

h(�c A) = {x ∈ S | y ∈ h(A) for all y such that x c y}
h(�n A) = {x ∈ S | y ∈ h(A) for all y such that x n y}
h(α+) = {+α} h(β+) = {+β} h(γ+) = {+γ}
h(α−) = {−α} h(β−) = {−β} h(γ−) = {−γ}
h(ci) = {x ∈ S | x ∈ P(ci)}

The definitions of truth, satisfiability and validity are the usual ones.

Now, we consider the axiom system MQP for the language L(MQ)P , consisting of all the tau-
tologies of classical propositional logic together with the following axiom schemata and rules of
inference:

For white connectives

K1
−→�(A→ B)→ (

−→�A→ −→�B)

K2 A→ −→�←−♦A
K3
−→�A→ −→�−→�A

K4
(−→�(A ∨B) ∧ −→�(

−→�A ∨B) ∧ −→�(A ∨ −→�B)
)
→
(−→�A ∨ −→�B

)

For constants ξ ∈ {α+, β+, γ+, α−, β−, γ−}

c1
←−♦ ξ ∨ ξ ∨ −→♦ ξ

c2 ξ → (
←−�¬ξ ∧ −→�¬ξ)

c3 γ− → −→♦β−
c4 β− → −→♦α−

c5 α− → −→♦α+

c6 α+ → −→♦β+

c7 β+ → −→♦ γ+

For proximity constants (for all i, j ∈ {1, . . . , n})

p1
∨n
i=1 ci

p2 ci → ¬cj (for i 6= j)

p3 (
←−♦ ci ∧

−→♦ ci)→ ci

p4
←−♦ ci ∨ ci ∨

−→♦ ci
Mixed axioms (for all i ∈ {1, . . . , n})
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m1 (ci ∧ qc)→
(←−�(ci → qc) ∧ −→�(ci → qc)

)

m2 (ci ∧ inf)→
(←−�(inf→ ci) ∧

−→�(inf→ ci)
)

m3 �c A↔
(
A ∧∨ri=1

(
ci ∧
←−�(ci → A) ∧ −→�(ci → A)

))

m4 �n A↔
((

inf→
(←−�(¬inf→ A) ∧ −→�(¬inf→ A)

))
∧
(

(ns ∨ ps)→
(←−�(nl→ A) ∧ −→�(pl→ A)

)))

The mirror images of K1, K2 and K4 are also considered as axioms.
The intuitive meaning of the previous axioms is the following: K1-K4 (and their mirror images)

constitute a fragment of basic linear-time temporal logic; c1 and c2 state the existence and the
unicity of the milestones in a frame, respectively; c3-c7 state the ordering of these milestones.
Axioms p1 and p2 state the existence and unicity, respectively, of proximity intervals; p3 states
that all points denoted by a proximity constant form an interval; p4 states that every proximity
constant denotes some proximity interval. m1 states that the length of a qualitative class qc fully
covers a given proximity interval. m2 is specific to deal with inf, and states that this class is totally
covered by a proximity interval (in combination with m1, this axiom implies that inf constitutes
itself a proximity interval.) m3-m4 enable the representation of closeness and negligibility in terms
of white connectives and constants; this allows us to use, from now on, only white connectives and
constants.

Rules of inference:

(MP) Modus Ponens for →.

(N
−→�) If ` A then ` −→�A.

(N
←−�) If ` A then ` ←−�A.

The syntactical notions of theorem and proof for MQP are defined as usual.

Soundness is straightforward, since it is easy to check that all the axioms are valid formulas and
the inference results preserve validity.

The completeness follows by the step-by-step method, which is a Henkin-style proof, see [3]. The
idea is to show that for any consistent formula A, a model for A can be built, and this is done by
successive finite approximations.

Theorem 1 (Completeness). If A is valid formula of L(MQ)P , then A is a theorem of MQP .

Some words for Luis

– Te conoćı hace muchos años y hemos coincidido pocas veces; pero la simpat́ıa que despertaste
en mı́ desde el primer momento no ha hecho sino crecer con los años. Hay algo que me llama la
atención especialmente de tu persona, y es cómo has fusionado un sentido del humor jovial con
el rigor intelectual. Espero, además, que permanezca eso en ti siempre y que podamos realizar
tareas en común en los tiempos venideros, ya que la actividad que realizamos nunca se acaba,
sólo se interrumpe.
Querido Luis, quiero expresarte con estas pocas palabras mi admiración y cariño. Alfredo

– Admiro mucho tu trabajo y, aunque hemos coincidido poco en persona, he léıdo muchos de tus
art́ıculos En particular, tus trabajos relacionados con las cláusulas de Horn para lógicas modales
han servido de inspiración para mi investigación actual sobre fragmentos sub-proposicionales
para lógicas temporales de intervalos.
En el Workshop realizado en Málaga el año pasado, pude asistir a tu charla y a tus comentarios
en las charlas de los demás, incluida la mı́a. Me impresionó tu claridad y amplitud de ideas, aśı
como la forma de expresarlos, proponiendo ideas nuevas y cuestiones muy interesantes.
Espero que sigas vinculado a este mundo de la investigación y nos sigas regalando tu sabiduŕıa.
Gracias y enhorabuena. Emilio

– Coincidimos por primera vez hace casi veinticinco años (¡ya ha llovido!, incluso en Málaga).
Durante una de nuestras visitas al Imperial College, en la obligada parada en el pub antes de
buscar sitio para cenar, se formó un grupo en el que se hablaba, al menos, tres idiomas diferentes.
¿Quién estaba en la intersección? Por supuesto, Luis, al que yo contemplada embelesado, viendo
cómo alternaba inglés, francés y español sin mayor problema, en función de la lengua de su
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interlocutor. Lo curioso de tal capacidad es que, parece ser, Luis parece disponer de una versión
cient́ıfica, que le posibilita observar un problema desde distintos puntos de vista, de manera
aparentemente simultánea, y obteniendo soluciones siempre originales y profundas.
Posteriormente, llegué a conocer algo más su faceta personal y disfrutar con su campechańıa
(stricto sensu) y con su especiaĺısimo sentido del humor.
¿Qué más puedo decir? Que siempre ha sido un placer coincidir contigo en distintos eventos todos
estos años y que, por supuesto, deseo que sigamos coincidiendo, más frecuentemente si cabe ,
¿por qué no?, en tu etapa post-Festschrift.
Un fuerte abrazo. Manolo.

Bibliography

1. A. Ali, D. Dubois, and H. Prade. Qualitative reasoning based on fuzzy relative orders of magnitude.
IEEE transactions on Fuzzy Systems, 11(1):9–23, 2003.

2. P. Balbiani. Reasoning about negligibility and proximity. In Septièmes Journées d’Intelligence Artificielle
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Abstract. Trust may have many different informal definitions. In this work formal definitions
are proposed in Modal Logic in order to have clear rules for reasoning about trust. We start
from trust in some properties of an information source, like sincerity, competence or vigilance,
about a given proposition. Then, this definition is extended to trust about all the propositions
which are about a given topic (for instance the topic mathematical logic or the topic painting).
A further extension is about all the propositions which inform about a given individual (for
instance the individual Luis Fariñas or the individual Toledo).
Specific logics are presented for reasoning about the fact that a given proposition is about a
given topic and for reasoning about the fact that a proposition informs about a given individual.
At the end we give a brief extension to qualitative graded trust.

1 Introduction

Trust plays a significant role in interactions between agents. Here, we have focused on interactions
in the context of communication where information sources may not be reliable. For instance, when
we access information via the web, when we need to interact with a doctor in order to cure some
disease or when we are looking for information about climate change in newspapers.

If we have to reason about trust, for instance when we want to combine pieces of information we
have received from several information sources, we have to make clear what kind of logical definition
of trust we have adopted. However, many definitions have been proposed in the literature (see
[5,7,13,8,4]) and there is no consensus about ”the” definition. Nevertheless, most of the definitions
are based on the idea that trust is a mental state of an agent which is of the kind of belief.

In [15,14] A.J.I. Jones suggests that trust is a truster’s belief about some agent’s property such
that the truster knows that the agent may fail to fulfil this property, while the truster also believes
that in the specific situation where he is the agent will fulfil this property. We agree on this analysis
but in order to avoid too complex logical definitions we have accepted that the truster’s mental
state is just a ”standard” belief that complies with the assumption that he is not in an exceptional
situation where the agent does not fulfil the property.

Then, we assume that trust is a truster’s belief about some trustee’s property. Now, the question
is: what kind of property? In the context of communication these properties involve: what is the
case, what agents believe about what is the case and what information sources have transmitted. For
instance, such a property may be sincerity which is a relationship between what the trustee believes
and what he has transmitted to the truster. Then, a new question is raised: what is the structure
of this relationship? Some authors [16,4] have proposed that it is a conjunction. For instance, in the
case of sincerity it would take the form: the trustee has transmitted some piece of information AND
he believes that what he has transmitted is the case. In [7,10] we have claimed that it has the form of
a conditional such as : IF the trustee has transmitted some piece of information, THEN he believes
that what he has transmitted is the case. Indeed, the negation of sincerity takes the form: the trustee
has transmitted some piece of information AND he does NOT believe that what he has transmitted
is the case. Since the negation of sincerity is of the form: φ ∧ ¬ψ, sincerity is of the form: φ→ ψ.

In the following section we give a more detailed definition of the different kinds of properties
where we have adopted a very specific notion of trust which is defined in terms of trust only about a
given proposition. In the next section this definition is extended to trust about all the propositions
that are about a given topic. Then, in the following section, it is extended to all the propositions
that inform about a given individual. Finally, we extend the notion of trust to qualitative graded
trust.

The general purpose of the paper is to focus on the intuitive ideas that support the definitions
of the logics and not to go into technical details which have been presented in referred papers.



2 Trust about one proposition

According to the intuitive definition of trust presented in the introduction, trust has the form:
The truster i believes that (trustee j’s property1 entails trustee j’ property2)

where property1 and property2 may be one of the following properties:1

– proposition p is true
– trustee j believes that the proposition p is true
– trustee j has informed truster i about proposition p

We have the notations:

– p: the proposition represented by p is true
– Beli(p): agent i believes that proposition p is true
– Infj,i(p): agent j has informed agent j about proposition p

Then, the general form of trust is: Beli(φ→ ψ) 2.
We have the following properties that may be trusted by the truster.
Trust in Sincerity. Beli(Infj,i(p)→ Belj(p))

Agent i believes that if j has informed him about p, then j believes p.
Example: Romeo trusts Giullietta in her sincerity about the fact that Giulietta loves Romeo.

That is: Romeo believes that if Giuletta has told him that she loves him, then Giuletta believes that
she loves him.

Trust in Cooperativity. Beli(Belj(p)→ Infj,i(p))
Agent i believes that if j believes p, then j has informed him about p.

Example: Romeo trusts Giuletta in her cooperativity about the fact that Giuletta loves Romeo.
That is: Romeo believes that if Giuletta loves him, then Giuletta has told him.

Trust in Competence. Beli(Belj(p)→ p)
Agent i believes that if j believes p, then p is true.

Example: Giuletta trusts Romeo about the fact FOL is not decidable. That is: Giuletta believes
that if Romeo believes that FOL is not decidable, then FOL is not decidable.

Trust in Vigilance. Beli(p→ Belj(p))
Agent i believes that if p is true, then j believes that p is true.

Example: Giuletta trusts Romeo in his vigilance about the fact that the flight from Sevilla has
landed. That is: Giuletta believes that if the flight from Sevilla has landed, then Romeo believes that
the flight from Sevilla has landed.

Trust in Validity. Beli(Infj,i(p)→ p)
Agent i believes that if j has informed i about p, then p is true.

Example: Romeo trusts Giuletta in her validity about the fact that Giuletta leaves in Cadiz. That
is: Romeo believes that if Giuletta has told him that she leaves in Cadiz, then it is true that she
leaves in Cadiz.

Trust in Completeness. Beli(p→ Infj,i(p))
Agent i believes that if p is true, then agent j has informed him about p.

Example: Giuletta trusts Romeo in his completeness about the fact Romeo is happy. That is:
Giuletta believes that if Romeo is happy, then Romeo has told her.

The language for proposition p in these definitions is any nested formula of atomic proposition
with conjunction, disjunction, negation and modality Bel or Inf .

For instance, we can have: Beli(Infj,i(Infk,j(p)) → Infk,j(p)), which means that i trusts j in
his validity when j is reporting that k told him p.

The logic for modality Bel is of the kind KD. It is an open issue to accept positive or negative
introspection in this context.

For the modality Inf , in addition to the inference rule of substitutivity of equivalent formulas
(EQV), we have accepted the following axiom schema (CONJ) about conjunction:

(EQV) If ` φ↔ ψ, then ` Infj,i(φ)↔ Infj,i(ψ)
(CONJ) Infj,i(φ) ∧ Infj,i(ψ)→ Infj,i(φ ∧ ψ)
In this logic we can easily show that trust in validity is a logical consequence of trust in sincerity

and trust in competence. However, the converse is not true. Indeed, trust in validity does not entails
trust in sincerity since an agent may tell something which is true whereas he believes that it is false.

1 Of course property1 and property2 must be different.
2 As a matter of simplification conditionals are represented here by material implications.
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Also it is worth noting that sincerity and competence are two independent properties. An agent may
be sincere and not competent and it may be competent and not sincere.

We have similar relationships between completeness, vigilance and cooperativity.
It is assumed that there is no failure in the communication process between agents. This is

formally represented by the following axiom schemas:
(OBS) Infj,iφ→ Beli(Infj,iφ)
(OBS’) ¬Infj,iφ→ Beli(¬Infj,iφ)
In terms of Speech Act Theory (see [18]) the meaning of these axioms is that locutionary acts

always succeed.
Then, reasoning about trust can be illustrated with this example where the assumptions are:
(1) Romeo trusts Giuletta in her validity about the fact she is in the flight arriving from Sevilla.
(2) Romeo trusts the airport announcement in its cooperativity about the fact that the flight

from Sevilla is delayed.
(3) Giuletta has inform Romeo about the fact that she is in the flight arriving from Sevilla
(4) The airport announcement has not informed Romeo about the fact that the flight from Sevilla

is delayed
We have the notations:
R: Romeo, G: Giuletta, A: airport announcement
p: Giuletta is in the flight arriving from Sevilla
q: the flight from Sevilla is delayed
Then, the formal representation of the assumptions is:
(1) BelR(InfG,R(p)→ p)
(2) BelR(q → InfA,R(q))
(3) InfG,R(p)
(4) ¬InfA,R(q)
From (3) and (OBS) we have:
(5) BelR(InfG,R(p))
From (5) and (1) we have:
(6) BelR(p)
From (4) and (OBS’) we have:
(7) BelR(¬InfA,R(q))
From (2) we have:
(8) BelR(¬InfA,R(q)→ ¬q)
From (7) and (8) we have:
(9) BelR(¬q)
From (6) and (9) we have:
(10) BelR(p ∧ ¬q)
The intuitive meaning of (10) is that Romeo believes that Giuletta is in the flight arriving from

Sevilla and that this flight is not delayed.

3 Trust about propositions about a topic

In most of the situations the field of the propositions a truster trusts about is not restricted to one
proposition. For instance, if an agent trusts Romeo for his validity about the fact that FOL is not
decidable, he may also trusts him about other sentences which are about the topic of decidability.
Then, even if the analysis presented in the previous section is useful to fix clear definitions and
reasoning rules it is not enough to cover most of the real situations. Some authors have a stronger
position and assume that if an agent trusts another agent, he trusts him for any proposition whatever
is its topic. In our view this is an over simplification which is far to real situations.

In this section we have an intermediate position and we formalise the notion of trust about all
the propositions which are about a given topic. That requires to answer the question: what does it
mean that a proposition is about a given topic? A specific logic as been proposed by Demolombe
and Jones in [11] to answer this question. A short presentation of this logic is given in the following.

A basic idea of this logic is that the topics a sentence is about are independent of the truth value
of this sentence. For instance, it can be assumed that the sentence: FOL is decidable and the sentence
FOL is not decidable are about the same topics, say the topic decidability and the topic logic.

A consequence of this position is that two logically equivalent sentences of Classical Propositional
Calculs (CPC) are not necessarily about the same topics. In particular two tautologies are not
necessarily about the same topics. For instance the tautology: Cadiz is in Spain or Cadiz is not in

Logical Reasoning and Computation: Essays dedicated to Luis Fariñas del Cerro

89



Spain is about the topic geography while the tautology: Aristoteles is dead or Aristoteles is not dead
is not about geography.

If we also accept that a sentence may be about a topic because a conjunct in this sentence is
about this topic (for instance the sentence: Cadiz is in Spain and Giuletta leaves in Cadiz is about
the topic geography because Cadiz is in Spain is about the topic geography), then the topics assigned
to a sentence depend on the atomic sentences occurring in this sentence. A consequence is that, for
instance, p and p ∧ (q ∨ ¬q) are not about the same topics if p and q are not about the same topics.

The formal solution to fulfil these requirements was to define a 3-valued logic with the values:
true, false and undefined, such that if a sub-formula is undefined the overall formula is undefined.
This logic was initially introduced by Bochvar in [2] for a different purpose (see also Buvac̆, Mason
and Mc Carty in [3,17] and Demolombe in [6]).

For the semantics we consider models defined by three sets:

– τ : a set of topics
– S: a set of sentences
– W : a set of worlds

The language is the language of CPC. A topic name is denoted by t and a sentence name is denoted
by ′p′.

In a model M a function I assigns to a topic name a topic in τ , a function J assigns to a sentence
name a sentence in S, a function T assigns to a sentence in S a set of worlds in W and a function
F assigns to a sentence in S a set of worlds in W . Finally, a function N assigns to a pair of sets of
worlds in W a set of topics in τ .

Therefore, J(′p′) is the sentence the name of which is ′p′, T (J(′p′)) is a set of worlds where the
sentence J(′p′) is true and F (J(′p′)) is a set of worlds where the sentence J(′p′) is false. Since we
have a 3-valued logic the union of the sets of worlds T (J(′p′)) and F (J(′p′)) may not be equal to W .
The function N assigns to a pair of worlds < T (J(′p′)), F (J(′p′)) > a set of topics in τ .

Now, a predicate A(t,′ p′) is defined in a First Order Language where t is a topic name and ′p′

is a sentence name, and the intuitive meaning of this predicate is that the sentence named by ′p′ is
about the topic named by t. The satisfiability condition for this predicate in a world w of a model
M is:

M,w |= A(t,′ p′) iff I(t) ∈ N(T (J(′p′)), F (J(′p′)))
As usual a valid formula φ is denoted by |= φ.
In this semantics we have the rule:
If |= φ↔ ψ and φ and ψ contain the same atoms, then |= A(t,′ φ′)↔ A(t,′ ψ′)
The condition ”contain the same atoms” guarantees, in particular, that two tautologies which

does not contain the same atoms are not necessarily about the same topic.
The following schema can be accepted even if is not valid.
|= A(t,′ φ′)→ A(t,′ ¬φ′)
It is worth noting that we do not have:
|= A(t,′ φ ∧ ψ′)→ (A(t,′ φ′) ∨A(t,′ ψ′))
For instance if the sentence p is Romeo is married with Giuletta and s is Romeo is married with

Venus the sentence p ∧ q is about the topic bigamy while neither p nor q are about bigamy.
The predicate A(t,′ p′) can be used to extend the notion of trust to trust about a topic as follows:3

TrustT (i, j, t)
def
= for every ′φ′: if A(t,′ φ′), then Trust(i, j, φ)

This is just a notation in the meta language where Trust(i, j, φ) may be used to denote trust in
sincerity, competence or any similar property.

For instance we may have: TrustT (Giulietta,Romeo,modal logic).

4 Trust about the propositions that inform about an individual

There are many contexts where an agent is interested in getting information about a given individual.
This raises the question: what does it mean that a proposition informs about an individual?

The answer to this question is not that this proposition is about this individual. For instance,
we can agree on the fact that the proposition the painter Sorolla is born in Valencia or the painter
Sorolla is not born in Valencia is about the topic Sorolla, however it does not inform about Sorolla
in the sense that even if we know that this proposition is true we ignore wether this painter is born

3 As a matter of simplification the specific property the trustee j is trusted in is not made explicit here.
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in Valencia. At the opposite the proposition the painter Sorolla is born in Valencia informs about
the city where Sorolla is born.

We think that this example shows that although the word ”Sorolla” can be used as well to denote
a topic and to denote an individual, the properties: proposition p informs about the individual Sorolla
and proposition p is about the topic Sorolla have completely different meanings. Also, it is worth
noting that the property of informing about an individual cannot be trivially derived from the fact
that the name of this individual occurs in a proposition. It is clear that this is not true in the case
of a tautology. In addition, it may be that a proposition informs about an individual although its
name does not occur in this proposition. For instance, if it is assumed that Sorolla is a man, the
proposition: every man is mortal informs about Sorolla.

The purpose of this section is to present a clear answer to the above question on the basis of the
work by Demolombe and Fariñas del Cerro in [12].4

The first step is to define a property that characterizes the propositions that do not inform
about an individual (because for technical reason this property is easier to define). This is done in
the context of a Classical First Order Logic without function symbols and without equality. The
semantics is defined as usual by an interpretation domain D and by an interpretation function which
assigns to each constant name and to each variable name an element in D.

Then, we define a variant M ′ of a given model M with respect to a constant symbol c. The
intuitive idea is that propositions represented by formulas which do not inform about c are formulas
such that their truth value does change in the models M ′ where the predicates preserve the same
truth value as in M for the tuples that do not contain an interpretation of constant c.

For instance, the formula Giulietta loves Romeo does not inform about Venus because the truth
value of this formula remains stable if in a model M ′ we only change the truth value of atomic
propositions the tuples of which contain the interpretation of Venus. The only exception is if in M
Venus is interpreted by the same individual as Giulietta. In that case we cannot say that in M
Giulietta loves Romeo does not inform about Venus.

The formal translation of these ideas leads to the rather complex following definition of the
variants M ′ of M with regard to c.

We call variants of M with regard to c the set M c of interpretations M ′ defined from M in the
following way.

Let iM ′ and iM be the interpretation functions in these models. We have

– DM ′ = DM

– iM ′ = iM for every variable symbol and constant symbol,
– iM ′ is defined from iM for each predicate symbol as follows: if p is a predicate symbol of arity n
• if t is a n-tuple of terms of the language that contains no occurrence of the constant symbol
c, then iM ′(t) ∈ iM ′(p) iff iM (t) ∈ iM (p),

• if an element < d1, . . . , dn > of Dn is such that, for every j in [1,n], dj 6= iM (c), then
< d1, . . . , dn >∈ iM ′(p) iff < d1, . . . , dn >∈ iM (p).

According to the definition of this property, a formula p does not inform about c iff its truth value
remains stable in all the variants M ′ of M in M c. At the opposite a formula that informs about c is
a formula that does not fulfil this property.

If we denote by AI(F, c) the property: formula F is about the individual c we have:
AI(F, c) holds iff ∃M(∃M ′ ∈M c(M |= F and M ′ 6|= F ))
This property can be used to extend the definition of trust to trust about all the propositions

which inform about the individual denoted by c in that way:5

TrustI(i, j, c)
def
= for every closed formula F in a first order language: if AI(F, c), then

Trust(i, j, F )
For instance we may have: TrustI(Romeo,Giullietta, Sorolla) or

TrustI(Romeo,Giullietta, Cadiz).

5 Graded trust

In the previous sections we have assumed that the truster has a strong position with regard to the
trustee in the sense that either he trusts him or he does not trust him. However, there are many

4 In this work the term ”individual” has the same meaning as in formal logic, it may refer to any kind of
entity, not just to a person.

5 As a matter of simplification the specific property the trustee j is trusted in is not made explicit here.
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situations where the truster has a more refined positions. For instance, he may have several possible
levels of trust: it may be strong, medium or low. This raises the new question: what does it mean
that a truster trusts strongly, or weakly, a trustee?

To answer this question we can take the example of trust in sincerity which is formally represented
in general by the formula: Beli(Infj,i(p)→ Belj(p)).

A first answer is that the strength of i’s belief is high, or is low. If the strength level is a qualitative
level g, that can be represented by:

Belgi (Infj,i(p)→ Belj(p))
Another answer is that i strongly trusts j in his sincerity about p means that i believes that,

in most of the situations, if j informs i about p, then j believes that p is true. This is a quite
different interpretation where the trust level refers to the regularity level of the relationship between
Infj,i(p) and Belj(p). That can be represented by: Beli(Infj,i(p) ⇒h Belj(p)), where ⇒h denotes
a conditional operator.

Our position is that in general graded trust is a composition of both answers: the strength level
of a belief and the regularity level of what is believed. That can be formally represented by:

Belgi (Infj,i(p)⇒h Belj(p))

The two levels are independent since we may have any of the following situations:

– i strongly believes that j is strongly sincere
– i weakly believes that j is strongly sincere
– i strongly believes that j is weakly sincere
– i weakly believes that j is weakly sincere

To make more precise the meaning of the levels g and h we have defined in [8] a logic for reasoning
about these qualitative levels. This logic has been slightly improved in [1].

The main idea is that the strength levels of a belief about φ and about ¬φ are not always
connected. For instance, if i is almost ignorant about φ, his belief levels about φ and about ¬φ are
both low although if his belief level about φ is high, then his belief level about ¬φ cannot be high.

At the opposite for the regularity levels there is a relationship between the regularity level of
sincerity and unsincerity. That is, if it assumed that in most cases if j informs i about p, then j
believes p, it cannot be assumed that in most cases if j informs i about p, then j does not believe p.
That is clear when the regularity levels are quantitatively represented by conditional probabilities.

In informal terms the most significant properties of this logic are defined as follows.
Logically equivalent formulas can be substituted in all the rules and axiom schemas.
Levels g and h are unique for a given formula.

(Weak) If ` φ→ ψ, Belgi (φ) and Belg
′

i (ψ), then we do not have g′ < g
(ClosDisj) If Belg1i (φ1), Belg2i (φ2) and g3 = Max{g1, g2}, then Belg3i (φ1 ∨ φ2)
(ClosConj) If Belg1i (φ1), Belg2i (φ2) and g3 = Min{g1, g2}, then Belg3i (φ1 ∧ φ2)
(MaxTau) If φ is a tautology, then ` Belmaxi φ6

(Detach) ` (φ⇒h ψ)→ (φ→ ψh)
(Trans) If n = Max{Min{h1, k1},Min{h2, k2}}, then

` ((φ⇒h1 ψ) ∧ (φ ∧ ψ ⇒k1 θ) ∧ (φ⇒h2 ¬ψ) ∧ (φ ∧ ¬ψ ⇒k2 θ))→ (φ⇒n θ)
The rule (Trans), even if it is rather complex, is justified by the fact that if h is a numerical

level and regularities are conditional probabilities, this rule perfectly fits the detachment rule of
conditional probabilities.

6 Conclusions

We have started with a very specific definition of trust which makes explicit the property which is
trusted in and the proposition trust is about. Then, we have extended the definition to trust about
all the propositions about a given topic and to all the propositions that inform about an individual.
The first extension has needed the formalization of a logic for reasoning about aboutness which is a
property which is independent of the truth values of the propositions. The second one is based on
Classical FOL but requires the definitions of rather complex properties. At the end we have seen
how we can formalize a more flexible notion of trust than to trust or not to trust. In our proposal
we show that we need different reasoning rules for reasoning about external facts (regularity of a
property) and internal facts (strength of a belief).

6 It is worth noting that Belmin
i φ does not entail that φ is inconsistent.

Reasoning about Trust and Aboutness in the Context of Communication

92



Trust raises a lot of non trivial questions. For instance, in a first approach it seems clear that trust
is transitive in the sense that if the information source s1 trusts the information source s2 and s2
trusts the informations source s3, then s1 trusts s3. However, we have shown in [9] that transitivity
holds only if some strong conditions are fulfilled.

In the presented work we have concentrated on the logics for deriving consequences from as-
sumptions about trust in information source. Another kind of problem is to analyze how trust is
supported. In [1] it has been shown that the concepts of trust and argumentation that support trust
are imbricated. For instance, to trust information source s1 we may receive arguments from another
information source s2 and these arguments are convincing only if we already trust s2.

The final conclusion is that there is still a lot of issues to investigate in the field of trust.
Acknowledgements. We would like to thank Luis Fariñas del Cerro for his fruitful cooperation
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12. R. Demolombe and L. Fariñas del Cerro. Towards a logical characterisation of sentences of the kind
“sentence p is about object c”. In S. Holldobler, editor, Intellectics and Computational Logic. Papers in
Honor of Wolfang Bibel. Kluwer Academic Press, 2000.

13. R. Falcone and C. Castelfranchi. Trust dynamics: How trust is influenced by direct experiences and by
trust itself. In Proceedings of the 3rd International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-04), pages 740–747. New York, ACM, 2004.

14. A.J.I. Jones. On the Attitude of Trust: a Formal Characterization of Trust, Distrust and Associated
Notions. In A. Herzig and E. Lorini, editors, The Cognitive Foundations of Group Attitudes and Social
Interaction. Springer, 2015.

15. A.J.I. Jones, A. Artikis, and J. Pitt. The design of intelligent socio-technical systems. Artificial Intelli-
gence Review, 39(1), 2013.

16. E. Lorini and R. Demolombe. From trust in information sources to trust in communication systems: an
analysis in modal logic. In J. Broersen and J.-J. Meyer, editors, International Workshop on Knowledge
Representation for Agents and Multi-agent Systems (KRAMAS 2008): Postproceedings, LNAI. Springer-
Verlag, 2009.

17. J. McCarthy and S. Buvac̆. Formalizing contexts. Technical Report STAN-CS-TN-94-13, Stanford
University, 1994.

18. J. R. Searle. Speech Acts: An essay in the philosophy of language. Cambridge University Press, New-York,
1969.

Logical Reasoning and Computation: Essays dedicated to Luis Fariñas del Cerro

93





Foundations for a Logic of Arguments

Leila Amgoud1, Philippe Besnard1, and Anthony Hunter2

1 CNRS, IRIT, Université de Toulouse, Toulouse, France
2 University College London, London, U.K.

amgoud@irit.fr besnard@irit.fr anthony.hunter@ucl.ac.uk

Abstract. This paper lays the foundations of a logic of argumentation in which arguments, as well as
attacks and supports among arguments are all defined in a unifying formalism. In the latter, an argument
is denoted as a pair displaying a reason and a conclusion but no condition is required to hold relating
the reason to the conclusion. We introduce a series of inference rules relating arguments and show how
the resulting logic captures important features of argumentation that hitherto have not been captured by
existing formalisms. 3

1 INTRODUCTION

Argumentation is a common activity in everyday life. Indeed, people frequently justify opinions, decisions
or actions by arguments in order to increase (or to decrease) their acceptability for an audience. Arguments
are therefore of great importance. In order to build argumentation systems that are able to capture natural
language arguments, it is fundamental to have a clear understanding and a fair representation of this key
notion of argument. For that purpose, the following issues need to be investigated:

what is an argument?

what may be the conclusion of an argument?

what may be the premises of an argument?

what is the nature of the link between premises and conclusion of an argument?

In the AI literature on argumentation, an argument is viewed as identifying a reason for concluding some
statement. The reason is a set of premises that somehow lead to the conclusion. Hopefully, linguists and
philosophers working on argumentation agree with such an idea. In [3], the linguist Apothéloz argued that the
reason is oriented in favour of the conclusion to which it propagates its truth.

The views of the three communities may differ as to the kind of conclusions that can be justified by
arguments and the kind of premises to be used in arguments. In the AI literature, arguments are built in
favour of a statement or in favour of its contrary. That is, an agent may argue that a statement holds or that
the opposing statement holds. However, it is not possible to build an argument in favour of not concluding a
statement (this does not mean that the statement is false). Yet such arguments are common in natural language
argumentation as shown by the next example adapted from [3].

Adam: Steve is very smart but didn’t work hard this term, so it’s unclear whether he will pass his
exams.

Through the above argument, Adam does not commit to the conclusion “Steve will fail his exams”. He
simply means that “Steve will pass his exams” cannot be concluded. Notice that Dung’s style argumentation
[4] cannot capture such a stand-alone argument: In abstract argumentation, failure can only be expressed by
means of an attack from an argument over another argument but there is no such attack in the example, as
there is a single argument, and it does not attack itself.

Adam does not commit either to the opposite conclusion “Steve will pass his exams”. His argument
expresses that, in the case of a smart person who did not work hard, it is not possible to predict whether he
will fail or pass his exams.

More generally, an argument may justify why a statement:

is true,

is false,

is open to doubt.

3 This paper reviews and extends two previous papers by the authors on this topic [1,2]



The last case actually encompasses two situations: the situation where the opposing statement holds and the
situation of complete indeterminacy regarding the statement. Importantly, the notion of a statement here is
very general as opposed to most proposals for formalizing argumentation, where arguments have a simple
format whereby arguments cannot appear in either the premises or conclusions though notable exceptions
include [5,6,7]. Apothéloz offers in [3] natural language arguments whose premises (resp., conclusion) may
be arguments. Consider the following argument:

The fact that Ryan’s car is in the car park is not a reason to conclude that Ryan is in his office.
Indeed, his car is broken.

This example displays an argument embedded in another. The first one says that “Ryan is in his office
since his car is in the car park”. The second argument concludes that the first fails. The premise used for that
purpose is: “Ryan’s car is broken”. Thus, the argument has a simple premise but its conclusion is a rejection.

In short, a rejection is a denial of an argument: While the argument being denied offers a reason for a
statement, a rejection of the argument expresses that the reason brought forward cannot serve to conclude the
statement. Here is an illustration:

Brian: Steve will fail his exams. It is raining.
Craig: Rain is not a reason to infer that Steve will fail his exams.

Craig’s utterance is a rejection of Brian’s argument but is not an argument as it merely expresses –without
providing any justification– that Brian’s argument should be rejected. Though, a rejection need not make
any claims whether the conclusion of the denied argument holds. It can actually be the case that rejection
acknowledges truth of the conclusion of the denied argument. For example, such is the case should Craig add:

Craig: Lack of motivation is the reason.

That is, Steve will indeed fail his exams according to Craig. Thus, Craig agrees with the conclusion of
Brian’s argument. Still, Craig disagrees with Brian’s argument.

Existing models in computational argumentation must resort to an encoding of Brian’s argument in order
to capture the fact that Craig’s utterance is a rejection of Brian’s. Moreover, please notice that Brian’s argument
is certainly not self-attacking.

On a general level, in Dung’s style argumentation systems [4], arguments may attack each other. Attacks
are viewed as reasons for rejecting arguments (in the sense that acceptability of the attacked arguments fails).
In argumentation in natural language, such a phenomenon may be expressed by meta-arguments. Indeed, it is
possible to offer an argument in favour of rejecting another argument.

As regards premises, a meaningful distinction is as follows:

Factual reasons: The premises are taken as granted. An example is:
It has been raining all morning, the outdoor tennis tournament this afternoon will be cancelled.

Hypothetical reasons: The premises are not meant to be endorsed. An example is:
An economic crisis in Germany would be a reason for a declining value of the euro.

Although there seems to be currently no system having special machinery for dealing with hypotheticals,
a number of them (e.g., [8,9,10,11]) can deal with hypothetical reasoning by adding hypothetical assumptions
to the knowledgebase.

A key feature of an argument is the link between the reason and the conclusion. In existing argumentation
systems, the link is deductive i.e., the conclusion follows from the reason as an inference in a logic. However,
several other kinds of links may be encountered in natural language arguments including causal, analogical,
and others. Here is an illustration:

My new phone is the same brand as my former phone. To redial a number, I should probably
use the same procedure as with my former phone.

In the above argument, a reason is given “my new phone is the same brand as my former phone” so that,
in order to redial, I should try the same routine as I was used to. In the formalism to be developed in this
paper, such an argument is represented with its reason and conclusion, but there is no need to resort to extra
premises (presumably rather convoluted) required in a formal derivation of the conclusion.

As to the four questions about the notion of an argument that were listed at the start of the introduction,
we can propose the following features to be key to an argument:

An argument provides a presumptive explanation as to why a statement holds, or why the statement does
not hold, or why the statement is doubted.
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A statement is the conclusion of the argument, and can be a simple proposition or a complex one like an
argument (or a rejection) or a combination, including nesting, of arguments.

An argument may resort to factual premises or to hypothetical premises. They play the role of an explana-
tion, and, similarly to the conclusion, range from a simple proposition to a complex one like an argument
(or a rejection) or a combination, including nesting, of arguments.

The nature of the link (relating the premises to the conclusion) can be any among a range of possibilities
(e.g. deductive, causal, inductive, analogical, etc).

Taking advantage of the proposal made by Apothéloz in [3], we introduce a logical setting for representing
and reasoning about arguments that enjoy all the features discussed above. We first give a formal definition
of argument and rejection of argument. This gives the language LRC of our logic (in Section 2). We provide
a set of inference rules that show how arguments (respectively rejections of arguments) are tied together, in
the sense that an agent presenting an argument thereby commits himself to other arguments (so an inference
rule α

β means that holding argument α entails committing to argument β). That is, the inference rules provide
us with a notion of equivalence between arguments, they enable us to express that δ is a counter-argument
to α, and so on. This gives us the inference system  of our logic (Section 3). It is essential to notice that
 has nothing to do with evaluation of arguments and does not deal with acceptability of arguments (as is
done by acceptability semantics [4]). Instead,  expresses what one should expect when committing to a
given argument. We investigate some properties of the logic and illustrate how attacks and supports between
arguments are expressed as arguments (Section 4). As a result of its high level of expressiveness, the new logic
captures important features of argumentation that hitherto have not been captured by existing formalisms.
Furthermore, it lays the foundations of a fully fledged argumentation logic.

2 FORMAL SYNTAX

We present a formalism to represent arguments, inspired by Apothéloz [3]. It is built upon a classical proposi-
tional language L with the classical connectives ¬,∨,∧,→,↔. The formalism also uses the symbols R and
C, and additional operators, namely−, |,& (not, or, and), applying to arguments. Thus, two negation operators
are needed: ¬ for denying propositional formulas (¬x denotes that x is false), and − for denying R(.) and
C(.). Please note that ¬¬x is identified with x and − − R(.) is identified with R(.) (similarly, − − C(.) is
identified with C(.)).

An argument gives a reason for concluding a statement. It has two parts: its premises (or its reason)
and its conclusion, following several models (most significantly, [12]) in computational argumentation. An
argument is interpreted as follows: its conclusion holds because it follows, according to a given notion, from
the premises. The notion refers to the nature of the link (for instance, the premises cause the conclusion).
Also, a rejection is a statement denying an argument. The premises and conclusion occurring in the rejection
are those of the denied argument. The difference is that there is “−” in front of the (leftmost occurrence of
the)R symbol.

In our formalism, arguments and rejections thereof form the class of RC-formulas, denoted LRC .

Definition 1 (RC-formulas). An RC-formula is of the form

(−)R(y) : (−)C(x)

where x, y are RC-terms, the set of which is defined as the smallest set such that
– a formula of L is an RC-term,
– an RC-formula is an RC-term,
– if α and β are RC-terms then so are −β, α |β, α&β.

The notation “(−)” means that the negation operator “−” may, but need not, occur. R and C are indica-
tive of the functions of giving reason and concluding, respectively. Thus, they capture the coupling reason-
conclusion. As we will see later, the contents may be true while the functions do not hold and vice versa.
Whatever the link between the reason and the conclusion, it is represented by the colon in the definition.

The two symbols | and & can be used to obtain RC-formulas in a number of ways, examples of RC-
formulas includeR

(
−R(y) : C(x)

)
: C(w),R(z) : −C (w& (−R(y) : C(x))

)
, . . . Contrariwise, examples

of expressions that fail to be RC-formulas include x &R(y) : C(z), x | R(y) : C(z) . . .

Unlike existing definitions of argument where a conclusion x follows from premises y using a notion of
derivation (e.g., [10]), Definition 1 leaves the content of the link unspecified. Accordingly, such a general
definition makes it possible to capture links of whatever nature, including non-deductive links, and therefore
can offer a way to represent any natural language argument, even somewhat dubious arguments such as:
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This paper will be accepted. It’s about argumentation.

Taking pa to stand for “this paper will be accepted” and aa to stand for “this paper is about argumentation”,
R(aa) : C(pa) is indeed a representation of the above argument.

Definition 2 (Argument). An argument is an RC-formula of the form

R(y) : (−)C(x).

The intuitive meaning of the two formal expressions captured by Definition 2 is:

R(y) : C(x) means that “y is a reason for concluding x”.
R(y) : −C(x) means that “y is a reason for not concluding x”.

Example 1. Let sm stand for “Steve is very smart”, and wh stand for “Steve worked hard this term”, and pe
stand for “Steve will pass his exams”. Then, Adam’s argument “Steve is very smart but didn’t work hard this
term, so it’s unclear whether he will pass his exams” can be captured by the RC-formula

R(sm ∧ ¬wh) : −C(pe).

Let moreover r stand for “it is raining” and lm stand for “Steve is lacking motivation”. Reconstructing Craig’s
“Lack of motivation is the reason” to account for concluding that Steve will fail his exams as well as denying
rain to account for it, can then be captured by the RC-formula

R(lm) : C
(
¬pe &−R(r) : C(¬pe)

)
.

Accordingly, taking x to be a propositional formula, all this faithfully accounts for the distinctions men-
tioned in the introduction:

Arguments in favour of x, they are of the formR(y) : C(x).
Arguments against x, they are of the formR(y) : C(¬x).
Arguments justifying why x is doubted, they are of the formR(y) : −C(x).

Please observe that the second item amounts to arguing in favour of ¬x whereas the third item has a sister
item, of the form R(y) : −C(¬x), justifying why ¬x is doubted. The case of complete indeterminacy (i.e.,
when both x and ¬x are doubted) can be identified with both sister items taken together More generally,
R(y) : −C(x) is right in two kinds of situations: (1) y is a reason for concluding ¬x; e.g., being a penguin
is not only a reason for not concluding that Tweety can fly, R(p) : −C(f), it furthermore is a reason for
concluding that Tweety cannot fly, R(p) : C(¬f) and (2) y does not support ¬x but still does not support
x either, e.g., being a penguin is neither a reason to conclude that Tweety is a young bird nor a reason to
conclude that Tweety is not a young bird.

Definition 3 (Rejection). A rejection is an RC-formula of the form

−R(y) : (−)C(x).

The intuitive meaning for these formal expressions is as follows:

−R(y) : C(x) means that “y is not a reason for concluding x”.
−R(y) : −C(x) means that “y is not a reason for not concluding x”.

Example 2. Craig’s “Rain is not a reason to infer that Steve will fail his exams” can be captured by the
RC-formula

−R(r) : C(¬pe).

As an argument exhibits a reason, a conclusion and a link over them, an argument can be objected by
challenging its reason, or its conclusion, or its link. These three possibilities of objecting to an argument
R(y) : C(x) are rendered by RC-formulas. Assume, for instance, that x, y ∈ L:

The reason of the argument is objected to, which is achieved by an argument of the formR(z) : C(¬y).
The conclusion of the argument is objected to, which is achieved by an argument of the form R(z) :
C(¬x).
The link in the argument is objected to, which is achieved by a rejection of the form −R(y) : C(x).
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The link can also be objected to by means of more informed items such as arguments of the form R(z) :
C
(
−R(y) : C(x)

)
.

Example 3. Again, on whether Ryan is in his office.

- ro stand for “Ryan is in his office”,

- cp stand for “Ryan’s car is in the car park”,

- bc stand for “Ryan’s car is broken”.

Then,

Dale: Ryan is in his office. His car is in the car park.
Earl: The car is in the car park because it is broken.

can be formalized as R(cp) : C(ro) for Dale’s argument and R(bc) : C(cp) for Earl’s strict utterance. As a
response (or objection to Dale’s), Earl’s argument can be reconstructed asR(R(bc) : C(cp)) : −C(ro).

3 INFERENCE

The aim of this section is to introduce the consequence operator  and some of its properties, where  is the
least closure of a set of inference rules extended with one meta-rule. We investigate a specific combination
of inference rules in this section. We have considered alternative combinations of inference rules previously
[1,2].

Of course, w, x, y, z below can be instantiated with RC-terms. These are supposed to obey Boolean iden-
tities over − (negation), | (disjunction) and & (conjunction) such that − − x = x, −(x& y) = −x |−y, and
so on. Also,−, | and & must be understood as ¬, ∨ and ∧ resp., when applying to RC-terms that are formulas
of L.

Importantly, deriving an argument α by means of inference rules does not mean that α is accepted. Instead,
inferring α means that the argument(s) and/or rejection(s) used as premises for the inference rule(s) applied
while deriving α cannot be held without α also being held. Indeed,  is meant to capture commitment between
arguments. Hence, if a foolish argument is used as a premise then a foolish α may result: If an agent holds a
foolish argument, he henceforth commits to some other foolish arguments.

3.1 Denial of an argument

 is defined with the requirement that−(R(y) : Φ) is identified with−R(y) : Φ, and similarly for−(−R(y) :
Φ) with −−R(y) : Φ. In doing so, we are faithful to Apothéloz who regards them as equivalent [3]. It seems
disputable, though. It could be argued that −R(y) : Φ disqualifies only one part of an argument (i.e., its
reason) while −(R(y) : Φ) somehow disqualifies the whole argument. Imagine a member of a recruitment
committee who presents an argument in favour of a candidate for his own research lab. The argument may
be denied by the committee due to conflict of interest. However, such a denial does not (or at least need not)
challenge truth of the reason nor its ability to bring about the conclusion of the argument.

3.2 Meta-rule

Rejection −R(y) : C(x) means that y is not a reason for x, which is the negation of what R(y) : C(x) is
supposed to mean, i.e., y is a reason for x. As a consequence, the contrapositive of the fact that R(y) : C(x)
would entail −R(y) : C(w) is that R(y) : C(w) would entail −R(y) : C(x). Accordingly, the meta-rule
expresses that we can reverse any inference rule of the form

R(y) : Φ
−R(y) : Ψ into

R(y) : Ψ
−R(y) : Φ.

Of course, the same reversing process takes place whenever “−” occurs in front of the leftmost “R” so that,
in the general case, an inference rule 4 where i, j ∈ {0, 1}

−(i)R(y) : Φ α1 · · ·αn
−(j)R(y) : Ψ can be reversed into

−(1−j)R(y) : Ψ α1 · · ·αn
−(1−i)R(y) : Φ

whatever the RC-formulas α1, . . . , αn.

4 −(1) denotes a single occurrence of the hyphen and −(0) the absence of it.
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3.3 Inference rules

Certainly, the feature most expected is consistency in terms of arguments:

R(y) : C(x)
−R(y) : −C(x)

R(y) : C(x)
R(y) : −C(−x) (Consistency)

The leftmost inference rule means that if y is a reason for x then y is not a reason to doubt x. The rightmost
inference rule means that if y is a reason for x then it is also a reason to doubt −x.

Property 1. The inference rules below derive from (Consistency) and the meta-rule.

R(y) : C(x)
−R(y) : C(−x)

R(y) : −C(x)
−R(y) : C(x)

R(y) : C(−x)
R(y) : −C(x)

R(y) : C(−x)
−R(y) : C(x)

Please observe that an instance of the third rule in Property 1 is:

R(z) : C(−R(y) : C(x))
R(z) : −C(R(y) : C(x))

A similar rule, related toR instead of C, is:

R(−R(y) : C(x)) : C(w)
R(R(y) : −C(x)) : C(w) (A Fortiori)

The inference rules below are concerned with various principles permitting to infer arguments from other
arguments. One such principle is the idea that, if y is a reason for z and vice-versa, then z is a reason for
whatever y is a reason for. This motivates the following inference rule.

R(y) : C(z) R(z) : C(y) R(y) : C(x)
R(z) : C(x) (Mutual Support)

Another principle is that if each of y and z is a reason for x, then the disjunction y or z is a reason for x.
Conversely, if y or z is a reason for x then any of y and z must be a reason for x. All this can be expressed by
the next rule, as follows.

R(y) : C(x) R(z) : C(x)
R(y |z) : C(x)

R(y |z) : C(x)
R(y) : C(x) (Or)

There is also the idea that if a reason can be decomposed into parts, of which one, say y, is a reason for
the others (namely, the other parts), then y is enough of a reason. The next inference rule takes care of this.

R(y& z) : C(x) R(y) : C(z)
R(y) : C(x) (Cut)

The next rule turns an argument whose claim is itself an argument into an argument with decreased depth
of nesting in C(.), as follows.

R(y) : C(R(z) : C(x))
R(y& z) : C(x) (Exportation)

The last rule expresses how permutation of reasons can take place.

R(y) : C(R(z) : C(x))
R(z) : C(R(y) : C(x)) (Permutation)

From now on,  denotes the system consisting of (Consistency) together with the seven rules above from
(A Fortiori) to (Permutation), closed under substitution and the meta-rule. Similarly, “derive” will refer to the
usual notion for  thus defined.

We show that −R(y) : C(x) cannot be schematically derived fromR(y) : C(x) and that −R(y) : −C(x)
cannot be schematically derived from R(y) : −C(x), so that a basic kind of consistency for the consequence
operator  is ensured.

Property 2. There is no i, j ∈ {0, 1} such that

−(i)R(y) : −(j)C(x)
−(1−i)R(y) : −(j)C(x)

is a derived inference rule.
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Property 2 furthermore expresses (using inference rules in Property 1) that neither R(y) : C(−x) nor
R(y) : −C(x) can be schematically derived fromR(y) : C(x).

The Boolean identity α&α = α yields an instance of (Exportation) worth mentioning, that is

R(y) : C(R(y) : C(x))
R(y) : C(x) .

The converse rule

R(y) : C(x)
R(y) : C(R(y) : C(x))

seems acceptable as well, in which caseR(y) : C(R(y) : C(x)) could be identified withR(y) : C(x).

3.4 Non-Inference

Now we consider some inference rules that do not hold for the consequence relation we are presenting in this
paper. First, if there were any axiom, the most likely candidate would be

−R(>) : C(⊥).

The reader may find it surprising that the list above includes no inference rule induced by logical conse-
quence. Unfortunately, most of the expected rules fail as detailed now.

R(x) : C(x) x ∈ L (Reflexivity)

Key is the difference between being an argument syntactically and being an argument that is held.R(x) :
C(x) is identified with an argument, by the mere fact that it does conform with Definition 2. Taking R(x) :
C(x) as an axiom would mean that any agent would be regarded as committed to holding R(x) : C(x) for
every x. Depending on the nature of the link in the argument, (i.e., the reading of the colon), this might be
inappropriate. Think of a recruitment committee member who holds that “Tracy should be given the position”.
Taking x to stand for the statement that Tracy should be given the position, the argument R(x) : C(x) is
certainly not acceptable. Indeed, what is expected in such committees is to bring independent evidence in
favour of candidates.

|= y → x

R(y) : C(x) x, y ∈ L (Logical Consequence)

Inhibiting (Reflexivity) as just argued implies that (Logical Consequence) must also be left out, because
(Reflexivity) follows from (Logical Consequence).

R(y) : C(x) |= y ↔ z

R(z) : C(x) y, z ∈ L (Left Logical Equivalence)

(Left Logical Equivalence) must be left out, again on the grounds that the nature of the link need not con-
form with logical consequence. Most notably, an effect need not be caused by something logically equivalent
to its cause. However, (Mutual Support) can be viewed as a restricted substitute to this purported rule.

R(y) : C(x) |= z → y

R(z) : C(x) y, z ∈ L (Left Logical Consequence)

This is even more dubious, it actually entails (Left Logical Equivalence) and is then not worth considering
any further.

R(y) : C(x) |= x→ w

R(y) : C(w) w, x ∈ L (Right Logical Consequence)

(Right Logical Consequence) cannot be adopted either because being a reason for x is in general more
restrictive than having x as a logical consequence. Consider for instance the causal argument in [1]: flu is a
reason for your body temperature to be in the range 39° C−41° C. However, the fact that being in the range
36° C−41° C is a logical consequence of being in the range 39° C−41° C does not make flu a reason for your
body temperature to be in the range 36° C−41° C (it is the only possible range unless you are dead!).

Interestingly, failure of (Right Logical Consequence) dismisses the seemingly harmless rule below
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−R(y) : C(w)
−R(y) : C(x&w)

which is nothing but the contrapositive of an instance of (Right Logical Consequence) —let x be x&w.

R(y) : C(x) R(y) : C(z)
R(y) : C(x ∧ z) (And)

(And) is inappropriate, too. To start with, (And) opposes most cases dealing with limited resources. Cer-
tainly, from the fact that I have one Euro is a reason for me to buy a chocolate bar and is also a reason for me
to buy a pastry, it cannot sensibly be held that the fact that I have one Euro is a reason for me to buy both.
Assume that y stands for “I have one Euro” while x and z stand for “I am to buy a chocolate bar” and “I am
to buy a pastry”. Definitely, it would be wrong to derive R(y) : C(x ∧ z) from R(y) : C(x) together with
R(y) : C(z). Another case against (And), that does not involve limited resources, can be found in [1].

R(z) : C(y) R(y) : C(x)
R(z) : C(x) (Transitivity)

(Transitivity) can be challenged by means of the Ryan example in the introduction. The fact that Ryan’s
car is broken does not support the conclusion “Ryan is in his office” but precludes it instead. (Transitivity)
fails mainly due to R being non-monotonic in the following sense: It can be the case that y is generally a
reason for x although there are some special circumstances where this breaks down.

R(y) : C(x) R(y) : C(z)
R(y ∧ z) : C(x) (Cautious Monotonicity)

(Cautious Monotony), which is adapted from the study of non-monotonic consequence relations [13], is
the controversial principle that the reason y in an argument for an x can be expanded with any statement z
for which y is a reason. There is an interest in such a principle because it is the converse of (Cut) when both
are viewed as principles applying in the context ofR(y) : C(z). Dismissal of (Cautious Monotony) cannot be
escaped, if only from its incompatibility with the converse of (Exportation), namely (Importation).

R(y ∧ z) : C(x)
R(y) : C(R(z) : C(x)) (Importation)

Actually, in the case that both (Importation) and (Cautious Monotony) were adopted, for every z for which
y is a reason,R(y) : C(R(z) : C(x)) would ensue. In particular,R(y) : C(R(x) : C(x)) would hold for every
x for which y is a reason.

Property 3. (Mutual Support) is a restricted version of (Transitivity).

Blocking a reason is different from blocking a conclusion. In symbols:

R(y) : −C(R(z) : C(x)) 6 R(y) : −C(x).
R(y) : −C(x) 6 R(y) : −C(R(z) : C(x)).

Consider the following argument.

The fact that several European countries have a good economy (ge) is a reason for not concluding
that an economic crisis (ec) in Spain is a reason for a declining value of the euro (de).

This has the form R(ge) : −C(R(ec) : C(de)). Please note that R(ge) : −C(de) does not necessarily
hold since an economic crisis in Germany may lead to a declining value of the euro.

Consider now the informal argument:

The fact that Steve did not follow the course (fc) is a reason for his failing his exams.

It is formally captured as R(¬fc) : C(fe). That this argument is doubted on the grounds that Steve is smart
can then be written R(sm) : −C(R(¬fc) : C(fe)). However, the latter argument, R(sm) : −C(R(¬fc) :
C(fe)), need not hold even in the presence ofR(sm) : −C(fe) (Steve being smart is a reason not to conclude
his failing his exams).
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3.5 Properties of the consequence relation

We show that the consequence relation  meets the minimum requirements as argued by Tarski [14].

Property 4. The following are properties of the  relation where ∆ is a set of RC-formulas, and α and β are
RC-formulas.

∆  α if α ∈ ∆ (Reflexivity)
∆ ∪ {α}  β if ∆  β (Monotonicity)
∆  β if ∆ ∪ {α}  β and ∆  α (Cut)

In addition, the  consequence relation is paraconsistent in the following sense.

Property 5. The following non-trivialization property holds for the  relation:

{−(i)R(y) : −(j)C(x),−(1−i)R(y) : −(j)C(x)} 6 LRC .

The properties of reflexivity, monotonicy, and cut, mean that with the  consequence relation, the ma-
nipulation of arguments by the inference rules is well-founded. The non-trivialization property means that
contradictory arguments can be handled in a straightforward way.

It is worth pointing out that, even though  is monotonic, it does exhibits non-monotonicity through
its object language in the guise of R. Indeed, “being a reason” is a non-monotonic inference relation |∼ as
witnessed by failure of transitivity. However, the fact that R plays the role of |∼ in our formalism makes the
non-monotonicity confined to failure of inferring R(y ∧ z) : C(x) from R(y) : C(x). Therefore, this has no
effect on the logic. As an aside, the situation is similar to conditional logics because an operator capturing a
counterfactual conditional must be non-monotonic (still, conditional logics are monotonic). E.g., “were I to
scratch this match, it would ignite” denoted y�x may hold while “were I to scratch this match, that is wet, it
would ignite” denoted y∧z�x fails to hold.

4 EXPRESSIVENESS OF THE LANGUAGE

This section discusses the expressive power of the language, namely the effects of allowing nesting of R(.)
and C(.) on

encoding meta-arguments,

expressing various forms of attacks, and

expressing supports between arguments.

4.1 Meta-arguments

The next table displays various forms of arguments allowed by Definition 1. Of course, the table is not ex-
haustive.

Basic arguments




F1 R(y) : C(x)
F2 R(y) : C(¬x)
F3 R(y) : −C(x)

Single-embedding
meta-arguments
(in reason)




F4 R(R(z) : C(y)) : C(x)
F5 R(R(z) : C(y)) : C(¬x)
F6 R(R(z) : C(y)) : −C(x)

Single-embedding
meta-arguments
(in conclusion)




F7 R(y) : C(R(z) : C(x))
F8 R(y) : C(−R(z) : C(x))
F9 R(y) : −C(R(z) : C(x))

Double-embedding
meta-arguments




F10 R(R(z) : C(y)) : C(R(t) : C(x))
F11 R(R(z) : C(y)) : C(−R(t) : C(x))
F12 R(R(z) : C(y)) : −C(R(t) : C(x))

Next is a list of arguments showing that each form Fi makes sense.

F1: Tweety can fly (f ). It is a bird (b). R(b) : C(f)
F2: Tweety cannot fly. It is a penguin (p). R(p) : C(¬f)
F3: Steve is smart. Thus, it is not possible to conclude that he will fail his exams. R(sm) : −C(fe)
F4: That Tweety can fly because it is a bird, is a reason to conclude that Tweety has wings (w). R(R(b) :
C(f)) : C(w)
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F5: That Steve will fail his exams because he did not work hard is a reason to conclude that he is not so
smart.
R(R(¬wh) : C(fe)) : C(¬sm)

F6: Paul’s car is in the park (pr) because it is broken (br), hence we cannot conclude that Paul is in his
office (of).
R(R(br) : C(pr)) : −C(of)

F7: The weather is sunny (su). Thus, rain (ra) will lead to rainbow (rb). R(su) : C(R(ra) : C(rb))
F8: The fact that Tweety is a penguin is a reason to conclude that being a bird is not a sufficient reason for

Tweety being able to fly. R(p) : C(−R(b) : C(f))
F9: The fact that all European countries have a strong economy (se) is a reason for not concluding that an

economic crisis (ec) in Germany is a reason for a declining value of the euro (de). R(se) : −C(R(ec) :
C(de))

F10: CFCs (cfc) cause damage to the ozone layer of the atmosphere (do). Man-made pollution (mp) causes
global warming (gw). R(R(cfc) : C(do)) : C(R(mp) : C(gw))

F11: Stress is the reason that Steve will fail his exams, hence it is not the fact that he did not work hard (st).
R(R(st) : C(fe)) : C(−R(¬wh) : C(fe))

F12: The object looks red (lr). It is illuminated by red light (il). Thus, we cannot conclude that looking red
implies the object being indeed red (re). R(R(il) : C(lr)) : −C(R(lr) : C(re))

4.2 Expressing attacks

An argumentR(y) : C(x) may be attacked on any one of its components: conclusion, premises or the function
of reason. For instance, the RC-formula below

−R(R(y) : C(x)) : C(x).

attacks the premise y in the argument R(y) : C(x) because −R(R(y) : C(x)) : C(x) states that y being a
reason for concluding x is not enough to conclude x; therefore y must fail: if y were the case then, that y is a
reason for concluding xwould lead to conclude x. By contrast, attacking the link in the argumentR(y) : C(x)
is simply the rejection

−R(y) : C(x).
We propose below a set of inference rules which not only show the various forms of attacks that may

hold between arguments, but also how to detect attacks (the rules themselves) and how to express attacks as
arguments (the part β of a rule α/β).

R(y) : C(x) R(z) : C(¬x)
R(R(z) : C(¬x)) : C(−R(y) : C(x)) (Strong Rebuttal)

R(y) : C(x) R(z) : −C(x)
R(R(z) : −C(x)) : C(−R(y) : C(x)) (Weak Rebuttal)

R(y) : C(x) R(z) : C(¬y)
R(R(z) : C(¬y)) : C(−R(y) : C(x)) (Strong Premise Attack)

R(y) : C(x) R(z) : −C(y)
R(R(z) : −C(y)) : C(−R(y) : C(x)) (Weak Premise Attack)

R(z) : C(−R(y) : C(x)) (Strong Reason Attack)

R(z) : −C(R(y) : C(x)) (Weak Reason Attack)

−R(y) : C(x) (Pure Reason Attack)

Note that the three attack relations that are distinguished in existing argumentation formalisms are cap-
tured in the new setting: rebuttal is captured by (Strong Rebuttal), assumption attack corresponds to (Strong
Premise Attack) and Pollock undercutting is reflected by our notion of (Weak Rebuttal). However, since in
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those formalisms it is not possible to build arguments for blocking conclusions, the blocking is done in an
indirect way as explained in Example 1. Therefore, with our logic of arguments, we can formalize and ma-
nipulate attacks explicitly within the logic (which is not possible in other formal systems of argumentation),
and we have a wider range of attacks than are considered in other formal proposals for argumentation. For
instance, in our formalism the argumentative orientation of the reason y towards the conclusion x of an
argumentR(y) : C(x) can be attacked. Consider the following example borrowed from [15].

Floyd: “A World Apart” is not a good movie. It does not teach us anything new about apartheid.
Gary: That’s precisely what makes it good.

Let

- gm stand for “A World Apart is a good movie”,

- ¬ta stand for “It does not teach us anything new about apartheid”,

Then, Floyd’s utterance can be captured by R(¬ta) : C(¬gm). Gary’s can be expressed by R(¬ta) : C(gm)
and his argument reconstructed as:

R(R(¬ta) : C(gm)) : C(−R(¬ta) : C(¬gm)).

4.3 Expressing supports

Unlike attacks which express negative links between arguments, supports express positive links. In the existing
literature (e.g., [16,17]), such links are captured by a binary relation defined on the set of arguments. In our
formalism, such an external relation is not needed since supports can be expressed by arguments of the form

R(R(y) : C(x)) : C(R(z) : C(w))

or
R(v) : C(R(z) : C(w)).

Let us return to Steve and his exams:

Hugh: Steve will pass his exams. He is very smart.
Ian: He is well prepared.

Letting wp stand for “Steve is well prepared”, Ian’s argument can be formalized as R(wp) : C(R(sm) :
C(pe)) (Hugh’s isR(sm) : C(pe)). FromR(wp) : C(R(sm) : C(pe)), using the reduction rule, the argument
R(wp ∧ sm) : C(pe) ensues.

(R(z) : C(y)) : C(x)

is an even more direct form expressing that R(y) : C(x) is supported by R(z) : C(y). It is obtained from the
more general form above, using reduction. Also, rejection of support has the form

R(z) : C(−R(y) : C(x)).

5 Cube of opposition

The use of a cube of opposition is an interesting way of organizing complementary notions in the study of
logics (e.g. [18]). The idea of opposition plays also an important role in argumentation [19]. Indeed, Apothéloz
[3] has pointed out the existence of four basic argumentative forms, where two negations are at work: i) “y is
a reason for concluding x", ii) “y is not a reason for concluding x", iii) “y is a reason for not concluding x",
and iv) “y is not a reason for not concluding x". These four statements were organized by Salavastru [20] in
a square of opposition, which was slightly corrected in [21] (the vertical entailments were put in the wrong
way). The following cube of oppositions summarizes the different links between basic forms of arguments
and rejections and adapts the previous proposal [21].

A diagonal (whether dashed or not) expresses a contradiction, i.e., its two endpoints cannot be true together
and cannot be false together. A thicker edge (whether dashed or not) expresses contrariness, i.e., its two
endpoints cannot be true together —but they can be false together. An even thicker edge expresses sub-
contrariness, i.e., its two endpoints cannot be false together —but they can be true together. The cube contains
some subaltern relations represented by arrows, providing a direction. For instance, the arrow from R(y) :
C(x) to −R(y) : −C(x) means that if the former holds, then so does the latter.
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R(y) : −C(¬x)

−R(y) : −C(x) −R(y) : C(x)

R(y) : C(¬x)

−R(y) : C(¬x)

R(y) : C(x) R(y) : −C(x)

−R(y) : −C(¬x)

Fig. 1.1. Cube of opposition for RC-formulas.

6 CONCLUSION

This paper proposes a novel logic for representing and reasoning about arguments in a way that is just not pos-
sible with the existing formalisms. The logical language is made of arguments and rejections of arguments.
The definition of arguments encompasses different roles of reasons (concluding and blocking statements),
various forms of reasons (factual and hypothetical) and different kinds of links (deductive, abductive, induc-
tive, . . .). Unlike the existing computational models of argumentation where attacks and supports between
arguments are expressed by external relations on the set of arguments, in the new logic they are elements of
the language. Indeed, every attack (respectively support) is expressed as an argument.

The logic offers key advantages. First, it respects the nature of argument. Indeed, it does not reduce the
meaning of the statements to a formal derivation between the reason and the conclusion. To say this differently,
not any such derivation is a natural argument. Importantly,  does not serve to handle, or cure, inconsistency
between arguments, but it provides, in a logical setting, a basis for reasoning between arguments. Second,
it can be parameterized for several purposes like reasoning about causal arguments, analogical arguments,
decision arguments, etc. Third, it lends itself to encoding fairly natural language dialogues. Indeed, one may
pass directly from natural language dialogue to the logical setting without intermediate encodings which are
often convoluted. Moreover, preferences between arguments could be captured as meta-arguments. Fourth, it
provides the basis for a logic of argumentation, i.e., a logic in which arguments are represented and evaluated.
Indeed, in the future, we plan to define on top of 〈LRC ,〉, a logic 〈LRC ,�〉 dedicated to acceptability of
arguments (i.e., � will return the accepted arguments).
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Abstract. Mereotopology is an extension of mereology with some relations of topological na-
ture like contact. An algebraic counterpart of mereotopology is the notion of contact algebra
which is a Boolean algebra whose elements are considered to denote spatial regions, extended
with a binary relation of contact between regions. Although the language of contact algebra
is quite expressive to define many usefull mereological relations (part-of, overlap, under-
lap) and mereotopological relations (external contact, tangential part-of, non-tangential
part-of, self-connectedness), there are, however, some interesting mereotopological relations
which are not definable in it. Such are, for instance, the relation of n-ary contact, internal
connectedness and some others. To overcome this disadvantage we introduce a generalization
of contact algebra, replacing the contact with a binary relation A ` b between finite sets of
regions and a region, satisfying some formal properties of Tarski consequence relation. The
obtained system is called sequent algebra, considered as an extended mereotopology. We
develop the topological representation theory for sequent algebras showing in this way certain
correspondence between point-free and point-based models of space. As a bi-product we show
how one logical in nature notion - Tarski consequence relation, may have also certain spatial
(mereotopological) meaning.

Keywords: mereology, mereotopology, point-free theory of space, sequent algebra, topology,
representation theorem.

1 Introduction

Mereotopology is an extension of mereology [13] with some relations of topological nature like contact.
Mereotopology is considered also as a kind of point-free theory of space, called also region-based
theory of space (RBTS). The roots of RBTS go back to Whitehead [17,18] and the main idea arose
from some criticism to the classical point-based approach to the theory of space (see the survey
papers [16,2,8] for some historical remarks and motivations on RBTS).

Let us mention that in a sense RBTS had been reinvented in computer science, because of its
more simple way of representing qualitative spatial information and in fact it initiated a special
field in Knowledge Representation (KR) called Qualitative Spatial Representation and Reasoning
(QSRR). Survey papers about applications of RBTS and mereotopology in various applied areas
are, for instance, [3,8] and the book [9].

An algebraic counterpart of mereotopology is the notion of contact algebra (CA), which is an
extension of Boolean algebra with a binary relation C called contact. The elements of the algebra are
considered to denote spatial regions, boolean operations are considered as operations for constructions
new regions from given ones and also for defining some standard mereological relations between
regions as part-of relation, overlap, underlap and others. The intended point models of CA are
Boolean algebras of regular-closed subsets of a topological space with aCb iff a and b share a common
point (for more details on CA-s and their topological representation see [5,16] and the recent paper [7]
describing the topological duality theory of contact algebras). The language of CA is quite expressive.
For instance, by means of contact one can define various mereotopological relations between regions:
external contact, tangential part-of, non-tangential part-of, self-connectedness and others.
However, there are some interesting mereotopological relations which are not definable in contact
algebras: n-ary contact, internal connectedness, and others. In order to increase the expressive
power of contact algebra, we introduce in this paper a generalization, replacing the contact relation
by a new relation A ` b between a finite set of regions A and a region b, called sequent relation.

? This paper is sponsored by the Sofia University Science Fund



The obtained system is called sequent algebra (S-algebra for short), because the sequent relation
satisfies the structural properties of Tarski consequence relation. In topological models with regular
closed sets the definition of ` is the following: for a given finite set of regions A = {a1, . . . , an} and a
region b, a1, . . . , an ` a iff a1∩ . . .∩an ⊆ b. By means of the sequent relation one can define ordinary
contact by aCb iff a, b 6` 0 and n-ary contact by a1, . . . , an 6` 0 where 0 is the zero element of the
Boolean algebra (the notion of internal connectedness is also definable - see Section 3.4). We show in
this way that Tarski consequence relation, which is a typical logical relation, has also a non-logical,
mereotopological meaning.

The structure of the paper is the following. In Section 2 we give abstract definitions of Skott and
Tarski sequent systems considered as abstractions from some properties of Gentzen calculi. In Section
3 we introduced the notion of Sequent algebra (S-algebra) as a generalization of contact algebra in
which contact is replaced by Tarski consequence relation. Section 4 is devoted to the representation
theory of S-algebras. Here we introduce the abstract points of S-algebra, called S-clans, which are
generalizations of the abstract points of contact algebras, called clans. The main results of this
section, which are also the main results of the paper, are two: Topological representation theorem
for S-algebras (Theorem 1), and Discrete representation theorem for S-algebras (Theorem 2).

2 Scott and Tarski sequent systems

In this section we will introduce some abstract versions of Gentzen sequent systems. Let us remaind
that a Gentzen sequent is an expression of the form A ` B where A and B are finite sets of
logical formulas. The intuitive meaning of A ` B is ”the conjunctions of the formulas of A imply the
disjunctions of formulas of B. There are sequent calculi (as for intuitionistic logic) using only sequents
in the simplified form A ` b. The meaning of such sequents is ”b follows from the assumptions A”,
or ”the set of formulas A entails the formula b, which is just the meaning of ` in the definition of
the finitary Tarski consequence relation.

Abstract sequent systems which will be used in this paper are in the form (W,`), where W is
an abstract nonempty set (not set of formulas as in traditional Gentzen systems) and ` is a binary
relation ether in the form A ` B or A ` b, where A and B are finite subsets of W and b ∈ W . The
axioms of such systems are certain statements imitating some structural rules of Gentzen calculi.
Let us mention that such abstract treating of sequent systems was given for the first time by Dana
Scott [12] in an abstract definition of information system with applications to domain theory. Other
abstract treating of sequent systems can be found in [19] - again with applications in domain theory,
in [15] - with applications to some information modal logics, in [4] - with some topological and
categorical characterizations of certain classes of consequence systems. Abstract sequent systems
using sequents as a binary relation between finite sets and elements will be called ”Tarski sequent
systems”. The more general abstract sequent systems using sequents between finite sets will be called
”Scott sequent systems”.

We adopt for later use standard abbreviations for sequents taken from Gentzen sequent calculi. For
instance, instead {a1, . . . , an} ` {b1, . . . , bm} we write a1, . . . , an ` b1, . . . , bm, instead A ∪B ` C we
write A,B ` C, instead A∪{b1, . . . , bn} ` C we write A, b1, . . . , bn ` C, and some other simplifications
of similar kind.

Definition 1. (Scott sequent system) Let W be a nonempty set and ` be a binary relations
between finite subsets of W . We say that ` is a Scott consequence relation in W provided that the
following axioms are satisfied (A,B are finite subsets of W and x ∈W ) :

(Ref) x ` x, reflexivity
(Mono) If A ` B, then A, x ` B and A ` x,B , monotonicity, and
(Cut) If A, x ` B and A ` x,B then A ` B.

We say that the system S = (W,`), is a Scott sequent system (Scott S-system for short), if `
is a Scott consequence relation in W .

Notation: A 6` B for the negation of A ` B. Expressions in the form A ` B are called Scott
sequents. The special case A ` b, where B is equal to the singleton set {b} is called Tarski sequent.
Expressions A ` B and A ` b will be used only for finite subsets A,B of W .

The following lemma states some generalizations of the above axioms which will be used later on
by their names.
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Lemma 1. (Properties of Scott consequent relation.) The following conditions hold for arbi-
trary Scott S-system:

(i) (REF) If A ∩B 6= ∅, then A ` B,
(ii) (MONO) If A ` B, A ⊆ A′ and B ⊆ B′, then A′ ` B′,
(iii) (CUT) If A1, x ` B1 and A2 ` x,B2, then A1, A2 ` B1, B2.

Note that (REF), (MONO) and (CUT) are considered in the literature as the typical characteristic
properties of `. It is easy to see that in fact they are equivalent to the more simple (Ref), (Mono)
and (Cut), which are more suitable in the verifications of these axioms in some models.

Sequent systems containing only Tarski sequents can be axiomatized separately as follows, taking
the obvious restrictions of the axioms (Ref), (Mono) and (Cut) for which we will use the same
notations.

Definition 2. (Tarski sequent system) Let W be a nonempty set and A ` b be a binary relation
with first argument all finite subsets of W and second argument all elements of W . We say that ` is
a Tarski consequence relation in W provided that the following axioms are true:

(Ref) x ` x,
(Mono) If A ` x, then A, y ` x,
(Cut) If A ` x, A, x ` y, then A ` y.

We say that the system (W,`) is a Tarski sequent system (Tarski S-system), if ` is a Tarski
consequence relation in W .

Let us note that for the sake of simplicity we use one and the same notation for Scott and Tarski
consequence relations and the names of their axioms.

In the following lemma we list some properties of Tarski sequents which will be used later on by
their names. We use again one and the same names for obviously analogical properties for Scott and
Tarski sequents.

Lemma 2. (Properties of Tarski consequence relation.) The following conditions hold for
arbitrary Tarski S-system:

(REF) For any b ∈W and any finite subset A ⊆W : if b ∈ A, then A ` b,
(MONO) If A ` b and A ⊆ A′, then A′ ` b,
(CUT) If A1 ` x, A2, x ` b, then A1, A2 ` b,
(Tran) If A ` b and b ` c, then A ` c, transitivity,
(TRAN) If A1 ` x1, ..., An ` xn and B, x1, ..., xn ` b, then A1, ..., An, B ` b, extended
transitivity.

Example 1. Example of Scott and Tarski S-system. Let W be a nonempty set whose elements
are subsets of a given set X and let A = a1, . . . , an and B = b1, . . . , bm be arbitrary finite subsets
of W . Define A ` B iff a1 ∩ . . . ∩ an ⊆ b1 ∪ . . . ∪ bm. Then (W,`) is an S-system. Note that A = ∅
and B = ∅ are not excluded and are obtained in the cases n = 0 and m = 0 respectively. Then the
empty intersection is taken to be the set X and the empty union to be the empty set ∅. Obvious
modification of this example gives example of Tarski S-system.

3 Sequent algebras

3.1 Abstract definition

Definition 3. (Sequent Boolean algebra.) The system B = (B, 0, 1,≤,+, ., ∗,`) is called a se-
quent Boolean algebra (S-algebra for short) if (B, 0, 1,≤,+, ., ∗) is a non-degenerate Boolean
algebra, (B,`) is a Tarski S-system and ` satisfies the following additional axioms:

(S1) x ` y iff x ≤ y,
(S2) ∅ ` y iff y = 1,
(S3) If A, x ` z and A, y ` z, then A, x+ y ` z,

Lemma 3. (Properties of Tarski consequent relation in S-algebras.) Let B be a S-algebra.
Then the following conditions are true for the relations `:

Logical Reasoning and Computation: Essays dedicated to Luis Fariñas del Cerro

111



(i) A1, x1 ` y1 and A2, x2 ` y2, then A1, A2, x1 + x2 ` y1 + y2,
(ii) If A, x, y ` z, then A, x.y ` z,
(iii) A ` 1,
(iv) If A ` x and x ≤ y, then A ` y,
(v) If A, x ` b and A ` x+ b, then A ` b.

Lemma 4. Let B be a S-algebra, A and B = {b1, . . . , bn} be arbitrary finite subset of B. Define
A ` B iff A ` b1 + . . . + bn. Then this extension of Tarski sequence defines the structure of Scott
S-system in B.

Let us note that in the above lemma the case B = ∅ is included by the standard assumption
that the empty sum is equal to 0, i.e. A ` ∅ iff A ` 0.

3.2 Comparison with contact algebras

We remaind the abstract definition and some facts about contact algebras from [5,16]

Definition 4. We say that the algebraic system (B,C) = (B,≤, 0, 1, .,+, ∗, C) is a contact algebra if
(B,≤, 0, 1, .,+, ∗) is a non-degenerate Boolean algebra and C is a binary relation in B called contact
and satisfying the following axioms:

(C1) If aCb, then a 6= 0 and b 6= 0,
(C2) If aCb and a ≤ a′ and b ≤ b′, then a′Cb′,
(C3) If aC(b+ c), then aCb or aCc,
(C4) If aCb, then bCa,
(C5) If a.b 6= 0, then aCb.

The elements of B are considered to denote spatial regions and the Boolean operations are con-
sidered as operations for constructing new regions from given ones.

The intuitive meaning of the contact relation is that x and y share a common point. Let us note
that the Boolean part of the definition of contact algebra can be considered as its mereological part.
In this part one can define the standard mereological relations:
• part-of relation - x ≤ y - this is just the Boolean ordering relation,
• overlap - xOy iff x.y 6= 0,
• underlap (dual overlap) - xUy iff x+ y 6= 1 iff x∗Oy∗.
By means of the contact relation one can define the following important mereotopological rela-

tions:
• external contact - xCexty iff xCy and xOy,
• tangential part-of - x� y iff xCy∗,
• non-tangential part-of x ≺ y iff x ≤ y and x 6� y
• self-connectedness c(x) iff (∀y, z)(y 6= 0 ∧ z 6= 0 ∧ x = y + z → yCz) (see [16,14]).

Examples of contact algebras

Example 2. Topological example of contact algebra. Let X be a topological space and for the
subset a ⊆ X and let Int(a) and Cl(a) denote correspondingly the topological interior and the
closure of the set a. The set a is called a regular closed subset of X if a = Cl(Int(a)). It is a well
known fact the set RC(X) of regular closed subsets of X is a Boolean algebra under the following
definitions of the corresponding Boolean constants and operations: a ≤ b iff a ⊆ b, 0=∅, 1 = X,
a+ b = a ∪ b, a.b = Cl(Int(a ∩ b)), a∗ = Cl(X \ a). It is a contact algebra under the definition: aCb
iff a ∩ b 6= ∅, i.e. a and b share a common point. This example of contact algebra is typical in the
sense that every contact algebra is representable as a subalgebra of the contact algebra RC(X) of
certain topological space X. See [5,16] for the representation theory of contact algebras. This theory
is based on a special kind of abstract points definable in contact algebras, called clans. In order to
compare this notion with the abstract points in S-algebras we present here the definition of clan.

Definition 5. A subset Γ ⊆ B is a clan if it satisfies the following conditions:

(Clan 1) 1 ∈ Γ , 0 6∈ Γ ,
(Clan 2) If a ∈ Γ and a ≤ b, then b ∈ Γ ,
(Clan 3) If a+ b ∈ Γ , then a ∈ Γ or b ∈ Γ ,
(Clan 4) If a, b ∈ Γ , then aCb.
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Example 3. Non-topological (discrete) example of contact algebra. A non-topological exam-
ple of contact algebra can be obtained as follows. Let (X,R) be a relational system with X 6= ∅ and
R be a reflexive and symmetric relation in X. The Boolean algebra over all subsets of X is a contact
algebra, provided the contact is defined as follows: for a, b ⊆ X aCb iff (∃x ∈ a)(∃y ∈ b)(xRy).
This example is also typical because it can be proved that every contact algebra can be isomorphi-
cally embedded into the algebra of all subsets of certain relational system (X,R) with reflexive and
symmetric relation R. For more details about such a ”discrete” representation theory see [6].

3.3 Examples of S-algebras

Example 4. Topological example of S-algebra. This example extends the topological example of
contact algebras by regular closed subsets of a topological space. For a finite subset A of the set of
regular closed sets RC(X) of X and b ∈ RC(X) define Tarski consequence relation in RC(X) as in
the Example 1. Then (RC(X),`) is a Tarski sequent algebra. This kind of S-algebra is a typical one
because we will show later on that each S-algebra can be isomorphically embedded into a topological
S-algebra over a certain topological space.

Example 5. Non-topological (discrete) example of S-algebra. In this example we will extend
in a sense the non-topological example of contact algebras as follows. Let (X,Y ) be a pair (called a
discrete S-space) with X a non-empty set and Y a set of non-empty subsets of X containing all
singletons of X. Let B(X,Y ) be the Boolean algebra of all subsets of X.

We define Tarski consequence relation in B(X,Y ) as follows (a1, . . . , an, b ∈ B(X,Y )):

a1, . . . , an ` b iff (∀x1 . . . xn ∈ X,∀Γ ∈ Y )({x1 . . . xn} ⊆ Γ, x1 ∈ a1, . . . , xn ∈ an → b ∩ Γ 6= ∅).

Then B(X,Y ), equipped with the above defined relation, is an S-algebra called the discrete
S-algebra over the discrete S-space (X,Y ). The proof of this fact goes by routine verification
of the axioms of S-algebra.

Discrete S-algebras are in a sense characteristic, because every S-algebra is representable as an
S-algebra over a discrete S-space, as we will see later on.

3.4 Undefinability of some mereotopological relations in contact algebras and their
definability in S-algebras.

Note that in contact algebras one can not express the n-ary contact (see [11]). In topological models
n-ary contact is definable as follows (a1, . . . , an are regular-closed subsets of a topological space X):

Cn(a1, . . . , an) iff a1 ∩ . . . ∩ an 6= ∅, i.e. a1, . . . , an share a common point.

Having in mind topological models of S-algebras one can see that contact and n-ary contact are
definable in S-algebras as follows:

Definition of contact: aCb iff a, b 6` 0,

Definition of n-ary contact: Cn(a1, . . . , an) iff a1, . . . , an 6` 0.

It can easily be seen that the above defined contact in S-algebra satisfies the axioms of contact,
which shows that all S-algebras are contact algebras under the above definition. This implies that
definable mereotopological relations in contact algebras are definaqble also in S-algebras.

Another interesting mereotopological relation which is not definable in contact algebras is inter-
nal connectedness. In topological models this is a property of a region saying that its internal part
is topologically connected (in symbols co(a)).

Internal connectedness is definable in S-algebras as follows:

Definition of internal connectedness: co(a) iff (∀b, c)(a ≤ b+c∧a.b 6= 0∧a.c 6= 0→ b, c 6` a∗).
It can be proved that in topological models this formula is true for a regular closed set a iff Int(a)

is a connected set in the sense of topology.

Another equivalent definition of co(a) in the so called extended contact algebras (ECA) is
given in [10]. Extended contact algebra is a Boolean algebra with a ternary relation a, b ` c which
just axiomatizes the restriction of the relation A ` c with A being at most two-element non-empty
set. The paper [10] contains also a proof that co(a) is not definable in contact algebras.

Internal connectedness of a region and n-ary contact were studied with respect to their expres-
siveness and computational complexity in [11].

Logical Reasoning and Computation: Essays dedicated to Luis Fariñas del Cerro

113



4 Representation theory for sequent algebras

4.1 S-filters and S-clans

Definition 6. (S-filter.)Let B be a S-algebra. A subset F ⊆ B is a S-filter if the following condi-
tion is satisfied:

(S-fil) for any finite subset A ⊆ B and b ∈ B: if A ⊆ F and A ` b, then b ∈ F .
F is a proper S-filter if 0 6∈ F .
F is a S-clan if F is a proper S-filter and for all a, b ∈ B, if a+ b ∈ F , then a ∈ F or b ∈ F .
F is a maximal S-filter if it is a proper S-filter and for every proper S-filter G: if F ⊆ G then

F = G.
F is a maximal S-clan if for every S-clan G: if F ⊆ G, then F = G.

Lemma 5. (Properties of S-filters and S-clans.) Let F be an S-filter. Then:
(i) 1 ∈ F , if a ∈ F and a ≤ b then b ∈ F .
(ii) If in addition F is an S-clan, then: 0 6∈ F , if a+ b ∈ F iff a ∈ F or b ∈ F .

Lemma 6. Each S-clan is a clan in the sense of contact algebra.

Lemma 7. F is a propper S-filter iff F 6= B.

The next lemma shows that the notions of S-filter and S-clan generalize the notions of a (Boolean)
filter and (Boolean) ultrafilter.

Lemma 8. Let B be a S-algebra. Then:
(i) every filter in B is a S-filter,
(ii) every ultrafilter in B is a S-clan.

The next lemma gives a general construction of S-clans by special sets of ultrafilters.

Lemma 9. (Construction of S-clans from ultrafilters.) Let Σ be a nonempty set of ultrafilters
satisfying the following condition:

(]) (∀n)(∀a1, . . . , an, b ∈ B)(∀F1, . . . , Fn ∈ Σ)(a1 ∈ F1 . . . an ∈ Fn and a1, . . . , an ` b → (∃F ∈
Σ)(b ∈ F )).

Let F be the union of the ultrafilters from Σ. Then F is a S-clan.

Note that the construction of S-clans by the above lemma depends on the existence of sets of
ultrafilters satisfying the condition (]). Later we will show how to construct such sets and that every
S-clan can be constructed in this way.

The next lemma presents general constructions of S-filters.

Lemma 10. (Constructions of S-filters and S-clans.) Let B be a S-algebra.
(i) Let X be any subset of B and define F(X) =def {b ∈ B : (∃finiteA ⊆ X)(A ` b)}. Then

F(X) is the smallest S-filter containing X.
(ii) Let F be an S-filter and a ∈ B. Define F ⊕ a =def {b ∈ B : (∃finiteA ⊆ B)(A, a ` b)}. Then

F ⊕ a is the smallest S-filter containing F and a.
(iii) Let Γ be a non-empty chain of proper S-filters and let F be the union of the members of Γ .

Then F is a proper S-filter.

Lemma 11. (i) Every proper S-filter is contained in a maximal S-filter.
(ii) Every maximal S-filter is a S-clan.
(iii) Every proper S-filter is contained in a S-clan.
(iv) Every S-clan is contained in a maximal S-clan.

Proof. (i) By an application of Zorn Lemma.
(ii) Let F be a maximal S-filter and suppose that F is not a S-clan. Then there are a1 and a2

such that a1+a2 ∈ F but a1 6∈ F and a2 6∈ F . Let F1 = F ⊕a1 and F2⊕a2. From here we get F ⊂ F1

and F ⊂ F2. It follows by maximality of F that F1 and F2 are not proper, hence 0 ∈ F1 and 0 ∈ F2.
By the definitions of F1 and F2 we obtain: there exist finite subsets A1, A2 of F such that A1, a1 ` 0
and A2, a2 ` 0. Then by Lemma 3 (i) we get A1, A2, a1 + a2 ` 0. Since A = A1 ∪A2 ∪ {a1 + a2} ⊆ F
, we obtain that A ` 0, hence 0 ∈ F - a contradiction.

(iii) The statement follows from (i) and (ii).
(iv) The proof follows by an application of Zorn Lemma.
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Lemma 12. (Separation Lemma for S-filters and ideals) Let B be a S-algebra, F0 be a S-
filter, I be an ideal (Boolean) in B and F0 ∩ I = ∅. Then there exists a S-clan F such that F0 ⊆ F
and F ∩ I = ∅.

Proof. The proof goes by an application of Zorn Lemma. Let M = {G : G be an S-filter and
G∩I = ∅}. Obviously the elements of M are proper S-filters. We have also that F0 ∈M , so M 6= ∅.
Let N be a nonempty chain in M and denote by GN the union of the elements of N . By Lemma
10 GN is a S-filter which is an upper bound of N which obviously belongs to M . Thus, by the Zorn
Lemma M has a maximal element, say F which extends F0. It remains to show that F is a S-clan.
Suppose the contrary, i.e. that there exist a1 and a2 in B such that a1 + a2 ∈ F but a1 6∈ F and
a2 6∈ F . Consider the S-filters F1 = F ⊕ a1 and F2 = F ⊕ a2. Since F is a maximal element in
M we get that F1 ∩ I 6= ∅ and F2 ∩ I 6= ∅. So, there exist b1 and b2 such that b1 ∈ F1, b1 ∈ I
and b2 ∈ F2, b2 ∈ I. These conditions imply that b1 + b2 ∈ I, and that there exists A1 ⊆ F such
that A1, a1 ` b1 and there exists A2 ⊆ F such that A2, a2 ` b2. Then by Lemma 3 (i) we obtain
A1, A2, a1 + a2 ` b1 + b2. Obviously the set A = A1 ∪ A2 ∪ {a1 + a2} is a subset of F , such that
A ` b1 + b2 which shows that b1 + b2 ∈ F . Consequently F ∩ I 6= ∅ - a contradiction with the fact
that F ∈M .

Lemma 13. (Separation Lemma.) Let B be a S-algebra, A be a finite subset of B, b ∈ B and
A 6` b. Then there exists a S-clan F such that A ⊆ F and b 6∈ F .

Proof. By Lemma 10 (i) F(A) is an S-filter not containing b. Let (b] = {x ∈ B : x ≤ b] be the
smallest ideal containing b. We have F(A) ∩ (b] = ∅, otherwise by Lemma 3 (iv) we obtain A ` b -
a contradiction. Then by Lemma 12 There exists a S-clan F such that F(A) ⊆ F and F ∩ (b] = ∅.
This implies A ⊆ F and b 6∈ F .

Lemma 14. Let B be a S-algebra. Then:
(i) If F is a S-clan in B, then its complement F is an ideal in B.
(ii) (Interpolation lemma for filters and S-clans.)Let G be a S-clan and F be a filter such

that F ⊆ G. Then there exists an ultrafilter U such that F ⊆ U ⊆ F .
(iii) Let G be a S-clan and a inG. Then there exists an ultrafilter U such that a ∈ U ⊆ F .
(iv) If F is a S-clan in B. Then F coincides with the union of all ultrafilters contained in F .
(v) Let F be a S-clan in B and let ULT (F ) be the set of all ultrafilters contained in F . Then

ULT (F ) satisfies the condition (]) from Lemma 9.
(vi) Every S-clan can be obtained by the construction described in Lemma 9.

Proof. (i) follows directly by the definitions of S-clan and an ideal.
(ii) Let G be a S-clan and F be a filter such that F ⊆ G. Then by (i) F is an ideal and F ∩F = ∅.

Then by properties of filters and ideals in Boolean algebra, F can be extended into an ultrafilter U
such that U ∩ F = ∅, which implies that F ⊆ U ⊆ F .

(iii) Let a ∈ F then the filter [a) = {b : a ≤ b} is contained in F and by (ii) there exists an
ultrafilter U such that [a) ⊆ U ⊆ F , which implies the statement.

(iv), (v) and (vi) are direct consequences of (iii) and (iv).

4.2 Topological representation theorem for S-algebras

Some topological notions. In this section we will prove a topological representation theorem for
S-algebras. For that purpose we remaind some additional facts from topology. Assume that X is a
topological space.
• A set of closed subsets of X is called a base for closed sets if every closed set can be represented

as an intersection of sets from the base.
• X is a semiregular space if it has a base for closed sets consisting of regular closed sets.
Separation properties of X:
• T0-separation axiom: X is a T0 space if for any two different points x, y ∈ X, there is an open

set U such that x ∈ U and y 6∈ U or y ∈ U and x 6∈ U .
• T1-separation axiom: X is a T1 space if for any two different points x, y ∈ X, there exists two

open sets U and V such that x ∈ U and y 6∈ U , and y ∈ V and x 6∈ V . X is a T1 space if and only
if every singleton set is closed.
• T2-separation axiom: X is a T2 space (Hausdorff space), if for any two different points x, yinX,

there exists two open sets U and V such that x ∈ U , y ∈ V , and U ∩ V = ∅.
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• Compactness. Let I be a nonempty set of indices and let Σ = {Ai : i ∈ I} be a family of closed
sets of X. We say that Σ possesses finite intersection property if for every finite subset I0 of I, the
intersection

⋂{Ai : i ∈ I0} 6= ∅. X is said to be a compact space if any collection of closed subsets
of X with the finite intersection property has nonempty intersection.

Canonical space of S-algebra Let B be a S-algebra. Denote by S-Clans(B) the set of S-clans of B
and let for a ∈ b, h(a) = {F ∈ S−Cland(B) : a ∈ F}. We define the canonical topological space
(Xc) of B to be the set S-Clans(B) with a topology having the set Cl-base(Xc) = {h(a) : a ∈ B} as
a base for closed sets of Xc, and the canonical S-algebra related to B to be the S-algebra of regular
closed sets RC(Xc) as it is defined in Example 4.

Lemma 15. (i) h(0) = 0 = ∅, h(1) = 1 = Xc, and h(a+ b) = h(a) ∪ h(b).
(ii) a ≤ b ⇔ h(a) ⊆ h(b), a = b iff h(a) = h(b).
(iii) h(a∗) = Cl − h(a),
(iv) h(a) is a regular closed set in Xc,
(v) a1, . . . , an ` b ⇔ h(a1) ∩ . . . ∩ h(an) ⊆ h(b).

Proof. (i) follows by the properties of S-clans.
(ii) (⇒) is easy. For (⇐) suppose that a 6≤ b. Then by the representation theory of Boolean

algebras there exists an ultrafilter U such that a ∈ U and b 6∈ U . Since ultrafilters are S-clans (8,
this implies h(a) 6⊆ h(b).

In order to proof (iii) we need the following equivalence which is true for all S-clans F : a∗ ∈ F
iff (∀b)(a+ b = 1→ b ∈ F ).

For the implication from left to right: suppose a∗ ∈ F and let a + b = 1. Then a∗ ≤ b and
hence b ∈ F . For the converse implication let a∗ 6∈ F . We have to show that there exists b such that
a+ b = 1 and b 6∈ F . The element b = a∗ will do the job.

Proof of (iii). Let F be an arbitrary S-clan. Then: F ∈ Cl − h(a) iff (by the definition of Cl)
(∀h(b) ∈ Cl − base(Xc))(−h(a) ⊆ h(b) → F ∈ h(b)) iff (∀b ∈ B)(h(a) ∪ h(b) = Xc → b ∈ F ) iff
(∀b ∈ B)(a+ b = 1→ b ∈ F ) iff (by the above equivalence) a(∗) ∈ F iff F ∈ h(a∗).

(iv) Applying (iii) two times we get: ClInth(a) = Cl − Cl − h(a) = Cl − h(a∗) = h(a∗∗) = h(a),
which shows that h(a) is regular closed set and that h is an embedding in the Boolean algebra
RC(Xc).

(v) (⇒) Let a1, . . . an ` b and suppose that F ∈ h(a1), . . . F ∈ h(an). Then a1 ∈ F , ..., an ∈ F
and since F is a S-clan, then b ∈ F . Hence h(a1) ∩ . . . ∩ h(an) ⊆ h(b).

(⇐)) This direction follows directly from Lemma 13.

Lemma 16. Let B be a S-algebra. Then the canonical space Xc of B is semiregular, T0 and compact.

Proof. To prove that Xc is T0 let Γ and ∆ be two different points. Since Γ and ∆ are S-clans, one
of them, say Γ , is not included in the other one, ∆. Then there is a ∈ Γ and a 6∈ ∆. Hence the open
set −h(a) contains Γ and not ∆.

Since the set {h(a) : a ∈ B} is a base of the closed sets of Xc, to prove the compactness
of Xc it suffices to show the following. Let I ⊆ B be a non-empty set of the algebra and let
A =

⋂{h(a) : a ∈ I}. Then, if for every finite set I0 ⊆ I we have
⋂{h(a) : a ∈ I0 6= ∅ then A 6= ∅.

Indeed, the condition that
⋂{h(a) : a ∈ I0} for every finite set I0 of I guarantees the existence of

of an ultrafilter U in the Boolean algebra of subsets of Xc containing the set {h(a) : a ∈ I}. We
claim that the set Γ = {a : h(a) ∈ U} is an S-clan. Suppose a1, . . . an ∈ Γ and a1, . . . an ` b. Then
h(a1) ∩ . . . ∩ h(an) ⊆ h(b) and h(a1) . . . h(an ∈ U). Consequently h(a1) ∩ . . . ∩ h(an) ∈ U , and since
h(a1) ∩ . . . ∩ h(an) ⊆ h(b) we get h(b) ∈ U , so b ∈ Γ . Thus Γ is a S-filter. Since h(0) = ∅ is not in
U then 0 6∈ Γ . Suppose that a+ b ∈ Γ then h(a+ b) = h(a) ∪ h(b) is in U and since U is ultrafilter,
then h(a) ∈ U or h(b) ∈ U . Consequently a ∈ Γ or b ∈ Γ , which finally shows that Γ is a S-clan.
hence for every a ∈ I

a ∈ I → h(a) ∈ U → a ∈ Γ → Γ ∈ h(a).
This shows that Γ ∈ ⋂{h(a) : a ∈ I} = A and, consequently, A 6= ∅.

Theorem 1. (Topological representation theorem for S-algebras.) Let B be a S-algebra.
Then there exists a semiregular and compact T0 space X and an embedding h of B into the S-algebra
RC(X) of regular closed subsets of X.

Proof. The proof follows from Lemma 15 and Lemma 16.
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4.3 Discrete representation of S-algebras

The aim of this section is to prove that every S-algebra can be isomorphically embedded into the
S-algebra over some S-space (see example 5).

Let B be a S-algebra and let ULT (B) be the set of ultrafilters in B, S-Clans(B) be the set of
all S-clans of B and for each S-clan F let ULT (F ) be the set of ultrafilters contained in F . The
canonical S-space S(B) = (Xc, Y c) of B is defined as follows: Xc = ULT (B), Y c = {ULT (F ) : F ∈
S-Clans(B)}. The canonical embedding is defined by g(a) = {U ∈ ULT (B) : a ∈ U}. It is a well
known fact by the representation theory for Boolean algebras that g is an embedding of B into the
Boolean algebra of all subsets of Xc. It remains to show that g preserves the relation `. Following
the definition of ` between subsets of Xc described in Example 5) and the above notations, we have
to prove the following equivalence:

a1, . . . an ` b ⇔ (∀F1, . . . Fn ∈ Xc)(∀Γ ∈ Y c)(F1 ∈ Γ& . . .&Fn ∈ Γ&F1 ∈ h(a1)& . . .&Fn ∈
h(an)→ h(b) ∩ Γ 6= ∅).

Note that the left part of the above equivalence just indicates that g(a1), . . . g(an) ` g(b) in the
S-algebra over (Xc, Y c).

(⇒) Suppose that a1, . . . an ` b, and that F1, . . . Fn be S-clans contained is some set Γ ∈ Y c and
F1 ∈ g(a1) (so a1 ∈ F1) and ... and Fn ∈ g(an) (so an ∈ Fn). By the definition of Y c, Γ = ULT (F )
for some S-clan F . Obviously a1, . . . an ∈ F and since a1, . . . an ` b, we get that b ∈ F . Then by
Lemma 14 (iii) there exists an ultrafilter U such that b ∈ U ⊆ F . From here we obtain that U ∈ h(b)
and U ∈ ULT (F ) = Γ , so h(b) ∩ Γ 6= ∅.

(⇐) We will reason by contraposition. Suppose that a1, . . . an 6` b. Then by Lemma 13 there
exists a S-clan F , such that a1, . . . , an are in F but b is not in F . Since F is the union of ultrafilters
contained in F (Lemma 14), then there are ultrafilters F1,..., Fn in ULT (F ) such that a1 ∈ F1 (hence
F1 ∈ g(a1),..., an ∈ Fn (hence Fn ∈ g(an). Condition b 6∈ F implies that for all U ∈ ULT (F )b 6∈ U
which is the same as g(b)∩ULT (F ) 6= ∅. Denoting ULT (F ) by Γ which is in Y c we get g(b)∩Γ = ∅.
All this implies that g(a1), . . . g(an) 6` g(b) in the S-algebra over (Xc, Y c) which finishes the proof.

Theorem 2. (Discrete Representation Theorem for S-algebras.) Let B be a S-algebra. Then
there exists a S-space (X,Y ) and an embedding g into the S-algebra of all subsets of (X,Y ).

Proof. Take (X,Y ) to be the canonical S-space (Xc, Y c) over B and g to be the canonical embedding
into the canonical S-algebra over (Xc, Y c).

5 Concluding remarks

The results of the present paper were reported for the first time in the Workshop ”Spatial and Spatio-
temporal Logics” organized by Michael Zakharyaschev in 2007 as one of satellite workshops of the
international Conference ”Algebraic and Topological Methods in Non-Classical Logics III” (TANCL-
07), Oxford, England, 5-9 August, 2007. The present text can be considered as an extended abstract,
because proofs of many statements are omitted and will be included in the subsequent full version.
We plane to include in the full version topological representation theory of some extensions of S-
algebras with new axioms, yielding representations in connected spaces and in compact T1 and T2
spaces. Applications to the completeness theorems of some spatial logics based on S-systems also will
be given.
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Abstract. Dynamic epistemic logics provide an account of the dynamics of an agent’s belief and knowl-
edge. They became popular about 15 years ago and by now there are numerous publications about it. In
this paper I will briefly summarize the existing body of literature and discuss some problems and short-
comings.

1 Introduction

Luis was the supervisor of my PhD thesis that I defended more than 25 years ago. The topic was automated
theorem proving methods for modal logics, but I actually spent my first year on a quite different subject:
logics for database updates. We had come up with a semantics that was close to Winslett’s so-called possible
models approach [1]. However, despite months of efforts we were neither able to find an axiomatisation nor
a syntactical theorem proving method for that semantics, and Luis wisely decided that it was too much a risk
to continue on this. Interestingly, the community did not come up with such characterisations either: people
seemed to be happy with the semantics and complexity results [2]. The problem however kept on haunting
me and I finally succeeded some years later in solving it [3,4].

The main output of the first year of my thesis was an axiomatisation and a theorem proving method for
updates by literals. Such updates can be identified with assignments of truth values to propositional variables.
In recent and ongoing work together with several colleagues, we have shown that a dynamic logic whose
atomic programs are such propositional assignments has multiple applications in AI [5,6].1 It in particular
captures Winslett’s possible models approach [8]. It can be extended by epistemic operators [9,10,11], which
is relevant for reasoning with incomplete information in multiagent systems.

The above line of work on assignment programs can be seen as being part of an important recent develop-
ment in the field of non-classical logics: dynamic epistemic logics (DELs). Research on this family of logics
blossomed in the field of non-classical logics during the last 15 years. The success story began with an early
paper by Plaza [12] that remained basically unnoticed for 10 years and was only taken up by the end of the
90ies, with foundational papers such as Baltag and Moss’s [13] and van Benthem’s [14], as well as a rather
early textbook [15].

The rise of these logics coincides with Luis’s involvement in the administration of science, becoming
director of IRIT and serving in several positions and committees on the national level. He consequently
lacked time to follow the evolution of the by now huge DEL literature. The present contribution is not only
an attempt to briefly sum up the state of the art, but also a critical analysis of the roads the field took in the
last years. My main message is that progress was perhaps not as overwhelming as one might think when one
sees the hundreds of papers that were published under the DEL label. My conclusion will be that several of
the old issues are still open: they were overlooked or just left aside. Luis, several old issues we had worked
on together should still be topical!

In the next sections I will start by recalling what DELs are (Section 2). The rest of the paper provides
a critical examination of the received views about DELs. It is organised according to the three keywords
making up the acronym, in reverse order: I will question the status of DELs as logics (Section 3, point out
some weaknesses of the commonly assumed epistemic component (Section 4), and finally discuss some issues
with the dynamic component (Section 5). Each time I will point out several mismatches between the discourse
about DELs and the state of the art; as I will emphasise, several important issues that are difficult to settle
received too little attention up to now.

1 The paper [6] erroneously asserts ExpTime complexity of the model checking problem. A correction is in [7].



2 DELs in a nutshell

I start by a brief overview of DELs. The presentation is standard: language, semantics and axiomatics.

2.1 Language

The DEL language is an interesting and powerful combinations of two kinds of modal operators: epistemic
operators of the form Ki where i is an agent and dynamic operators

[E] where E is an event. The formula Kiϕ
reads “i knows that ϕ” and the formula

〈E〉ϕ reads “E may occur and ϕ is true afterwards”. Such combina-
tions were first considered in AI more than 30 years ago [16] and are particular cases of multi-dimensional
modal logics [17]. In its simplest form, the event E is the public announcement of (the truth of) a formula χ,
written χ!. In its most general form, E is made up of a set of possible events having pre- and postconditions,
an accessibility relation on that set, and an actual event. When 〈e, e′〉 ∈ S i then agent i cannot distinguish
the occurrence of e from that of e′. The precondition of an event describes the conditions under which the
event may occur; the postcondition describes its effects on the world in terms of assignments of formulas to
propositional variables: when p is assigned to ϕ then after the event the truth value of p equals the truth value
of ϕ before the event [9]. For instance, when ¬p is assigned to p then p’s truth value gets flipped.

Formally, an event model is a tuple 〈E, {S i}i∈I, pre, post, e0〉 where E is a non-empty set of possible events,
S i ⊆ E × E for every i ∈ I, pre : E −→ L and post : E −→ (P −→ L), where L is either the language of
epistemic logic or the language of DEL,2 and e0 ∈ E.

Most of the approaches consider events without postconditions, or rather, with the identity postcondition
function postid such that postid(e)(p) = p: all variables keep their truth value. Such events have no effect on the
world: they are purely epistemic and only change the agents’ epistemic state. Figure 1.1 is a typical example
of an event model where p is privately announced to agent 1: there are two possible events 〈p!, postid〉 and
〈>!, postid〉; agent 2 believes that>! happens (i.e., that nothing is learned) and that this is common knowledge;
agent 1 believes that p! happens while 2 does not know this. The possible event on the left is the actual event.

〈p!, postid〉
1

��
2 // 〈>!, postid〉

1,2

��

Fig. 1.1. Event model E1:p! of the private announcement of p to agent 1.

As usual, the formula
[E!

]
ϕ abbreviates ¬〈E!

〉¬ϕ.

2.2 Semantics

DEL models have accessibility relations for the epistemic operators, one per agent i. Each relation Ri relates
worlds that i cannot distinguish based on her knowledge, and Kiϕ is true at a possible world w in a model
M if ϕ is true at every world that i cannot distinguish from w in M. While the interpretation of the epistemic
operators is thus standard, the interpretation of the dynamic operators deviates from the traditional modal logic
setting: there is no accessibility relation for them. So DEL models are nothing but models of the underlying
‘static’ epistemic logic: tuples of the form M = 〈W, {R}i∈I,V,w0〉 where W is a non-empty set of possible
worlds, Ri ⊆ W × W is a binary relation on W for every agent i in the set of agents I, V : P −→ 2W is a
valuation function associating to every p in the set of propositional variables P the set of worlds where p is
true, and w0 ∈ is the actual world.

Figure 1.2 contains an example of a DEL model where both agent 1 and agent 2 do not know whether p
is true or not (and this is common knowledge). The actual world is the lower world {p}.

The truth condition for the epistemic operators is the standard one: for a model M = 〈W, {R}i∈I,V,w0〉,
M  Kiϕ if 〈W, {R}i∈I,V,w〉  ϕ for every w such that 〈w0,w〉 ∈ Ri.

The dynamic operators are interpreted by means of so-called model updates. The simplest case is the
model update that is associated to the public announcement χ!. It is interpreted by a partial function on the set

2 Precisely, the postcondition is either restricted to epistemic formulas or defined by mutual recursion with the truth
conditions.
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Fig. 1.2. Static epistemic model Mign where both agent 1 and agent 2 do not know whether p (and this is common knowl-
edge).

of pointed Kripke models which restricts the set of possible worlds W of a model M to ||χ||M .3 The accessibility
relation and the valuation are restricted in consequence. So when M  pre(e) then4 the update of the epistemic
model M = 〈W, {R}i∈I,V,w0〉 by χ is the epistemic model

Mχ = 〈||χ||M , {Rχ
i }i∈I,Vχ,w0〉

where Rχ
i = Ri∩ (||χ||M × ||χ||M) and Vχ(p) = V(p)∩ ||χ||M . (Precisely, updates are defined by mutual recursion

with the truth conditions.) The truth condition for the public announcement operator is:

M 
〈
χ!

〉
ϕ if M  χ and Mχ  ϕ.

In its most general form, updates are a restricted product between an epistemic model and an event model:
the formula

〈E〉ϕ is true at possible world w in model M if the actual event of E may occur at w in M and ϕ
is true at w in the update ME of M by E. Formally, for E = 〈E, {S i}i∈I, pre, post, e0〉:

M 
〈E〉ϕ if M  pre(e0) and ME  ϕ

where ME = 〈WE, {RE}i∈I,VE, (w0, e0)〉 with

WE =
{
(w, e) : w ∈ W, e ∈ E, and M,w  pre(e)

}

REi =
{〈(w, e), (w′, e′)〉 : 〈w,w′〉 ∈ Ri and 〈e, e′〉 ∈ S i

}

VE(p) =
{
(w, e) ∈ WE : M,w  post(e)(p)

}

For example, the update of the static epistemic model Mign of Figure 1.2 by the event model E1:p! of Figure
1.1 is the static epistemic model (Mign)E1:p! depicted in Figure 1.3. The actual world is on the left. Observe
that (Mign)E1:p! does not contain a world

(∅, 〈p!, postid〉
)

because Mign 1 pre(p!). We have (Mign)E1:p!  K1 p ∧
¬K2 p ∧ ¬K2K1 p. Therefore Mign 

[E1:p!
](

K1 p ∧ ¬K2 p ∧ ¬K2K1 p
)
.

(∅, 〈>!, postid〉
)

1,2

��

OO

1,2

��({p}, 〈p!, postid〉
)

1

LL
2 // ({p}, 〈>!, postid〉

)

1,2

RR

Fig. 1.3. The static epistemic model (Mign)E1:p! , after agent 1 has privately learned that p.

3 As usual, for a given M = 〈W, {R}i∈I,V,w0〉, the notation ||χ||M stands for the set of possible worlds w ∈ W such that
〈W, {R}i∈I,V,w〉  ϕ.

4 Otherwise the operation (.)E is undefined.
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EL some axiomatics of epistemic logic (e.g. that of S5)

RE(
[E]) ψ↔ ψ′[E]ψ↔ [E]ψ′

Red(p)
[E]p ↔ (

pre(e)→ post(e)(p)
)
, for p atomic

Red(¬)
[E]¬ψ ↔ (

pre(e)→ ¬[E]ψ)
Red(∧)

[E](ψ1∧ψ2
) ↔ ([E]ψ1∧[E]ψ2

)

Red(Ki)
[E]Kiψ ↔ (

pre(e)→ ∧
〈e,e′〉∈S i

Ki
[E′]ψ)

Table 1.1. Axiomatisation of DELs, where we suppose that E = 〈E, {S i}i∈I, pre, post, e〉 and E′ = 〈E, {S i}i∈I, pre, post, e′〉.

2.3 Axiomatics

An axiomatisation of DELs that is parametrised by the axiomatisation of the underlying epistemic logic is
contained in Table 1.1. (It is easy to see that it is equivalent to the axiomatisations one usually finds in papers
about DELs, such as in [18,19].) It consists in a complete collection of reduction axioms: equivalences whose
successive application allows to eliminate all dynamic operators. We therefore end up with an epistemic
formula.5

3 Logic?

The standard definition of a modal logic is that of a set of modal formulas that contains all classical propo-
sitional theorems and that is closed under uniform substitution, modus ponens, and necessitation. This is a
rather restrictive definition which excludes DELs. Indeed, they fail to be closed under uniform substitution.6

Let us adopt a more liberal position and accept as logics sets of formulas that are not closed under uniform
substitution. DELs fail to satisfy a further, fundamental requirement for logics, viz. that language and seman-
tics should be distinct that are only linked via the interpretation function. DELs with event models violate this
principle: the event model E in the formula

[E]ϕ is a semantical object. This was felt to be a problem right
from the start, and several proposals for a language allowing to talk about event models were put forward
[20,21,22,23,24,25,26]. However, it is only recently that a solution was proposed that I find satisfactory [27].

Finally, there is a further requirement that is natural for logics extending epistemic logic by dynamic
operators: the dynamic extension should be a conservative extension of the underlying epistemic logic. As
will be show in Section 5, this unfortunately fails to hold for the most relevant underlying epistemic logics.

4 Epistemic?

In the literature it is—sometimes explicitly and sometimes tacitly—supposed that DELs provide a satisfactory
formalisation of an agent’s representation of the world and its evolution. In this section I undertake a critical
examination of this claim.

In DELs, the term ‘epistemic’ refers to an agent’s representation of the world. It is understood in a broad
sense, not only covering knowledge, but also belief. My main target are the various logics of knowledge and
logics of belief underlying the DELs that one can find in the literature. I first discuss logics of knowledge and
then logics of belief.

4.1 Knowledge

Following Halpern et al., many authors chose S5 as their ‘official’ logic of knowledge. This is however at odds
with the philosophical logic literature, where Lenzen and Voorbraak put forward strong arguments against the
negative introspection principle of S5 and argued for the weaker modal logic S4.3. As I have shown elsewhere
together with Philippe Balbiani and Tiago de Lima [28], the replacement of S5 as the logic of knowledge
underlying DEL by S4.3 leads to serious technical difficulties—failure of preservation of the class of models
under relativisation—for which there is currently no good solution.

5 Observe that there is no reduction axiom for the case of two successive dynamic operators. While it part of the standard
axiomatisations of the literature, it is actually not necessary in the presence of the rule of equivalence RE(

[E]).
6 To see this consider the formula

[
p!

]
p: it is a theorem of PAL because its rewriting with Axiom Red(p) results in the

classical logic theorem p→ p.
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4.2 Belief

As to belief, the situation is worse. Some authors choose the fairly uncontroversial logic of belief KD45 as
a basis for their DEL. However, dynamic extensions of KD45 face the same technical problems as dynamic
extensions of S4.3: the class of models is not preserved under relativisation.

That problem is avoided if one opts for the basic modal logic K as the underlying epistemic logic: Kmodels
do not have any constraint to satisfy, every relativisation of a K model is trivially a K model. However, K is
a very weak logic of belief allowing an agent to simultaneously hold contradictory beliefs.7 It was already
highlighted by Hintikka [29] that beyond closure under logical truth and modus ponens, consistency is a
fundamental property of rational belief. Moreover, epistemic logics allowing for inconsistent beliefs neglect
that even if the beliefs of a human or other ‘real’ agent may sometimes become inconsistent, such agents
nevertheless strive to maintain consistency. This leads us to the next problem that DEL extensions of logics
of belief face.

I believe that one of the biggest problems for DELs is that currently there are no good accounts of multi-
agent belief revision that could be integrated. Indeed, while there is a rich literature on belief revision since
the seminal 1985 ‘AGM’ paper by Alchourrón, Gärdenfors and Makinson [30]—see [31] for an overview—,
it is fair to say that all of the resulting formalisms are complex and cannot be easily extended beyond classi-
cal propositional logic.8 The situation is worse than in propositional logic because DEL belief revision takes
place in the framework of multimodal logics. Indeed, while knowledge is always true (because knowledge
implies truth), an agent’s beliefs may be false. In PAL, an agent may wrongly believe that some announcement
ψ cannot be made because he wrongly believes ψ to be false. In such circumstances, only the left-to-right
direction

[
ψ!

]
Biϕ → (ψ → Bi

[
ψ!

]
ϕ) of the (belief version of the) reduction axiom Red(Ki) of Table 1.1 is

valid, and trivially so, while the right-to-left direction (ψ → Bi
[
ψ!

]
ϕ) → [

ψ!
]
Biϕ is not. While it is clear that

a satisfactory doxastic version of PAL clearly should integrate some notion of belief revision, it is basically
still an open problem how to do this. Actually most of the DEL extensions of logics of belief fail to account
for multiagent belief revision. There exist a few proposals for an integration [32,33,34,35,24,36]. However,
it can be argued that all of them are problematic, either as far as foundations or as far as implementability is
concerned. One of the problems that has not been addressed up to now in a satisfactory manner is that almost
all belief revision theories presuppose some kind of preference information. However, in many cases it is not
clear at all where this information comes from. In my opinion, the challenge is to find simpler, probably more
modest theories of revision that can be easily and smoothly integrated into logics of belief and action.

People in the field seem to consider that Baltag and Smets’s proposal [36] is currently the best solution.
However, their account is grounded on the notion of safe belief, which is ‘almost knowledge’: belief that will
never be revised. The problem here is that it is not clear how an autonomous agent could ever distinguish safe
beliefs from other, non-safe beliefs.

5 Dynamic?

The evolution of an agent’s epistemic state has two different causes: first, the agent may get a new piece of
information about a static world; second, the world may evolve and our agent observes this event, possibly
only in an imperfect way.

5.1 Evolution of the world

The simplest form of the second kind of change, evolution of the world, is when it is the truth value of some
propositional variable that changes. This captured in DELs by the postcondition of an event e in an event
model E, alias the assignment of a propositional variable at e. Previous accounts of such kinds of change
include STRIPS [37] and Reiter’s basic action theories [38]. Somewhat surprisingly and as also pointed out by
van Benthem [39], the DEL literature largely ignores the existing literature on reasoning about ontic actions.
In particular, it is well-known in that field that formalisms are plagued by three tenacious problems: the
frame problem, the qualification problem and the ramification problem. The frame problem is how to specify
the non-effects of an event. The qualification problem is how to specify the preconditions of an event. The
ramification problem is to take into account domain constraints (alias integrity constraints).

7 Some may still object that this is too strong a logic of belief because in K, an agent’s beliefs are closed under logical truth
and modus ponens. This is the so-called omniscience problem. We leave it aside here: omniscience can be assumed
when we are interested in rational agents or in artificial agents.

8 Actually the public announcement operators behave just as the expansion operation in AGM theory, which is the
simplest belief change operation.
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As to the frame problem, I will just say here that DELs’ assignments elegantly solve it, as was shown in
[10,39].

As to the qualification problem and the ramification problem, it seems that no DEL paper has tried to
address them. While some of the approaches could probably be imported (such as [40,41,42,43], one should
nevertheless note that—contrarily to the frame problem, where Reiter’s solution was largely adopted due to
its simplicity—no consensual solution to these two problems exists in the reasoning about actions field.

5.2 Evolution of the agents’ epistemic state

The first kind of change is that of a a private announcement to a group of agents J: some formula ϕ is
announced to J in a way that is public for J. In DELs such an announcement is identified with the precondition
of an event that takes place; more precisely, for which it is possible for the agent that it takes place. This is
captured in DEL event models by an event with precondition ϕ and and an empty postcondition.

This is related to a claim that is often made in presentations (if not in papers), viz. that DELs are logics
of communication. However, DELs lack several key ingredients of speech act theory. To start with, it is not
easy to come up with a meaningful notion of a speaker. Furthermore, DELs currently do not provide a good
account of communicative intention. Unless such concepts can be integrated into DELs, the field will have to
wait for a good logic of multiagent systems.

6 Perspectives

Despite the various criticisms that I have put forward in the preceding sections, I believe that DELs are one of
the most fruitful recent developments in the domain of nonclassical logics. One of its most striking assets is
that their models are very compact. This contrasts with standard temporal and dynamic models whose Kripke
models typically contain a huge number of possible worlds even for rather simple applications. This makes
that model checking procedures working with Kripke models as they stand are not practically feasible.

It however remains that Kripke models for epistemic logics can become pretty big, too, in particular when
there are multiple agents. In the literature on model checking for multiagent systems one can find more com-
pact representations where the epistemic accessibility relation is built from information about observability
of propositional variables by agents [44,45]. This perspective was recently imported into the DEL setting
[46,47,48,49,50,51,52], and I believe it to be a promising research avenue.

As to the belief revision problem plaguing DELs, it is not clear to me whether and how it will be addressed
in the future. A solution that should be achievable without too much effort is to combine the embedding of
Dalal’s revision operation of [8] with the embedding of the observation-based DEL of [51,52].
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Abstract. Possibility theory and modal logic are two knowledge representation frameworks
that share some common features, such as the duality between possibility and necessity,
as well as some obvious differences since possibility theory is graded but is not primarily
a logical setting. In the last thirty years there have been a series of attempts, reviewed
in this paper, for bridging the two frameworks in one way or another. Possibility theory
relies on possibility distributions and modal logic on accessibility relations, at the semantic
level. Beyond the observation that many properties of possibility theory have qualitative
counterparts in terms of axioms of well-known modal logic systems, the first works have
looked for (graded) accessibility relations that can account for the behavior of possibility
and necessity measures. More recently, another view has emerged from the study of logics
of incomplete information, which is no longer based on Kripke-like models. On the one
hand, possibilistic logic, closely related to possibility theory, mainly handles beliefs having
various strength. On the other hand, in the so-called meta-epistemic logic (MEL) an agent
can express both beliefs and explicitly ignored facts (both without strength), by only using
modal formulas of depth 1, and no objective ones; its semantics is based on epistemic states.
The system MEL+ is an extension of MEL having the syntax of S5. Generalized possibilistic
logic (GPL) extends both possibilistic logic and MEL, and has a semantics in terms of sets
of possibility distributions. After a survey of these different attempts, the paper presents
GPL+, a graded counterpart of MEL+ that extends MEL by allowing objective (sub)formulas.
The axioms of GPL+ are graded counterparts of those of S5 modal system, the semantics
being based on pairs made of an interpretation (representing the real state of facts) and a
possibility distribution (representing an epistemic state). Soundness and completeness are
established. The paper also discusses the difference with S5 used as a logic for rough sets that
accounts for indiscernibility rather than incomplete information, using also the square of op-
position as a common structure underlying modal logic, possibility theory, and rough set theory.

Keywords: Modal logic, possibility theory, epistemic logic, rough sets

1 Introduction

Possibility theory has been introduced by Zadeh [54] as a framework for representing the uncertainty
conveyed by linguistic statements. It is based on the notion of possibility distribution π, from which
a maxitive possibility measure Π(A) is defined as a consistency degree between this distribution
representing the available information and the considered event A. This proposal is formally similar
to, although fully independent of the one previously developed in economics by Shackle [50] based
on the notion of degree of surprise (which corresponds to impossibility).

Although possibility theory has been the basis of an original approximate reasoning theory [56],
this setting is not a logical setting strictly speaking. It is only later, in the 1980’s, that possibilistic
logic, a logic of classical logic formulas associated with certainty levels (thought as lower bounds of a
necessity measure) has emerged (see [15,18] for introductions and overviews). Still, in the setting of
his representation language PRUF [55] Zadeh discusses the representation of statements of the form
“X is A” (meaning that the possible values of the single-valued variable X are fuzzily restricted by
fuzzy set A) linguistically qualified in terms of truth, probability, or possibility. Interestingly enough,
the representation of possibility-qualified statements led to possibility distributions over possibility
distributions, but certainty-qualified statements were not considered at all, just because necessity
measures as dual of possibility measures were playing almost no role in Zadeh’s view (with the
exception of half a page in [57]). Certainty-qualified statements were first considered in [45], and
rediscussed in [14] in relation with two resolution principles (respectively involving two certainty-
qualified propositions, and one certainty-qualified proposition together with a possibility qualified
proposition), whose formal analogy with the inference rules existing in modal logic was stressed.



Such an analogy between possibility theory calculus (including necessity measures) and modal
logic was not coming as a surprise since the parallels between N(A) = 1−Π(A) and 2p↔ ¬3¬p (du-
ality between necessity and possibility), betweenN(A) ≤ Π(A) and 3p→ 2p (axiom D in modal logic
systems), or between the characteristic axiom of necessity measures N(A ∩B) = min(N(A), N(B))
and (2p ∧ 2q) ↔ 2(p ∧ q) (a theorem valid in modal system K) had been already noticed. Never-
theless, no formal connection between modal logic and possibility theory existed in those days, even
if the idea of graded accessibility relations had been already proposed independently [32] [49] some
years before.

The striking parallel between possibility theory and modal logic eventually led to proposals for
a modal analysis and encoding of possibility theory, one of which by L. Fariñas and A. Herzig [25],
later by Boutilier [5], then extended to multiple-valued propositions [29]. Another more semantically-
oriented trend was to build particular accessibility relations [22][31] agreeing with possibility theory.
The work in [36,37,38,35] is also worth-mentioning in that respect.

Rather than putting possibility theory under the umbrella of (graded) modal logics, a quite
different view has finally emerged by designing a logical system closer to classical logic capable of
handling simple certainty- or possibility-qualified statements. This epistemic logic is a two-tiered
propositional logic (an idea that first appears in [16]) where propositional combinations of modal
formulas of depth 1 can be handled. The resulting logic, called meta-epistemic logic (MEL), when
necessity and possibility are binary-valued, proved to be equivalent to a fragment of the normal
modal logic system KD [1,3]. MEL can be extended to graded modalities, thus extending possibilistic
logic [33,11] (where only conjunctions of certainty- or possibility-qualified statements are allowed)
to a generalized possibilistic logic (GPL) [20], where negation and disjunctions of weighted formulas
are allowed . The semantics of MEL (resp. GPL) is no longer expressed by means of an accessibility
relation, but in terms of a set of sets of models (resp. a set of possibility distributions), which
agrees with Zadeh’s original semantical view of possibility-qualified statements (applied in his case
to linguistic degrees of possibility and thus leading to a fuzzy set of possibility distributions).

MEL has been more recently extended to MEL+ [2] where propositional combinations of objective
formulas and modal formulas of depth 1 are allowed. These formulas are semantically evaluated
by pairs made of one interpretation (representing the real state of facts) and a non-empty set of
interpretations (representing an epistemic state). The axioms of MEL+ are those of propositional
logic, modal axioms K (distributivity), and D, plus 2p if p is a tautology, while MEL++ also includes
axiom T (2p → p). MEL+ and MEL++ are respectively equivalent to modal systems KD45 and S5.
The purpose of this paper is to extend such a construct to GPL.

The paper is structured as follows. The next two sections provides a detailed background orga-
nized in several subsections. Section 2 first covers a square of opposition-based view of modal logic,
possibility theory, and rough sets whose logic obey the axioms of modal system S5. Then Section 2
surveys early attempts at bridging possibility theory and modal logics. Section 3 offers overviews of
MEL, MEL+ and generalized possibilistic logic. Section 4 is dedicated to the joint extension of MEL+

and GPL in GPL+, and then to the joint extension of MEL++ and GPL+ in GPL++; soundness and
completeness results are established.

2 Background

This background section is organized into two pieces. First, we indicate how the square of opposition
captures and exhibits the roots of the formal similarities underlying modal logic, possibility theory,
and rough sets. Then different early attempts at bridging possibility theory and modal logic are
reviewed.

2.1 Possibility theory, rough sets and modal logics: a square of opposition viewpoint

Recent studies [19] have pointed out that many artificial intelligence knowledge representation set-
tings are sharing the same structures of opposition that extend or generalize the traditional square
of opposition which dates back to Aristotle, and whose logical interest has been rediscovered more
than one decade ago [4]. The traditional square involves four logically related statements exhibiting
universal or existential quantifications: a statement A of the form “every x is p” is negated by the
statement O “some x is not p”, while a statement like E “no x is p” is clearly in even stronger
opposition to the first statement (A). These three statements, together with the negation of the last
one, namely I “some x is p”, give birth to the Aristotelian square of opposition in terms of quantifiers
A : ∀x p(x), E : ∀x ¬p(x), I : ∃x p(x), O : ∃x ¬p(x). This square, pictured in Fig. 1.1, is usually
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denoted by the letters A, I (affirmative half) and E, O (negative half). The names of the vertices
come from a traditional Latin reading: AffIrmo, nEgO).

Contraries
A: ∀x p(x) E: ∀x ¬p(x)

S
u
b
-a

ltern
s

Sub-contraries
I: ∃x p(x) O: ∃x ¬p(x)

S
u
b
-a

lt
er

n
s

ContradictoriesContra
dict

orie
s

Fig. 1.1. Square of opposition

Note that we assume that some x do exist, thus avoiding existential import problems in Fig. 1.1.
The different edges and diagonals of the square exhibits simple logical relations: i) A and O, as well
as E and I are contraries; ii) A entails I, and E entails 0; iii) A and E cannot be true together,
while iv) I and O cannot be false together.

Another well-known instance of this square is in terms of the necessary (2) and possible (3)
modalities, with the following reading A : 2p, E : 2¬p, I : 3p, O : 3¬p, where 3p =def ¬2¬p
(with p 6= ⊥,>). Then the entailment from A to I is nothing but the axiom (D) in modal logic,
namely 2p→ 3p. This reading has an easy counterpart in terms of binary-valued possibility theory
replacing 2p by N([p]) and 3p by Π([p]) where [p] is the set of models of proposition p [17]. This
framework can be extended to graded possibility theory using a graded extension of the square of
opposition [8].

A relation-based reading of the square of opposition has been proposed in [7,8]. Let us now
consider a binary relation R on a Cartesian product X × Y (one may have Y = X). We assume
R 6= ∅. Let xR denote the set {y ∈ Y | (x, y) ∈ R}. We write xRy when (x, y) ∈ R holds, and
¬(xRy) when (x, y) 6∈ R. Moreover, we assume that ∀x, xR 6= ∅, which means that the relation R
is serial, namely ∀x,∃y such that xRy. We further assume that the complementary relation R (xRy
iff ¬(xRy)), and its transpose are also serial, i.e. ∀x, xR 6= Y and ∀y, Ry 6= X. These conditions
enforce a non trivial relation between X and Y . In the following, set complementations are denoted
by means of overbars.

Let S be a subset of Y . We assume S 6= ∅ and S 6= Y . The relation R and the subset S, also
considering its complement S, give birth to the two following subsets of X, namely the (left) images
of S and S by R

R(S) = {x ∈ X | ∃s ∈ S, xRs} = {x ∈ X | S ∩ xR 6= ∅} =
⋃

s∈S
Rs (1.1)

R(S) = {x ∈ X | ∃s ∈ S, xRs} =
⋃
s∈S Rs

and their complements

R(S) = {x ∈ X | ∀s ∈ S,¬(xRs)} =
⋃
s∈S Rs =

⋂
s∈S Rs =

⋂
s∈S Rs

R(S) = {x ∈ X | ∀s ∈ S,¬(xRs)} = {x ∈ X | xR ⊆ S} =
⋃

s∈S
Rs =

⋂

s∈S
Rs (1.2)

The four subsets thus defined can be nicely organized into a square of opposition, see Fig. 1.2.
Indeed, it can be checked that the set counterparts of the logical relations existing between the logical
statements of the traditional square of opposition still hold here. Namely,

– R(S) and R(S) are complements of each other, as are R(S) and R(S);
they correspond to the diagonals of the square;

– R(S) ⊆ R(S), and R(S) ⊆ R(S),
thanks to condition ∀x, xR 6= ∅. These inclusions are represented by vertical arrows in Fig. 1.2;

Logical Reasoning and Computation: Essays dedicated to Luis Fariñas del Cerro

129



Empty intersection
A: R(S) E: R(S)

In
clu

sio
n

Full union
I: R(S) O: R(S)

In
cl

u
si

o
n ComplementsComp

lem
ents

Fig. 1.2. Square of opposition induced by a relation R and a subset S

– R(S) ∩R(S) = ∅ ;
this empty intersection corresponds to the thick line in Fig. 1.2,

and one may have R(S) ∪R(S) 6= Y ;
– R(S) ∪R(S) = X;

this full union corresponds to the double thin line in Fig. 1.2,
and one may have R(S) ∩R(S) 6= ∅.

Conditions (c)-(d) hold also thanks to the X-normalization of R.

Note that this fits with a modal logic reading of this square where R is viewed as an accessibility
relation defined on X ×X, and S as the set of models of a proposition p. Indeed, 2p (resp. 3p) is
true in world x means that p is true at every (resp. at some) possible world accessible from x; this

corresponds to R(S) (resp. R(S)) which is the set of worlds where 2p (resp. 3p) is true. Moreover, the
entailment from A to I is the axiom (D) of modal logic which is known to require serial accessibility
relations [6].

Note that the relation R is serial if and only if R(S) ⊆ R(S). An interesting instantiation is in
terms of rough sets [7], where in the classical case R is an equivalence relation. Then given the above
definitions, we recognize that

– R(S) is the upper approximation of S wrt the relation R;

– R(S) is the lower approximation of S wrt the relation R;
– R(S) is the exterior region of S;
– R(S) is the complement of the lower approximation of S.

At this point one may observe that these relationships hold as well for fuzzy rough sets [13], if
we replace the approximation operators by fuzzy ones – consider fuzzy box and diamond operators
on crisp or fuzzy sets, also studied by Helmut Thiele [51]. A study of fuzzy rough sets in relation to
the square of opposition appears in Ciucci et al. [9].

2.2 Early attempts at bridging possibility theory and modal logics

The first attempt at bridging possibility theory with modal logic can be found in a paper co-authored
by L. Fariñas [27]. This paper establishes a formal parallel between rough sets and twofold fuzzy
sets [12], namely a pair of fuzzy sets of elements that respectively certainly and possibly belong to
an ill-known set. Then, taking advantage of the existence of the modal logic DAL for rough sets
[26] and of a modal logic view of incomplete information databases [41], the paper discusses some
possible options for a modal logic agreeing with possibility theory and with the issue of dealing with
incomplete information rather than indiscernibility as in the case of rough sets.

A couple of years later, the idea of building a modal logic from a graded accessibility relation
between different incomplete states of knowledge was investigated in detail in the case of binary-
valued possibility theory and suggested for the graded case [22]. Then a state of knowledge s2 is
accessible from a state s1 if and only if the information in state s1 is consistent with the information
in state s2, but more incomplete (which was formalized as a set inclusion in the binary-valued case).
In the general case, the inclusion becomes a matter of degree and the accessibility relation becomes
graded. But the underlying axiom system remained an open issue.

Another attempt at the semantical level at bridging uncertainty theories with modal logic can be
found in [46,48,47]; it includes the cases of possibility theory [31] and Shafer theory of evidence [30].

On the Relation between Possibilistic Logic and Modal Logics of Belief

130



In the case of possibility theory, the authors use an accessibility relation assumed to be transitive
and complete (connected), which corresponds to modal system S43. Necessity and possibility are
built as ratios of the number of worlds in which the corresponding propositions are true.

3 From MEL to GPL

This section completes the background by providing a brief introduction to the meta-epistemic logic
MEL, and to MEL+ and then to generalized possibilistic logic GPL.

3.1 MEL and MEL+, two simple epistemic logics

The usual truth values true (1) and false (0) assigned to propositions are of ontological nature
(which means that they are part of the definition of what we call proposition), whereas assigning
to a proposition a value whose meaning is expressed by the word unknown sounds like having an
epistemic nature: it reveals a knowledge state according to which the truth value of a proposition
(in the usual Boolean sense) in a given situation is out of reach (for instance one cannot compute
it, either by lack of computing power, or due to a sheer lack of information). It corresponds to an
epistemic state for an agent that can neither assert the truth of a Boolean proposition nor its falsity.

Admitting that the concept of “unknown” refers to a knowledge state rather than to an ontic
truth value, we may keep the logic Boolean and add to its syntax the capability of stating that
we ignore the truth value (1 or 0) of propositions. The natural framework to syntactically encode
statements about knowledge states of classical propositional logic (CPL) statements is modal logic,
and in particular, the logic KD. Nevertheless, if one only wants to reason about e.g. the beliefs of
another agent, a very limited fragment of this language is needed. The logic MEL [1,3] was defined
for that purpose.

Let us consider L to be a standard propositional language built up from a finite set of propositional
variables V = {p1, . . . , pk} along with the Boolean connectives of conjunction and negation ¬. As
usual, a disjunction ϕ ∨ ψ stands for ¬(¬ϕ ∧ ¬ψ) and an implication ϕ → ψ stands for ¬ϕ ∨ ψ.
Further we use > to denote ϕ ∨ ¬ϕ, and ⊥ to denote ¬>. Let us consider another propositional
language L2 whose set of propositional variables is of the form V2 = {2ϕ | ϕ ∈ L} to which the
classical connectives can be applied. It is endowed with a modality operator expressing certainty,
that encapsulates formulas in L. In other words L2 = {2α : α ∈ L} | ¬Φ | Φ ∧ Ψ .

MEL is a propositional logic on the language L2 and with the following semantics. Let Ω be the
set of classical interpretations for the propositional language L, i.e. Ω consists of the set of mappings
w : L → {0, 1} conforming to the rules of classical propositional logic. For a propositional formula
ϕ ∈ L we will denote by Mod(ϕ) the set of w ∈ Ω such that w(ϕ) = 1. Models (or interpretations)
for MEL correspond to epistemic states, which are simply subsets ∅ 6= E ⊆ Ω. The truth-evaluation
rules of formulas of L2 in a given epistemic model E are defined as follows:

– E |= 2ϕ if E ⊆Mod(ϕ)
– E |= ¬Φ if E 6|= Φ
– E |= Φ ∧ Ψ if E |= Φ and E |= Ψ

Note that contrary to what is usual in modal logic, modal formulas are not evaluated on particular
interpretations of the langage L because modal formulas in MEL do not refer to the actual world.

The notion of logical consequence is defined as usual Γ |= Φ if, for every epistemic model E,
E |= Φ whenever E |= Ψ for all Ψ ∈ Γ .

MEL can be axiomatized in a rather simple way (see [3]). The following are a possible set of
axioms for MEL in the language of L2:

(CPL) Axioms of CPL for L2-formulas
(K) 2(ϕ→ ψ)→ (2ϕ→ 2ψ)
(D) 2ϕ→ 3ϕ

(Nec) 2ϕ, for each ϕ ∈ L that is a CPL tautology, i.e. if Mod(ϕ) = Ω.
The only inference rule is modus ponens. The corresponding notion of proof, denoted by `, is

defined as usual from the above set of axioms and modus ponens.
This set of axioms provides a sound and complete axiomatization of MEL, that is, it holds that,

for any set of MEL formulas Γ ∪{ϕ}, Γ |= ϕ iff Γ ` ϕ. This is not surprizing: MEL is just a standard
propositional logic with additional axioms, whose propositional variables are the formulas of another
propositional logic, and whose interpretations are subsets of interpretations of the latter.
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MEL has been extended in [2] to allow dealing with not only subjective formulas that express
an agent’s beliefs, but also objective formulas (i.e. non-modal formulas) that express propositions
that hold true in the actual world (whatever it might be). The extended language will be denoted
by L+

2 , and it thus contains both propositional and modal formulas. It exactly corresponds to the
non-nested fragment of the language of usual modal logic.

More precisely, the language L+
2 of MEL+ extends L2 and is defined by the following formation

rules:

– If ϕ ∈ L then ϕ,2ϕ ∈ L+
2

– If Φ, Ψ ∈ L+
2 then ¬Φ,Φ ∧ Ψ ∈ L+

2

3ϕ is defined as an abbreviation of ¬2¬ϕ. Note that L ⊆ L+
2 and that in L+

2 there are no formulas
with nested modalities.

Semantics for MEL+ are given now by “pointed” MEL epistemic models, i.e. by structures (w,E),
where w ∈ Ω and ∅ 6= E ⊆ Ω. The truth-evaluation rules of formulas of L+

2 in a given structure
(w,E) are defined as follows:

– (w,E) |= ϕ if w ∈Mod(ϕ), in case ϕ ∈ L
– (w,E) |= 2ϕ if E ⊆Mod(ϕ)
– usual rules for ¬ and ∧

Logical consequence, as usual: Γ |= Φ if, for every structure (w,E), (w,E) |= Φ whenever (w,E) |= Ψ
for all Ψ ∈ Γ . The following are the axioms for MEL+ in the language of L+

2 :
(CPL) Axioms of propositional logic

(K) 2(ϕ→ ψ)→ (2ϕ→ 2ψ)
(D) 2ϕ→ 3ϕ

(Nec) 2ϕ, for each ϕ ∈ L that is a CPL tautology, i.e. if Mod(ϕ) = Ω.
The only inference rule is modus ponens.4

It can be proven that the above axiomatization of MEL+ is sound and complete with respect to
the intended semantics, as defined above. Moreover, as it could be expected, if we call MEL++ the
extension of MEL+ with the axiom:

(T) 2ϕ→ ϕ
then it can be shown that MEL++ is complete with respect to the class of reflexive pointed epistemic
models (w,E), i.e. where w ∈ E.

Actually, MEL, MEL+ and MEL++ capture different non-nested fragments of the normal modal
logics of belief KD, KD4, KD45 and S5 (see e.g. [6] for details). In [2] the following relationships are
shown:

– Let ϕ a formula from L2. Then MEL ` ϕ iff L ` ϕ,
for L ∈ {KD,KD4,KD45,S5}.

– Let ϕ a formula from L+
2 . Then MEL+ ` ϕ iff L ` ϕ,

for L ∈ {KD,KD4,KD45}.
– Let ϕ a formula from L+

2 . Then, MEL++ ` ϕ iff S5 ` ϕ.

Moreover, by recalling the well-known result that any formula of KD45 and S5 is logically equiv-
alent to another formula without nested modalities, the following stronger relationships hold:

– For any arbitrary modal formula ϕ, there is a formula ϕ′ ∈ L+
2 such that KD45 ` ϕ iff MEL+ ` ϕ′.

– For any arbitrary modal formula ϕ, there is a formula ϕ′ ∈ L+
2 such that S5 ` ϕ iff MEL++ ` ϕ′.

3.2 About generalized possibilistic logic

A natural generalization of MEL is to extend epistemic states E ⊆ Ω to rankings of possible worlds
in terms of plausibility. This can be done by means of a mapping π : Ω → U that assigns to each
possible world w a value π(w) from a totally ordered uncertainty scale 〈U,≤, 0, 1〉 (which we will
assume furthermore to be such that {0, 1} ⊆ U ⊆ [0, 1] and closed by n(x) = 1 − x), with the
following conventions:

– π(w) = 1 if w is fully plausible

4 An equivalent presentation could be to replace (Nec) by the usual Necessitation rule in modal logics, but
restricted to tautologies of propositional logic: if ϕ ∈ L is a theorem, derive 2ϕ.
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– π(w) = 0 if w is rejected as a possible world
– π(w) ≤ π(w′) if w′ is at least as plausible as w.

Such a mapping is called possibility distribution. A possibility distribution π : Ω → U induces a
pair of dual possibility and necessity measures on propositions, defined respectively as:

Π(ϕ) := sup{π(w) | w ∈ Ω,w(ϕ) = 1}
N(ϕ) := inf{1− π(w) | w ∈ Ω,w(ϕ) = 0} .

They are dual in the sense that Π(ϕ) = 1−N(¬ϕ) for every proposition ϕ.
Actually, possibilistic logic (see e.g. [11,15,18]), nowadays a well-known uncertainty logic, was

initially devised to reason with graded beliefs on classical propositions by means of necessity and
possiblity measures. For instance, the necessity fragment of possibilistic logic deals with weighted
formulas (ϕ, r), where ϕ is a classical proposition and r ∈ U is a weight, interpreted as a lower bound
for the necessity degree of ϕ. It has a very simple axiomatization:
(CPL) (ϕ, 1), for ϕ being a tautology of CPL

(GMP) from (ϕ, r) and (ϕ→ ψ, s) derive (ψ,min(r, s))
(Nes) from (ϕ, r) derive (ψ, s), if s ≤ r

A graded extension of MEL capturing possibilistic logic has been proposed under the name
Generalized Possibilistic Logic, GPL for short, in [20]. To deal with graded possibility and necessity
they fix a finite scale of uncertainty values Λ = {0, 1k , 2k , . . . , 1} and for each value a ∈ Λ \ {0}
introduce a pair of modal operators 2a and 3a. In this case models (epistemic states) are possibility
distributions π : Ω → Λ on the set Ω of classical interpretations for the language L1 with values in
Λ, and the evaluation of the modal formulas is as follows:

π |= 2aϕ if Nπ(ϕ) = min{1− π(w) | w(ϕ) = 0} ≥ a.

The dual possibility operators are defined as 3aϕ := ¬2s(1−a)¬ϕ, where the superscript s(a) refers
to the successor of a in Λ. The semantics of 3aϕ is the natural one, i.e. π |= 3aϕ whenever the
possibility degree of ϕ induced by π, Π(ϕ) = max{π(w) | w(ϕ) = 1}, is at least a. A complete
axiomatization of GPL is given in [20], an equivalent and shorter axiomatization is given by the
following additional set of axioms and rules to those of CPL[21]:

(K) 2a(ϕ→ ψ)→ (2aϕ→ 2aψ)
(D) 31>

(Nes) 2a1ϕ→ 2a2ϕ, if a1 ≥ a2
(Nec) 21ϕ, for each ϕ ∈ L that is a CPL tautology.

4 GPL+: extending generalized possibilistic logic with objective formulas

Let again Λ = {0, 1k , 2k , . . . 1} where k ∈ N \ {0} be the finite uncertainty scale we will assume.
Moreover we let Λ+ = Λ \ {0}, and if a ∈ Λ+, we denote by p(a) the value in the scale that preceeds
a.

In this section we extend the language of generalized possibilistic logic (GPL) to allow dealing
with not only subjective formulas that express an agent’s beliefs, but also objective formulas (i.e.
non-modal formulas) that express propositions that hold true in the actual world (whatever it might
be). The extended language will be denoted by Lk+2 , and it thus contains both propositional and
modal formulas. It exactly corresponds to the non-nested fragment of the language of usual modal
logic.

More precisely, the language Lk+2 of GPL+ extends the one of GPL, L+
2 , and is defined by the

following formation rules:

– If ϕ ∈ L and a ∈ Λ+ then ϕ,2aϕ ∈ Lk+2
– If Φ, Ψ ∈ Lk+2 then ¬Φ,Φ ∧ Ψ ∈ Lk+2

3bϕ is defined as an abbreviation of ¬2a¬ϕ, with b = 1− p(a). Note that L ⊆ L+
2 and that in L+

2

there are no formulas with nested modalities.
Semantics for GPL+ are given now by “pointed” possibilistic models, i.e. by structures (w, π),

where w ∈ Ω and π : Ω → Λ such that there is at least one w ∈ Ω with π(w) = 1. For each
proposition ϕ ∈ L, let Nπ(ϕ) = infw 6∈Mod(ϕ) π(w). The truth-evaluation rules of formulas of Lk+2 in
a given structure (w, π) is defined as follows:

– (w, π) |= ϕ if w(ϕ) = 1, in case ϕ ∈ L
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– (w, π) |= 2aϕ if Nπ(ϕ) ≥ a
– usual rules for ¬ and ∧

If we let πa = {w ∈ Ω | π(w) ≥ a}, note that (w, π) |= 2aϕ whenever π1−p(a) ⊆Mod(ϕ). Therefore,
it becomes clear that each 2a operator is a MEL+ modality.

The corresponding logical consequence is defined as usual: Γ |= Φ if, for every structure (w, π),
(w, π) |= Φ whenever (w, π) |= Ψ for all Ψ ∈ Γ .

The following are the axioms for GPL+ in the language of Lk+2 :
(CPL) Axioms of propositional logic

(Ka) 2a(ϕ→ ψ)→ (2aϕ→ 2aψ), for every a ∈ Λ+

(Da) 2aϕ→ 31ϕ, for every a ∈ Λ+

(Nes) 2aϕ→ 2bϕ, where b ≤ a
(Nec) 21ϕ, for each ϕ ∈ L that is a CPL tautology

The only inference rule is modus ponens. We will write Γ ` Φ to denote that ϕ can be derived
from a set of formulas Γ using the above axioms and modus ponens. Also, in what follows, we will
denote by `CPL the notion of proof of classical propositional language on the language Lk+2 taking
all 2-formulas as new propositional variables.

To prove completeness, we first recall the following useful lemma that allows to express deductions
in GPL+ as deductions in CPL.

Lemma 1. Let Γ ∪ {Φ} be a set of Lk+2 -formulas. Then it holds that Γ ` Φ iff
Γ ∪ {21ϕ | `CPL ϕ} ∪ {instances of axioms (Ka), (Da), (Nes) and (Nec)} `CPL Φ.

Theorem 1 (Completeness). For any set of Lk+2 -formulas Γ ∪{Φ}, it holds that Γ ` Φ iff Γ |= Φ.

Proof. From left to right is easy, as usual. For the converse direction, assume Γ 6` Φ. By the preceding
lemma and the completeness of PL, there exists a propositional evaluation v on the whole language
Lk+2 (taking 2-formulas as genuine propositional variables) such that v(Ψ) = 1 for all Ψ ∈ Γ ∪{21ϕ |
`PL ϕ}∪{instances of axioms (K), (D) and (Nes)} but v(Φ) = 0. We have to build a structure (w, π)
that it is a model of Γ but not of Φ. So, we take (w, π) as follows:

– w is defined as the restriction of v to L, i.e. w(ϕ) = v(ϕ) for all ϕ ∈ L.
– For each a ∈ Λ+, let us first define E1−p(a) =

⋂{Mod(ϕ) | v(2aϕ) = 1}. Then define π : Ω → Λ
as follows: π(w) = max{a ∈ Λ+ | w ∈ Ea}, where we adopt the usual convention of taking
max ∅ = 0. In other words, we define π in such a way that each a-cut πa coincides with Ea.

Note that, since by axioms (D) and (Nec) we have v(31>) = 1, E1 6= ∅. Then the last step is to
show that, for every Ψ ∈ Lk+2 , v(Ψ) = 1 iff (w, π) |= Ψ.

We prove this by induction. The case Ψ being a non-modal formula from L is clear, since in that
case w(Ψ) = v(Ψ). The interesting case is when Ψ = 2aψ. Then we have:

(i) If v(2aψ) = 1 then, by definition of E1−p(a), E1−p(a) ⊆Mod(ψ), and hence (w, π) |= 2aψ.
(ii) Conversely, if E1−p(a) ⊆ Mod(ψ), then there must exist γ such that v(2aγ) = 1 and Mod(γ) ⊆

Mod(ψ). Hence this means that γ → ψ is a PL theorem, and hence we have first, by the
necessitation axiom, that v(2a(γ → ψ)) = 1, and thus v(2aγ) ≤ v(2aψ) holds as well by axiom
(K), and therefore v(2aψ) = 1 holds as well.

As a consequence, we have that (w, π) |= Ψ for all Ψ ∈ Γ but (w, π) 6|= Φ.

Similar to the non graded case of MEL+, we may consider an S5-like extension of GPL+, capturing
the pointed possibilistic epistemic models (w, π), where the ‘actual world’ w is one of the non-
discarded possible worlds by π. In this case, the higher π(w) is, the more the actual world w belongs
to the set of plausible worlds, and hence we can speak of a notion of graded reflexive pointed
possibilistic epistemic models (w, π).

Definition 1. Let (w, π) be a pointed possibilistic structure and let a ∈ Λ+. We call (w, π) to be
a-reflexive when π(w) ≥ a.

Let us define GPL++
a to be the axiomatic extension of GPL+ with the following generalized (T)

axiom:
(Ta) 2aϕ→ ϕ

One can check that (Ta) is valid in all b-reflexive pointed possibilistic structures, with b = 1−p(a).
Indeed, if (w, π) |= 2aϕ then Nπ(ϕ) ≥ a, and thus π1−p(a) ⊆Mod(ϕ). But if (w, π) is b-reflexive, we
have π(w) ≥ 1− p(a), and hence w ∈ π1−p(a) ⊆Mod(ϕ). Therefore (w, π) |= ϕ as well.
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Theorem 2. GPL++
a is complete with respect to the class of (1− p(a))-reflexive pointed possibilistic

structures.

Proof. The proof is analogous to that of Theorem 1.

It is interesting to point out that Liau and Lin [36,37] propose a language similar to GPL+, albeit
using [0, 1] as a possibility scale (which forces them to introduce additional multimodal formulas to
deal with strict inequalities) and graded accessibility relations. Their tableau-based proof methods
could be of interest to develop inference techiques for GPL.

5 Concluding remarks

In this paper, following the fact that the fragment MEL+ (resp. MEL++) of the KD45 (resp. S5)
logic, the richest of doxastic (resp. epistemic) logics, involving modal formulas of depth 0 or 1 can
have simplified semantics, we show that this state of facts extends to graded modalities with the
extensions GPL+ and GPL++ of the generalized possibilistic logic GPL.

Besides, it has been recently shown that the graded notion of guaranteed possibility can be
expressed in GPL enabling us to express “all I know” statements [21] (see also [3] for the crisp case).
This result calls for for a deeper comparison with the modal logic presented in [10] that involves the
classical modalities of the possible and the necessary together with the nonstandard modalities that
are the guaranteed possibility and its dual, having also in mind that these four modalities and their
negations makes a cube of opposition [8] that generalizes the square of opposition.

Dedication

This article is particularly dedicated to Luis Fariñas del Cerro. It perfectly illustrates one of
the topics at the junction of our respective subjects of interest, namely modal logic and possibility
theory. Discussions along 35 years of friendship have repeatedly triggered two of the authors to dig
more and more about the relations between these two knowledge representation frameworks, thanks
also to the help of the two other authors of this note. Interestingly enough, while gaining mutual
understanding of our respective reference theories, each of us has remained a supporter of one’s own
theory. Let us hope that in the long range, the now obvious bridge between the two formalisms will
become routine knowledge so that both can be used appropriately by the same people according to
the particulars of the applications at hand.
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4. J. Y. Béziau. New light on the square of oppositions and its nameless corner. Logical Investigations, 10,
218-233, 2003.

5. C. Boutilier. Modal logics for qualitative possibility theory, Int. J. Approximate Reasoning, 10, 173-201,
1994.

6. B. F. Chellas. Modal Logic: an Introduction. Cambridge University Press,1980.
7. D. Ciucci, D. Dubois and H. Prade. The structure of oppositions in rough set theory and formal con-

cept analysis - Toward a new bridge between the two settings. Proc. 8th Int. Symp. on Foundations of
Information and Knowledge Systems (FoIKS’14), (C. Beierle, C. Meghini, eds.), Bordeaux, Mar. 3-7,
Springer, LNCS 8367, 154-173, 2014.

8. D. Ciucci, D. Dubois and H. Prade. Structure of opposition induced by relations. The Boolean and the
gradual cases. Annals of Mathematics and Artificial Intelligence, DOI:10.1007/s10472-015-9480-8, 2015.

9. D. Ciucci, D. Dubois and H. Prade. Structures of Opposition in Fuzzy Rough Sets. Fundamenta Infor-
maticae, vol. 142, no. 1-4, pp. 1-19, 2015

10. D. Dubois, P. Hajek and H. Prade. Knowledge-driven versus data-driven logics. J. of Logic, Language,
and Information, 9, 65-89, 2000.

Logical Reasoning and Computation: Essays dedicated to Luis Fariñas del Cerro

135



11. D. Dubois, J. Lang and H. Prade. Possibilistic logic. In: Handbook of Logic in Artificial Intelligence
and Logic Programming, Vol. 3, (D. M. Gabbay, C. J. Hogger, J. A. Robinson, D. Nute, eds.), Oxford
University Press, 439-513, 1994.

12. D. Dubois and H. Prade. Twofold fuzzy sets and rough sets - Some issues in knowledge representation.
Fuzzy Sets and Systems, 23 (1), 3-18, 1987.

13. D. Dubois and H. Prade. Rough fuzzy sets and fuzzy rough sets, Int. J. of General Systems, 17(2-3),
191-209, 1990

14. D. Dubois and H. Prade. Resolution principles in possibilistic logic. Int. J. of Approximate Reasoning, 4
(1), 1-21, 1990.

15. D. Dubois, H. Prade. Possibilistic logic: a retrospective and prospective view. Fuzzy Sets and Systems,
144, 3-23, 2004.

16. D. Dubois, H. Prade. Toward multiple-agent extensions of possibilistic logic. Proc. IEEE Int. Conf. on
Fuzzy Systems (FUZZ-IEEE’07), London, July 23-26, 187-192, 2007.
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Abstract. The so-called phenomenon of collective intelligence is now a burgeoning movement
([1]), with several guises and examples in many areas. We briefly survey some relevant aspects of
collective intelligence in several formats, such as social software, crowdfunding and convergence,
and show that a formal version of this paradigm can also be posed to logic systems, by means
of the idea of logic societies (cf. [2]). The paradigm of logical societies has lead to a new
notion of distributed semantics, the society semantics, with theoretical advances in defining
new forms of n-valued semantics in terms of k -valued semantics, for k < n, and applications
as in [3] to flying security protocols. We summarize the main advances of society semantics,
commenting on their general case, the possible-translations semantics ([4], [5]) and pointing to
some conceptual points and to some problems and directions still to be explored.

1 Logic societies and collective intelligence

In a reference paper that tries to characterize the movement of collective intelligence, broadly defined
as ‘groups of individuals doing things collectively that seem intelligent’ ([1]), a genomic approach
to crowd intelligence is attempted, in an effort to explain what makes groups smart and how teams
can be made more effective. Although examples like Google search and Wikipedia are easily seen
to be the result of efforts of distributed contributors, voting, stock market predictions, reputation
systems, question-and-answer sites, predicting the likelihood of low-probability events and several
other initiatives take profit of the common sense of groups, rather than individuals. Another case of
collective intelligence is crowdfunding (in the sense of crowd financing or collective funding), the effort
of a coalition of individuals involved in financing a third-party project. Crowdfunding is seen as an
entrepreneurial phenomenon that is revolutionizing traditional sources of finance, abandoning fund
raising usually done through banks, government agencies or investors in favor of collective funding.
What is interesting is that in the crowdfunding process people is not necessarily looking for direct
money profit, but in many cases they look for the product they would like to buy, or for the movie
they would like to see. In this way, crowdfunding can be regarded as a case of collective monetary
intelligence that subverts the traditional economic model, since people may be ultimately paying for
someone to make profit on them.

Collective intelligence is not any panacea, though. There is always the danger of transforming
collective intelligence into “collective stupidity”, generating cognitive biases that may distort the
judgment of individuals in a systematic way. A good discussion about cases of biases and distorted
heuristics that may influence judgments under uncertainty is found in [6].

Criteria for positive and useful collective intelligence are proposed in [7], condensed into four
categories: diversity of opinions, independence, decentralization, and aggregation. Thinking from
the point of view of a group of agents (human or machines), diversity of opinions means that each
agent in the group should draw conclusions from her/its private information; independence means
that each agent’s opinion should not be influenced by other group members; decentralization refers
more concretely to the ability of each agent to draw from own sources, and aggregation refers to
the availability of mechanisms to lead to a global group conclusion. What is interesting, from our
perspective, is that these criteria referring to diversity of opinions, independence, decentralization,
and aggregation are present, in a formalized way, in the central idea of society semantics (first con-
nected to computer science in [3] 3). Such semantics models the highly complex process of combining

3 A Ph.D. thesis jointly supervised by L. Fariñas del Cerro and W. A. Carnielli.



(sometimes contradictory) information or behavior originating from different sources and drawing
sensible conclusions from them.

Another interesting case of collective intelligence is the merging of distinct technologies coming
from engineering, physical sciences, human sciences and life sciences into a common, more complex
model. The so-called NBIC (nano-bio-info-cogno) model, for instance, works by transforming en-
gineering and physical sciences taking advantage from biological models. Information technology,
nanotechnology, quantum mechanics and statistics, combined with modeling and simulation are also
transforming life sciences and physical sciences.

This mode of integration of disciplinary approaches that were previously viewed as watertight
compartmentalized now leads to what is considered to be a “Third Revolution” in science (cf. [8], a
white paper signed by twelve scientists), a new society of sciences that does not rest on a particular
scientific advance, but collectively takes profit on the combination of collective strategies, methods
and views.

Some intrinsic connections between crowd intelligence and the paraconsistent reasoning paradigm
are found for instance in [9], where some techniques known as “consider the opposite” or “dialectical
bootstrapping” are investigated, by which the wisdom of crowds can be simulated by a single mind
averaging its own conflicting opinions (p. 233):

“ which prompt people to consider knowledge that was previously overlooked, ignored,
or deemed inconsistent with current beliefs by, for example, asking them to think of reasons
why their first judgment might be wrong”.

An interesting consequence is that dialectical bootstrapping, taking into account contradictory
(or inconsistent, as some authors prefer) information, can lead to higher accuracy than the standard
case. This works as a formidable evidence in favor of paraconsistent reasoning, where the presence
of contradictions, instead of destroying reasoning, may enhance the rational capacity. More on this
topic in Sections 2 and 3

Society semantics, the logic fashion of this paradigm, are a direct heir of the possible-translations
semantics ([4], [5], better reworked in [10]), designed as a tool to devise acceptable (in the sense
of being at the same time strongly adequate and intuitively palatable) semantics for non-classical
logics. The main components of the possible-translations semantics are logic systems, taken to be
sets (of sentences) endowed with a consequence relation, and translations understood as morphisms
between logics, i.e. maps preserving their consequence relations. The idea behind possible-translations
semantics is to base an interpretation to a given sentence α of a logic L on the combination of an
appropriate set of translations t(α) into a class of logics with known semantics.

Several paraconsistent logics, despite not being characterizable by finite matrices, can be char-
acterized by a suitable combination of three-valued logics. For those logics, a decidable procedure
is immediate, since the evaluation of a given sentence amounts to evaluating a finite collection of
its possible translations using the three-valued matrices. In certain particular cases, many-valued
logics themselves can be seen as suitable combinations of copies of classical logic, thus giving rise
to the concept of society semantics. Possible-translations semantics can be naturally seen as a way
to decompose a complex logic into its ingredients. This way of analyzing a complex logic into less
complex components is called “splitting logics”, and provides a powerful tool to combine logics (a
full theoretical account of combination of logics with lots of examples is given in the book [11]).

Society semantics and possible-translations semantics are based on the intuition that the reason-
ing of a society can be substantially distinct from the reasoning of its members, and that in both
levels a formal calculus can be used to express such reasoning.

Society semantics has been successfully used as a formal account of distributed control in a
multi-agent scenario in the case of aircraft collision control: since pilots usually do not possess
complete knowledge about each other, their reasoning involve concepts of mutual belief, knowledge
about knowledge, time planning, and so on, but they have to be prepared to reason in the presence
of contradictions. A failure of being unable to reason taking contradictions into account may be
disastrous. Flight instruments are not always reliable, and contradictory warnings from the aircraft’s
flight computer may cause pilots to believe, for instance, that they are at safe altitude, when this is
not the case, due to lack of protocols able to analyze contradictory situations. Many flying accidents
could be explained by this kind of attitude. In the famous case of Air France Flight 447 from Rio
de Janeiro to Paris which crashed on 1 June 2009 killing aircrew, cabin crew and all 228 passengers,
crystal ice was blocking the pitot tube intake, causing a contradiction in instrument indications. The
crew supposedly reacted incorrectly in the face of such contradictions and ultimately led the aircraft
to an aerodynamic stall which caused it to impact the ocean.
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In order to use ideas behind society semantics to improve flight security under conflict situation,
a natural proposal was to integrate the society of agents in a multi-modal system, resulting into the
systems KB© and SKB© (see [3]). The implemented logic program was based on a modal resolution
paradigm using TIM (Toulouse Inference Machine) (cf. [12] and [13]).

In the society formed by perfectly rational agents, contradictions may arise because the (local)
information produced by the agents must be processed in a higher (global) level. In this way, the
society of agents must be able to identify and support contradictions and to draw sensible inferences
taking such contradictions into account. In order to accomplish this task, the society should be
endowed with a formal system which incorporates the logics of the agents, expressing their mutual
contradictions and making possible to deduce sound information in such an environment.

In intuitive terms, society semantic offers a clear and natural interpretation for the logical behavior
of groups of agents where any member holds or deducts a particular assertion, and another may
deduct or hold the negation of the same assertion. In a sense, something of a similar nature was
also proposed by S. Jaśkowski in his suggestions for a discussive logic (cf. [14]), where he defended
the interest for contradictory deductive systems in terms of combinations of different opinions into a
single system. Not surprisingly, Jaśkowski’s better known logic D2 is an LFI (that is, a paraconsistent
member of the family of logics of formal inconsistency, see [10] for a detailed explanation).

Society semantics are able to express the fact that the reasoning of an ensemble of classical agents
is not necessarily classical. Although an agent could reason with classical logic as an individual,
her/its social behavior in a society of agents could be expressed by a different logic. For example,
if a classical agent holds an assertion A and another holds the assertion ¬A, the society where they
are inserted must be prepared to cope with this situation. A collection of societies is, by its turn,
another society, and hence a hierarchy can be formed, each level equipped with a distinct logic. The
most interesting cases occur when such logics are restricted to finite-valued logics.

2 Formalizing society semantics: from credulity to scepticism

In formal terms, a society S is composed by a denumerable (not necessarily finite) set of agents
S = {Ag1, Ag2, · · · , Agn, · · · } where each agent Agi is a pair Agi = (Ci, Li) formed by a collection Ci of
sentences (in particular, propositional variables) in a formal language (intuitively interpreted as the
set of propositions accepted by the agent) and by an underlying logic Li.

In the case where all agents are subjected to the laws of classical propositional logic (we call
them classical agents) the logic Lg of the society coincides with the deductive machinery of Classical
Propositional Calculus (CPC) and Ci are sentences (or propositional variables) in the language gen-
erated by propositional variables and connectives →, ∧, ∨, ¬. Each agent can be naturally identified
with the set of propositions which it accepts.

In such a particular case where all agents are subjected to CPC, each agent can be regarded as
being completely “rational” (that is, classical). It is interesting to note, however, that even a group of
classical reasoners may present a non-standard reasoning capacity, depending on the rules governing
their mutual behavior.

A society is said to be biassertive if negation is not truth-functional (that is, if the truth value
of ¬A does not depend functionally on the truth-value of A). In this case, A and ¬A can occur as
primitive, for certain types of formulas A.

An agent Ag accepts a formula A, denoted by Ag |= A, if all classical valuations which satisfy the
sentences of Ag also satisfy A. Interesting examples occur in voting schemas, as in the process of
refereeing papers for a scientific congress. Suppose that a committee (that is, a society of referees)
has adopted an open policy, in the sense of supporting the opinion of accepting a paper if at least one
of the referees votes positively, and supporting the opinion of rejecting it if at least one of them gives
a negative vote. We can express a referee’s opinions by atomic formulas, and the committee’s final
opinions by non-atomic formulas. Under such rules this society may appear to be itself contradictory,
although each agent is perfectly non-contradictory. This incoherence, however, expresses exactly the
information that at least two agents disagree about one given task (in the case, in its opinion about
a given paper).

The satisfiability relation between a society S and an arbitrary sentence A is inductively defined
in the usual way for non-atomic formulas, and for atomic p is defined as given below.

DIfferent kinds of society can be defined. The behavior of a society can range from credulity
to scepticism, depending on the totality of agents to be taken into account for the society’s final
decision: the more agents are consulted, the more sceptical a society will be said to be. The fewer
agents are consulted, the more credulous a society will be. The extreme case where unanimity is
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required gives rise to “closed” societies; the antipode case where any singular opinion deserves to be
represented gives rise to “open” societies 4.

A society is open if it accepts a sentence in case any of its agents does. Open societies are denoted
by S +. Formally:

(obs-1) S + |= p iff there exists an agent Ag in S such that p ∈ Ag

(obs-2) S + |= ¬p iff there exists an agent Ag in S such that p < Ag

(obs-3) S + |= A→ B iff S + 6|= A or S + |= B

(obs-4) S + |= A ∧ B iff S + |= A and S + |= B

(obs-5) S + |= A ∨ B iff S + |= A or S + |= B

(obs-6) S + |= ¬A iff S + 6|= A for A not the form p.

A sentence A is satisfiable in an open society if there exists S + such that S + |= A, and is said to
be an open-tautology if it is satisfiable in every open society.

It is clear that S + 6|= (p∧¬p)→ q in the case where S + |= p, S + |= ¬p and S + 6|= q, so (p∧¬p)→ q
is not an open-tautology. Similarly, p→ (¬p→ q) is not an open-tautology.

Thus, although the internal logic of the agents is classical, the external logic of open societies
supports contradictions without crashing into trivialization (in particular, the implication in an open
society has a paraconsistent and relevant character).

Now, if in the example above, the committee adopts a closed policy, in the sense of supporting
the opinion of accepting a paper only if all the referees vote positively, and supporting the opinion of
not accepting it only if all of them give negative votes, a similar explanation justifies the definition
to follow.

A society is closed if it accepts a formula only in case all of its agents does. Closed societies are
denoted by S −. We define only the atomic cases (other clauses are defined similarly as above):

(cbs-1) S − |= p iff for every agent Ag in S , p ∈ Ag

(cbs-2) S − |= ¬p iff for every agent Ag in S , p < Ag

A formula A is satisfiable in a closed society if there exists S − such that S − |= A, and is said to
be a closed-tautology if it is satisfiable in every closed society.

An interesting question concerns the notion of representativeness: for a finite number of agents,
it is relevant to determine, for closed and open logic societies, how many agents can represent the
whole society, or in other words, what is the effect of the cardinality of agents in the society. It can
be proved that, for both open and closed societies, the rules adopted always make it possible to
separate the agents into two blocks, which means that societies of these kinds can be replaced by
societies having only two agents:

Theorem 1. Let S + (respectively, S −) be an open (respectively, closed) biassertive society. Then
there exists an open (respectively, closed) biassertive society S 2+ (respectively, S 2−) containing at
most two agents such that S 2+ |= A iff S + |= A (respectively, S 2− |= A iff S − |= A) for every formula A.

Proof. A detailed argument is found in [2]. �

The above theorem permits to establish close connections between logic societies and finite-valued
logics, by means of introducing hierarchies of societies.

3 Many-valued logics and logic societies

The three-valued system P1 was introduced in [15] with the intention to define the simplest possible
paraconsistent calculus. P1 is a subsystem of CPC, and is maximal in the sense that, by adding to its
axioms any classical tautology which is not a P1-tautology, the resulting system collapses into CPC.

Axiomatically P1 is characterized in the following way, in the language of CPC:5

4 No connections to K. Popper’s critique of historicism and his defense of liberal democracy, as in his The
Open Society and Its Enemies.

5 The original formulation of [15] includes an extra axiom which can be deduced from the ones given here.
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(P1-1) A→ (B→ A)

(P1-2) (A→ (B→ C))→ ((A→ B)→ (A→ C))

(P1-3) (¬A→ ¬B)→ ((¬A→ ¬¬B)→ A)

(P1-4) (A→ B)→ ¬¬(A→ B)

and modus ponens is the only inference rule. P1 can be proved (cf. [15]) to be semantically
characterized with respect to the following matrices, where → and ¬ are primitive, and ∧ and ∨ are
defined. The truth-values are T,T ∗, F, of which T,T ∗ are distinguished. Intuitively, T and F mean
plain truth and falsity, whereas T ∗ can be understood as “truth by default”, or ”by the lack of
evidence to the contrary”.

T T ∗ F
P1¬ F T T

P1

→ T T ∗ F
T T T F
T ∗ T T F
F T T T

The primitive negation of P1 is paraconsistent in the sense that, for example, A → (¬A → B) is
not a P1tautology, as it can easily be checked from the given matrices assigning the truth-value T ∗

to A and F to B. It is possible, however, to define in P1 a strong negation ¬A which recovers the full

power of classical negation: ¬A =de f
P1¬(

P1¬A
P1

→A), giving the following table:

T T ∗ F
¬ F F T

Using the strong negation, we can also define conjunction A
P1

∧B and disjunction A
P1

∨B in P1 as
follows:

A
P1

∧B =de f ¬(A→ ¬B)

A
P1

∨B =de f (¬A→ B)

P1

∧ T T ∗ F
T T T F
T ∗ T T F
F F F F

P1

∨ T T ∗ F
T T T T
T ∗ T T T
F T T F

P1 has a dual, the system I1 introduced in [16] as a three-valued counterpart of the system P1.
The truth values of I1 are T, F∗, F, of which only T is distinguished. Intuitively, again T and F mean
plain truth and falsity, whereas F∗ can be understood as ”false by default”, or ”by the lack of positive
evidence”.

The system I1 instead of paraconsistent, is paracomplete in the sense that, for example, ¬¬A→ A
is not an I1 tautology, as can be checked from the matrices below, assigning the truth-value F∗ to A.
In I1 all the axioms of the well-known Heyting system for intuitionistic logic are valid, and the law
of excluded middle is not valid (for the disjunction defined below).

The axioms of I1 (in the same language of CPC, having modus ponens as the only rule) are:

(I1-1) A→ (B→ A)

(I1-2) (A→ (B→ C))→ ((A→ B)→ (A→ C))

(I1-3) (¬¬A→ ¬B)→ ((¬¬A→ B)→ ¬A)

(I1-4) ¬¬(A→ B)→ (A→ B)

I1 can be shown (cf. [16]) to be semantically characterized with respect to the matrices below,
where → and ¬ are primitive connectives. As mentioned before, the truth-values are T, F∗, F, and T
is the only distinguished value:
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T F∗ F
I1¬ F F T

I1

→ T F∗ F
T T F F
F∗ T T T
F T T T

It is possible to define in I1 a dual strong negation ¬̃A which has all the properties of classical

negation: ¬̃A =de f A
I1

→I1¬A giving the following table:

T F∗ F
¬̃ F T T

We can also define conjunction A
I1

∧B and disjunction A
I1

∨B for this system in the following way:

A
P1

∧B =de f ¬(A→ ¬̃B)

A
P1

∨B =de f (¬̃A→ B)

I1

∧ T F∗ F
T T F F
F∗ F F F
F F F F

I1

∨ T F∗ F
T T T T
F∗ T F F
F T F F

It can be shown that biassertive societies are essentially equivalent to three-valued logics. A
detailed proof of the next theorem can be found in [2].

Theorem 2. The logic of biassertive open (respectively, closed) societies is P1. (respectively, I1).

Society semantics can be seen as a way to restore bivalence to certain logics, at the cost, how-
ever, of losing truth-functionality. The Polish logician Roman Suszko had already suggested that
Lukasiewiczs logic L3 could have a bivalent semantics, and in a famous paper in the 1970s even ac-
cuses Lukasiewicz of having perpetrated a fraud (or a humbug, in his words), but had not proposed a
method for finding it. Several other results by R. Wójcicki, A. Lindenbaum N. da Costa and D. Scott
show that any many-valued semantics can be reduced to a two-valued one (see [17] for an account of
this chapter in the history of logic, and for a method to reduce many-valued semantics to two-valued
equivalents).

As a semantic tool, society semantics are by no means devoted to paraconsistency or paracom-
pleteness. Other logics can be seen to be characterized by society semantics: a nice example is
Lukasiewiczs logic L3. Based on [18] we define a lukasiewiczian society S L as a closed society for
atomic sentences, with the following clauses for non-atomic sentences:

(obs-3) S L |= A→ B iff S L |= ¬A or S L |= B, or

S L 6|= A, S L 6|= ¬A, (S L 6|= B, S L 6|= ¬B

(obs-4) S L |= ¬(A→ B) iff S L |= A and S L |= ¬B)

(obs-5) S L |= ¬¬A iff S L |= A.

The proof in [18], although not complex, is worth commenting. By adapting Theorem 1 above
for the case of closed societies, it is enough to consider at most two agents. Indeed, by defining
agents Ag1 and Ag2 such that the variables accepted by the agents are: Var1 = {p : S L |= p} and
Var2 = {p : S L |= ¬p}, it is easy to check that S 2L = {Ag1, Ag2} has the desired property. So no
lukasiewiczian society needs to be represented by more than two agents.

Following [18], we call an L3-sociotautology any sentence A such that for any lukasiewiczian society
S , S |= A holds. The next theorem establishes that L3-sociotautologies coincide with the tautologies
of the Lukasiewiczs logic L3, considering the usual set of values {0, 1

2 , 1, }, the unary set of designated
truth-values as D = {1} and the usual definitions of implication and negation in L3.

Theorem 3. Given a lukasiewiczian society S , one may define a three-valued valuation v such that
v(A) ∈ D iff S |= A for every sentence A in the language of L3. Conversely, given a three-valued
valuation v, one may define a lukasiewiczian society S such that S |= A iff v(A) ∈ D iff S |= A for
every sentence A in the language of L3.
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Proof. A detailed argument is carried out in [18] divided into two propositions called, respectively,
S-Convenience and S-Representability. �

It does not seem to be difficult to extend this to other many-valued logics in the hierarchy of
Lukasiewicz, but a systematic study in this direction is still missing.

Several generalizations of the idea of society semantics, reformulating intuitions of society se-
mantics in a wider setting, are done in [19], by characterizing hierarchies of paraconsistent logics
called Pn and paracomplete logics In (for n any natural number). The paper also shows that a new
hierarchy of logics called InPk, which are simultaneously paraconsistent and paracomplete, can be
characterized by society semantics as well.

4 Social choice theory and social software

Many-valued logics are not regarded nowadays as just a futile mathematical exercise or any abstruse
philosophical delirium, but find practical use, for instance, in information processing, The idea of
using logics with finite-valued semantics (especially three-valued and four-valued ones) in informa-
tion processing is not new, and is justified by the practical necessity to deal with vast amounts of
information, often incomplete or contradictory, provided by a multitude of various sources. The anal-
ysis in [20] shows that standard existential information processing (EIP) structures are not enough
since there are EIP processor valuations which cannot be obtained from any finite number of source
valuations.

The authors consider their work an extension of society semantics, and call attention to a point
of further interest for the topic of the present paper, namely, the questions of collective judgment as
connected to social choice theory, as they put it in [20], p. 1027:

Further, the problems considered in our work bear an obvious relationship to the works
on social choice ... where a group of individuals aggregates their individual judgments on
some interconnected propositions into the corresponding collective judgment. Hence, another
direction of future work would be to try to apply our approach to the problems of social choice

There is indeed much to be investigated concerning logic and judgment aggregation, as in [21]
where the problem of manipulating rules for aggregating judgments on logically connected proposi-
tions is analyzed. Regardless of specific details, it seems that a logical approach to social situations
presents itself as an important perspective, paraconsistent logic in particular for the cases where con-
tradictory judgments may arise – and one should not forget, of course, that the contrast of judgments
and opinions lies in the kernel of true democracy.

The term social software refers to the interest of analyzing social procedures by means of the
formal methods of logic and computer science, as coined by Rohit Parikh in [22]. Examples of such
formal methods applied to social questions are cake-cutting algorithms: for two people, the well-
known algorithm “‘I cut, you choose” is a simple method to ensure fairness, and similar strategies
can be extended to more than two people. Voting procedures are another example, and connect the
area with game theory, social choice theory and behavioral economics.

SOme modal logics (so-called coalition logics) intend to formalize reasoning about effectivity in
game contexts, where the modality [C]ϕ expresses that coalition C is effective for ϕ is proposed in
[23]. Paraconsistency and its connection to social software is investigated in [24], where a pluralistic
view on the topic is motivated by examples like Parrondo’s paradox in game theory, where in some
cases a combination of losing strategies can become a winning strategy. Suppose that there are two
games to be played: Game 1, where you inescapably lose $1 every time you play, and Game 2, which
is equally perverse: if, after a move, you are left with an even number of dollars, you win $3, but
if you are left with an odd number of dollars, you lose $5. If you start playing this game with $10,
for example, by playing Game 1 you will lose all your money in 10 rounds. On the other hand, by
playing Game 2, you will also lose all your money in 10 rounds according to the sequence:

10 13 8 11 6 9 4 7 2 5 0.
However, if you play both games in the order of “Game 2 - Game 1 - Game 2 - Game 1 - ....,

then you will always win according to the sequence:
10 13 12 15 14 17 . . .
The paradoxical result is the fact that by combining two losing strategies, an unexpected winning

strategy emerges. By the point of view of society semantics, if yourself, acting as Agent 1 play Games
1 and acting as Agent 2 play Games 2, the society formed by the two agents (your strategic moves)
completely change the situation. The collective intelligence formed by the two agents, in this case,
cooperate in a formidable way, taking profit from an ostensively contradictory configuration.
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5 ND-semantics and society semantics as specialized possible-translations
semantics

The idea of non-deterministic (ND) semantics, introduced and developed by A. Avron and collabo-
rators ([25], [26]), is a natural generalization of the notion of truth-functionality by means of more
generalized matrices called Nmatrices. In a Nmatrix, the truth-value of a complex formula is chosen
non-deterministically from some non-empty (usually finite) set of options. A legal valuation in a
Nmatrix is a mapping from formulas to logical values satisfying some constraints. Nmatrices are a
powerful tool, as they somehow conserve the advantages of ordinary many-valued matrices, while
being applicable to a much wider range of logics; see, for instance, [27] where ND-semantics are,
quite surprisingly, applied to characterize certain modal logics, known to be uncharacterizable by
means of finite collections of finite matrices. Nmatrices are a descendant of the possible-translations
semantics, introduced in [4], and can also be applied to LFIs and paraconsistent logics in general. In-
deed, a proof showing that ND-semantics are a particular case of possible-translations semantics can
be found in [28]. ND-semantics are thus sisters of society semantics ([2]) and are both special cases
of possible-translations semantics, whose strong aspect lies in its generality. If not carefully treated,
however, possible-translations semantics may be too general, and an ongoing project is to charac-
terize relevant subclasses of such semantics. From this perspective, society semantics, ND-semantics
and even dyadic semantics ([17]) can be characterized as particular forms of possible-translations
semantics with specific restrictions on the translations.

6 Closing

We defended the view that the idea of society of things permeates several phenomena such as col-
lective intelligence in several guises, social software, crowdfunding and convergence, the merging of
approaches coming from engineering, physical sciences, human sciences and life sciences into a com-
mon model. Several examples helped to illustrate this tendency, which as we argue, can be in some
cases formalized by means of the idea of society semantics, regarded as an ensemble of independent
agents whose behavior defines the context of their collective aggregate. A survey of the main features
of society semantics, their connections to non-deterministic semantics, to dyadic semantics and their
common ancestrality from the broad notion of possible-translations semantics was discussed, as well
as some connections between crowd intelligence and the paraconsistent reasoning paradigm, in view
of the inherent risk of contradictions present in such aggregates.

The potentialities of such semantic aggregates (namely, society semantics, non-deterministic se-
mantics, dyadic semantics and possible-translations semantics) for logic itself have been emphasized,
and many problems connected to this area await to be tackled – perhaps one of most relevant
being the relationship between possible-translations semantics and possible-worlds semantics: are
those general semantic paradigms reduced one another? Are society semantics reducible to cases of
possible-worlds semantics with a finite number of finite worlds? Those are questions for logic, but
also for the foundations of collective intelligence, that we hope to have contributed to make more
perspicuous.
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Abstract. We give an account of stable reasoning, a recent and novel approach to problem solving from
a formal, logical point of view. We describe the underlying logic of stable reasoning and illustrate how it
is used to model different domains and solve practical reasoning problems. We discuss some of the main
differences with respect to reasoning in classical logic and we examine an ongoing research programme
for the rational reconstruction of human knowledge that may be considered a successor to the logical
empiricists’ programme of the mid-20th Century.

1 INTRODUCTION

For most of the 20th Century logic as a scientific discipline was dominated by the paradigm of Frege and
Hilbert and the aim of providing mathematics with a secure logical foundation. This challenging goal contin-
ued to dominate research programmes in logic long after Gödel’s incompleteness theorems showed that the
initial expectations were unreachable. Above all the Frege-Hilbert paradigm was and still is based on a stan-
dardised, classical conception of logic, on the axiomatic method as the basis for reconstructing mathematical
knowledge and on the method of deduction as the central element in logical theorem proving.

The paradigm of Frege and Hilbert was challenged by various critics throughout its lifetime but only
in recent years has it been eclipsed by more progressive research programmes within computational logic.
A lively and searing critique of the Frege-Hilbert paradigm was published by the logician Carlo Cellucci
in 1998 [6]. Cellucci calls the standard paradigm mathematical logic and discusses at length many of its
significant features. Besides its emphasis on providing a secure foundation for mathematics, key features
include the prominence of the axiomatic method, the idea of theories as embodying certain truths and theorems
as logical deductions from these. Cellucci questions many of the assumptions of the paradigm, especially the
manner in which it focuses on closed conceptual systems and problems of justification, while paying almost
no attention to problems of (mathematical) discovery that may involve hypothetical reasoning, induction,
abduction, analogy, heuristics and other methods. As a contrast to the axiomatic method Cellucci devotes
much attention to describing and motivating the analytic method in mathematical discovery and problem
solving4 and justifying the importance of treating open systems and fallible reasoning.

While Cellucci doesn’t offer a detailed description of modern computational logic, it is evident that some
of the positive features of the analytic method can be found in computational approaches to logic and logic-
based programming languages. He himself cites with approval six different features of Prolog that mirror
aspects of the analytic method and reasoning with open systems (while at the same time noting that there are
other important features of the analytic method that are not captured in Prolog). Since the publication of [6]
computational logic has made many advances. One of them has been the elaboration of a new approach to
logic-based programming known as answer set programming or ASP and the development of its underlying
logical paradigm which we will call stable reasoning. Unlike Prolog, this is not a fully-fledged programming
language, but rather a general approach to logic-based problem solving that can also be efficiently imple-
mented in (answer set) solvers.

We cannot claim that stable reasoning currently satisfies all the requirements proposed by Cellucci for
constituting a new and wholly adequate paradigm for logic. For one thing, the focus in [6] is on mathematics
and mathematical problem-solving and discovery, while stable reasoning has a broad range of applications to
many areas of inquiry. However, we do suggest that

1. it is distinctly different from the Frege-Hilbert paradigm of mathematic logic;

4 Closely associated with Plato and other classical scholars.



2. its approach to problem-solving has significant points in common with the analytic method;
3. it is able to embrace various aspects and methods of discovery;
4. it is able to deal with dynamical and open systems.

In this paper we will discuss stable reasoning, focussing mainly on items 1 and 2 above, while mentioning 3
and 4 briefly towards the end.

Stable reasoning is a recent and novel approach to problem solving from a formal, logical point of view.
An important difference compared to reasoning based on classical logic is that stable reasoning can take
account of default assumptions and conclusions that follow from them. It is not based on two-valued classical
logic, since this does not allow for the distinction between certain truth and truth-by-default or the kind of
truth that can be assumed when there is no evidence to the contrary. To account for defaults in the setting
of classical logic usually special syntactic devices are employed or one has to distinguish between different
kinds of inference, some defeasible others not. Stable reasoning does not require any special inference rules or
syntactic devices because it is based on a many-valued logic where precisely the distinction between certain
truth and truth-by-default can be made. There is just one basic kind of negation and one kind of inference.

There is another important difference compared to the axiomatic tradition of Frege and Hilbert that domi-
nated the methodology of formal logic for much of the 20th Century. Stable reasoning is closer to what might
be termed a problem-solving approach to formal reasoning. In the axiomatic tradition a mathematical or em-
pirical domain is formalised by introducing a language or vocabulary and a set of sentences (axioms) of the
language intending to capture once and for all the entirely of knowledge governing that domain. Mathematical
theorems are inferred through logical deduction from the axioms. Predictions or explanations from empirical
theories are also deduced from their axioms once the initial conditions of a system are specified.

By contrast, stable reasoning is problem-driven. One wishes to find a solution or several possible solutions
to a certain problem. One describes the problem domain by specifying the entities and relations that govern
the domain. This description need not be complete nor need it capture the entirety of knowledge once and
for all, but merely offer hypotheses sufficient to produce adequate answers or solutions. Some descriptions
may indeed be robust and reusable, others may be fragile and of temporary validity/use. As in the classical,
axiomatic case, answers will be produced once certain facts or initial conditions are specified. These answers
or solutions are in general model-based. They are produced not by means of logical deduction or inference
from axioms plus initial conditions, but rather by computing a model or state of affairs that embodies the
solution in some obvious way.

To illustrate the difference between the two orientations, consider the following well-known graph-theoretical
problem.

Example 1 (Hamiltonian cycles). A Hamiltonian cycle of a graph G is a cyclic path that traverses each node
in G exactly once. The same graph may have different Hamiltonian cycles or none at all. ut

Suppose we want to obtain the Hamiltonian cycles of graph G in Figure 1.1. To this aim we must decide:

(a) how to represent the graph;
(b) how to represent the cycles;
(c) the type of logical reasoning task to obtain the desired solution.

Regarding (a), the obvious solution in Predicate Calculus is just using a pair of predicates, say Node(x) and
Edge(x, y), to respectively describe the nodes and edges of G. Still, even at this elementary level, a first
difference between the classical approach and stable reasoning already arises. In classical logic, if we just list
the set of ground atoms:

Node(0), Node(1), Node(2), Node(3),

Edge(0, 1), Edge(1, 2), Edge(1, 3), Edge(2, 0),

Edge(2, 3), Edge(3, 2), Edge(3, 0). (1.1)

this will leave free the possibility for other objects of becoming nodes or edges – we would have models
where, for instance, Edge(0, 2) could become true. In order to precisely capture the nodes and edges we
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Fig. 1.1. A simple graph with a pair of Hamiltonian cycles.

should actually use instead the pair of formulas5:

Node(x)↔ x = 1 ∨ x = 2 ∨ x = 3 ∨ x = 4 (1.2)
Edge(x, y)↔ (x = 0 ∧ y = 1) ∨ (x = 1 ∧ y = 2)

∨(x = 1 ∧ y = 3) ∨ (x = 2 ∧ y = 0)

∨(x = 2 ∧ y = 3) ∨ (x = 3 ∧ y = 2) ∨ (x = 3 ∧ y = 0) (1.3)

In the stable reasoning approach, however, the set of facts (1.1) would suffice because predicates are
subject to the so-called Close World Assumption (CWA). Informally speaking, this means that anything not
explicitly stated will be false by default. We could, of course, still use the stronger version (1.2) ∧ (1.3)
for stable reasoning, but the set of facts (1.1) is more flexible in the sense that new nodes or edges can be
included by the simple addition of new formulas, rather than manipulating the existing ones (this feature is
often referred as elaboration tolerance [20]). Predicates like Node(x) or Edge(x, y) whose extensions are
defined by enumerating their lists of (true) atoms conform what is usually called the extensional database (a
term inherited from Database theory) as opposed to those described by additional conditional formulas (or
rules in Logic Programming) which receive the name of intensional predicates.

Another important feature about CWA is that, if necessary, we can remove this assumption in a selective
way for any formula φ or, in particular, any atom P (x). To this aim, it just suffices with adding an axiom like:

P (x) ∨ ¬P (x) (1.4)

Note that although (1.4) has the form of a classical tautology (the so-called excluded middle axiom), it is not a
tautology for stable reasoning, since negation here has a different meaning. As said before, the effect of (1.4)
is that CWA for predicate P is removed, so it behaves in a “classical” way. For instance, adding the axiom
Node(x) ∨ ¬Node(x) would remove Node to be false by default.

Let us move now to consider problem (b), that is, how to represent Hamiltonian cycles. As any of them
visits all nodes in the graph, we obviously must refer to the set of edges involved in the cycle to differentiate
one from each other. In classical logic, we would typically represent sets of edges using some additional
notation: assume, for instance, that standard set terms are allowed. Then, we would use some predicate, say
HamCycle(s), to represent that the set s of edges constitutes a Hamiltonian cycle for the graph, including a
hypothetical set of axioms Γ (HAMG) that includes the graph description (1.2) ∧ (1.3) and the meaning of
predicate HamCycle. Under the axiomatic method, our problem (c) would then reduce to decide for which
sets s of edges we can derive Γ (HAMG) ` HamCycle(s). For instance, in our example, we should conclude
that this holds for s = {(0, 1), (1, 3), (3, 2), (2, 0)} and for s = {(0, 1), (1, 2), (2, 3), (3, 0)}. It is worth to
notice that as these two facts for predicateHamCycle(s) are derived as theorems, they will be simultaneously
true in all models of Γ (HAMG). In the general case, the extension of HamCycle would contain the whole
set of Hamiltonian cycles in any model of Γ (HAMG).

Under the stable reasoning approach, tasks (b) and (c) become model-oriented, rather than theorem-based.
One of the main features of this methodology is that we identify each solution of the original problem with
(a distinguished part of) each model of our logical representation. For instance, in our example, rather than
collecting all cycles in a single predicate HamCycle(s), our purpose is obtaining a different model per each
possible Hamiltonian cycle of the original graph. Using this approach, we need not dealing with sets any more:
we can just collect the edges in the current cycle (that is, the cycle represented inside the current model) as the
extent of some predicate, call it In(x, y). Thus, if we call again Γ (HAMG) to our logical representation of
the problem, we are interested in obtaining the different models M such that M |= Γ (HAMG) so that each
Hamiltonian cycle can be directly obtained by selecting some relevant information in each obtained model

5 We assume that free variables, like x, y here, are implicitly universally quantified.
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M . In our example, we should obtain a pair of models M1 and M2 such that:

M1 |= In(0, 1) ∧ In(1, 3) ∧ In(3, 2) ∧ In(2, 0)
M2 |= In(0, 1) ∧ In(1, 2) ∧ In(2, 3) ∧ In(3, 0)

and no other atoms for In(x, y) hold in each model.

Let us consider now how to specify Γ (HAMG) under the stable reasoning approach. Typically, we would
first consider models for all possible subsets of edges, and then include additional formulas that rule out the
ones that do not correspond to Hamiltonian cycles. In a first attempt, we could include:

Edge(x, y)→
(
In(x, y) ∨ ¬In(x, y)

)
(1.5)

In(x, y) ∧ In(x, z)→ y = z (1.6)
In(y, x) ∧ In(z, x)→ y = z (1.7)

together with a graph description, that is, an extensional database like (1.1).

As a first important remark, note that the consequent In(x, y) ∨ ¬In(x, y) in (1.5) has the form of an
excluded middle formula like (1.4). As we explained before, this means that predicate In(x, y) will not be
subject to CWA, provided that x, y is a pair of nodes forming an edge. As a result, the effect of (1.5) is that
we would have a model per each possible subset of edges in the graph. Formula (1.6) (resp. (1.7)) specifies
that we never pick two different outgoing (resp. incoming) edges for a given node x. These two formulas can
also be represented by using ⊥ in the consequent (formulas like these receive the name of constraints):

In(x, y) ∧ In(x, z) ∧ y 6= z → ⊥
In(y, x) ∧ In(z, x) ∧ y 6= z → ⊥

This first attempt (1.5)-(1.7), however, is not enough to capture Hamiltonian cycles yet. We can still get
disconnected groups of edges like, for instance, {(0, 1), (2, 3), (3, 2)} or even nodes that are not connected
at all. To rule out these cases, we should further specify that any node can be reached from another one. Cu-
riously, this property (graph reachability) is a well-known example of a problem that cannot be represented
in classical First Order Logic. So, in fact, if we tried to represent Hamiltonian cycles using the classical ax-
iomatic method, Γ (HAMG) should be represented in Second Order Logic. Under stable reasoning, however,
we can easily capture reachability with an auxiliary predicate Reach(x, y) defined with the pair of formulas:

In(x, y)→ Reach(x, y) (1.8)
In(x, z) ∧Reach(z, y)→ Reach(x, y) (1.9)

Since Reach(x, y) is subject to CWA, these two formulas behave as an inductive definition, as those fre-
quently used in Mathematics. In other words, Reach(x, y) is true if: (1) we have taken the edge In(x, y); or
(2) we took an edge to some z and we can reach y from that z, Reach(z, y). Otherwise, Reach(x, y) will
be false, due to CWA. A predicate like this, whose extension is determined by some rules like those above in
combination with CWA, receives the name of intensional predicate.

To complete our example, we would just further need to rule out models where we can find a pair of nodes
that are not reachable one from each other. This can be done using the formula:

¬∃x, y( Node(x) ∧Node(y) ∧ ¬Reach(x, y) )
or its equivalent representation as a constraint:

Node(x) ∧Node(y) ∧ ¬Reach(x, y)→ ⊥ (1.10)

Again, it is worth to note that, while (1.10) is classically equivalent to:

Node(x) ∧Node(y)→ Reach(x, y)

the latter has a quite different meaning under the stable reasoning approach – we would read it as a third
option for defining Reach(x, y) facts, and in this case, we would get that any pair of nodes would always be
reachable, regardless the edges we had in the graph.

Proposition 1. Let Γ (G) be the set of formulas (1.5)-(1.10) plus an extensional database for graph G
like (1.1). Then, M is a stable model of theory Γ (G) iff {(x, y) | M |= In(x, y)} is a Hamiltonian cycle
for G. ut
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Fig. 1.2. Kinds of truth in stable reasoning.
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Fig. 1.3. Truth tables for the conectives.

2 A logic from first principles

Stable reasoning has very simple logical underpinnings. Its base logic can be constructed from first principles
in a few easy steps and with only a few fundamental assumptions. The first idea is that formulas may be true
or false, but that there are two kinds of truth: certain truth and truth-by-default. We can picture this as shown
in the left hand side of the Figure 1.2.

Suppose that the disk represents the collection of true formulas; while outside the outer circle formulas are
false. True formulas come in two kinds: those that are only weakly true or more particularly true by default
lie within the unshaded, outer part of the disk, those lying within the shaded, inner circle are certain, or true
in the strong sense. Truth in the weak or general sense covers both certain truth and truth by default, so the
outer circle contains all the formulas of the disk, both inner and outer parts.

We can assign numbers to these different semantic properties, say 0 for falsity and 2 for certain truth. We
assign the value 1 to formulas that lie within the outer but not the inner circle: they are only true in the weaker
but not the stronger sense. The pictures looks like as shown in the right hand side of the figure 1.2.

Let us say that our base logic comprises, in the propositional case, the usual set of logical connectives
{∧,∨,→,¬}, standing for conjunction, disjunction, implication and negation. We may also make use of the
falsum constant, ⊥. There is an infinite set Prop of propositional atoms from which formulas are constructed
in the usual way, as in classical or intuitionistic logic. Let p, q, r, . . . stand for atomic propositions. As pre-
scribed, the semantics is given by the three truth-values, 2, 1 and 0.

In the picture on the right p is certain, q and s are true by de-
fault and r and t are false. The values for complex formulas
are assigned according to the usual meaning of connectives.
In the picture p∧ q takes the value 1, since only p is certain,
while q is not. On the other hand the fact that p is certain
is sufficient for assigning p ∨ q and even p ∨ r the value 2.
Since r is false, also p∧r and q∧r must be false, while q∨r
takes the value 1.

p

q s

r t

Following this reasoning we can build the complete truth tables for conjunction and disjunction (see
Figure 1.3); they are similar to those of other well-known logics.
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p, q → p, ¬r

q, s, p→ q

r, p→ r, q → r ¬p, ¬q Some care has to be taken with the values of formulas of form
A→ B. In the picture on the left we would expect both p→ r and
q → r to be false since in both cases we have a true antecedent and
false consequent. Notice that although q is not certain, we cannot
put q → r in the inner circle since that would make it strongly
true and yet false at the same time. Since r is false, evidently both
r → q, r → p and r → t are true, and even in the strong sense.
Since p is certain, it is also true in the general sense and therefore
p→ q must be at least weakly true. But it is not certain, since q is
not. By contrast, since p is certain, q → p is also. Lastly, consider
the

case of two formulas q, s that lie only in the outer circle. Since neither atom is certain, but neither is false, the
implications q → s and s→ q can safely be placed in the inner circle of certainty.

The complete truth matrix for implication is given in the Figure 1.3. The case of negation is straightfor-
ward. Negating a false proposition such as r produces a certain proposition ¬r; while negating either kind of
true formula produces a false one: in the picture both ¬p and ¬q will be false.

Equivalently we can regard negation to be definable, by ¬p := p→ ⊥, where ⊥ takes the constant value
0. Then the table for negation is derivable from that for implication.

Our base logic is by no means new. It was first introduced by Heyting in his study of intuitionistic
logic [11]. Shortly after it reappeared in Gödel’s paper [10] showing that intuitionistic logic is not tabular
(finite-valued). Heyting provided the truth matrices while subsequently Łukasiewicz [13] studied the logic in
greater depth and gave the first axiomatisation based on the axioms and rules of the intuitionistic calculus
extended by the addition of a weaker form of Peirce’s Law, viz:

(¬α→ β)→ (((β → α)→ β)→ β). (1.11)

Subsequently, the logic was studied by Smetanich [18] and Umezawa [19] who gave an alternative axiom to
that of Łukasiewicz:

α ∨ ¬β ∨ (α→ β)

The completeness of this system was then proved by Hosoi [12].

Although Heyting made use of the logic as a technical device, it was clear from the start that it was of
interest not only from a purely formal point of view. Łukasiewicz made a detailed comparison with his own
3-valued logic and Heyting already provided a natural interpretation of the third truth-value, claiming that it
applies to a correct proposition that cannot be false but whose correctness cannot be proved. If we re-phrase
this in terms of truth, then the interpretation ‘true-by-default’ is a natural one since it conveys the idea of a
judgement that is accepted although not formally derivable in the system at hand.6

Our logic is known under a variety of names, we prefer to call it the logic of here-and-there, in symbols
HT, whose etymology is easily explained by looking at an alternative way to describe the semantics. It is
well-known that intuitionistic logic is complete for possible world models, that is triples of the form 〈W,≤
, I〉, where W is a non-empty set (of points, states or worlds), ≤ is a partial ordering on W , and I is an
interpretation function assigning a set of (verified) atoms to each w ∈ W , such that I(x) ⊆ I(y) whenever
x ≤ y. The logic HT is also complete for a class of such models, but of an especially simple form: W
comprises just two points, say h (‘here’) and t (‘there’), with h ≤ t. It follows that we can represent a model
simply as an ordered pair 〈H,T 〉 of sets of atoms, where I(h) = H and I(t) = T . Evidently we always
have H ⊆ T . These are then here-and-there models. Applying the usual semantics to evaluate formulas at
worlds one can easily verify the correspondence to our earlier truth-tables. Note that in a here-and-there model
〈H,T 〉, H represents the certain atoms having value 2, while T represents the non-false atoms (of value 1
or 2). Those in T \ H are true-by-default, ie take the value 1. The complement of T in Prop is the set of
atoms that are false in the model, ie those corresponding to the value 0 in our truth tables. We adopt the usual
convention and say that a formula ϕ is satisfied or holds in a model 〈H,T 〉, in symbols 〈H,T 〉 |= ϕ, if it is
strongly true or certain in the model, i.e. is satisfied at the world h.

As a simple example, consider how to evaluate an implication p → q in a model 〈H,T 〉, for atomic p, q.
By the possible world semantics, this formula is true at t if q ∈ T or p 6∈ T . In terms of truth-values it means

6 Strictly speaking we should say that the base logic gives a monotonic approximation to reasoning by default. There is
an additional aspect to defaults that emerges in the nonmonotonic extension of the logic.
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that p → q takes a value of at least 1 if q ∈ T no matter what value is given to p. However in the case that
p 6∈ T , then also p 6∈ H . This means that p→ q is true also at h and so the value of p→ q is then 2.

Much is known about HT and its properties. It is one of 7 superintuitionistic (SI) logics having the
interpolation property, [14], and it is also the strongest SI-logic properly contained in classical logic, all other
SI-logics being properly contained in it.

3 Basic stable reasoning

The core logic of stable reasoning is based on HT but is actually a non-monotonic extension of it. It can be
characterised in terms of a preferential entailment relation in the sense of Shoham (1988) defined on here-
and-there models. The preference relation can be explained by considering some features of defaults.

When we build up a partial description of the world or of our problem domain we specify a set of formulas
that we suppose, at least hypothetically, to be true in the certain sense. Call this our ‘theory’. When we then
consider the three-valued HT-models of this theory (assuming it is consistent), they in turn generally admit
formulas that are true only in the weak or default sense. We typically have models 〈H,T 〉 where H ⊂ T and
then some formulas will be true only in the default sense, for instance all the propositions in T \H . Equally,
by consistency, we will also have models of the form 〈T, T 〉 where all truths are certain. Our preference
condition is to select just those models 〈T, T 〉 where all truths are certain and our theory does not admit any
model with uncertainty whose true atoms are exactly T ; in other words there is no model of our theory of the
form 〈H,T 〉, where H ⊂ T . In this sense our theory justifies the choice of T by not accepting any model
where T forms the set of truths in the general sense and some of them are only true in the weak sense.

So here is our definition in full. A model 〈H,T 〉 of a theory T is said to be an equilibrium model of T , if
(i) H = T and (ii) for any H such that H ⊂ T , 〈H,T 〉 6|= T . The term equilibrium model derives from [15],
and the ensuing logic associated with this is equilibrium logic. However there is complete agreement between
equilibrium models and the stable models of logic programs as defined by Gelfond and Lifschitz (1988). That
is to say, if the formulas of a theory have precisely the shape of rules of logic programs, then a set of atoms T
is a stable model of the theory if and only if 〈T, T 〉 is an equilibrium model of it.7 For this reason equilibrium
logic can serve as a foundation for stable reasoning.8 Though they are defined differently, we often use the
terms stable model, answer set and equilibrium model inter-changeably.

4 Implementation of stable reasoning

Just as classical deduction is implemented in automated provers such as Prover9 or SAT-solvers, so stable
reasoning has been implemented in various systems, collectively known as answer set solvers. These have
obtained a fairly high degree of efficiency and sophistication and can be used to model and solve real-world
problems in domains such as software verification, security and configuration management, model checking,
agent technologies, constraint satisfaction, reasoning for the semantic web, software synthesis from specifi-
cations, knowledge representation, data and information integration, planning and diagnosis. The inputs to
answer set solvers are called answer set programs, the branch of computer science and programming dealing
with these is called answer set programming, or ASP for short. A closely related domain is that of DATALOG
and deductive database systems. Indeed data and information management is one of the principal application
areas of ASP, and one that currently enjoys some commercial success.

While they are successful in supporting real-world problem solving, ASP systems do not implement de-
duction in a formal logic. They are not designed to deduce theorems or prove the correctness of logical
inferences, even though the solutions they compute can be precisely understood in terms of formal models
of a logical system of deduction. This correspondence to logic however was a more recent discovery and did

7 In logical notation the rules of a (disjunctive) logic program have the form

b1 ∧ . . . ∧ bm ∧ ¬bm+1 ∧ . . . ∧ ¬bn → a1 ∨ a2 ∨ . . . ∨ ak

where the ai, bj are atoms. If k = 1 everywhere the program is said to be normal.
8 Since the late 1990s the stable model semantics has been systematically extended to embrace wider classes of formulas,

more recently including arbitrary propositional and even first-order theories. All the widely accepted extensions have
coincided with equilibrium logic.
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not directly guide the initial ASP implementations. While in traditional logic programming, systems of logi-
cal inference came first and computer programming applications came after, in ASP this order was reversed.
The theory preceded the computer implementations that in turn preceded the logic. However, nowadays the
logic exerts a growing influence on the development and comprehension of new systems, especially exten-
sions of the initial ASP family of languages. It is also fundamental to understanding stable reasoning from a
foundational point of view.

5 Practical examples

Let us now consider some additional examples of typical commonsense reasoning tasks that can be easily
represented under the stable reasoning approach. We also show in some cases how these examples can be
implemented using existing solvers. For instance, Figure 1.4 shows a possible implementation of the Hamil-
tonian cycles problem for graph in Figure 1.1, using the input language of the DLV solver9. The column in
the right shows the correspondence to each formula in Γ (HAMG). The translation of our example theory
into DLV language follows some standard syntactic conventions from Logic Programming and, in this case,
is quite straightforward. Variables begin with uppercase letters and predicates with lowercase letters. Impli-
cations are reversed, so that α :- β stands for β → α. When α = ⊥ it is just omitted. Finally, a comma
represents a conjunction, the symbol ‘v’ represents a disjunction and all formulas are ended by a full stop.

node(0). node(1). node(2). node(3).
edge(0,1). edge(1,2). edge(1,3).
edge(2,0). edge(2,3). edge(3,2). edge(3,0).

(1.1)

in(X,Y) v out(X,Y) :- edge(X,Y). (1.5)

:- in(X,Y), in(X,Z), Y!=Z. (1.6)
:- in(Y,X), in(Z,X), Y!=Z. (1.7)

reach(X,Y) :- in(X,Y). (1.8)
reach(X,Y) :- in(X,Z), reach(Z,Y). (1.9)

:- not reached(X,Y), node(X), node(Y). (1.10)

Fig. 1.4. Hamiltonian cycle representation Γ (HAMG) for the graph in Figure 1.1 written for DLV.

The only newly introduced feature with respect to the first order theory Γ (HAMG) is the use of an
auxiliary predicate Out(x, y) to replace the formula ¬In(x, y) since DLV does not accept negation to the left
of :- operator. This replacement is correct provided that Out(x, y) is not used elsewhere. Otherwise, to fully
replace the original formula we should include the pair of rules:

out(X,Y) :- not in(X,Y), edge(X,Y).
:- in(X,Y), out(X,Y), edge(X,Y).

which are logically equivalent to:

Edge(x, y)→
(
Out(x, y)↔ ¬In(x, y)

)

A fundamental property of stable reasoning we have not exploited yet in the previous example is the use
of default negation for non-monotonic reasoning (NMR). To illustrate this concept, consider the following
classical example in the NMR literature. We want to capture the default “birds typically fly” and the exception
“penguins are birds but do not fly.” These two assertions can be respectively encoded as:

Bird(x) ∧ ¬CannotF ly(x)→ Flies(x) (1.12)
Penguin(x)→ Bird(x) ∧ CannotF ly(x) (1.13)

9 http://www.dlvsystem.com
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Suppose we have theory Γ ′ containing the two formulas above plus the ground atom Bird(Tweety). As
there is no evidence that Tweety is a penguin, we derive the literal ¬Penguin(Tweety) by CWA. This
falsifies the antecedent of (1.13), and so no evidence on CannotF ly(Tweety) can be obtained from (1.13).
In fact, no evidence on CannotF ly(x) can be obtained from (1.12) either. This is because implication in
stable reasoning acquires a kind of directionality. In particular, (1.12) should be read as a definition rule for
Flies(x), saying that it will hold when x is a bird for which we have no evidence on CannotF ly(x). As a
result, we conclude ¬CannotF ly(Tweety) by CWA and then, Flies(Tweety) from (1.12).

This simple example became a challenge for NMR approaches because a wrong predicate minimisation
policy could easily lead to models where ¬Flies(Tweety) was decided first and then CannotF ly(Tweety)
was derived by applying (1.12) as the classically equivalent formula:

Bird(x) ∧ ¬Flies(x)→ CannotF ly(x)

In stable reasoning, such an equivalence does not hold. In fact, the formula above has a quite different reading
from (1.12): it states that a bird x cannot fly if we cannot find any evidence for Flies(x).

To complete the example, consider now the extended theory

Γ ′′ = Γ ′ ∪ {Penguin(Tweety)}.

Since we do obtain now evidence on CannotF ly(Tweety) from (1.13), we lose the justification for
Flies(Tweety) we obtained before from (1.12). As a result, Flies(Tweety) is not derived any more. This
shows the non-monotonic nature of stable inference, since the addition of a new formula, Penguin(Tweety),
has made a previous conclusion Flies(Tweety) to be retracted.

The representation of this example in DLV is shown below:

flies(X) :- bird(X), not cannotfly(X).
bird(X) :- penguin(X).
cannotfly(X) :- penguin(X).
bird(tweety).
penguin(tweety).

6 Stable reasoning, open systems and the analytic method

In this final section we look briefly at one of the directions in which stable reasoning has developed into
a programme for the logical reconstruction of human knowledge in a practical setting. Then we return to
some of the conditions suggested by Cellucci [6] that should be fulfilled by a logical paradigm to replace
the axiomatic tradition of mathematical logic. We consider briefly some of the ways in with stable reasoning
conforms to these requirements.

6.1 Gelfond’s programme

The rise of the axiomatic method and formal reasoning based on classical logic in the 20th Century was
closely linked to two philosophical schools based in central Europe: the Lwow-Warsaw School of Logic and
Philosophy and the logical empiricist movement of the Vienna Circle. Particularly the latter school endorsed a
programme of rational reconstruction of scientific and other forms of knowledge as well as adopting the idea
of explicating philosophically important concepts typically by formalising them within a logico-mathematical
system. The limits of the logical empiricist programme and the growing criticism it faced from the 1960s
onwards are well-known and well-documented. Especially vulnerable was the ideal to reconstruct (ultimately
all of) scientific knowledge in formal languages governed by the classical laws of deduction. A pivotal point
of this criticism was the claim that logic and experience are not sufficient to explain the rationality of science,
catalogue its methods and reconstruct the knowledge it generates.

With hindsight there is an irony to this criticism and to the ultimate downfall of the empiricist programme.
It came about just at a moment in time when logic was about to undergo a radical change and a major shift
in its boundaries. This change was led by Montague in natural language processing, by Hintikka in the study
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of propositional attitudes of knowledge and belief, by McCarthy in artificial intelligence and commonsense
reasoning, by Simon in learning and scientific discovery, and by a range of applications in computer science
and programming.

Stable reasoning has spawned a successor to the logical empiricist programme of rational reconstruction.
It is a research programme that aims to reconstruct some of the most basic forms of human knowledge and to
exploit this knowledge for practical problem solving. While logical empiricist efforts were largely theoreti-
cally oriented, this programme deals with a mix of theory and practice. It combines scientific and engineering
knowledge of real systems (....) with practical human skills and abilities and commonsense reasoning. It deals
with both static and dynamic domains. The scientist most closely identified with this programme is Michael
Gelfond, also a co-founder of stable reasoning itself. His programme combines the physicalist language of
engineering and physical systems with epistemic notions such as belief, agency and action. The new pro-
gramme of rational reconstruction is much less self-conscious than its predecessor. The latter formed part of
a manifesto with a clear philosophical, and sometimes political, message. It was stated and re-stated many
times. The new programme is scarcely articulated and hardly known. Nevertheless it’s goals and methodology
are largely clear, if sometimes buried in technical articles and lectures.10

Gelfond’s programme for representing and reasoning about knowledge has two main objectives. First it
aims to achieve an understanding of “basic commonsense notions we use to think about the world: beliefs,
knowledge, defaults, causality, intentions, probability, etc., and to learn how one ought to reason about them.”
Secondly it aims “to understand how to build software components of agents – entities which observe and
act upon an environment and direct its activity towards achieving goals.” These goals shape the criteria used
to evaluate and select languages for Knowledge Representation (KR). In particular he endorses four main
adequacy criteria:

1. Clarity: the logical vocabulary should have a clear and intuitive meaning.

2. Elegance: the corresponding mathematics should be simple and elegant.

3. Expressiveness: the KR language should suggest systematic and elaboration tolerant representations of a
broad class of phenomena of natural language, including belief, knowledge, defaults, causality and others.

4. Relevance: a large number of interesting computational problems should be reducible to reasoning about
theories formulated in this language.

It is interesting to compare these criteria with the requirements that Carnap proposes for the adequate
explication of concepts [5]. Clearly criterion 2 is close to Carnap’s requirement for the task of concept expli-
cation that “the explicatum should be as simple as possible.” Criterion 4, on the other hand, and to a somewhat
lesser extent 3, are close to Carnap’s idea that an explicatum is to be a fruitful concept, “that is, useful for
the formulation of many universal statements.” Although Elaboration Tolerance is a more modern idea, one
may suppose that it would also feature among the properties of fruitfulness. Carnap’s suggestion that the “ex-
plicatum is to be similar to the explicandum” in many cases of usage does not appear explicitly in Gelfond’s
list. However since Gelfond’s aim is to reconstruct commonsense knowledge and practical reasoning one can
assume that Carnap’s requirement is one he would also endorse and is somehow implicit in his programme.11

It is also revealing to consider some adequacy criteria for KR languages that Gelfond rejects. Among these
are two that in the past were often considered sacrosanct in the AI community of Knowledge Representation.
One is the idea that any KR language should be supra-classical ie. extend first-order classical logic. The
other is the requirement of efficiency understood in a computational sense. We have seen already that the
underlying logic of stable reasoning is not classical, and nor does it become so when additional features and
functionalities are provided. On the other hand, the expressiveness of the basic language – a positive feature
– also results in it being less efficient computationally than some other languages.12

10 But see specially [9] for an overview.
11 All quotations above are from [5], Introduction.
12 Generally speaking the complexity of stable reasoning lies at the second level of the polynomial hierarchy. Neverthless

answer set solvers are relatively efficient in being able to deal with quite large amounts of data. Notice that from a
representational point of view answer set programs are very efficient in being able to encode complex problems in a
concise manner.
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6.2 Open conceptual systems

Let us return to the idea of open conceptual systems that we mentioned in the introduction. According to Cel-
lucci there are many similarities between open conceptual systems and the notion of open physical systems.
Here is a summary of some of the basic features of the former taken from [6] (pp. 313–315).

1. Open conceptual systems take account of the manner in which the solution of a problem is to be arrived
at.

2. Unlike in the axiomatic approach there is no unifying idea that serves as a foundation once and for all.
3. The unifying impulse for problem solving is data driven rather than reductionist.
4. Open conceptual systems tackle the problem to be solved directly, from first principles. There is no a

priori set of concepts and principles that precede the problem formulation.
5. The rules of the game are not given at the beginning and fixed once and for all, but may be introduced

and changed during the course of the game.
6. Open systems are dialogical, since partially given information may be extended through interaction with

other systems.
7. The rules of the system give only a partial and dynamically changing representation of knowledge.

Besides these characteristics, Cellucci emphasises the ampliative nature of logical inference, as well as
the need to deal with with global inconsistencies and incoherences. There are many other features of open
systems and the analytic method discussed in [6] and a detailed examination would take us beyond the scope
of this paper. Likewise, here we have described only some core features of stable reasoning and ASP. Many
other features emerge in the practical development of systems and their application to problem solving. We
conclude with a shortlist of some of the characteristics that may bear on Cellucci’s challenge to develop an
alternative logical paradigm.

– Stable reasoning in its basic form already deals with weak and strong exceptions to defaults. However to
deal with contradictions that arise indirectly as consequences of default conclusions, an extension of ASP
with consistency-restoring rules (CR-Prolog) was developed and applied by Balduccini and Gelfond [1].
This is essentially an abductive mechanism.

– Another feature of Gelfond’s programme has been the aim to reason about the degrees of belief of a
rational agent. This has led to a system (P–log) that combines logical and probabilistic reasoning based
on ASP [2].

– Although in its basic form stable reasoning is highly declarative, when ASP is used in practice the prob-
lem representation takes account of the way in which the solver will successfully and economically reach
a solution. Features such as cardinality and integrity constraints and more generally aggregates are em-
ployed to direct the computational mechanism and possibly enhance efficiency [8].

– Basic ASP already deals with some problems of temporal projection. However, to deal with a wider
range of problems for dynamically changing domains, a temporal version of equilibrium logic and ASP
has been developed and studied, following [4].

– A central property of open systems is the necessity to interact with other systems. Scholars have devel-
oped different logical semantics based on ASP that facilitate this interaction. In particular, logic program
rules may contain concepts whose meanings are partially determined by external data sources such as
knowledge bases or ontologies [7,16]. This gives rise to hybrid theories that mix different reasoning sys-
tems (e.g. monotonic and non-monotonic). Equilibrium logic can be applied to give a simple and uniform
treatment of such theories [3].

– To deal with problem solving in a dynamically evolving setting, it is important to consider the problem
of updating knowledge in light of new data and knowledge discovery. This has led to the study of theory
and program updates in the framework of ASP [17].
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