Logical Foundations of Well-Founded Semantics

Pedro Cabalar1 Sergei Odintsov2 David Pearce3

1University of Corunna (Spain)

\texttt{cabalar@udc.es}

2Sobolev Institute of Mathematics (Novosibirsk, Russia)

\texttt{odintsov@math.nsc.ru}

3Universidad Rey Juan Carlos (Madrid, Spain)

\texttt{davidandrew.pearce@urjc.es}

\textbf{KR 2006}
Outline

1 Introduction
 - Logical foundations of Logic Programming

2 Contributions
 - Classification of HT^2 frames
 - Axiomatisation of HT^2
 - 6-valued matrix
 - Capturing partial stable models
 - Strong equivalence

3 Conclusions
Outline

1. Introduction
 • Logical foundations of Logic Programming

2. Contributions
 • Classification of HT^2 frames
 • Axiomatisation of HT^2
 • 6-valued matrix
 • Capturing partial stable models
 • Strong equivalence

3. Conclusions
Fixing logical foundations for LP

- LP definitions rely on:
 - syntax transformations ("reduct") + fixpoint constructions
 - Example: “M is the minimal model of Π^M”

- A logical style definition:
 - get minimal models inside some (monotonic) logic.

- Logically equivalent programs \Rightarrow same minimal models.

- Full logical interpretation of connectives.
Fixing logical foundations for LP

LP definitions rely on:
- syntax transformations ("reduct") + fixpoint constructions
Example: "M is the minimal model of Π^M"

A logical style definition:
- get minimal models inside some (monotonic) logic.

- Logically equivalent programs \Rightarrow same minimal models.
- Full logical interpretation of connectives.
Fixing logical foundations for LP

- LP definitions rely on:
 - syntax transformations ("reduct") + fixpoint constructions
 - Example: "M is the minimal model of Π^M"

- A logical style definition:
 - get minimal models inside some (monotonic) logic.

 - Logically equivalent programs \Rightarrow same minimal models.

 - Full logical interpretation of connectives.
Fixing logical foundations for LP

- LP definitions rely on:
 - syntax transformations ("reduct") + fixpoint constructions
 - Example: "M is the minimal model of Π^M"

- A logical style definition:
 - get minimal models inside some (monotonic) logic.

- Logically equivalent programs \Rightarrow same minimal models.

- Full logical interpretation of connectives.
Fixing logical foundations for LP

- LP definitions rely on:
 - syntax transformations ("reduct") + fixpoint constructions
 - Example: “M is the minimal model of Π^M”

- A *logical* style definition:
 - get *minimal models* inside some (monotonic) logic.

- Logically equivalent programs \Rightarrow same minimal models.

- Full logical interpretation of connectives.
Stable models successfully identified

- (Monotonic) intermediate logic of *here-and-there* (HT) (a.k.a. Gödel’s 3-valued logic)
 - Classical ⊆ HT ⊆ Intuitionistic
 - Pearce’s *Equilibrium Logic*: minimal HT models
 Equilibrium models = stable models [Pearce 97]
 - Π_1 and Π_2 are *strongly equivalent* iff they are
 HT-equivalent [Lifschitz, Pearce & Valverde 01]
Stable models successfully identified

- (Monotonic) intermediate logic of here-and-there (HT) (a.k.a. Gödel’s 3-valued logic)

\[\text{Classical} \subseteq HT \subseteq \text{Intuitionistic} \]

- Pearce’s *Equilibrium Logic*: minimal HT models
 Equilibrium models = stable models [Pearce 97]

- Π_1 and Π_2 are *strongly equivalent* iff they are HT-equivalent [Lifschitz, Pearce & Valverde 01]
Stable models successfully identified

- (Monotonic) intermediate logic of *here-and-there* (HT) (a.k.a. Gödel’s 3-valued logic)

 Classical \subseteq HT \subseteq Intuitionistic

- Pearce’s *Equilibrium Logic*: minimal HT models
 Equilibrium models = stable models [Pearce 97]

- Π_1 and Π_2 are *strongly equivalent* iff they are
 HT-equivalent [Lifschitz, Pearce & Valverde 01]
Stable models successfully identified

- (Monotonic) intermediate logic of *here-and-there* (HT) (a.k.a. Gödel’s 3-valued logic)

\[
\text{Classical} \subseteq HT \subseteq \text{Intuitionistic}
\]

- Pearce’s *Equilibrium Logic*: minimal HT models
 Equilibrium models = stable models [Pearce 97]

- Π_1 and Π_2 are *strongly equivalent* iff they are
 HT-equivalent [Lifschitz, Pearce & Valverde 01]
Stable models successfully identified

- (Monotonic) intermediate logic of *here-and-there* (HT) (a.k.a. Gödel’s 3-valued logic)
 - Classical \subseteq HT \subseteq Intuitionistic

- Pearce’s *Equilibrium Logic*: minimal HT models
 - Equilibrium models = stable models [Pearce 97]

- Π_1 and Π_2 are *strongly equivalent* iff they are HT-equivalent [Lifschitz, Pearce & Valverde 01]
Logical foundation for *WFS* was missing

Possible reasons:

- No logic could be identified as deductive basis for *WFS*. Intuitionistic is too strong. Example: signature \{A, B\}

<table>
<thead>
<tr>
<th>Program</th>
<th>WFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>¬A → A</td>
<td>A undefined, B false</td>
</tr>
</tbody>
</table>

- Good algorithmic properties, but poor model-based defs. Partial stable models [Przymusinski 94] use 3-valued logic, but still depends on program reduct.

- WFS too tied to restricted syntax. Example: no agreement on disjunction.
Logical foundation for **WFS** was missing

Possible reasons:

- No logic could be identified as deductive basis for WFS. Intuitionistic is too strong. **Example: signature \{A, B\}**

<table>
<thead>
<tr>
<th>Program</th>
<th>WFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg A \rightarrow A)</td>
<td>A undefined, B false</td>
</tr>
</tbody>
</table>

- Good algorithmic properties, but poor model-based defs. Partial stable models [Przymusinski 94] use 3-valued logic, but still depends on program reduct.

- WFS too tied to restricted syntax. Example: no agreement on disjunction.
Logical foundation for WFS was missing

Possible reasons:

- No logic could be identified as deductive basis for WFS. Intuitionistic is too strong. Example: signature \{A, B\}

<table>
<thead>
<tr>
<th>Program</th>
<th>WFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg A \rightarrow A)</td>
<td>A undefined, B false undefined!</td>
</tr>
<tr>
<td>(\neg A \rightarrow B)</td>
<td></td>
</tr>
</tbody>
</table>

- Good algorithmic properties, but poor model-based defs. Partial stable models [Przymusinski 94] use 3-valued logic, but still depends on program reduct.

- WFS too tied to restricted syntax. Example: no agreement on disjunction.
Logical foundation for *WFS* was missing

Possible reasons:

- No logic could be identified as deductive basis for WFS. Intuitionistic is too strong. *Example: signature \{A, B\}*

<table>
<thead>
<tr>
<th>Program</th>
<th>WFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>\neg A \rightarrow A</td>
<td>A undefined, B false undefined!</td>
</tr>
<tr>
<td>\neg A \rightarrow B</td>
<td></td>
</tr>
</tbody>
</table>

- Good algorithmic properties, but poor model-based defs. *Partial stable models [Przymusinski 94] use 3-valued logic, but still depends on program reduct.*

- WFS too tied to restricted syntax. *Example: no agreement on disjunction.*
Logical foundation for WFS was missing

Possible reasons:

- No logic could be identified as deductive basis for WFS. Intuitionistic is too strong. **Example: signature \{A, B\}**

<table>
<thead>
<tr>
<th>Program</th>
<th>WFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\neg A \rightarrow A$</td>
<td>A undefined, B false undefined!</td>
</tr>
<tr>
<td>$\neg A \rightarrow B$</td>
<td></td>
</tr>
</tbody>
</table>

- Good algorithmic properties, but poor model-based defs. **Partial stable models [Przymusinski 94]** use 3-valued logic, but still depends on program reduct.

- WFS too tied to **restricted syntax**. Example: no agreement on disjunction.
A first solution: HT^2 frames

- HT^2 [Cabalar 01]: each HT world has a primed “version”

Relation \leq

- Minimal HT^2 models are called partial equilibrium models
- partial equilibrium models = partial stable models
A first solution: HT^2 frames

- HT^2 [Cabalar 01]: each HT world has a primed “version”

![Diagram](ht2_frames.png)

Relation \leq

- Minimal HT^2 models are called partial equilibrium models.
- Partial equilibrium models = partial stable models.
A first solution: HT^2 frames

- HT^2 [Cabalar 01]: each HT world has a primed “version”

![Diagram showing HT^2 frames]

- Minimal HT^2 models are called partial equilibrium models
- Partial equilibrium models = partial stable models
A first solution: HT^2 frames

- HT^2 [Cabalar 01]: each HT world has a primed “version”

- Minimal HT^2 models are called partial equilibrium models
- partial equilibrium models = partial stable models
A first solution: HT^2 frames

- HT^2 [Cabalar 01]: each HT world has a primed “version”

Relation \leq implication

Relation R negation

- Minimal HT^2 models are called partial equilibrium models
- Partial equilibrium models = partial stable models
In this work . . .

1. **[Došen 86]** framework N
 - Negation as a modal operator.
 - Weaker than intuitionistic and Johansson minimal logic.
 - We combine this with the semantics of [Routley & Routley 72] to classify HT^2.

2. We axiomatise HT^2.

3. We derive a 6-valued characterisation of HT^2.
In this work . . .

1. [Došen 86] framework N
 - Negation as a modal operator.
 - Weaker than intuitionistic and Johansson minimal logic.
 - We combine this with the semantics of [Routley & Routley 72] to classify HT^2.

2. We axiomatise HT^2.

3. We derive a 6-valued characterisation of HT^2.
In this work . . .

1. [Došen 86] framework N
 - Negation as a modal operator.
 - Weaker than intuitionistic and Johansson minimal logic.
 - We combine this with the semantics of [Routley & Routley 72] to classify HT^2.

2. We axiomatise HT^2.

3. We derive a 6-valued characterisation of HT^2.
Outline

1. Introduction
 - Logical foundations of Logic Programming

2. Contributions
 - Classification of HT^2 frames
 - Axiomatisation of HT^2
 - 6-valued matrix
 - Capturing partial stable models
 - Strong equivalence

3. Conclusions
Došen logic N

- Inference rules: modus ponens plus
 \[
 \alpha \rightarrow \beta \quad \frac{}{\neg \beta \rightarrow \neg \alpha}
 \]

- Axioms: positive logic plus
 \[\neg \alpha \land \neg \beta \rightarrow \neg (\alpha \lor \beta)\]

- Models: an extra accessibility relation R is used for negation
Definition (N model)

is a quadruple $\mathcal{M} = \langle W, \leq, R, V \rangle$ such that:

1. W non-empty set of worlds
2. \leq partial ordering among worlds
3. R accessibility relation s.t. $(\leq R) \subseteq (R \leq^{-1})$
4. V valuation function $At \times W \rightarrow \{0, 1\}$ satisfying:
 - $V(\varphi \rightarrow \psi, w) = 1 \quad \& \quad w \leq w' \Rightarrow V(\varphi, w') = 1$
 - $V(\neg \varphi, w) = 1 \quad \text{iff} \quad \forall w' \text{ such that } wRw' \quad V(\varphi, w') = 0$
 - $V(\varphi, w) = 1 \quad \text{iff} \quad \forall w' \text{ such that } w \leq w', \quad V(\varphi, w') = 0$
Došen logic N

Definition (N model)

is a quadruple $\mathcal{M} = \langle W, \leq, R, V \rangle$ such that:

1. W non-empty set of worlds
2. \leq partial ordering among worlds
3. R accessibility relation s.t. $(\leq R) \subseteq (R \leq^{-1})$
4. V valuation function $At \times W \rightarrow \{0, 1\}$ satisfying:

\[
V(p, w) = 1 \quad \& \quad w \leq w' \Rightarrow V(p, w') = 1
\]

- $V(\varphi \rightarrow \psi, w) = 1$ iff $\forall w' \text{ such that } w \leq w', \quad V(\varphi, w') = 0$
- $V(\neg \varphi, w) = 1$ iff $\forall w' \text{ such that } wRw', \quad V(\varphi, w') = 0.$
Definition (N model)

is a quadruple $\mathcal{M} = \langle W, \leq, R, V \rangle$ such that:

1. W non-empty set of worlds
2. \leq partial ordering among worlds
3. R accessibility relation s.t. $(\leq R) \subseteq (R \leq^{-1})$
4. V valuation function $At \times W \rightarrow \{0, 1\}$ satisfying:
 - $V(\varphi \rightarrow \psi, w) = 1$ \& $w \leq w' \Rightarrow V(\varphi, w') = 1$
 - $V(\neg \varphi, w) = 1$ iff $\forall w'$ such that wRw', \ $V(\varphi, w') = 0$
 - $\neg V(\neg \varphi, w) = 1$ iff $\forall w'$ such that $w \leq w'$, \ $V(\varphi, w') = 0$.
Routley variant N^*

- **Axioms:** N plus

 $\neg (\alpha \rightarrow \alpha) \rightarrow \beta$

 $\neg (\alpha \land \beta) \rightarrow \neg \alpha \lor \neg \beta$

- Intuitionistic negation ‘$-$’ is definable in N^* as:

 $-\alpha := \alpha \rightarrow \neg (\rho_0 \rightarrow \rho_0)$.

Definition (N^* model)

is an N model satisfying for all x, there exists the \leq-greatest x^* R-accessible from x
Routley variant N^*

- Axioms: N plus

 $\neg(\alpha \rightarrow \alpha) \rightarrow \beta$

 $\neg(\alpha \land \beta) \rightarrow \neg \alpha \lor \neg \beta$

- Intuitionistic negation ‘$-$’ is definable in N^* as:

 $-\alpha := \alpha \rightarrow \neg(p_0 \rightarrow p_0)$.

Definition (N^* model)

is an N model satisfying

for all x, there exists the \leq-greatest $x^* R$-accessible from x
Routley variant N^*

- **Axioms:** N plus

 $\neg (\alpha \rightarrow \alpha) \rightarrow \beta$

 $\neg (\alpha \land \beta) \rightarrow \neg \alpha \lor \neg \beta$

- **Intuitionistic negation** \(\neg\) is definable in N^* as:

 $\neg \alpha := \alpha \rightarrow \neg (p_0 \rightarrow p_0)$.

Definition (N^* model)

is an N model satisfying

for all x, there exists the \leq-greatest x^* R-accessible from x.
Routley style semantics

\[x \models \neg \varphi \iff x^* \not\models \varphi \]

Definition (Routley frame)

is a triple \(\langle W, \leq, \ast \rangle \) with \(W \) and \(\leq \) as before and \(\ast : W \to W \) is such that \(x \leq y \) iff \(y^* \leq x^* \)

- Completeness: obtained via canonical model
HT^2 as an N^* frame

An HT^2 frame corresponds to a N^* frame with $W = \{h, h', t, t'\}$ and

where "higher" means \leq-greater
and the arrow represents the action of $*$
Outline

1. Introduction
 - Logical foundations of Logic Programming

2. Contributions
 - Classification of HT^2 frames
 - Axiomatisation of HT^2
 - 6-valued matrix
 - Capturing partial stable models
 - Strong equivalence

3. Conclusions
The axioms of HT^2

Let HT^* extend N^* by adding rule $\frac{\alpha \lor (\beta \land \neg \beta)}{\alpha}$ and:

A1. $\neg \alpha \lor \neg \alpha$

A2. $\neg \alpha \lor (\alpha \rightarrow (\beta \lor (\beta \rightarrow (\gamma \lor \neg \gamma))))$

A3. $\land_{i=0}^{2} ((\alpha_i \rightarrow \lor_{j \neq i} \alpha_j) \rightarrow \lor_{j \neq i} \alpha_j) \rightarrow \lor_{i=0}^{2} \alpha_i$

A4. $\alpha \rightarrow \neg \neg \alpha$

A5. $\alpha \land \neg \alpha \rightarrow \neg \beta \lor \neg \neg \beta$

A6. $\neg \alpha \land \neg (\alpha \rightarrow \beta) \rightarrow \neg \neg \alpha$

A7. $\neg \neg \alpha \lor \neg \neg \beta \lor \neg (\alpha \rightarrow \beta) \lor \neg \neg (\alpha \rightarrow \beta)$

A8. $\neg \neg \alpha \land \neg \neg \beta \rightarrow (\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)$
The axioms of HT^2

Let HT^* extend N^* by adding rule $\frac{\alpha \lor (\beta \land \neg \beta)}{\alpha}$ and:

A1. $\neg \alpha \lor \neg \neg \alpha$

A2. $\neg \alpha \lor (\alpha \rightarrow (\beta \lor (\beta \rightarrow (\gamma \lor \neg \gamma))))$

A3. $\bigwedge_{i=0}^{2}((\alpha_i \rightarrow \bigvee_{j \neq i} \alpha_j) \rightarrow \bigvee_{j \neq i} \alpha_j) \rightarrow \bigvee_{i=0}^{2} \alpha_i$

A4. $\alpha \rightarrow \neg \neg \alpha$

A5. $\alpha \land \neg \alpha \rightarrow \neg \beta \land \neg \neg \beta$

A6. $\neg \alpha \land \neg (\alpha \rightarrow \beta) \rightarrow \neg \neg \alpha$

A7. $\neg \neg \alpha \lor \neg \neg \beta \lor \neg (\alpha \rightarrow \beta) \lor \neg \neg (\alpha \rightarrow \beta)$

A8. $\neg \neg \alpha \land \neg \neg \beta \rightarrow (\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)$

A1 (Weak excluded middle for ‘$-$’)

strongly directed frame
The axioms of HT^2

Let HT^* extend N^* by adding rule $\frac{\alpha \lor (\beta \land \neg \beta)}{\alpha}$ and:

A1. $\neg \alpha \lor \neg \neg \alpha$

A2. $\neg \alpha \lor (\alpha \rightarrow (\beta \lor (\beta \rightarrow (\gamma \lor \neg \gamma))))$

A3. $\bigwedge_{i=0}^{2}((\alpha_i \rightarrow \bigvee_{j \neq i} \alpha_j) \rightarrow \bigvee_{j \neq i} \alpha_j) \rightarrow \bigvee_{i=0}^{2} \alpha_i$

A4. $\alpha \rightarrow \neg \neg \alpha$

A5. $\alpha \land \neg \alpha \rightarrow \neg \beta \lor \neg \neg \beta$

A6. $\neg \alpha \land \neg (\alpha \rightarrow \beta) \rightarrow \neg \neg \alpha$

A7. $\neg \neg \alpha \lor \neg \beta \lor \neg (\alpha \rightarrow \beta) \lor \neg \neg (\alpha \rightarrow \beta)$

A8. $\neg \neg \alpha \land \neg \neg \beta \rightarrow (\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)$

A2 Bounds the depth to 2 worlds
The axioms of HT^2

Let HT^* extend N^* by adding rule $\frac{\alpha \lor (\beta \land \neg \beta)}{\alpha}$ and:

A1. $-\alpha \lor \neg \neg \alpha$
A2. $-\alpha \lor (\alpha \rightarrow (\beta \lor (\beta \rightarrow (\gamma \lor \neg \gamma))))$
A3. $\exists_i \land \lnot (\exists_i \rightarrow \lor j \neq i \alpha_j) \rightarrow \lor j \neq i \alpha_j) \rightarrow \lor i = 0 \alpha_i$
A4. $\alpha \rightarrow \neg \neg \alpha$
A5. $\alpha \land \neg \alpha \rightarrow \neg \beta \lor \neg \neg \beta$
A6. $\neg \alpha \land \neg (\alpha \rightarrow \beta) \rightarrow \neg \neg \alpha$
A7. $\neg \neg \alpha \lor \neg \neg \beta \lor \neg (\alpha \rightarrow \beta) \lor \neg \neg (\alpha \rightarrow \beta)$
A8. $\neg \neg \alpha \land \neg \neg \beta \rightarrow (\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)$

A3 Bounds the branching to 2 worlds
The axioms of HT^2

Let HT^* extend N^* by adding rule $\frac{\alpha \lor (\beta \land \neg \beta)}{\alpha}$ and:

A1. $\neg \alpha \lor \neg \alpha$

A2. $\neg \alpha \lor (\alpha \rightarrow (\beta \lor (\beta \rightarrow (\gamma \lor \neg \gamma))))$

A3. $\land_{i=0}^{2}((\alpha_i \rightarrow \lor_{j \neq i} \alpha_j) \rightarrow \lor_{j \neq i} \alpha_j) \rightarrow \lor_{i=0}^2 \alpha_i$

A4. $\alpha \rightarrow \neg \neg \alpha$

A5. $\alpha \land \neg \alpha \rightarrow \neg \beta \lor \neg \neg \beta$

A6. $\neg \alpha \land \neg (\alpha \rightarrow \beta) \rightarrow \neg \neg \alpha$

A7. $\neg \neg \alpha \lor \neg \beta \lor \neg (\alpha \rightarrow \beta) \lor \neg (\alpha \rightarrow \beta)$

A8. $\neg \neg \alpha \land \neg \neg \beta \rightarrow (\alpha \rightarrow \beta) \lor (\beta \rightarrow \alpha)$

A4-A8 Fix negation \neg
Main result

Theorem

$HT^* = HT^2$.

Proof sketch.

Soundness easy to check using HT^2 semantics. Completeness relies on canonical model method and the corresp. of HT^2 frames as N^* frames.
Outline

1. Introduction
 - Logical foundations of Logic Programming

2. Contributions
 - Classification of HT^2 frames
 - Axiomatisation of HT^2
 - 6-valued matrix
 - Capturing partial stable models
 - Strong equivalence

3. Conclusions
HT = Gödel’s 3-valued

\[\begin{array}{ccc}
0 & \rightarrow & p \\
\downarrow & & \downarrow \\
1 & \rightarrow & p \\
\downarrow & & \downarrow \\
2 & \rightarrow & p \\
\end{array}\]

...and the tables are derived from frames.
\(HT^2 \) becomes 6-valued

\[\]
\[\]
\[\]

\[\]
\[\]
\[\]

\[\]
\[\]
\[\]

\[\]
\[\]
\[\]

\[\]
\[\]
\[\]

\[\]
\[\]
\[\]

\[\]
\[\]
\[\]

\[\]
\[\]
\[\]

... and the tables are derived from frames.
Outline

1. Introduction
 - Logical foundations of Logic Programming

2. Contributions
 - Classification of HT^2 frames
 - Axiomatisation of HT^2
 - 6-valued matrix
 - Capturing partial stable models
 - Strong equivalence

3. Conclusions
Let H, H', T, T' denote sets of atoms verified at h, h', t, t'.

Represent a model as a pair $\langle H, T \rangle$, where $H = (H, H')$ and $T = (T, T')$.

Define the ordering $H_1 \leq H_2$ as $H_1 \subseteq H_2$ and $H'_1 \subseteq H'_2$.

Extend this to an order among models, \preceq, as follows:

$\langle H_1, T_1 \rangle \preceq \langle H_2, T_2 \rangle$ if: (i) $T_1 = T_2$; (ii) $H_1 \leq H_2$.

$\langle H, T \rangle$ is said to be total if $H = T$.

Definition (Partial equilibrium model)

A model M of theory Π is a partial equilibrium model of Π if it is total and \preceq-minimal.
Partial equilibrium models

- Let \(H, H', T, T' \) denote sets of atoms verified at \(h, h', t, t' \).
- Represent a model as a pair \(\langle H, T \rangle \), where \(H = (H, H') \) and \(T = (T, T') \).
- Define the ordering \(H_1 \leq H_2 \) as \(H_1 \subseteq H_2 \) and \(H'_1 \subseteq H'_2 \).
- Extend this to an order among models, \(\preceq \), as follows: \(\langle H_1, T_1 \rangle \preceq \langle H_2, T_2 \rangle \) if: (i) \(T_1 = T_2 \); (ii) \(H_1 \leq H_2 \).
- \(\langle H, T \rangle \) is said to be total if \(H = T \).

Definition (Partial equilibrium model)

A model \(\mathcal{M} \) of theory \(\Pi \) is a partial equilibrium model of \(\Pi \) if it is total and \(\preceq \)-minimal.
Partial equilibrium models

- Let H, H', T, T' denote sets of atoms verified at h, h', t, t'.
- Represent a model as a pair $\langle H, T \rangle$, where $H = (H, H')$ and $T = (T, T')$.
- Define the ordering $H_1 \leq H_2$ as $H_1 \subseteq H_2$ and $H'_1 \subseteq H'_2$.
- Extend this to an order among models, \preceq, as follows:
 $\langle H_1, T_1 \rangle \preceq \langle H_2, T_2 \rangle$ if: (i) $T_1 = T_2$; (ii) $H_1 \leq H_2$.
- $\langle H, T \rangle$ is said to be *total* if $H = T$.

Definition (Partial equilibrium model)

A model \mathcal{M} of theory Π is a *partial equilibrium model* of Π if it is total and \preceq-minimal.
Partial equilibrium models

- Let H, H', T, T' denote sets of atoms verified at h, h', t, t'.
- Represent a model as a pair $\langle H, T \rangle$, where $H = (H, H')$ and $T = (T, T')$.
- Define the ordering $H_1 \leq H_2$ as $H_1 \subseteq H_2$ and $H'_1 \subseteq H'_2$.
- Extend this to an order among models, \preceq, as follows: $\langle H_1, T_1 \rangle \preceq \langle H_2, T_2 \rangle$ if: (i) $T_1 = T_2$; (ii) $H_1 \leq H_2$.
- $\langle H, T \rangle$ is said to be total if $H = T$.

Definition (Partial equilibrium model)

A model M of theory Π is a partial equilibrium model of Π if it is total and \preceq-minimal.
Let H, H', T, T' denote sets of atoms verified at h, h', t, t'. Represent a model as a pair $\langle H, T \rangle$, where $H = (H, H')$ and $T = (T, T')$. Define the ordering $H_1 \leq H_2$ as $H_1 \subseteq H_2$ and $H'_1 \subseteq H'_2$. Extend this to an order among models, \preceq, as follows: $\langle H_1, T_1 \rangle \preceq \langle H_2, T_2 \rangle$ if: (i) $T_1 = T_2$; (ii) $H_1 \leq H_2$. $\langle H, T \rangle$ is said to be total if $H = T$.

Definition (Partial equilibrium model)
A model \mathcal{M} of theory Π is a partial equilibrium model of Π if it is total and \preceq-minimal.
Partial equilibrium models

- Let H, H', T, T' denote sets of atoms verified at h, h', t, t'.
- Represent a model as a pair $\langle H, T \rangle$, where $H = (H, H')$ and $T = (T, T')$.
- Define the ordering $H_1 \leq H_2$ as $H_1 \subseteq H_2$ and $H'_1 \subseteq H'_2$.
- Extend this to an order among models, \preceq, as follows: $\langle H_1, T_1 \rangle \preceq \langle H_2, T_2 \rangle$ if: (i) $T_1 = T_2$; (ii) $H_1 \leq H_2$.
- $\langle H, T \rangle$ is said to be total if $H = T$.

Definition (Partial equilibrium model)

A model \mathcal{M} of theory Π is a partial equilibrium model of Π if it is total and \preceq-minimal.
Among the partial equilibrium models of a theory we can distinguish those with minimal information which we call the well-founded models.

Theorem

For a normal or disjunctive logic program Π, $\langle T, T \rangle$ is a partial equilibrium model of Π iff T is a partial stable model of Π.
Among the partial equilibrium models of a theory we can distinguish those with minimal information which we call the well-founded models.

Theorem

For a normal or disjunctive logic program Π, $\langle T, T \rangle$ is a partial equilibrium model of Π iff T is a partial stable model of Π.
Outline

1. Introduction
 - Logical foundations of Logic Programming

2. Contributions
 - Classification of HT^2 frames
 - Axiomatisation of HT^2
 - 6-valued matrix
 - Capturing partial stable models
 - Strong equivalence

3. Conclusions
Partial Equilibrium Logic and Strong equivalence

Definition (Partial Equilibrium Logic (PEL))

Partial Equilibrium Logic (PEL) is characterised by truth in all partial equilibrium models.

Definition (Strong equivalence)

Two theories Π_1, Π_2 are said to be strongly equivalent if for any set of formulas Γ, $\Pi_1 \cup \Gamma$ and $\Pi_2 \cup \Gamma$ have the same partial equilibrium models.
Partial Equilibrium Logic and Strong equivalence

Definition (Partial Equilibrium Logic (PEL))

Partial Equilibrium Logic (PEL) is characterised by truth in all partial equilibrium models.

Definition (Strong equivalence)

Two theories Π_1, Π_2 are said to be *strongly equivalent* if for any set of formulas Γ, $\Pi_1 \cup \Gamma$ and $\Pi_2 \cup \Gamma$ have the same partial equilibrium models.
Partial Equilibrium Logic and Strong equivalence

Theorem

Two theories Π_1, Π_2 *are strongly equivalent iff they are equivalent in HT* 2.

Theorem (ICLP’06)

If Π_1, Π_2 are not HT2-equivalent, there is a Γ such that $\Pi_1 \cup \Gamma$ and $\Pi_2 \cup \Gamma$ have different well-founded models.
Partial Equilibrium Logic and Strong equivalence

Theorem

Two theories Π_1, Π_2 are strongly equivalent iff they are equivalent in HT^2.

Theorem (ICLP’06)

If Π_1, Π_2 are not HT^2-equivalent, there is a Γ such that $\Pi_1 \cup \Gamma$ and $\Pi_2 \cup \Gamma$ have different well-founded models.
A deductive base for WFS is now identified:

1. HT^2 frames belong to Routley variant of Došen frames. Is HT^2 the strongest deduct. base for WFS in this family?
2. HT^2 axiomatised
3. 6-valued matrix may be useful for HT^2 equivalence. Examples: simpler proof of corresp. to partial stable models, tableaux system, …
A deductive base for WFS is now identified:

1. HT^2 frames belong to Routley variant of Došen frames. Is HT^2 the strongest deduct. base for WFS in this family?

2. HT^2 axiomatised

3. 6-valued matrix may be useful for HT^2 equivalence. Examples: simpler proof of corresp. to partial stable models, tableaux system, . . .
A deductive base for WFS is now identified:

1. \(HT^2 \) frames belong to Routley variant of Došen frames. Is \(HT^2 \) the strongest deduct. base for WFS in this family?

2. \(HT^2 \) axiomatised

3. 6-valued matrix may be useful for \(HT^2 \) equivalence. Examples: simpler proof of corresp. to partial stable models, tableaux system, . . .
Recent work

- general properties of PEL inference
- complexity
- program transformations
- programs with nested expressions
- tableaux proof system
- extensions of PEL with strong negation
- splitting theorem for theories under PEL
- reduction of HT^2 to HT
Further reading

