
Solving a spatial puzzle using Answer Set
Programming integrated with Markov Decision

Process

Thiago Freitas dos Santos∗, Paulo E. Santos∗, Leonardo A. Ferreira†, Reinaldo A. C. Bianchi∗ and Pedro Cabalar‡
∗ Artificial Intelligence in Automation and Robotics (IAAAR)

Centro Universitário da FEI, São Bernardo do Campo - SP, Brazil

Email: thiagosantos38@gmail.com, psantos@fei.edu.br, rbianchi@fei.edu.br
† Accesstage Tecnologia S.A., São Bernardo do Campo - SP, Brazil

Email: leonardo.ferreira@accesstage.com.br
‡ Computing Department

University of Corunna, Corunna, Spain

Email: cabalar@udc.es

Abstract—Spatial puzzles are interesting domains to investi-
gate problem solving, since the reasoning processes involved in
reasoning about spatial knowledge is one of the essential items
for an agent to interact in the human environment. With this
in mind, the goal of this work is to investigate the knowledge
representation and reasoning process related to the solution of
a spatial puzzle, the Fisherman’s Folly, composed of flexible
string, rigid objects and holes. To achieve this goal, the present
paper uses heuristics (obtained after solving a relaxed version
of the puzzle) to accelerate the learning process, while applying
a method that combines Answer Set programming (ASP) with
Reinforcement learning (RL), the oASP(MDP) algorithm, to find
a solution to the puzzle. ASP is the logic language chosen to
build the set of states and actions of a Markov Decision Process
(MDP) representing the domain, where RL is used to learn the
optimal policy of the problem.

Index Terms—reinforcement learning, spatial puzzle, answer
set programming, heuristic, oASP(MDP)

I. INTRODUCTION

Since the reasoning processes involved in reasoning about

spatial knowledge is one of the essential items for an agent

to interact in the human environment, it becomes interesting

to investigate domains that incorporate these concepts, like

spatial puzzles. Although reasoning about (ecological) space is

straightforward for humans, this is not the case for automated

methods, where the representation of spatial entities are elusive

to be specified precisely. The present paper investigates spatial

puzzles composed of rigid objects, flexible strings and holes,

such as the Fisherman’s Folly puzzle. In such puzzles, the

complexity introduced by the manipulation of a string, as well

as applying actions on holed objects, justifies its interest as a

knowledge representation problem, and also as a challenging

domain for automated problem solvers [1].

In order to equip artificial agents with the reasoning and

learning capabilities necessary to interact with this domain,

the present work uses the Online ASP for MDP (oASP(MDP))

algorithm [2], which models the domain as a Markov Decision

Process (MDP) and has Answer Set Programming (ASP) as

the function approximator. ASP is a language based in logic

programming and non-monotonic reasoning, which provides

a way to represent a domain with dynamic characteristics

and to solve problems with common sense reasoning [3],

[4]. MDP is a formalism used to describe a decision making

problem, where Reinforcement Learning (RL) is a suitable

tool to find optimal policies [5]. With the combination of

these techniques, the oASP(MDP) algorithm is capable of

updating previous learned policies with a RL method, while

ASP builds the set of states, actions and transitions of the

MDP. The contribution of the present paper, with respect to the

previous applications of oASP(MDP), is the use of heuristic

to accelerate the Reinforcement Learning procedure.

Finally, experiments (section IV) applying heuristics to the

Fisherman’s Folly puzzle demonstrates the viability of this ap-

proach, and its advantage compared to different reinforcement

learning algorithms.

II. BACKGROUND

A. Domain

The focus of this research is to find solutions to spatial

puzzles composed of strings, posts, rings and regular objects.

In this paper we present a solution to the Fisherman’s Folly

puzzle (Figure 1) whose goal is to free a ring from an

entanglement of objects.

Toward a better understanding of the puzzle investigated in

this paper, a diagrammatic representation is given in Figure

2, showing the elements that constitute the domain: one holed

Post (fixed to a Base), one String, one Ring, two Disks: Disk1

and Disk2 (each one fixed to a different tip of the String) and

two Spheres: Sphere1 and Sphere2 (each one is on one side of

the Post and are crossed by the String). It is important to point

out the possible actions that can be executed: the String can

528

2018 7th Brazilian Conference on Intelligent Systems

978-1-5386-8023-0/18/$31.00 ©2018 IEEE
DOI 10.1109/BRACIS.2018.00097

Fig. 1. The Fisherman’s Folly puzzle [6].

Fig. 2. A diagrammatic representation of the Fisherman’s Folly puzzle [6].

pass through the Post hole with the manipulation of its tips.

The Post and the two Spheres can pass through the Ring, while

the Ring can pass through the Post hole, but only if the Post is

not already crossing the Ring. The Disks cannot pass through

the Ring, whereas the Spheres cannot pass through the Post

hole. Another essential component when dealing with holes

in this domain is that each hole has two faces (sides), one

where the element starts to pass through the holed object, and

the other is the face where the crossing element leaves this

object.

To achieve the goal of releasing the ring, it is necessary to

execute a sequence of actions, with the restriction that these

actions cannot destroy any object of the puzzle. To complete

this task, an initial state was defined (Figure 1) with the

following description: The Post is crossing the Ring, while

the String is fixed to Disk1, passing through three elements:

Sphere1, Post hole and Sphere2, and then fixed to Disk2.

B. Reinforcement Learning (RL)

Some problems are hard to solve using only pre-defined

rules, such as classification, regression or decision making

problems in unknown environments. This justifies the use of

Reinforcement Learning (RL), that is defined in [5] as a com-

putational method for learning through the agent’s interactions

in a domain to achieve a goal. This is accomplished via the

maximization (or minimization) of a numerical reward signal.

A traditional RL algorithm has two different entities, one is

the agent, responsible for learning the actions that lead to the

solution of a problem, and the other is the environment, the

place in which the agent executes actions. It is also important

to define a formulation to describe this kind of problem, hence

the use of Markov Decision Process (MDP), defined in [5] as a

tuple <S, A, T, R>, where: [S] is the collection of possible

states in the domain; [A] is the collection of actions that can be

executed by the agent; [T] is the transition function (Equation

(1)) responsible for providing the probability that the agent,

present in a state s ∈ S and executing an action a ∈ A, will

get to the future state s′ ∈ S; and [R] is the reward function

(Equation (2)) responsible for providing the reward, when the

agent is in a state s ∈ S and execute one action a ∈ A that

leads to the future state s′ ∈ S.

Transition = S ×A× S �→ [0, 1] (1)
Reward = S ×A× S �→ Re (2)

After the definition of an MDP, it is important to choose

an algorithm capable of finding an optimal policy. This paper

uses a model-free off-policy algorithm that does not need a
priori information about the transition and reward functions,

the Q-Learning algorithm [5]. This algorithm can learn while

the agent interacts with the environment. Q-Learning has an

action-value function Q(s,a), used to define the policy. To

update this action-value function, the algorithm runs a number

of interactions of the agent with the environment, where each

interaction happens in the following way: The agent executes

an action a ∈ A at instant t and in a state s ∈ S. After this, the

environment responds a future state s′ ∈ S at the instant t+1

and the reward r, updating the action-value function Q(s,a)

using the formula in Equation (3). The additional terms of

the formula “α” and “γ” represent the learning rate and the

discount factor, respectively.

Qt+1(st, at)← Qt(st, at) (3)

+ α · (r + γ ·max
a

Qt(st+1, a)−Qt(st, at))

After the end of the interactions the action-value function

Q(s,a) has been updated (using the reward values) several

times, leading to the optimal policy.

It is also possible to use heuristics to accelerate the approx-

imation of the action-value function Q(s,a), as presented in

[7]. A heuristic is responsible for helping to guide the learning

process, since it is used in the action selection phase of the RL

algorithm. [7] points out that the only difference between the

standard implementation of Q-Learning and the Heuristically

Accelerated Q-Learning is in the action selection rule. The

action selection rule is shown in Equation 4:

π(s) =

{
argmaxa[Q̂(s, a) + ξH(s, a)β], if q ≤ p.

arandom, otherwise,
(4)

where H(s,a) is the heuristic function that guides the choice

of action, ξ and β are parameters that control the influence

of the heuristic function, q is a random value, between 0 and

1, p is a value, between 0 and 1, responsible for defining the

exploitation/exploration trade-off in the Q-Learning algorithm.

arandom is an action that was chosen randomly.

To allow the interaction between the agent and the environ-

ment, the PROLOG simulation presented in [6] is used in this

paper as an oracle with which the RL agent interacts, since it

allows the type of queries necessary to determine the future

529

state of the puzzle when an action is executed. For example,

the RL agent may ask the PROLOG program what would be

the future state of the puzzle when an action is executed, the

program then returns two possible answers to the agent, either

the successor state of the puzzle or the information that it is

impossible to execute that action.

C. Answer Set Programming (ASP)

Answer Set Programming (ASP) is a declarative language

based on logic programming and non-monotonic reasoning

that is an efficient tool for solving NP-Complete problems

[3]. ASP is also very useful when a problem involves com-

monsense reasoning, as the domain investigated by this work.

An ASP program is a set of Horn clauses of the form:

A :- L1, L2,..., Ln (5)

in which A is an atom (or the head of the clause), and the

conjunction of literals, L1, L2, ..., Ln is the body [8].

An interesting possibility when using ASP is the generation

of different outcomes when the same input is given. This can

be achieved thanks to the use of choice rules, described as:

1{s1, s2, s3 }1 :-a, s. (6)

where, given the current state s ∈ S and an action a ∈ A, this

rule has as possible outcomes the states s1, s2 and s3 ∈ S.

For each state s ∈ S there is an ASP program describing the

consequence of executing each allowed action a ∈ A. Domain

constraints can also be represented with ASP programs, in

this context, these constraints are related to the allowed and

forbidden states, action and state/action pairs. In conclusion,

finding all answer sets for every state that the agent is allowed

to visit is the same as finding a set of states of an MDP, i.e.,

to find every allowed transition for each state-action pair [2].

D. Online ASP for MDP (oASP(MDP))

The Online ASP for MDP (oASP(MDP)) algorithm, pro-

posed in [2], aims to combine the advantages of ASP and

RL, in order to find the set of states S with ASP and

to approximate an action-value function Q(s,a) of an MDP,

through the application of the Q-Learning method. With this

combination it is possible to describe choice rules for the

description of the transition function t(s, a, s’) in the logical

form, as follows:

1{s’}1 :- a. (7)

According to [2], one of the main advantages of this logical

description is the possibility of applying it to every action

and state of the domain, modeling the possible transitions

to each state as a logical program. Then, an ASP engine is

used to get a set of observable states and actions, this is

done by finding every answer set for every state s that is

being visited in a given instant. After this step, and through

numerous interactions between the agent and the environment,

the oASP(MDP) algorithm is capable of approximating the

action-value function Q(s,a).

A pseudo code representation of the oASP(MDP) algorithm

in shown in Algorithm 1. First, the algorithm receives three

1 Algorithm: oASP(MDP)

Input: The set of actions A, an action-value function

approximation method M and a number of

episodes n.

Output: The approximated Q(s, a) function.

2 Initialize the set of observed states So = ∅

3 while number of episodes performed is less than n do
4 repeat
5 Observe the current state s
6 if s �∈ So then
7 Add s to the set of states So.

8 Choose and execute a random action a ∈ A.

9 Observe the future state s′.
10 Update state s logic program with observed

transition adding a choice rule.

11 Update Q(s, a)’s description by finding every

answer set for each state s added to So in

this episode.

12 else
13 Choose an action a ∈ A as defined by M .

14 Execute the chosen action a.

15 Observe the future state s′.
16 Update Q(s, a)’s value as defined by M .

17 Update the current state s← s′.
18 until the end of the episode

Algorithm 1: The oASP(MDP) Algorithm created by [2].

distinct parameters, the first is the set of actions the agent can

execute; the second is a RL method M that can be used to

approximate the action-value function Q(s,a); and, finally, it

receives the number of times n that the agent is going to

interact with the environment. After receiving these initial

parameters, the algorithm initializes the set of states S as

empty, since the construction of this set of states is done

incrementally as the interactions occur. The main contribution

of this algorithm is that, even though it builds the set of states

in an incremental way, the RL method M is still able to

approximate the action-value function Q(s,a) [2].

The next step of the algorithm is a loop where, in each

repetition, the algorithm observes the current state s of the

agent and if s �∈ S, then s is added to S, one random action

is executed and a future state s’ is returned. After this, it is

possible to create the choice rules (such as Formula (7)) and

to update the action-value function Q(s,a) according to the

received reward r. On the other hand, if s ∈ S, then another

decision is made since, in this case, the action to be executed

is chosen by the RL method M [2].

Finally the action-value function Q(s,a) is updated for each

step of the episode. This update is done by M . The current

state is also updated in this step, since now the current state

is s’ [2].

The next section describes the main contributions of the

present paper.

530

III. SOLVING A SPATIAL PUZZLE WITH OASP(MDP)

In order to solve spatial puzzles of increasing complexity,

this work adapted the oASP(MDP) algorithm to use heuristics

to accelerate the learning process.

To obtain an admissible heuristic for the Fisherman’s Folly,

Q-Learning was applied to a simplified version of this puzzle,

where multiple passes of the string through holes were forbid-

den, whereas the arrangement of objects was kept the same as

in the original puzzle. Thus, the Q-table obtained as a solution

to this simpler puzzle was used as heuristic to guide the choice

of an action to be executed, accelerating the learning process,

in the original Fisherman’s Folly puzzle.

We now describe each part of the domain formulation and

its use in oASP(MDP).

First, actions in the domain were defined such that the agent

is capable of passing objects through holes, this is represented

as a tuple <HE, CE, HF>, where:

HE is a Host Element, i.e., an element of the

puzzle that could host a hole1. HE ∈
{Sphere1, Sphere2, Post,Disk1, Disk2, Ring, String }

CE is a Crossing Element, an element of the puzzle that is

going to pass through a hole in a Host Element. The set

of CEs includes all the objects in the puzzle, even though

the String only crosses an object with its two tips: Str1,

Str2 (fixed to Disk1 and Disk2, respectively); CE ∈
{Sphere1, Sphere2, Post,Disk1, Disk2, Ring, String }

HF is the Hole Face, the side of the hole towards which the

CE is going be passed through the hole in HE. There

are two possible sides (or faces): positive (+) or negative

(-).

Thus, the tuple <HE, CE, HF> represents that “CE is

going to pass through HE towards HF”. Choosing an action is

to choose the elements that the agent is going to manipulate

in the interaction. There are 7 elements the agent is capable

of manipulating as a CE, 7 elements as a HE and 2 HF, which

leads to the total of 98 possible actions.

Note that, initially, the agent does not have the knowledge

about which objects have holes, and which do not have (thus,

the set HE contains all domain objects); nor the agent knows

beforehand which elements can or cannot pass through exist-

ing holes (due to size constraints). These are characteristics of

the domain that are going to be learned by the RL procedure,

by assigning negative rewards to unfruitful actions, such as

trying to pass an object through the Disks (which host no

holes).

The domain states are represented as a list structure chain
(similar to that introduced in [1]) to capture the sequence of

holes that any object is currently crossing. In this work, we

only assume this list representation for the string and for the

post. For instance, each crossing of a string s through a hole

h is represented by the exit hole face: if s crosses h from

1For brevity we identify the hole in an object by the name of the object
itself.

−h to +h, we represent the crossing as +h in the chain

representation.

For example, consider the diagrammatic representation of

the Fisherman’s Folly puzzle in Figure 2, the lists of crossings

for the string (str) and the post are the following:

1) chain(str) = [+Sphere1,+Post,+Sphere2]
2) chain(post) = [+Ring]

After defining the representation for the actions and states,

the oASP(MDP) can be initialized. It receives the set of actions

A, the set of goal states S and the number of episodes n.

In the first step of the algorithm, the agent needs to verify

if the initial state of the puzzle (s0) is already in set S. At the

start of the process, the initial state is not in the set, leading

the agent to execute a random action, for example, pass the

disk through the post toward the positive face: <Post Hole,
Disk, Positive>. After this execution, the agent goes to

state (s1), then s0 can be added to S and the agent receives

a reward r0. Now the agent has knowledge about a possible

transition, which can be translated to a choice rule in ASP as

1{s1}1 :- a(ExecutedAction), where “ExecutedAc-

tion” is the action <Post Hole, Disk, Positive> ex-

ecuted by the agent. Each state s ∈ S has an ASP file with all

these transitions rules. Succeeding the creation of this file, ASP

can find the answer sets and the agent can initialize the action-

value function Q(s,a), updating the value with the received

reward r0.

Now the agent is in s1, and since s1 �∈ S, all the steps

described above are repeated. But, another situation may

happen, let’s assume that the action chosen randomly now is

to undo the crossing of the disk through the post hole <Post
Hole, Disk, Negative>, this action leads again to the

initial state s0. Because the agent is in s0, it is not going to

execute a random action, since it has now an initial value for

Q(s,a). The agent is going to execute an action determined by

the Q-Learning algorithm, leading to the future state s’.

The reward used by the agent in order to update the action-

value function Q(s,a) is returned by the environment. Finally,

after a determined number of interactions, the oASP(MDP)

algorithm is capable of returning the Q-table. This table

represents the values for each action in the states visited by the

agent, one property of the Q-table is that if the agent executes

the actions with the highest Q-values, the agent is executing

the optimal policy [5].

IV. EXPERIMENTS AND RESULTS

The Fisherman’s Folly puzzle was tested with four dis-

tinct reinforcement learning algorithms: the traditional version

of Q-Learning, oASP(MDP) [2], Q-Learning accelerated by

heuristic [7] and oASP(MDP) with the RL method accelerated

by heuristic (first proposed in this paper).

The RL parameters used throughout this work were: dis-

count factor of 0.9; the trade-off between exploitation and

exploration was fixed to 0.1, throughout the whole experiment,

the learning rate was 0.2 and the control value for the heuristic

was 0.1. Related to the reward received by the agent, the

following values were defined: -100 to forbidden actions

531

(actions that lead to the same state or that are physically

impossible), 100 to reaching the goal and -5 to each step

executed.

To evaluate these approaches, we used four different mea-

sures. The first is the number of steps to complete the puzzle,

the optimal value is five. Second, the return values, with the

maximum value of 80 to the optimal case. The last two were:

the number of states visited and the number of state/action pair

in the Q-Table. For each of the 30 trials, 10 thousand episodes

were executed. An episode ends when the agent reaches the

goal or the number of steps is 25.

Results show that the heuristically accelerated versions of

RL are better suited than non-accelerated versions, since the

former guided the learning of the algorithms from the early

beginning, reaching the optimal policy (Figure 3) faster and

also presenting higher return values (Figure 4). This happens

because the heuristic used by this paper is the Q-table of the

solution of a relaxed version of the puzzle.

From the beginning of the interactions, the traditional

version of Q-Learning already has the full Q-table, with all

actions that can be chosen by the agent. Different from the

oASP(MDP) algorithm, that builds this table through inter-

actions. This characteristic leads to an interesting comparison

between the number of states visited (Figure 5) and the number

of state/action pairs (Figure 6). The oASP(MDP) algorithm

visits more valid states than the traditional Q-Learning, al-

though it has a smaller number of state/action pairs because of

the removal of forbidden actions. The oASP(MDP) algorithm

does not even try to perform these actions, not adding these

to the Q-table, different from the Q-Learning that has all the

actions on the Q-table from the beginning. Besides that, Q-

Learning also does not remove forbidden actions from the list

of possible actions to be performed, receiving only negative

rewards as an indication of how bad an action is, so Q-

Learning tries to execute these forbidden actions in future

steps, which leads to the same state and consequently (in

overall) the number of states that are explored end up being

smaller than the oASP(MDP).

But one drawback of oASP(MDP) is that it requires more

time to run than the traditional Q-Learning. Besides, ASP

capabilities are not fully explored due to the simplicity of the

domain. So, future work will focus on expanding the use of

ASP.

The algorithms were implemented in Python 3.5, using Ze-

roMQ to provide message exchange between the environment

and the agent. SWI-Prolog was the PROLOG environment and

Clingo was the ASP engine. The source code for the tests can

be found at: https://goo.gl/7wzZ56

V. LITERATURE REVIEW

The work in [9] explores the combination of ASP and

RL, presenting the DARLING framework. This framework

uses ASP and CLINGO in order to represent models and

to allow planning and reasoning, while uses RL to make the

agent adaptive to the environment. DARLING was tested with

a service robot in an office-like environment, allowing the

(3) Number of steps.

(4) Return values.

(5) Number of states visited.

authors to show that when DARLING is used, the robot can

learn tasks faster and improve its performance over time. One

aspect that differentiate DARLING from oASP(MDP) is the

reliance of a planning phase in the former (not needed in the

latter). Future work shall explore this distinction.

The work reported in [10] presents an approach that com-

bines Deep Q-Network with Symbolic Representation, where

the latter is used as input and output of the deep learning

algorithm. The representation in [10] describes spatial relations

between objects and the number of possible combinations of

532

(6) Number of state/action pairs.

these predicates makes the Q-table an interactive model.

The present paper adapts oASP(MDP) [2] to deal with

heuristics. The work reported in [7] introduces an interesting

approach, the Heuristic Accelerate Reinforcement Learning

(HARL) algorithm, where heuristics were used to accelerate

the RL learning process. After this initial proposal, different

approaches in different domains were explored. In [11], the

combination of heuristic and RL is used on the domain

of dynamic secondary spectrum sharing in cellular systems.

This is an interesting study because it compares HARL to

RL and Heuristic systems alone, presenting how HARL can

outperform these other two approaches. The suitability of

HARL can also be seen in two robot domains [12], where case

base was used as heuristic in a transfer learning setting. This

approach works as follows: first a RL algorithm is applied

to a task, then when the learning converges, a database of

cases is stored. These cases are then transferred to be used in

another task, where the cases are retrieved and adapted. The

present paper uses a similar idea, first, it runs the Q-Learning

algorithm to a relaxed version of the problem, then it uses the

Q-Table as heuristic to the complete Fisherman’s Folly puzzle.

There are also solutions of spatial puzzles from a more

formal knowledge representation standpoint.

A formalization of the Fisherman’s Folly puzzle was de-

scribed in [6], where a version of Equilibrium Logic and Situ-

ational Calculus are taken into consideration, using the former

to represent the semantics, and the latter to provide a tool

to formalize the problem. Besides that, a PROLOG planner,

used to solve the Fisherman’s Folly puzzle, is presented. One

drawback is that this planner is not suitable to solve more

complex spatial puzzles, as the representation (and, therefore,

the complexity of the state space) is prohibitively high. This is

the main motivation for the development of the work reported

in this paper, the combination of ASP with RL allows for a

partial representation of the domain to trim the search space

of an agent that learns the solution of complex problems by

interacting with the environment.

VI. CONCLUSION

This paper presented the application of different Reinforce-

ment Learning techniques to the Fisherman’s Folly puzzle

domain. The oASP(MDP) is one of these techniques, where

a combination of MDP and Answer Set Programming is

achieved. The RL method used by this algorithm is the off-

policy model-free Q-Learning.

Experiments were performed in order to compare the differ-

ent RL approaches: traditional Q-Learning, oASP(MDP), Q-

Learning accelerated by heuristic and oASP(MDP) with the Q-

Learning method accelerated by heuristic. The results showed

how heuristics can accelerate the learning process, since it

always outperforms its non-heuristics counterparts. Besides,

the results also presented how an expanded exploration of the

domain is achieved with oASP(MDP).

ACKNOWLEDGMENT

Thiago Freitas is sponsored by FAPESP-IBM Proc.

17/07833-9. Paulo E. Santos and Leonardo Ferreira acknowl-

edge financial support from FAPESP-IBM Proc. 2016/18792-

9. Reinaldo Bianchi acknowledges financial support from

FAPESP Proc. 2016/21047-3.

REFERENCES

[1] P. E. Santos and P. Cabalar, “Framing holes within a loop hierarchy,”
Spatial Cognition & Computation, vol. 16, no. 1, pp. 54–95, 2016.

[2] L. A. Ferreira, R. A. d. C. Bianchi, P. E. Santos, and R. L. De Mantaras,
“A method for the online construction of the set of states of a markov
decision process using answer set programming,” 2018.

[3] T. Eiter, G. Ianni, and T. Krennwallner, “Answer set programming:
A primer,” in Reasoning Web. Semantic Technologies for Information
Systems. Springer, 2009, pp. 40–110.

[4] M. Gelfond and V. Lifschitz, “The stable model semantics for logic
programming.” in ICLP/SLP, vol. 88, 1988, pp. 1070–1080.

[5] R. S. Sutton and A. G. Barto, Reinforcement learning an introduction
– Second edition, in progress (Complete Draft). MIT Press, 2018.

[6] P. Cabalar and P. E. Santos, “Formalising the fisherman’s folly puzzle,”
Artificial Intelligence, vol. 175, no. 1, pp. 346–377, 2011.

[7] R. A. C. Bianchi, C. H. C. Ribeiro, and A. H. R. Costa, “Heuristically
accelerated q–learning: A new approach to speed up reinforcement
learning,” in Advances in Artificial Intelligence – SBIA 2004, A. L. C.
Bazzan and S. Labidi, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 245–254.

[8] V. Lifschitz, “What is answer set programming?.” in AAAI, vol. 8, no.
2008, 2008, pp. 1594–1597.

[9] M. Leonetti, L. Iocchi, and P. Stone, “A synthesis of automated plan-
ning and reinforcement learning for efficient, robust decision-making,”
Artificial Intelligence, vol. 241, pp. 103 – 130, 2016.

[10] M. A. Zamani, S. Magg, C. Weber, and S. Wermter, “Deep reinforcement
learning using symbolic representation for performing spoken language
instructions,” in 2nd Workshop on Behavior Adaptation, Interaction and
Learning for Assistive Robotics (BAILAR) on Robot and Human Inter-
active Communication (RO-MAN), 26th IEEE International Symposium
on, 2017.

[11] N. Morozs, T. Clarke, and D. Grace, “Heuristically accelerated reinforce-
ment learning for dynamic secondary spectrum sharing,” IEEE Access,
vol. 3, pp. 2771–2783, 2015.

[12] R. A. C. Bianchi, P. E. Santos, I. J. da Silva, L. A. Celiberto, and
R. Lopez de Mantaras, “Heuristically accelerated reinforcement learning
by means of case-based reasoning and transfer learning,” Journal of
Intelligent & Robotic Systems, Oct 2017.

533

