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Abstract. In this paper we introduce a combination of Answer Set Pro-
gramming (ASP) and Description Logics (DL) (in particular, ALC) on
top of a modal temporal basis using connectives from Linear-time Tem-
poral Logic (LTL). On the one hand, for the temporal extension of ALC,
we depart from Baader et al’s proposal ALC-LTL that restricts the use
of temporal operators to occur only in front of DL axioms. On the other
hand, for the temporal extension of ASP we use its formalization in
terms of Temporal (Quantified) Equilibrium Logic (TEL). This choice
is convenient since (non-temporal) Equilibrium Logic has been already
used to capture the semantics of hybrid theories, that is, combinations
of ASP programs with DL axioms. Our proposal, called ALC-TEL, ac-
tually interprets ALC axioms in terms of their translation into first or-
der sentences, so that the semantics of TEL is eventually used in the
background. The resulting formalism conservatively extends TEL, hy-
brid theories and ALC-LTL as particular cases.

1 Introduction

Due to its versatility, Answer Set Programming (ASP) [1,2] is one of the paradigms
for non-monotonic reasoning that has been more frequently extended in the lit-
erature (if not the most). Each extension has been motivated by a given type of
reasoning problem or family of application domains. For instance, the treatment
of dynamic scenarios and transition systems was present from the very beginning
of ASP [3] and eventually led to a combination of ASP with modal operators
from Linear-time Temporal Logic (LTL) [4,5], giving birth to so-called Temporal
Equilibrium Logic (TEL) [6]. As another example, the ASP extension of Hybrid
Knowledge Bases [7] allows for combining non-monotonic logic programs with
classical inference about ontologies, in terms of Description Logic (DL) [8]. Both
extensions are based on the underlying formalism of Equilibrium Logic [9] but
work in different directions: a natural question is what happens when we try to
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embrace both features, time and ontologies, in a common ASP extension. In the
monotonic case, several approaches considered the introduction of LTL operators
in DL at different levels, at the cost of a high complexity, or even undecidability
for some reasoning tasks. A simple approach that avoids these inconveniences is
ALC-LTL [10], proposed by Baader, Ghilardi and Lutz, that extends ALC [11]
with LTL constructs, but restricts the use of temporal operators to occur only
in front of DL axioms.

In this paper, we consider the same temporal extension of DL in ALC-LTL
but under the answer set semantics for temporal logic programs provided by
TEL, so that temporal ALC expressions can be combined with temporal logic
programs. The resulting formalism, ALC-TEL, conservatively extends TEL, hy-
brid theories and ALC-LTL as particular cases. This work is a preliminary step
to introduce the logic and informally explain its behavior using a simple example.

The rest of the paper is organized as follows. In the next section, we recall
the basic definition of ALC and its translation to First Order Logic. In Section 3
we present the first order version of TEL as introduced in [12], but with a slight
modification to allow open domains and capture ALC quantification. Section 4
defines the ALC-LTL syntax whereas Section 5 incorporates those constructs
into TEL using their first order translation together with some additional ax-
iomatization. Finally, Section 6 concludes the paper.

2 Description Logic ALC
The alphabet of an ALC theory [11,13] is a triple 〈NC , NR, NI〉 of mutually dis-
joint sets of names referring to concepts, roles and individuals, respectively . As
an example, consider the alphabetNC = {Disease, Treatment, Vaccine, Medication},
NR = {curedBy}, NI = {AIDS, Smallpox}.

A concept (description) C is an expression that follows the grammar:

C ::= c | ¬C | C u C | ∃r.C

where c ∈ NC is a concept name and r ∈ NR a role name. We use the following
abbreviations for concept descriptions:

C tD def
= ¬(¬C u ¬D)

> def
= c t ¬c

⊥ def
= ¬>

∀r.C def
= ¬∃r.(¬C)

for some concept name c ∈ NC . A general concept inclusion (GCI) axiom is an
expression of the form C v D where C and D are concept descriptions. A T-Box
is a set of GCI axioms. We sometimes write C ≡ D as an element of a T-Box
Θ to mean that the two axioms C v D and D v C are elements of Θ. As an
example, consider the T-Box:

Vaccine t Medication v Treatment (1)

∃curedBy.Treatment v Disease (2)
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meaning that vaccines and medications are treatments, and that anything cured
by a treatment must be a disease. An assertion (axiom) is a construct of one of
the forms:

a : C (a, b) : r

where a, b ∈ NI are individual names, r ∈ NR is a role name and C is an
arbitrary concept description. An A-Box is a set of assertions. For instance, the
A-Box:

Smallpox : ∃curedBy.Vaccine (3)

AIDS : Disease u ¬∃curedBy.Treatment (4)

tells us that smallpox is cured3 by a vaccine whereas AIDS is a disease and has
no treatment for its cure. The fact that Smallpox is a disease can be derived
from the previous T-Box since it is cured by some vaccine, and the later is a
treatment. A knowledge base 〈Θ,Ω〉 consists of a T-Box Θ and an A-Box Ω.

In the rest of the paper, we treat ALC through its standard First Order
Logic translation (see for instance [13]). However, for the sake of completeness,
we provide next the standard definition of the ALC semantics.

Definition 1 (ALC interpretation). An ALC interpretation I is a pair (∆I , ·I)
where ∆I is a non-empty set called the domain (containing individuals) and ·I
is a mapping on NC ∪ NR ∪ NI that assigns: an individual aI ∈ ∆I to each
individual name a ∈ NI ; a set of individuals cI ⊆ ∆I to each concept name
c ∈ NC ; and a set of pairs of individuals rI ⊆ ∆I × ∆I to each role name
r ∈ NR. ut

Definition 2 (Interpretation of concept descriptions). Given interpreta-
tion I = (∆I , ·I) its extension to concept descriptions follows the recursive rules:

(¬C)I
def
= ∆I \ CI

(C uD)I
def
= CI ∩DI

(∃r.C)I
def
= {d ∈ ∆I | there is a d′ with (d, d′) ∈ rI such that d′ ∈ CI}

The interpretation of derived concepts can be easily deduced:

(C tD)I = CI ∪DI

>I = ∆I

⊥I = ∅
(∀r.C)I = {d ∈ ∆I | all d′ with (d, d′) ∈ rI satisfy d′ ∈ CI}

As expected, an interpretation I satisfies a GCI axiom C v D, written
I |= C v D, iff CI ⊆ DI . Similarly, we define satisfaction for assertions as:
I |= a : C iff aI ∈ CI ; and I |= (a, b) : r iff (aI , bI) ∈ rI . Interpretation I is a

3 Understanding here curedBy as “cured or prevented by.”
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model of a knowledge base 〈Θ,Ω〉 iff it satisfies all GCIs in the T-Box Θ and all
assertions in the A-Box Ω.

As said before, we are interested in the translation of ALC into First Order
Logic (FOL) [13]. Given an ALC alphabet NC ∪ NR ∪ NI we define the corre-
sponding First Order signature with one unary predicate c(x) per each c ∈ NC ,
binary predicate r(x, y) per each r ∈ NR and constant name a per each a ∈ NI .
The FOL translation of a concept description C with respect to a free variable
x is a formula denoted as tx(C) and recursively defined as follows:

tx(c)
def
= c(x) for any concept name c ∈ NC

tx(¬C)
def
= ¬tx(C)

tx(C uD)
def
= tx(C) ∧ tx(D)

tx(∃r.C)
def
= ∃y( r(x, y) ∧ ty(C) )

Notice that y is a variable name4 different from x and bound in ∃y. It is relatively
easy to check that the translation of derived concepts can be captured by the
following equivalent FOL formulas:

tx(C tD)↔ tx(C) ∨ tx(D)

tx(>)↔ >
tx(⊥)↔ ⊥

tx(∀r.C)↔ ∀y( r(x, y)→ ty(C) )

The translation of a GCI axiom C v D is defined as

t(C v D)
def
= ∀x(tx(C)→ tx(D))

For instance, the translation of (2) corresponds to:

∀x( ∃y ( curedBy(x, y) ∧ Treatment(y) )→ Disease(x) )

We also define the translation of assertions as:

t(a : C)
def
= tx(C)[x/a] t((a, b) : r)

def
= r(a, b)

where [x/a] stands for the substitution of variable x by the individual name a.
As an example, the translation of (3) amounts to:

∃y ( curedBy(Smallpox, y) ∧ Vaccine(y) )

Given a knowledge base 〈Θ,Ω〉, we define its translation as the union t(Θ)∪
t(Ω) of the sets of translations of all GCIs in Θ and assertions in Ω, respectively.

Proposition 1. There is a one-to-one correspondence between ALC models of
〈Θ,Ω〉 and FOL models of t(Θ) ∪ t(Ω).

4 In fact, we can define translation ty(C) using x as new bound variable, and the whole
translation belongs to the 2-variable fragment of FOL.
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3 Temporal Quantified Equilibrium Logic

The definition of Temporal Quantified Equilibrium logic we use in the current
paper is an extension of a previous version defined in [12] to cope with open
domains as in Quantified Equilibrium Logic from [7]. Syntactically, we consider
function-free first-order languages L = 〈C,P〉 built over a set of constant sym-
bols, C, and a set of predicate symbols, P. Additionally, each p ∈ P has an
associated arity or number of arguments. An atom is any p(t1, . . . , tn) where
p ∈ P is a predicate with arity n ≥ 0 and each ti is a term, that is, a constant
or a variable in its turn. We assume the existence of a binary equality predi-
cate ‘=’∈ P, written in infix notation. Using L, connectors and variables, an
L-formula ϕ is defined by following the grammar:

ϕ ::= p(t1, . . . , tn) | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 |
©ϕ | ϕ1 U ϕ2 | ϕ1 R ϕ2 | ∀x ϕ | ∃x ϕ | (ϕ)

where p(t1, . . . , tn) is an atom, x is a variable and©, U and R respectively stand
for “next”, “until” and “release.” A theory is a finite set of formulas. We use the
following derived operators:

¬ϕ def
= ϕ→ ⊥ ♦ϕ

def
= > U ϕ

> def
= ¬⊥ �ϕ

def
= ⊥ R ϕ

ϕ↔ ψ
def
= (ϕ→ ψ) ∧ (ψ → ϕ)

for any formulas ϕ,ψ. Note that ¬ϕ will be used to represent default negation.

The application of i consecutive ©’s is denoted as follows: ©iϕ
def
= ©(©i−1ϕ)

for i > 0 and ©0ϕ
def
= ϕ. We say that a term, atom, formula or theory is ground

if it does not contain variables. A sentence or closed-formula is a formula without
free-variables (defined as usual). A theory Γ is a set of sentences.

A universe is a pair (D, σ) where D is a non-empty set called the domain
and σ is a mapping σ : C ∪D → D satisfying σ(d) = d for every d ∈ D. We call d
an unnamed individual if there is no constant c ∈ C with σ(c) = d. Throughout
this paper, σ is subject to the unique names assumption (UNA) stating that
different individual names are mapped to different domain elements, that is,
σ(c) 6= σ(c′) if c 6= c′ for any c, c′ ∈ C. This is a common assumption both in
Description Logics and in Logic Programming. In fact, the latter usually makes
a stronger assumption, taking the Herbrand Universe (C, σ) where D = C, and
so, σ(c) = c for all c ∈ C. In this paper, however, we adopt an open domain as
in [7] to accommodate the use of quantification from Description Logic.

By AtD(C,P) we denote the set of ground atoms constructible from the
language L′ = 〈C ∪ D,P〉. A first-order LTL-interpretation for language L =
〈C,P〉 is a structure 〈(D, σ),T〉 where (D, σ) is a universe as above and T is
an infinite sequence of sets, T = {Ti}i≥0 with Ti ⊆ AtD(C,P). Intuitively, Ti
contains those ground atoms that are true at situation i. For any T = {Ti}i≥0
and k ≥ 0, by T[k] we denote the LTL-interpretation T = {Ti}i≥k that starts
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at the k-th position of T. Given two sequences of sets H and T we say that H
is smaller than T, written H ≤ T, when Hi ⊆ Ti for all i ≥ 0. As usual, H < T
stands for: H ≤ T and H 6= T.

Definition 3. A temporal quantified here-and-there (or just TQHT) interpre-
tation is a tuple M = 〈(D, σ),H,T〉 where 〈(D, σ),H〉 and 〈(D, σ),T〉 are two
LTL-interpretations satisfying H ≤ T. ut

In the definition above, we respectively call H and T the “here” and “there” com-
ponents ofM. A TQHT-interpretation of the formM = 〈(D, σ),T,T〉 is said to
be total. If M = 〈(D, σ),H,T〉 we write M[k] to stand for 〈(D, σ),H[k],T[k]〉.
The satisfaction relation for M = 〈(D, σ),H,T〉 and a formula α, written
M |= α, is recursively defined as follows:

M |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ H0.
M |= t = s iff σ(t) = σ(s)
M 6|= ⊥
M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ.
M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ.
M |= ϕ→ ψ iff 〈(D, σ), w,T〉 6|= ϕ or 〈(D, σ), w,T〉 |= ψ

for all w ∈ {H,T}
M |=©ϕ iff M[1] |= ϕ.
M |= ϕ U ψ iff ∃j ≥ 0, M[j] |= ψ

and (M[i] |= ϕ for all i, 0 ≤ i < j).
M |= ϕ R ψ iff ∀j ≥ 0, M[j] |= ψ

or (M[i] |= ϕ for some i, 0 ≤ i < j).
M |= ∀x ϕ(x) iff 〈(D, σ), w,T〉 |= ϕ(d)

for every d ∈ D and every w ∈ {H,T}.
M |= ∃x ϕ(x) iff M |= ϕ(d) for some d ∈ D.

where by ϕ(d) we denote the replacement by d of all free occurrences of x in
ϕ(x). An interpretation M is a model of a theory Γ , written M |= Γ , if it
satisfies all the sentences in Γ . The resulting logic is called Temporal Quan-
tified Here-and-There Logic with equality and static5 domains, and we simply
abbreviate it as TQHT. It is not difficult to see that, if we restrict ourselves to
total TQHT-interpretations, 〈(D, σ),T,T〉 |= ϕ iff 〈(D, σ),T〉 |= ϕ in first-order
LTL. Furthermore, the following properties can be easily checked by structural
induction.

Proposition 2. For any formula ϕ, and interpretation 〈(D, σ),H,T〉:

(i) if 〈(D, σ),H,T〉 |= ϕ, then 〈(D, σ),T,T〉 |= ϕ
(ii) 〈(D, σ),H,T〉 |= ¬ϕ iff 〈(D, σ),T,T〉 6|= ϕ

In general, it is clear that the other direction of (i) does not hold: any non-
total interpretation contains atoms ϕ = p(t1, . . . , tn) ∈ Ti \ Hi for some i ≥ 0.

5 The name “static” refers here to the fact that the same domain D is used both for
H and T.
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Without loss of generality, suppose i = 0 (we can always take M[i] instead).
Then, for those atoms, 〈(D, σ),T,T〉 |= ϕ but 〈(D, σ),H,T〉 6|= ϕ. Moreover, by
(ii), the former also means 〈(D, σ),H,T〉 6|= ¬ϕ, so we conclude that non-total
interpretations falsify the formula ϕ ∨ ¬ϕ, a classical tautology known as the
excluded middle axiom. This axiom is not valid either in intuitionistic logic or in
the intermediate logic of Here-and-There [14], where ‘¬’ is weaker than classical
negation. It is still possible to add this axiom for some predicates p ∈ P by
forcing the condition:

� ∀x1 . . . ∀xn ( p(x1, . . . , xn) ∨ ¬p(x1, . . . , xn) ) (EMp)

The following results explain the effect of including (EMp) among the formulas
of our theory.

Proposition 3. An interpretationM = 〈(D, σ),H,T〉 satisfies (EMp) for some
p ∈ P iff, for all i ≥ 0: p(t1, . . . , tn) ∈ Ti is equivalent to p(t1, . . . , tn) ∈ Hi.

Corollary 1. Given language L = 〈C,P〉, let P ′ ⊆ P be a subset of predicates
and let M |= (EMp) for all p ∈ P ′. Then, 〈(D, σ),H,T〉 |= ϕ amounts to
〈(D, σ),T,T〉 |= ϕ for any formula ϕ in the language L = 〈C,P ′〉.

Corollary 2. Given language L = 〈C,P〉, the addition of (EMp) for all p ∈ P
makes TQHT collapse into LTL.

As an illustration of TQHT satisfaction, consider the propositional formula:

¬inmune → vulnerable (5)

This formula corresponds to the ASP ground rule:

vulnerable :- not inmune.

Any model M = 〈(D, σ),H,T〉 of (5) must satisfy that 〈(D, σ), w,T〉, 0 6|=
¬inmune or 〈(D, σ), w,T〉, 0 |= vulnerable for all w ∈ {H,T}. By Proposi-
tion 2 (ii), the former is equivalent to 〈(D, σ),T,T〉, 0 |= inmune, that is,
inmune ∈ T0, whereas the latter ammounts to vulnerable ∈ H0 for w = H
and vulnerable ∈ T0 for w = T. Therefore, models of (5) are such that, if
inmune 6∈ T0 then vulnerable ∈ H0 ⊆ T0.

To introduce non-monotonicity, we define a set of selected total TQHT mod-
els we will call temporal equilibrium models, or just temporal stable models, if we
consider their corresponding LTL representation.

Definition 4 (Temporal Equilibrium Model). A temporal equilibrium model
of a theory Γ is a total model M = 〈(D, σ),T,T〉 of Γ such that there is no
H < T satisfying 〈(D, σ),H,T〉 |= Γ . When this happens, we further say that
the LTL-interpretation 〈(D, σ),T〉 is a temporal stable model of Γ . ut

The logic induced by temporal equilibrium models is called Temporal Quanti-
fied Equilibrium Logic (TEL, for short). We can identify temporal logic programs
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with variables as a fragment of first order temporal theories. For a detailed defini-
tion of this fragment see [12]. In the previous simple example (5), we can observe
that any total interpretation M = 〈(D, σ),T,T〉 with inmune ∈ T0 is a TQHT
model, but we can always form another interpretationM′ = 〈(D, σ),H,T〉 with
H0 = T0 \ {inmune, vulnerable} and Hi = Ti for i > 0 such that it is also a
TQHT model of (5) but H < T, soM is not in equilibrium. If, on the contrary,
inmune 6∈ T0, then the satisfaction of (5) requires vulnerable ∈ H0 ⊆ T0 for any
TQHT model, and there is no way to form a smaller model by removing atoms
in T0. For the rest of situations i > 0, any Ti containing at least one atom can
always be reduced to Hi = ∅ while keeping the satisfaction of (5), since this
formula only affects to the initial situation. It is not difficult to see that the only
temporal equilibrium model of (5) corresponds to T0 = {vulnerable} and Ti = ∅
for i > 0. Let us consider next a more elaborated example.

Example 1. Take the following temporal logic program:

Person(x) ∧Disease(y) ∧ ¬Immune(x, y)→ Vulnerable(x, y) (6)

�( Immune(x, y)→©Immune(x, y) ) (7)

�( Vulnerable(x, y) ∧ ¬© Immune(x, y)→©Vulnerable(x, y) ) (8)

�( Vaccinate(x, y)→ Immune(x, y) ) (9)

�Person(John) ∧�Disease(Smallpox) (10)

©3Vaccinate(John, Smallpox) (11)

where we assume that all free variables in a formula are universally quantified.
Formula (6) asserts that, initially, any person x is vulnerable to any desease y,
unless we can prove it is immune. As we saw before, the effect of ¬ϕ in TEL
is that of default negation of ϕ, that is, ¬ϕ holds when there is no evidence
on ϕ. Formula (7) tells us that once somebody becomes immune to some dis-
ease, it remains so forever. A similar expression is (8), saying that someone
vulnerable remains so, but this time is under the default condition that there
is no evidence of becoming immune. Formulas of the form (8) are called in-
ertia rules. The expression (9) means that the effect of vaccinating x against
y is becoming immune. Finally, (10) contains some typing information saying
that John is (always) a person and Smallpox is (always) a disease, whereas
(11) asserts that John has been vaccinated at situation i = 3. Program (6)-(11)
has a temporal stable model 〈(D, σ),T〉 where D = C = {John, Smallpox}, σ
is the identity relation and the only states making Vulnerable(John, Smallpox)
true are i ∈ {0, 1, 2} whereas Immune(John, Smallpox) becomes true for all
i ≥ 3. The rest of stable models only vary in the extension of D (we can have
arbitrary unnamed individuals) and the assignment σ, provided that UNA is
respected. Suppose we are said now that John has some genetic anomaly that
made him immune to Smallpox from the very beginning. If we add the formula
Immune(John, Smallpox) to (6)-(11) then Vulnerable(John, Smallpox) is never
derived and we obtain �Immune(John, Smallpox) as a conclusion. This last vari-
ation illustrates the non-monotonic behavior of TEL entailment relation. ut
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Without entering into further detail and just as an illustration, Figure 1 shows an
encoding of Example 1 in the language of the temporal ASP solver telingo [15].
The correspondence of program rules with the respective formulas (6)-(11) is
pretty obvious in most cases. The only difference is that telingo uses the previ-
ous operator in rules representing transitions between two states, rather than the
next operator. Thus, for instance, ’inmune(X,Y) must be read as “previously,
inmune(X,Y) was true”. On the other hand, the next operator used on facts is
represented as >, as we can see in the last line.

#program initial.

vulnerable(X,Y) :- person(X), disease(Y), not inmune(X,Y).

#program dynamic.

inmune(X,Y) :- ’inmune(X,Y).

vulnerable(X,Y) :- ’vulnerable(X,Y), not inmune(X,Y).

#program always.

inmune(X,Y) :- vaccinate(X,Y).

person(john).

disease(smallpox).

#program initial.

&tel{ > > > vaccinate(john,smallpox) }.

Fig. 1. An encoding of Example 1 in the language of the temporal ASP solver telingo.

4 ALC-LTL

The combination of description logics with temporal patterns is an important
field of knowledge representation that has been widely studied in the literature
(see, for instance, the surveys [16,17,18]). In a cornerstone paper, Baader, Ghi-
lardi and Lutz [10] proposed the temporal extension ALC-LTL where temporal
operators are only introduced in front of ALC axioms, but not as concept con-
structors. This guaranteed decidability and significantly reduced the complexity
of different reasoning tasks (depending on whether rigid roles are considered or
not) while keeping enough expressiveness for solving many practical problems.
According to [10], an ALC-LTL formula ϕ is defined by the grammar:

α | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ¬ϕ | ϕ1 U ϕ2 | ©ϕ

where α is an ALC axioms. We assume the same abbreviations for temporal
operators seen in Section 3. For ALC-LTL formulas, ϕ → ψ can be defined as
¬ϕ∨ψ and ϕRψ can be defined as ¬(¬ϕU¬ψ) (something that, in general, TEL
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does not satisfy). The semantics for ALC-LTL is provided in [10] by considering
an infinite sequence {Ii}i≥0 of ALC interpretations Ii. In our case, however, we
will be more interested in the first order translation of ALC-LTL. We assume
that any ALC axiom α actually represents the first order formula t(α) as defined
in Section 2. Then, an ALC-LTL formula may be simply seen as an abbreviation
of first order temporal formula. To give an example, the ALC-LTL formula:

♦�(AIDS : ∃curedBy.Treatment)

expresses the wish that a definitive treatment for AIDS is eventually found and,
after applying translation t(·) becomes the first order temporal formula:

♦� ∃y( curedBy(AIDS, y) ∧ Treatment(y) )

Baader et al. define rigid concepts and roles as those whose interpretation does
not vary along time (otherwise, they are called flexible instead). Using the FOL
representation, for any rigid concept c ∈ NC and rigid role r ∈ NR we have:

∀x ( c(x)↔ �c(x))

∀x∀y ( r(x, y)↔ �r(x, y) )

5 ALC-TEL

Following the encoding in [7] to incorporate hybrid theories in Equilibrium Logic,
we describe now how ALC can be easily embodied in TEL. Given language
L = 〈C,P〉 we suppose that NC ⊆ P and NR ⊆ P become unary and binary
predicates, respectively, and that NI ⊆ C become constant names. The crucial
point in the encoding is the addition of the excluded middle axiom (EMp) for
every predicate p ∈ NC ∪NR. In this way, the translation of an ALC axiom is in-
terpreted under classical FOL whereas the translation of any ALC-LTL formula
is interpreted under quantified LTL. The final result provides an expressive for-
malism that allows combining temporal logic programming and terminological
knowledge. For instance, we can modify now our running example as follows.

Example 2 (Example 1 continued). We can incorporate axioms (1)-(4) assuming
that Vaccine, Medication, Treatment and Disease are rigid concepts, whereas
curedBy is flexible. We also include the rigid concept Person and the constant
John. Our logic program can be modified to includeALC expressions accordingly.
For instance, we can keep untouched the formulas (7)-(9) and (11) since they do
not refer to terminological knowledge, but we replace now (6) by6:

(x : Person) ∧ (y : Disease) ∧ ¬Immune(x, y)→ Vulnerable(x, y)

and (10) by the assertions:

John : Person Smallpox : Disease

that do not need temporal operators, since these concepts are rigid. ut
6 We allow now logical variables in assertions, but their translation is straightforward,

playing the role of generic individual names.
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An important issue may occur when dealing with flexible concepts or roles. For
instance, since curedBy is flexible, the fact that smallpox is cured by a vaccine,
(3), is not guaranteed to persist throughout the temporal narrative. To do so,
we can add a rule for strict persistence like (7) as follows:

�( curedBy(x, y)→©curedBy(x, y) )

which works in this case since we can assume that a curable disease does not
cease to be so. However, if we wanted to transform this rule into a general inertia
default, it would not be directly possible, since curedBy behaves as a classical
predicate due to (EMp). An additional auxiliary predicate could still be used for
that purpose. A more ambitious solution would be removing the (EMp) axiom
and allowing concepts and roles to behave as logic programming predicates. This
would allow expressing defaults on Description Logic axioms, but would depart
from the standard interpretation of ALC.

6 Conclusions

We have defined a logical formalism ALC-TEL that, under a modal temporal
basis, combines the Description Logic ALC [11] with logic programming under
Equilibrium Logic semantics. On the one hand, if we disregard the temporal
operators, this formalism embeds hybrid theories from [7], allowing the combi-
nation of description logics (in our case, ALC) with logic programming. On the
other hand, if we add the excluded middle axiom (EMp) for all the predicates
in the language, ALC-TEL collapses into ALC-LTL as defined by Baader et al
in [10]. Moreover, ALC is encoded in terms of its First Order translation, so
that, once ALC expressions are translated, we simply get Temporal (Quantified)
Equilibrium Logic [6,12] as underlying formalism.

The current proposal opens the exploration of many possible directions. A
first obvious line of future work is the study of syntactic fragments and the anal-
ysis of complexity for their satisfiability problem. An obviously related line has
to do with implementation. For instance, model checking techniques have been
applied both to ALC-LTL [19] and to TEL [20,21] and their efficient combina-
tion could be a interesting topic for future investigation. An adaptation of TEL
for practical problem solving in the spirit of ASP has led to a variant [15] de-
fined on finite traces and its corresponding ASP solver, telingo. The ALC-TEL
formalism may help us to incorporate terminological knowledge in telingo in
the form of DL knowledge bases. Besides, the use of finite traces on temporal
description logics has also been recently proposed in [22]. Another exploratory
line could be a more integrated combination of DL and logic programs where
defaults were also introduced in DL concepts and roles. Finally, another possible
research direction is the use of ALC-TEL in application domains that involve
temporal reasoning and rich ontologies, following similar steps as [23] in the
medical domain.
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