
1

Database repair and dynamic logic

Andreas Herzig (CNRS, IRIT)
joint work with Guillaume Feuillade and Christos Rantsoudis

First Workshop on Challenges and Adequacy Conditions for Logics in

the New Age of Artificial Intelligence, November 3-6, 2022

2

Motivation: repair via more informative integrity constraints

Outline

1 Motivation: repair via more informative integrity constraints

2 Active Integrity Constraints: postulates

3 Active Integrity Constraints: revisiting the existing semantics

4 ECA constraints

5 An analysis in dynamic logic

6 From AICs to active TBoxes: a sketch

7 Conclusion

3

Motivation: repair via more informative integrity constraints

Violations of integrity constraints

ideally: D |= IC

but D ̸|= IC often happens

IC = (∀x)[Bachelor(x) ∧ Married(x) → ⊥]

D0 = {Bachelor(John)}
⇓ +Married(John)

D = {Bachelor(John), Married(John)}

4

Motivation: repair via more informative integrity constraints

Repairs

•D1

D• IC

•D0+Married(John)

ee

Two solutions

1 make D consistent with IC

repair (‘data cleaning’)

2 live with inconsistent D
consistent answer to a query = holds in all possible repairs
hypothetical repair

5

Motivation: repair via more informative integrity constraints

Repairing violations

•D1

D•
repair2 //

repair1 11

•D2 •D3 IC

•D0+Married(John)

ee

possible repairs of D = {Bachelor(John), Married(John)}:

D1 = {Married(John)}
D2 = {Bachelor(John)}
D3 = {Bachelor(John), Bachelor(Charles)}

. . .
all do the job: Di |= IC

. . . but there are too many

. . . and some are not intended

6

Motivation: repair via more informative integrity constraints

Repairs: minimal change

•D1

D•
repair2 //

repair1 11

•D2 •D3 IC

•D0+Married(John)

ee

Minimal repair = a D′ closest to D such that D′ |= IC

intuition: D3 further away than D1 and D2

definition of closeness?
symmetric difference

cf. Possible Models Approach PMA [Winslett, AAAI 1988]
PMA repairs =⇒ produce PMA updates

Hamming distance [Lopatenko&Bertossi, DEXA 2006]

7

Motivation: repair via more informative integrity constraints

Repairs: minimal change is not enough

•D1

D•
repair2 //

repair1 11

•D2 • IC

•D0+Married(John)

ee

PMA repairs of D = {Bachelor(John), Married(John)}:

D1= {Bachelor(John)}
D2 = {Married(John)}

both closest to D (for PMA and Hamming distance)
but D1 is unintended

can we do better by making IC more informative?

8

Motivation: repair via more informative integrity constraints

Active integrity constraints [Flesca et al., PPDP 2004]

“if condition holds then do action”

active IC = negation of static IC + update actions

Static : (∀x)[Bachelor(x) ∧ Married(x) → ⊥]

Active : (∀x)[Bachelor(x) ∧ Married(x), {−Bachelor(x)}]

intuitions:

“specify for each constraint the actions to be performed to
satisfy it” [Flesca et al., PPDP 2004]
“preferred basic actions to repair [a constraint], if it is
violated” [Caroprese&Truszczynski, TPLP 2011]

several declarative semantics

sometimes still not enough information

which AIC for empe,d1
∧ empe,d2

→ ⊥?

8

Motivation: repair via more informative integrity constraints

Active integrity constraints [Flesca et al., PPDP 2004]

“if condition holds then do action”

active IC = negation of static IC + update actions

Static : (∀x)[Bachelor(x) ∧ Married(x) → ⊥]

Active : (∀x)[Bachelor(x) ∧ Married(x), {−Bachelor(x)}]

intuitions:

“specify for each constraint the actions to be performed to
satisfy it” [Flesca et al., PPDP 2004]
“preferred basic actions to repair [a constraint], if it is
violated” [Caroprese&Truszczynski, TPLP 2011]

several declarative semantics

sometimes still not enough information

which AIC for empe,d1
∧ empe,d2

→ ⊥?

9

Motivation: repair via more informative integrity constraints

Event-Condition-Action (ECA) rules [Ceri&Widow, 1994]

“if event occurs and condition holds then trigger action”

now we can implement priority to the input:

if +empe,d1
occurs and empe,d1

∧ empe,d2
holds then −empe,d2

if +empe,d2
occurs and empe,d1

∧ empe,d2
holds then −empe,d1

active database = database + set of ECA rules

huge literature [Ceri et al., ACM TDS 1994; Widom&Ceri,
1996; Chomicki&Marcinkowski, IC 2005,. . .]

problem: chaining repairs may not terminate

problem: no declarative semantics

“lack of declarative semantics makes it difficult to understand
the behavior of multiple ECAs acting together and to evaluate
rule-processing algorithms in a principled way” [Cruz Filipe,
2016]

10

Motivation: repair via more informative integrity constraints

Aims of talk

1 revisit existing AIC semantics

rationality postulates (inspired by belief revision literature)

2 generalise to ECA rules [Herzig et al., FoIKS 2022]

analysis in dynamic logic

3 sketch transfer to description logics

active TBoxes

11

Active Integrity Constraints: postulates

Outline

1 Motivation: repair via more informative integrity constraints

2 Active Integrity Constraints: postulates

3 Active Integrity Constraints: revisiting the existing semantics

4 ECA constraints

5 An analysis in dynamic logic

6 From AICs to active TBoxes: a sketch

7 Conclusion

12

Active Integrity Constraints: postulates

Propositional databases and static integrity constraints

propositional logic

hypothesis: everything is grounded

propositional variables P={p, q . . .}

databases = sets of propositional variables D ⊆ P

update of D by a set of update actions A = {−p,+q, . . .}:

D ◦A =
(
D \ {p : −p ∈ A}

)
∪ {q : +q ∈ A}

static integrity constraints = set of clauses IC

13

Active Integrity Constraints: postulates

Active Integrity Constraints: syntax

r = ⟨C(r),A(r)⟩

C(r) is a conjunction of literals (the negation of an IC)

A(r) is a set of update actions (‘repair options’)
each α ∈ A(r) makes some literal of C(r) false:

if +p ∈ A(r) then ¬p ∈ C(r)
if −p ∈ A(r) then p ∈ C(r)

database D + finite set of AICs R = {r1, . . . , rn}
R1 = {⟨Bachelor ∧ Married, {−Bachelor}⟩}
R2 = {⟨Bachelor ∧ Married, {−Bachelor,−Married}⟩}

static constraints associated to R:
IC(R) =

∧
{¬C(r) : r ∈ R}

14

Active Integrity Constraints: postulates

Active Integrity Constraints: which semantics?

Various semantics

repairs tout court, alias PMA repairs (A(r) superfluous)

founded repairs [Caroprese et al., ICLP 2006]

justified repairs [Caroprese&Truszczynski, TPLP 2011]

well-founded repairs [Cruz Felipe et al., TASE 2013]

dynamic repairs [Feuillade&Herzig, JELIA 2013]

grounded repairs [Bogaerts&Cruz Felipe, AIJ 2018]

. . .

. . . and each in several versions

drop minimality requirement =⇒ weak versions

for PMA repairs: makes updates drastic

minimise exceptions

preferred update actions are soft constraints, can be violated
if static part of R consistent then repair always exists

15

Active Integrity Constraints: postulates

Active Integrity Constraints: which intuitions?

Permission vs. obligation

when condition C(r) is violated:

1 permission that the repair contains some α ∈ A(r)

“If D |= C(r), then D is inconsistent. It is allowed to repair
this inconsistency by executing one or more of the αi ∈ A(r).”
[Bogaerts&Cruz Felipe, AIJ 2018] (notation adapted)

. . . but C(r) might as well be repaired by other AICs
2 obligation that the repair contains some α ∈ A(r)

To guarantee that D ◦A satisfies r, D ◦A must falsify at least
one literal in C(r). To this end A must contain at least one
update action from A(r).”
[Caroprese&Truszczynski, TPLP 2011] (notation adapted)

15

Active Integrity Constraints: postulates

Active Integrity Constraints: which intuitions?

Permission vs. obligation

when condition C(r) is violated:

1 permission that the repair contains some α ∈ A(r)

“If D |= C(r), then D is inconsistent. It is allowed to repair
this inconsistency by executing one or more of the αi ∈ A(r).”
[Bogaerts&Cruz Felipe, AIJ 2018] (notation adapted)

. . . but C(r) might as well be repaired by other AICs
2 obligation that the repair contains some α ∈ A(r)

To guarantee that D ◦A satisfies r, D ◦A must falsify at least
one literal in C(r). To this end A must contain at least one
update action from A(r).”
[Caroprese&Truszczynski, TPLP 2011] (notation adapted)

16

Active Integrity Constraints: postulates

Active Integrity Constraints: different intuitions, ctd.

Permission vs. obligation: consequences

when C(r) is true . . .
1 ‘permission’ reading:

⟨C(r), {+p,+q}⟩ equivalent to

{
⟨C(r), {+p}⟩
⟨C(r), {+q}⟩

=⇒ all A(r) singletons (“R normalised”)
2 ‘obligation’ reading:

R cannot be normalised
computation more local than ‘permission’ reading:
“if C(r) is true then repair via A(r) regardless of other AICs”

. . . but what does “C(r) is true” mean? Just “D |= C(r)”?

17

Active Integrity Constraints: postulates

Active Integrity Constraints: sharpening intuitions
by means of abstract examples (1)

Example: one violation, no interaction

D = ∅ and R =
{
⟨¬p ∧ ¬q, {+p,+q}⟩,
⟨¬q ∧ r, {+q}⟩

}
PMA repairs are A1 = {+p} and A2 = {+q}
principle:

if D |= C(r) and for all other r′,
D ̸|= C(r′) and r′ does not interact with r,

then the repairs are just the update actions in A(r)

18

Active Integrity Constraints: postulates

Active Integrity Constraints: sharpening intuitions
by means of abstract examples (2)

Example: two violations, no interaction

D = ∅ and R =
{
⟨¬p ∧ ¬q, {+p}⟩,
⟨¬p ∧ ¬q, {+q}⟩

}
different readings lead to different intuitions

‘permission’: repairs are A1 = {+p} and A2 = {+q}
‘obligation’: repair is A = {+p,+q}

A is not minimal =⇒ not a PMA repair!
active part of R badly designed?

19

Active Integrity Constraints: postulates

Active Integrity Constraints: sharpening intuitions
by means of abstract examples (3)

Example: one violation, with interaction

D = ∅ and R =
{
⟨¬p, {+p}⟩,
⟨p ∧ ¬q, {+q}⟩

}
repair is A = {+p,+q}

D ̸|= p ∧ ¬q
but D ◦ {+p} |= p ∧ ¬q!

hence D ̸|= C(r) not enough a criterion to trigger an AIC

in general: membership in A may have to be hypothesised

problem: circularity of support (v.i.)

20

Active Integrity Constraints: postulates

Active Integrity Constraints: sharpening intuitions
by means of abstract examples (4)

Example: one violation, with interaction

D = ∅ and R =
{
⟨¬p ∧ ¬q, {+p}⟩,
⟨¬p ∧ q, {+p}⟩,
⟨p ∧ ¬q, {+q}⟩

}
intuitions differ

1 “circularity of support” =⇒ should have no repair
[Caroprese&Truszczynski, TPLP 2011]

2 we: repair should be A = {+p,+q}
reason: identity principle applies to first two AICs

disjunction of static parts equivalent to ¬p
dynamic parts identical

=⇒ first two AICs should be equivalent to ⟨¬p, {+p}⟩

21

Active Integrity Constraints: postulates

Active Integrity Constraints: summary of intuitions

1 permission reading and obligation reading come with different
intuitions

obligations more local

should lead to a simpler account

obligation reading often leads to non-minimal repairs

may indicate flawed choices of update actions

2 and a crucial principle: identity

cf. revision&update postulates. . .

22

Active Integrity Constraints: postulates

The Katsono-Mendelzon (KM) postulates for belief update

φ ⋄ ψ = update of φ by ψ (φ, ψ: propositional formulas)

(U1) φ ⋄ ψ → ψ;

(U2) If φ→ ψ then (φ ⋄ ψ) ↔ φ;

(U3) φ ⋄ ψ → ⊥ if and only if (φ→ ⊥ or ψ → ⊥);

(U4) If φ1 ↔ φ2 and ψ1 ↔ ψ2 then (φ1 ⋄ ψ1) ↔ (φ2 ⋄ ψ2);

(U5) ((φ ⋄ ψ1) ∧ ψ2) → (φ ⋄ (ψ1∧ψ2));

(U6) If (φ ⋄ ψ1) → ψ2 then (φ ⋄ (ψ1∧ψ2)) → (φ ⋄ ψ1);

(U7) If φ is complete then ((φ ⋄ ψ1) ∧ (φ ⋄ ψ2)) → (φ ⋄ (ψ1∨ψ2));

(U8) ((φ1∨φ2) ⋄ ψ) ↔ ((φ1 ⋄ ψ) ∨ (φ2 ⋄ ψ)).

23

Active Integrity Constraints: postulates

The KM postulates for database repair

R = set of AICs
IC(R) = static constraints associated to R

Rep(D, R) = possible repairs of D via R

(R1) For every A ∈ Rep(D, R), D ◦A |= IC(R);

(R2) If D |= IC(R) then Rep(D, R) = {∅};
(R3) If R is closed and IC(R) is consistent then Rep(D, R) ̸= ∅;
(R4) If R1 and R2 are equivalent then Rep(D, R1) = Rep(D, R2);

(R5) If A ∈ Rep(D, R1) and D ◦A |= C(R2)
then A ∈ Rep(D, R1∪R2);

(R6) If R1 is closed and D ◦A |= C(R2) for every A ∈ Rep(D, R1)
then Rep(D, R1 ∪R2) ⊆ Rep(D, R2);

(R7) If A ∈ Rep(D, R∪{⟨C1, A1⟩})
and A ∈ Rep(D, R∪{⟨C2, A2⟩})
then A ∈ Rep(D, R∪{⟨C1∪C2, A1∪A2⟩}).

24

Active Integrity Constraints: postulates

Extensionality: when are two sets of AICs equivalent?

Definitions

1 R ≈0 R
′ if R = R′

2 R ≈1 R
′ if IC(R) ↔ IC(R′) and

all AICs have same action set
(there is an A such that A(r) = A for every r ∈ R ∪R′){

⟨¬p ∧ ¬q, {+p}⟩, ≈1

{
⟨¬p, {+p}⟩

}
⟨¬p ∧ q, {+p}⟩

}
3 R ≈2 R

′ if there are partitions of R and R′ with
≈1-equivalent cells

for every cell ρ of R there is a cell ρ′ of R′ such that ρ ≈1 ρ
′

for every cell ρ′ of R′ there is a cell ρ of R such that ρ ≈1 ρ
′

{
⟨p ∧ ¬q, {+q}⟩, ≈2

{
⟨p ∧ ¬q, {+q}⟩,

⟨¬p ∧ ¬q, {+p}⟩, ⟨¬p, {+p}⟩
}

⟨¬p ∧ q, {+p}⟩
}

25

Active Integrity Constraints: revisiting the existing semantics

Outline

1 Motivation: repair via more informative integrity constraints

2 Active Integrity Constraints: postulates

3 Active Integrity Constraints: revisiting the existing semantics

4 ECA constraints

5 An analysis in dynamic logic

6 From AICs to active TBoxes: a sketch

7 Conclusion

26

Active Integrity Constraints: revisiting the existing semantics

Well-Founded Repairs [Bogaerts&Cruz Felipe, AIJ 2018]

Idea

1 choose a violated AIC: an r ∈ R such that D |= C(r)

2 update by one of the actions in the active part A(r)

3 iterate until no more violation, avoiding repetitions of
assignments

Definition

PMA repair A for D w.r.t. R is well-founded if
A = {α1, . . . , αn} (for some ordering) such that
for every αi there is an AIC ri ∈ R with

αi ∈ A(ri)

D ◦ {α1, . . . , αi−1} |= C(ri) (ri is violated)

compatible with permission reading and with obligation reading

27

Active Integrity Constraints: revisiting the existing semantics

Founded Repairs [Caroprese et al., ICLP 2006]

Idea

update actions α ∈ A should be supported by some active

constraint r

r would be violated without α

Definition

PMA repair A for D w.r.t. R is founded if

for every α ∈ A there is an AIC r ∈ R such that

α ∈ A(r) and

D ◦ (A \ {α}) |= C(r)

permission reading (definition checks that every α ∈ A is

permitted)

28

Active Integrity Constraints: revisiting the existing semantics

Grounded Repairs [Bogaert&Cruz Felipe, AIJ 2018]

Idea

generalises negative condition of foundedness

D ◦ (A \ {α}) |= C(r)

hypothesis: all A(r) are singletons (‘all AICs are normal’)

Definition

PMA repair A of D w.r.t. R is grounded if

for every A′ ⊂ A there is a r ∈ R such that

A(r) ∩ (A \A′) ̸= ∅ and

D ◦A′ |= C(r)

Properties

all grounded repairs are well-founded, founded, minimal

29

Active Integrity Constraints: revisiting the existing semantics

Justified repairs [Caroprese&Truszczynski, TPLP 2011]

Definitions

non-effect actions w.r.t. D and A:

neffD(A) = {α : D ◦ α = D and (D ◦A) ◦ α = D ◦A}

non-updatable literals of r:

nup(r) = {p ∈ C(r) : +p /∈ A(r)} ∪
{¬p ∈ C(r) : −p /∈ A(r)}

A is closed under R if for each r ∈ R,

if −p ∈ A for every p ∈ nup(r)
and +p ∈ A for every ¬p ∈ nup(r) (r must be triggered)

then A(r) ∩A ̸= ∅
A is a justified action set if it is a minimal superset of
neffD(A) closed under R

PMA repair A of D w.r.t. R is justified if
A ∪ neffD(A) is a justified action set

30

Active Integrity Constraints: revisiting the existing semantics

Justified repairs

Properties

obligation reading

violate identity principle!

example [Caroprese&Truszczynski, TPLP 2011]:

D = ∅ and R =
{
⟨¬p ∧ ¬q, {+p}⟩,
⟨¬p ∧ q, {+p}⟩,
⟨p ∧ ¬q, {+q}⟩

}
has no justified repair
identity principle:

R ≈2

{
⟨¬p, {+p}⟩, ⟨p ∧ ¬q, {+q}⟩

}
=⇒ Rep(D, R) =

{
{+p,+q}

}

31

ECA constraints

Outline

1 Motivation: repair via more informative integrity constraints

2 Active Integrity Constraints: postulates

3 Active Integrity Constraints: revisiting the existing semantics

4 ECA constraints

5 An analysis in dynamic logic

6 From AICs to active TBoxes: a sketch

7 Conclusion

32

ECA constraints

Event-Condition-Action (ECA) constraints: syntax

κ = ⟨E(κ),C(κ),A(κ)⟩

⟨C(κ),A(κ)⟩ is an AIC

E(κ) is a boolean formula built from assignments

partial description of last update actions

database D + finite sets of ECA constraints K = {κ1, . . . , κn}

Kemp =
{
⟨+empe,d1 , empe,d1 ∧ empe,d2 , {−empe,d2}⟩,
⟨+empe,d2 , empe,d1 ∧ empe,d2 , {−empe,d1}⟩

}
static constraints IC(K) =

∧
{¬C(κ) : κ ∈ K}

D |= IC(K): all the static constraints hold
D ̸|= IC(K): database has to be repaired

33

ECA constraints

ECA constraints: example

Example (adapted from [Flesca et al., PPDP 2004])

every manager of a project carried out by a department must
be an employee of that department

if e just became manager of project p or if p was just assigned
to d1 then e should become a member of d1

if e has just been removed from d1 then the project should
either be removed from d1, too, or should get a new manager

K = Kemp ∪{
⟨+mgre,p ∨+prjp,d1 , mgre,p ∧ prjp,d1 ∧ ¬empe,d1 , {+empe,d1}⟩,
⟨−empe,d1 , mgre,p ∧ prjp,d1 ∧ ¬empe,d1 , {−mgre,p,−prjp,d1}⟩

}
when last update +mgre,p then repair by {+empe,d1 ,−empe,d2}

34

ECA constraints

ECA rules: too complicated for a declarative semantics?

mainly procedural semantics

termination problems

only few declarative semantics

logic programming semantics [...]
Sitcalc [Bertossi&Pinto, 1999; Kiringa, LICS 2001;
Kiringa&Reiter 2003]

can we import AIC semantics?

“[AIC] formalisms do not allow us to specify triggering events”
[Caroprese&Truszczynski, TPLP 2011]

35

ECA constraints

ECA constraints: models

Adding immediate past events

model ∆ = ⟨D,H⟩

D ⊆ P database

H ⊆ {+p : p ∈ P} ∪ {−p : p ∈ P}
most recent update action that brought database into state D
if +p ∈ H then p ∈ D
if −p ∈ H then p /∈ D

semantics

⟨D,H⟩ |= p if p ∈ D
⟨D,H⟩ |= +p if +p ∈ H
⟨D,H⟩ |= −p if −p ∈ H

import founded and well-founded semantics. . .

36

ECA constraints

Founded ECA repairs

update action A coherent (no p ∈ A with +p,−p ∈ A)

update of history H by A:

H ◦A = A ∪ {α ∈ H : A ∪ {α} is consistent}

Definition

PMA repair A for ⟨D,H⟩ w.r.t. K is founded if for every α ∈ A

there is an ECA rule κ ∈ K with

α ∈ A(κ)

D ◦ (A \ {α}) |= C(κ)

H ◦ (A \ {α}) |= E(κ)

37

ECA constraints

Founded ECA repairs: example

Example, ctd.

∆ = ⟨{mgre,p, prjp,d1 , empe,d2}, {+mgre,p}⟩
K = Kemp ∪{

⟨+mgre,p ∨+prjp,d1 , mgre,p ∧ prjp,d1 ∧ ¬empe,d1 , {+empe,d1}⟩,
⟨−empe,d1 , mgre,p ∧ prjp,d1 ∧ ¬empe,d1 , {−mgre,p,−prjp,d1}⟩

}
unique founded ECA repair:

A = {+empe,d1 ,−empe,d2}

38

ECA constraints

Well-founded ECA repairs

Definition

PMA repair A for ⟨D,H⟩ w.r.t. K is well-founded if

A = {α1, . . . , αn} (for some ordering) such that

for every αi there is an ECA rule κi ∈ K with

αi ∈ A(κi)

D ◦ {α1, . . . , αi−1} |= C(κi)

H ◦ {α1} ◦ . . . ◦ {αi−1} |= E(κi)

Example, ctd.

well-founded repair of ⟨{mgre,p, prjp,d1 , empe,d2}, {+mgre,p}⟩:

A = {+empe,d1 ,−empe,d2}

can be captured in dynamic logic. . .

39

An analysis in dynamic logic

Outline

1 Motivation: repair via more informative integrity constraints

2 Active Integrity Constraints: postulates

3 Active Integrity Constraints: revisiting the existing semantics

4 ECA constraints

5 An analysis in dynamic logic

6 From AICs to active TBoxes: a sketch

7 Conclusion

40

An analysis in dynamic logic

Propositional dynamic logic PDL

[Pratt, 1976; Fischer and Ladner, 1979]

formulas ⟨π⟩φ = “there is an execution of π after which φ is
true”

programs π1;π2, π1 ∪ π2, π∗, φ?
capture familiar programming constructions:

“if φ then π1 else π2” and “while φ do π”

atomic programs: abstract (just as propositional variables)

Dynamic Logic of Propositional Assignments DL-PA [Balbiani et
al., 2013]

PDL atomic programs =⇒ atomic assignments +p, −p
concrete atomic programs:

+p, −p: assignments

41

An analysis in dynamic logic

Syntax of DL-PA±

Grammar

φ ::= p | +p | −p | ¬φ | φ ∨ φ | ⟨π⟩φ
π ::= A | π;π | π ∪ π | π∗ | φ?

where p ranges over P and A over the set of assignments
{+p : p ∈ P} ∪ {−p : p ∈ P}

{+p} is a program: “make p true”

+p is a formula: “p has just been made true”

42

An analysis in dynamic logic

Semantics of DL-PA±

For models ∆ = ⟨D,H⟩
interpretation of formulas:

∆ |= p if p ∈ D
∆ |= +p if +p ∈ H
∆ |= −p if −p ∈ H

∆ |= ⟨π⟩φ if ∆||π||∆′ and ∆′ |= φ for some ∆′

interpretation of programs:

∆||A||∆′ if A is consistent and ∆′ = ⟨D ◦A,H ◦A⟩
∆||π1;π2||∆′ if ∆||π1||∆′′ and ∆′′||π2||∆′ for some ∆′′

∆||π1 ∪ π2||∆′ if ∆||π1||∆′ or ∆||π2||∆′

∆||π∗||∆′ if ∆||πn||∆′ for some n ≥ 0

∆||φ?||∆′ if ∆ |= φ and ∆′ = ∆

43

An analysis in dynamic logic

Properties of DL-PA±

Semantics

based on classical valuations

no Kripke models needed

Kleene star can be eliminated (not possible in PDL)

⟨π∗⟩φ↔ ⟨π≤2card(Pπ)⟩φ

consequence: all dynamic operators can be eliminated

PDL vs. DL-PA±: complexity of decision problems

PDL DL-PA±

Model checking PTIME-complete PSPACE-complete

Satisfiability EXPTIME-complete PSPACE-complete

44

An analysis in dynamic logic

Characterising weak well-founded ECA repairs

fresh auxiliary propositional variables D(α): record that
assignment α has been executed
legal repair by assignment α:

rep(α) = ¬D(α) ∧ ¬D(α) ∧
∨

κ∈K :α∈A(κ)

(E(κ) ∧C(κ))?; {α,+D(α)}

program −D(A) initialises the auxiliary D(αi) and D(αi) to
false

Theorem

The set of assignments A = {α1, . . . , αn} is a well-founded weak
ECA repair of ∆ via K if and only if the DL-PA± program

repwwfK (A) = −D(A);
(⋃

α∈A
rep(α)

)∗
; IC(K)?;

∧
α∈A

D(α)?

is executable at ∆.

45

An analysis in dynamic logic

Characterising well-founded ECA repairs

fresh auxiliary propositional variables p′: store initial value of
p in order to check for minimal change

program init(A): initialises all D(α) to false and copies the
initial values of p into p′

program undo(α): restores original truth value of the variable
assigned in α

Theorem

The set of assignments A = {α1, . . . , αn} is a well-founded ECA
repair of ∆ via K if and only if the DL-PA± program

repwfK (A) = init(A);
(⋃

α∈A
rep(α)

)∗
; IC(K)?;

(∧
α∈A

D(α)
)
?;

¬
〈(⋃

α∈A
undo(α)

)+〉
IC(K)?

is executable at ∆.

46

An analysis in dynamic logic

Other decision problems

founded repairs

Does there exist a repair of ∆ via K?

Is there a unique repair of ∆ via K?

Does every ∆ have a unique repair via K?

Does every ∆ have a repair via K?

Are K1 and K2 equivalent?

do they repair any ∆ in the same way?

Can K1 repair strictly more than K2?

May the repair of ∆ via K loop?

drop the D(α) tests from rep(α)
check whether ∆ |= [(urepK)

∗]⟨urepK⟩⊤

=⇒ can all can be expressed in DL-PA±

47

From AICs to active TBoxes: a sketch

Outline

1 Motivation: repair via more informative integrity constraints

2 Active Integrity Constraints: postulates

3 Active Integrity Constraints: revisiting the existing semantics

4 ECA constraints

5 An analysis in dynamic logic

6 From AICs to active TBoxes: a sketch

7 Conclusion

48

From AICs to active TBoxes: a sketch

From DBs to description logic KBs

Repairs of inconsistent KBs in the DL literature

remove axioms [Schlobach&Cornet, 2003]

weaken axioms [Troquard et al., 2018]

main methods: axiom pinpointing, justifications, hitting set,
weakening of axioms

usually no preference between possible repairs considered

Can we import the idea of active constraints?

49

From AICs to active TBoxes: a sketch

A simple example

Example TBox

T = {Father ⊑ Male ⊓ Parent,

OnlyChild ⊑ ∀hasSibling.⊥}

An ABox inconsistent with T

A = {John :Male ⊓ Father ⊓ ¬Parent,
Mary :OnlyChild,

hasSibling(Mary, John)}

50

From AICs to active TBoxes: a sketch

A simple example

An enhanced TBox extending T

aT1 =
{
⟨Father ⊑ Male ⊓ Parent, {+Male,+Parent}⟩,
⟨OnlyChild ⊑ ∀hasSibling.⊥, {−OnlyChild}⟩

}
A repaired ABox consistent with aT

A1 = {John :Male ⊓ Father ⊓ Parent,

Mary :¬OnlyChild,
hasSibling(Mary, John)}

51

From AICs to active TBoxes: a sketch

A simple example

An enhanced TBox extending T

aT2 =
{
⟨Father ⊑ Male ⊓ Parent, {−Father}⟩,
⟨OnlyChild ⊑ ∀hasSibling.⊥, {−hasSibling.⊤}⟩

}
A repaired ABox consistent with aT

A2 = {John :Male ⊓ ¬Father ⊓ ¬Parent,
Mary : OnlyChild}

52

From AICs to active TBoxes: a sketch

Repairs based on active TBoxes: difficulties

Challenges

1 ABoxes have concept constructors & complex concepts
=⇒ ‘atomic’ update actions not enough

2 closed world semantics vs. open world semantics
=⇒ satisfiability checking instead of model checking

3 removing vs. forgetting concepts
=⇒ choice

Proposals

[Rantsoudis et al., DL 2017]: syntactic approach

[Feuillade et al., DL 2018]: semantic approach

logic dynALCO
[Rantsoudis, PhD 2018]

53

Conclusion

Outline

1 Motivation: repair via more informative integrity constraints

2 Active Integrity Constraints: postulates

3 Active Integrity Constraints: revisiting the existing semantics

4 ECA constraints

5 An analysis in dynamic logic

6 From AICs to active TBoxes: a sketch

7 Conclusion

54

Conclusion

In summary

reexamined intuitions behind active integrity constraints

permission vs. obligation to choose update action

rationality postulates for repair

justified repairs violate principle of identity

generalised two AIC semantics to ECA rules

founded & well-founded semantics

sketched repairs based on active TBoxes

Moreover

analysis in dynamic logic

Kleene star accounts nicely for terminating executions only

reasoning about repairs in the logic

	Motivation: repair via more informative integrity constraints
	Active Integrity Constraints: postulates
	Active Integrity Constraints: revisiting the existing semantics
	ECA constraints
	An analysis in dynamic logic
	From AICs to active TBoxes: a sketch
	Conclusion

