
Probabilistic document length priors for

language models

Roi Blanco and Alvaro Barreiro

IRLab. Computer Science Department
University of A Coruña, Spain
{rblanco,barreiro}@udc.es

Abstract. This paper addresses the issue of devising a new document
prior for the language modeling (LM) approach for Information Re-
trieval. The prior is based on term statistics, derived in a probabilistic
fashion and portrays a novel way of considering document length. Fur-
thermore, we developed a new way of combining document length priors
with the query likelihood estimation based on the risk of accepting the
latter as a score. This prior has been combined with a document retrieval
language model that uses Jelinek-Mercer (JM), a smoothing technique
which does not take into account document length. The combination
of the prior boosts the retrieval performance, so that it outperforms a
LM with a document length dependent smoothing component (Dirich-
let prior) and other state of the art high-performing scoring function
(BM25). Improvements are significant, robust across different collections
and query sizes.

1 Introduction

Information retrieval (IR) systems aim to retrieve relevant documents in response
to a user need, which is usually expressed as a query. The retrieved documents
are returned to the user in decreasing order of relevance. Most retrieval models
use term statistics, such as term frequency, to assign weights to individual terms,
which represent the contribution of the term to the document content. These
term weights are then used to estimate the score of relevance of a document for
a query [14].

In addition to term statistics, IR models are often extended with further ev-
idence that can improve retrieval performance, e.g. using the term frequency in
specific fields of structured documents (e.g. title, abstract) [11], or integrating
query-independent evidence in the retrieval model in the form of prior probabil-
ities for a document [3, 6] (‘prior’ because they are known before the query). In
short, when determining the relevance between a query and a document, most
IR models use primarily query-dependent term statistics, and sometimes also
add query-independent evidence to further enhance retrieval performance. In
this paper, we propose a new form of prior for documents, which we combine
with IR models from the language modeling (LM) approach [8] .
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Language models for IR view documents as models and queries as segments of
text generated or sampled from those models. Documents are ranked according
to the probability of each query text string being generated from the respective
document model. Although traditionally language models abandoned the explicit
notion of document and query relevance, the work in [7] connects the notion of
relevance and generative language models.

The LM framework models the relevance of documents to queries by estimat-
ing two probabilities (namely, query likelihood and document prior). Considering
a multinomial generation of events [17], documents are ranked against queries
according to those estimations. The query likelihood component is a query de-
pendent feature representing the probability of the query being generated by the
language model of a document and the document prior is a query-independent
feature representing the probability of seeing the document. Typically, this prob-
ability is assumed to be the same for any document, hence the document prior
is taken to be uniform [17]. Alternatively, the document prior is useful for repre-
senting and incorporating other sources of information to the retrieval process;
this is currently an active area of research. For instance, document priors can be
derived from the link structure of Web pages. In fact, this is a popular source for
priors: [16] introduced the number of incoming links (inlinks) count, which was
subsequently used in various Web retrieval tasks of the Text REtrieval Confer-
ence (TREC [15]) repeatedly and with success. Another type of evidence from
which document priors are derived is URL depth, also introduced in [16]. These
two priors were further explored by the work in [6]. Other URL-derived informa-
tion and also the Pagerank [1] algorithm for ranking Web documents according
to their popularity, have been used to derive document priors [13].

Overall, incorporating prior knowledge on documents into retrieval has been
particularly effective on Web retrieval, namely homepage and named page find-

ing. Homepage and named page finding refer to the retrieval of a single Web
page; on the contrary, ad-hoc retrieval refers to the more general application of
retrieving as much relevant information to the query as possible.

In this paper, we revisit the idea of deriving a high-quality document prior
based on document length and term statistics. Most retrieval models include
a document length normalisation component, so that longer documents do not
have an unfair advantage over shorter documents of being retrieved. This normal-
isation is fairly critical and some successful models of retrieval are based in part
on document length models, like BM25 [10]. We show that it is possible to encode
document length information as a prior probability and improve significantly re-
trieval effectiveness of a simple language model that uses Jelinek-Mercer (JM)
smoothing. In particular, we experiment with two length-based priors: one prior
estimated proportionally to document length (we call this prior linear [6],[16]),
and a document length based prior which is not computed directly from the
number of tokens in the document but estimated in a probabilistic fashion from
term statistics, which are typically used by retrieval models. To our knowledge,
deriving a document prior from these term statistics is a novel approach.
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Generally, priors are combined with the retrieval model either using heuris-
tics or handtuned parameters [3]. In this work, we combine our proposed priors
with the LM in two different ways: using a standard logarithmic combination,
and proposing a novel combination that considers the prior as a measure of the
risk of accepting the score given by the query likelihood estimation of the LM. A
thorough experimentation on four TREC collections of different size and domain,
and 450 short and long queries show that our proposed prior benefits retrieval
performance significantly, and in a robust way. Specifically, we find that it is
possible to boost the performance of a retrieval model based on JM smoothing
up to values comparable to state of the art retrieval models, and further outper-
form retrieval models traditionally considered to be more effective in previous
literature [16].

This paper is organised as follows: section 2 describes in detail the formu-
lation used for the document priors in the rest of the paper and related work;
section 3 presents a simple well-known linear document prior and a novel way of
approximating document length in a probabilistic fashion; section 4 explores new
ways for combining the document prior with the query likelihood, and section 5
describes our experimental findings.

2 Document priors in the language modeling approach

The language modeling framework allows a mathematically elegant way of in-
corporating query-independent features, i.e. just related to a document without

seeing a query. Next, it follows a derivation of the LM retrieval model where the
probability of relevance p(r|Q, D), given a query and a document is estimated
indirectly by invoking Bayes’ rule. For the formal connection between language
models and the probabilistic model of retrieval refer to [7].

Let the random variables D and Q denote a document and a query, respec-
tively. Let the binary random variable R stand for relevance r, p(r) = p(R = 1)
and non-relevance r, p(r) = p(R = 0).

p(r|Q, D) =
p(D, Q|r) p(r)

p(D, Q)
(1)

= p(Q|D, r) p(D|r)
p(r)

p(D, Q)
(2)

= p(Q|D, r) p(r|D)
p(D)

p(D, Q)
(3)

Assuming independence between queries and documents p(D, Q) = p(D)p(Q),
and given that p(Q) does not affect the ranking (it is document-independent),
equation 3 becomes

p(r|Q, D) =
p(Q|D, r) p(r|D)

P (Q)

rank
= p(Q|D, r) p(r|D) , (4)
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where p(Q|D, r) is the query likelihood and p(r|D) is the document prior. In
equation 4, we took a strong independence assumption to get a final formulation
with dependence on p(r|D). The derivation presented in [7] took a more reason-
able assumption, Q and D are independent under r, and starting from the odds-
ratio of relevance the final relevance score is dependent on p(r|D)/(1− p(r|D)).

It is usual to decompose the query into its query terms Q = {q1, q2, . . . , qn}
and assume that, given relevance and the document, they are independent of
each other and generated by a multinomial distribution.

p(Q|D, r) =

n
∏

i=1

p(qi|D, r) (5)

In order to rule out zero probabilities for non-seen terms in a document, this
estimate has to be smoothed, which eventually leads to different language models-
based scoring functions. Most smoothing methods employ two distributions, one
for words occurring in the document (ps) and one for unseen words (pu). Taking
logs (refer to [17] for a complete derivation) it can be shown that equation 6
suffices to provide a document rank using sums of logarithms, equivalent to the
one that equation 5 would yield.

log p(Q|D, r)
rank
=

∑

i\tf(qi,D)>0

log
ps(qi|D)

αdp(qi|C)
+ n · log αd , (6)

where tf(qi, D) stands for the frequency of term qi in document D, αd is a
parameter and p(qi|C) is the collection language model.

The smoothing technique we considered as our baseline in this study is
Jelinek-Mercer (JM) (also known as linear interpolation):

ps(qi|D) = (1 − λ)pmle(qi|D) + λ p(qi|C), λ ∈ [0, 1] , αd = λ (7)

where |D| =
∑

wi∈D tf(wi, D) (the document length), pmle is the maximum

likelihood estimator for a term qi given a document d, pmle(qi|D) = tf(qi,d)
|D| and

λ is a parameter controlling the amount of mass distribution assigned to the
document and collection.

Another popular and effective smoothing technique is Dirichlet prior smooth-
ing:

ps(qi|D) =
tf(qi, D) + µp(qi|C)

|D| + µ
, αd =

µ

|D| + µ
, (8)

where µ is a parameter.
In most cases p(r|D) is taken to be uniform [17]. However, there have been
several studies where the document length and link structure have been encoded
as a prior probability, for ad-hoc and some non ad hoc tasks [6], [16].

Most weighting models include document length as a part of their core
query-dependent retrieval model and that might be one of the reasons for tra-
ditionally not being considered a document static feature. For most retrieval
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models, the amount of normalisation contributed by document length is con-
trolled by a parameter. This is not the case for JM smoothing, but it can be
seen that the µ parameter in Dirichlet prior smoothing is playing the length
normalisation role. The weight for a matched query term qi in JM smooth-
ing is log(1 + (1 − λ)pmle(qi, D)/λp(qi|C))) and for Dirichlet prior smoothing is
log(1 + |D|pmle(qi, D)/(µp(qi|C))). Clearly, |D|/µ and (1 − λ)/λ play the same
role, with the difference that the former is document-dependent while the latter is
document-independent [17]. It is assumed from past studies [17],[16], that Dirich-
let prior smoothing outperforms JM smoothing, especially for short queries. In
our opinion, this is due to the fact that Dirichlet prior smoothing includes doc-
ument length normalisation as a part of the query likelihood estimation.

Although JM smoothing does not comprise document dependent length nor-
malisation notions, it has the advantage of “explaining“ the common words of
the query. This is the reason JM behaves better with long queries: these kind
of queries are usually more verbose. Experiments using short-verbose queries
in [17] confirmed the query-modeling role of JM smoothing. Otherwise, it is as-
sumed that Dirichlet prior smoothing has an effect of improving the accuracy of
the estimated document language model. Incorporating a good document length
prior into LM-JM would hopefully result in a model that will embody both roles
mentioned before.

3 Length-based document priors

3.1 Linear Prior

Previous studies [12, 6], tried to establish a connection between the likelihood of
relevance/retrieval and document length. In particular, [12] compared the results
of a set of queries and tried to obtain a relevance versus retrieval pattern (of a
particular scoring function) to see how they deviate from each other. The rele-
vance pattern happened to follow a linear dependence on document length. The
results presented in [6] on a another testbed, further confirmed that hypothesis.
Then, our first document length based prior is proportional to document length.
The intuition behind this prior is that longer documents span more topics and are
more likely to be relevant if no query has been seen (denoted as scope hypothesis
in [9]). It has been reported that this prior increases the retrieval performance [6]
on the WT10G collection up to 0.03 on an absolute scale.

The linear document prior is given by:

p(r|D) ≈
|D|

∑

di∈C |Di|
= C · |D| , (9)

where C is a constant that can be dropped out from the scoring function since
it does not affect the ranking of documents.
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3.2 Probabilistic Prior

We propose other prior indirectly based on document length by extending the
idea of estimating the document prior as a function depending on the statistics
of the terms it contains.

To estimate the conditional probability p(r|D) we compute the expectation
over the universe of terms {wi}. Also, in 10 we make the additional assumption
that r is independent of D once we picked a term wi.

p(r|D) ≈
∑

wi

p(r|wi)p(wi|D) (10)

=
∑

wi∈D

p(r|wi)p(wi|D) +
∑

wi /∈D

p(r|wi)p(wi|D) (11)

≈
∑

wi∈D

p(r|wi)p(wi|D) =
∑

wi∈D

(1 − p(r|wi)) p(wi|D) (12)

=
∑

wi∈D

(

1 − p(wi|r)
p(r)

p(wi)

)

p(wi|D) ≈
∑

wi∈D

(

1 − p(wi|C)
p(r)

p(wi)

)

p(wi|D)

(13)

≈
∑

wi∈D

p(wi|D) (14)

In the derivation we made the following assumptions, in order to obtain a
simple model for the prior. In 11, p(wi|D) ≈ 0 if wi /∈ D. In 12 p(wi|r) ≈
p(wi|C); this assumes the collection to be a model of non-relevance, which goes
accordingly to the hypothesis taken in [4], that every document is non-relevant
(and eventually leading to the inverse document frequency formula as we know
it). Lastly, in 13, it is assumed for convenience that p(r)p(wi|C) << p(wi).
The final form of this prior comes from the distribution for the terms on a
document, by smoothing the maximum likelihood estimator as follows:

p(r|D) ≈
∑

wi∈D

p(wi|D) (15)

=
∑

wi∈D

[

(1 − λ′)
tf(wi, d)

|D|
+ λ′p(wi|C)

]

(16)

= (1 − λ′) + λ′ ·
∑

wi∈D

p(wi|C) (17)

In this work, it is not required that the document model employed in the prior
and the document model used to compute the query likelihood be the same.
The former, has a parameter, λ′ ∈ [0, 1], coming out from the JM smoothing
formula.
The result of this derivation results in a prior obtained from the sum of the
individual contributions of each term occurring in the document. The linear
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document length-based prior (equation 9) has a similar form: it is a sum over
the document terms frequencies, floored by a constant:

p(r|D) ≈
1

∑

Di∈C |Di|
·

∑

wi∈D

tf(wi, D) (18)

The probabilistic prior is higher for documents with common terms than for
documents with many rare terms, which may seem counter-intuitive. Note that
the probabilistic prior counts the contribution of a term only once, despite of its
document frequency. Hence, documents with many different common words will
receive a higher prior value. Very common stopwords are likely to appear in every
document, and therefore their effect is the same for every document. However,
in heterogeneous collections, there may be a number of keywords describing
generally its different topics or clusters. Keywords are likely to be frequent (at
least inside the clusters), and documents containing many of those terms will
be promoted in the rank list by the prior. This goes accordingly to the scope

hypothesis [9]: documents covering many topics are more likely to be relevant.

4 Combination of the prior and the query likelihood

In order to evaluate both priors we combine them with the query likelihood
p(Q|D, r) component in two different ways: a standard logarithmic sum and a
novel method presented below. If we follow a log sum derivation from equa-
tion 4 then, the standard way of combining the document prior with the query
likelihood estimation in order to produce a document score would be:

score(D, Q) = log p(Q|D, r) + log p(r|D) (19)

We further devised a new prior-query likelihood combination, taking into ac-
count the fact that probability estimates for longer documents are more reliable
than for shorter ones. We modeled this fact by considering the risk of accepting
a certain score s, R̂(s) ∈ [0, 1]. It is possible to bias s and calculate a new score
for the document and query score(Q, D) as

score(Q, D) = s1−R̂(s) (20)

Taking into account the fact that longer documents may provide a better
estimate of p(Q|D, r), it is reasonable to associate the document prior p(r|D)
with 1 − R̂(s), resulting in

score(Q, D) = scoreLM(Q, D)p̂(r|D) (21)

or in logarithmic notation

score(Q, D)
rank
= p̂(r|D) ∗ log(scoreLM(Q, D)) , (22)

where scoreLM(Q, D) stands for the score a language model assigns to docu-
ment D under a query Q. We combined both priors (linear and probabilistic)
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with the query-likelihood using this new approach. However, for the risk-based
combination and linear prior, we modified the document length with a logarith-
mic transformation given that the probability of relevance versus logarithm of
document length curve seems to be approximately linear in some ranges [12]:

score(Q, D) = log(|D|) ∗ log(scoreLM(Q, D)) (23)

5 Experiments and Results

The main goal of these experiments is to evaluate the effectiveness of both priors
and combinations proposed before, and assess their effect on retrieval. To eval-
uate the new priors and combinations, we plug them into a LM with Jelinek-
Mercer smoothing (equation 7). This scoring function without the prior serves
as the baseline.
The TREC datasets used are described in table 5. The collections differ in size
and domain, hence they represent a broad and varied experimental dataset. We
experiment with short (title-only) and long (title, description and narrative)
queries. We apply the standard Porter stemming algorithm, and we skip any
stopwords removal, in order to avoid any bias by any choice of stoplist1. For all
the retrieval experiments we use the Terrier IR platform2.
The metrics used are Mean Average Precision (MAP), precision at top ten re-
trieved documents (P@10) and binary preference (BPref [2]). The value of the
λ parameter in JM smoothing (with and without priors) has been optimised for
every measure in every collection by using increasing values of 0.05 in the range
(0,1]. We performed a preliminary tuning for the λ′ parameter in some datasets
(values increasing in 0.1 steps), and decided to set it to 0.7 for every collection.
We report that it is possible to obtain marginal gains if λ′ is tuned specifically
for a given collection, but that step is omitted to prove the robustness of the
technique.

Collection size Topics # queries

LATimes 450 MB 401-450 50
TREC disks 4&5 2G 301-450+601-700 250

WT2g 2G 401-450 50
WT10g 10G 451-550 100

Table 1. Collections and Topics

The experiments presented next, compare separately the best scores pro-
duced by the two priors and two ways of combining them with the query-
likelihood, with the best scores the LM-JM baseline produces. Finally, the best

1 We repeated these experiments using a standard stop-word list and the conclusions
derived from this experimentation are the same

2 http://ir.dcs.gla.ac.uk/terrier/
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LATimes
Model MAP P@10 Bpref ∆% p-value
JM 0.2322 0.2711 0.2275 – –

PL C1 0.2560 0.2889 0.2398 10.24 0.323
PP C1 0.2332 0.2680 0.2256 0.43 0.642
PL C2 0.2591 0.2784 0.2370 11.58 0.149
PP C2 0.2685 0.2889 0.2507 15.63 0.043

∗

Disks 4&5
Model MAP P@10 Bpref ∆% p-value
JM 0.2333 0.3908 0.2395 – –

PL C1 0.2544 0.4313 0.2583 9.04 ≈ 0
∗

PP C1 0.2377 0.3996 0.2479 1.72 ≈ 0
∗

PL C2 0.2535 0.4307 0.2570 8.65 ≈ 0
∗

PP C2 0.2639 0.4454 0.2651 13.11 ≈ 0
∗

WT2g
Model MAP P@10 Bpref ∆% p-value
JM 0.2495 0.3480 0.2407 – –

PL C1 0.3110 0.4660 0.2946 24.64 ≈ 0
∗

PP C1 0.2572 0.3760 0.2507 3.09 0.013

PL C2 0.3123 0.4640 0.2998 25.17 ≈ 0
∗

PP C2 0.3335 0.4820 0.3182 33.66 ≈ 0
∗

WT10g
Model MAP P@10 Bpref ∆% p-value
JM 0.1479 0.2469 0.1474 – –

PL C1 0.1926 0.2959 0.1889 30.22 ≈ 0
∗

PP C1 0.1574 0.2582 0.1597 6.42 ≈ 0
∗

PL C2 0.1939 0.3153 0.1928 31.10 ≈ 0
∗

PP C2 0.1984 0.3316 0.1956 34.14 ≈ 0
∗

LATimes
Model MAP P@10 Bpref ∆% p-value
JM 0.3010 0.3067 0.2865 – –

PL C1 0.2696 0.2978 0.2527 -10.43 0.059
PP C1 0.2937 0.3200 0.2848 -2.43 0.259
PL C2 0.2856 0.2978 0.2511 -5.01 0.669
PP C2 0.2996 0.3044 0.2861 -0.46 0.986

Disks 4&5
Model MAP P@10 Bpref ∆% p-value
JM 0.2844 0.4791 0.2838 – –

PL C1 0.2731 0.4514 0.2741 -3.97 0.019
∗

PP C1 0.2849 0.4847 0.2876 0.18 0.337
PL C2 0.2822 0.4711 0.2783 -0.77 0.537
PP C2 0.2967 0.4984 0.2992 4.32 ≈ 0

∗

WT2g
Model MAP P@10 Bpref ∆% p-value
JM 0.2678 0.4300 0.2748 – –

PL C1 0.2871 0.4660 0.2925 7.20 0.184
PP C1 0.2750 0.4280 0.2796 2.69 0.120
PL C2 0.3017 0.4580 0.3010 12.65 0.112
PP C2 0.3145 0.4840 0.3138 17.43 ≈ 0

∗

WT10g
Model MAP P@10 Bpref ∆% p-value
JM 0.2274 0.3850 0.2202 – –

PL C1 0.2298 0.3730 0.2338 1.05 0.592
PP C1 0.2312 0.3890 0.2291 1.67 0.005

∗

PL C2 0.2366 0.3810 0.2297 4.04 0.291
PP C2 0.2509 0.4020 0.2351 10.33 ≈ 0

∗

Table 2. Optimal performance comparison of JM with the different priors and combi-
nations for short(left) and long(right) queries. Best values are bold. Significant MAP
differences according to the Wilcoxon test (p < 0.05) are bold and starred

performing prior and combination is compared against two state of the art re-
trieval models (Dirichlet prior and BM25).

Table 2 presents the results for all the priors and combinations. The first
column is the type of prior and combination used. JM is the baseline (with-
out any prior). PL C1 stands for the model that uses the standard log sum
combination (equation 19) and a linear prior (equation 9), and this is the only
prior-combination form out of the four presented that can be found in previous
studies [6]. PP C1 stands for the probabilistic prior (equation 14) and the log sum
combination. PL C2 stands for the linear prior and the new risk-based query like-
lihood combination (equation 23). Finally, PP C2 denotes the new probabilistic
prior and risk-based combination (equation 22). The ∆% column stands for the
MAP difference between the row value and the baseline. The p-value reported in
the last column is obtained from the standard Wilcoxon-paired ranks sign test
for the MAP results of the prior in that row and the baseline. Significant values
(p < 0.05) are bold and starred. The best values in each column for the three
measures used are bold.

Results show that under the linear combination C1, the linear prior P1 per-
forms better for short queries whereas the probabilistic prior P2 is slightly better
with long queries (in three out of four collections). Overall, improvements respect
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to the baseline are significant with short queries and not significant with long
queries under combination C1. The risk-based combination C2 is able to improve
the performance of both priors in almost every case. The behaviour of the priors
changed in this case, and P2 performed better than P1 with queries of any size.
In any case, the probabilistic prior under this combination always yielded the
best performance among all combinations and methods tested, with some im-
pressive improvements. Effectiveness gains are higher with shorter queries, which
may be due to the fact that JM smoothing performs better for longer queries,
and reduces the importance of the length normalisation step in those cases.

One possible explanation for the different behaviour of both prior combina-
tions may be due to the contribution of the prior with respect to the contribution
of the query likelihood. The linear combination C1 sums the logarithm of query
likelihood and prior; as the query likelihood increases (by adding more query
terms) the prior contribution (query independent) diminishes. The probabilistic
prior contribution does not affect much the final results when combined this
particular way. A high query likelihood score is not so dominant with the risk-
based combination C2: the prior is still important for the final score because
the combination multiplies the prior by the query likelihood logarithm. Another
result is that the effect of the prior is not very sensitive to query length with the
C2 combination.

A second batch of experiments compared the new prior and combination
developed in this work, probabilistic prior with the risk combination, with LM
and Dirichlet prior smoothing and also against BM25. The comparison is fair,
as this two matching functions already incorporate a document-dependent nor-
malisation factor. Dirichlet prior smoothing is presented in equation 8. The µ
parameter chosen is the one that optimised the performance for each metric in
every collection, picked up from a reasonable set of possible choices3. The sec-
ond weighting function considered was the probabilistic Okapi’s Best Match25
(BM25) [10] which has proved to be robust, high-performing and stable in many
IR studies. The behaviour of the BM25 scores is governed by three parameters,
namely k1, k3, and b. Some studies ([5]) have shown that both k1 and k3 have
little impact on retrieval performance, so for the rest of the paper they are set as
constant to the values recommended in [10] (k1 = 1.2, k3 = 1000). The b parame-
ter controls the document length normalisation factor and it has been optimised
in the same way as λ for JM (parameter exploration in the (0, 1] range with 0.05
steps), independently for each metric and collection. The p-values and ∆% dif-
ferences reported in table 3 are calculated considering the Dirichlet prior/BM25
run as a baseline and compared to the JM+prior (PP C2) values.

This second set of results is presented in table 3. These results prove that the
PP C2 combination is able to outperform significantly high-performing retrieval
matching functions in most cases (again, LATimes and long queries being the
exception). We can conclude that by including a high-quality length prior, JM
smoothing outperforms Dirichlet prior smoothing, which was considered supe-
rior, and also well-tuned BM25.

3
µ ∈ {100, 500, 800, 1000, 2000, 3000, 4000, 5000, 8000, 10000}
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LATimes
Model MAP P@10 Bpref ∆% p-value

JM-Prior 0.2685 0.2889 0.2507 - -
BM25 0.2586 0.2978 0.2398 3.82 0.041

∗

Dirichlet 0.2572 0.2889 0.2355 4.39 0.017
∗

Disks 4&5
Model MAP P@10 Bpref ∆% p-value

JM-Prior 0.2639 0.4454 0.2651 - -
BM25 0.2548 0.4402 0.2565 3.57 0.047

∗

Dirichlet 0.2559 0.4329 0.2569 3.12 ≈ 0
∗

WT2g
Model MAP P@10 Bpref ∆% p-value

JM-Prior 0.3335 0.4820 0.3182 - -
BM25 0.3205 0.3560 0.3039 4.05 0.250

Dirichlet 0.3087 0.4500 0.2924 8.03 0.002
∗

WT10g
Model MAP P@10 Bpref ∆% p-value

JM-Prior 0.1984 0.3316 0.1956 - -
BM25 0.1954 0.3102 0.1872 1.53 0.45

Dirichlet 0.1932 0.2898 0.1887 2.69 0.035
∗

LATimes
Model MAP P@10 Bpref ∆% p-value

JM-Prior 0.2996 0.3044 0.2861 - -
BM25 0.3022 0.3044 0.2870 -0.86 0.450

Dirichlet 0.3061 0.3111 0.2970 -2.12 0.604
Disks 4&5

Model MAP P@10 Bpref ∆% p-value
JM-Prior 0.2967 0.4984 0.2992 - -

BM25 0.2825 0.4896 0.2814 5.03 0.004
∗

Dirichlet 0.2743 0.4667 0.2737 8.27 ≈ 0
∗

WT2g
Model MAP P@10 Bpref ∆% p-value

JM-Prior 0.3145 0.4840 0.3138 - -
BM25 0.2833 0.4600 0.2910 11.01 0.060

∗

Dirichlet 0.2906 0.4280 0.2805 8.22 0.012
∗

WT10g
Model MAP P@10 Bpref ∆% p-value

JM-Prior 0.2509 0.4020 0.2351 - -
BM25 0.2319 0.3940 0.2295 8.19 0.012

∗

Dirichlet 0.2435 0.3910 0.2223 3.03 0.2708

Table 3. Optimal performance comparison between JM+probabilistic prior, Dirich-
let prior smoothing and BM25 on different collections for short(left) and long(right)
queries. Best values are bold. Significant MAP differences according to the Wilcoxon
test (p < 0.05) are bold and starred

6 Conclusions

We developed a new document prior that takes into account term statistics and
give a probabilistic derivation for it. The effect of the priors in retrieval is also
dependent on the way they are combined with the query likelihood. Hence, we
also demonstrated the effectiveness of a new way of combining document-length
based priors with the query likelihood, that leverages the effect of the prior and
likelihood components. The prior boosts the performance of a LM based on JM
smoothing significantly, with robust and stable results across collections of dif-
ferent nature and topics of different sizes. The retrieval effectiveness of JM with
the new prior is also able to outperform LM using Dirichlet prior smoothing
and BM25, when the optimal parameters are used for all of them, and on the
basis of three different effectiveness measures. The excellent outcome in terms
of retrieval effectiveness of the prior and risk-based combination opens ground
for future research directions, for instance we will try to address the problem of
using this new developed way of considering document length into other retrieval
matching functions, and other retrieval tasks.
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