
Hardening Network

Hardening Network
Fortificación de S.O.

Master en Seguridad Informática. 2024/25
Universidade da Coruña
Universidade de Vigo

Antonio Yáñez Izquierdo
José Rodŕıguez Pereira

Hardening Network

Contents I
1 Introduction: Network Configuration in Debian based Linux
systems

Basic network configuration
Naming network devices
NIC configuration in debian linux and its derivatives
Interaction with Network Manager
Network interface aliasing

2 inetd

3 Access control: tcpwrappers

4 Access control: Packet Filtering
linux packet filtering: iptables
linux packet filtering: nftables

Introduction to nftables
tables
chains
base chains

Hardening Network

Contents II

rules
scriptin

5 Example: Securing the sshd server
public/private key authetication
two step authenticator

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Introduction: Network Configuration in
Debian based Linux systems

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Basic network configuration

Introduction: Network Configuration in
Debian based Linux systems

→Basic network configuration

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Basic network configuration

basic IP v4 configuration

to properly configure a machine using ipv4 we have to
configure

the machine name
the Network Interface Cards
the routes
the dns (if using it)

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Basic network configuration

basic NIC configuration

The basic things we have to configure for a Network Interface
Card are

its ip address
its netmask (number of bits in its ip address that correspond
to network address)
its broadcast address

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Basic network configuration

ways to configure the network

there are two ways to configure the network

manual configuration: we configure manually each of the
paramaters, either directly using the comand line or through
the boot scripts
using dhcp: the network interface card asks for its
configuration to a machine in the network (the dhcp server).
This can be done directly through the comand line or using the
boot scripts

most systems have a graphic utility to configure the network,
which can be used to configure either manually or via dhcp.
We won’t deal with those utilities.

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Basic network configuration

ifconfig

the comands ifconfig an ip configure network interfaces,

they are usually located at /sbin

they can configure interfaces both manually or using dhcp

ifconfig -a or ap addr show show the actual
configuration of the Network Interface Cards

ifconfig is being superseded by ip to the point that some
linux distros do not even install it by default

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Basic network configuration

configuring the dns

the configuration of the dns resides on the file
/etc/resolv.conf

this file has the options to the resolver configuration. The
most common options are

nameserver to specify the address of a domain name server,
up to 3 can be defined
domain (optional) to sepecify the local domain. Short names
are supposed to be from this domain

example of /etc/resolv.conf file

domain dc.if.udc.es.

nameserver 193.144.51.10

nameserver 192.144.48.30

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Basic network configuration

the /etc/hosts file

this file contains the locally defined ip addresses of hosts

its format is

ip_address host_name aliases

example of /etc/hosts

127.0.0.1 localhost

192.168.1.99 abyecto.dc.fi.udc.es abyecto

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Basic network configuration

the /etc/nsswitch.conf file

this file is used to determine the sources from where to obtain
name-service information of several categories: hosts, users,
mail aliases . . .

it also specifies the order in which this sources of information
should be queried

in the following example, the hosts ips are first searched for in
the local files, then the dns is queried

passwd: compat

group: compat

shadow: compat

hosts: files dns

networks: files

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Naming network devices

Introduction: Network Configuration in
Debian based Linux systems

→Naming network devices

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Naming network devices

Naming Network Interfaces

linux distros have followed several namimg strategies for
namimg NICS

1 linux used to name their NICs eth0, eth1 . . . and the order was
defined by which one got detected first

this makes order dependent on module loading, and changing
one NIC for other could change all the names

2 the names eth0, eth1, eth2 . . . are asigned to the interfaces
THE FIRST TIME the kernel recognices them. This is stored
in the file /etc/udev/rules.d/70-persistent-net.rules,
where it can be changed if necessary.

3 they get the names like emN, empNsM, ensN, pNpM. This
new name scheme does not make names dependent on the
type of card, its mac or when it is detected; the names are
generated depending on how (where) they are connected to
the system which makes it easier to substitute interfaces

debian and its derivatives use ways 2 or 3 to name the
interface

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Naming network devices

Example of70-persistent-net.rules file

abyecto:/home/antonio# cat /etc/udev/rules.d/70-persistent-net.rules

This file was automatically generated by the /lib/udev/write_net_rules

program, run by the persistent-net-generator.rules rules file.

#

You can modify it, as long as you keep each rule on a single

line, and change only the value of the NAME= key.

PCI device 0x11ab:0x4363 (sky2)

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:24:be:40:5c:4b", ATTR{dev_id}=="0x0",

ATTR{type}=="1", KERNEL=="eth*", NAME="eth0"

PCI device 0x8086:0x4232 (iwlagn)

SUBSYSTEM=="net", ACTION=="add", DRIVERS=="?*", ATTR{address}=="00:24:d6:0e:ae:a0", ATTR{dev_id}=="0x0",

ATTR{type}=="1", KERNEL=="wlan*", NAME="wlan0"

abyecto:/home/antonio#

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

NIC configuration in debian linux and its derivatives

Introduction: Network Configuration in
Debian based Linux systems

→NIC configuration in debian linux and its derivatives

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

NIC configuration in debian linux and its derivatives

NIC configuration in debian linux and its derivatives

dhclient interface name configures the card interface name
using dhcp.

ifconfig interface name inet address addr netmask netmk
broadcast bcast configures the card interface name with
address addr, netmask netmk and broadcast address bcast.

ip addr add address dev interface name configures the
card interface name with address addr

#ifconfig eth0 inet 192.168.1.100 netmask 255.255.255.0 broadcast 192.168.1.255

#ip addr del 192.168.2.100 dev p2p1

ifconfig interface name up brings the interface up as does
ip link set interface name up

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

NIC configuration in debian linux and its derivatives

NIC configuration in debian linux at boot time

if we want to get the interfaces automatically configured at
boot time (via /etc/init.d/networking or systemctl)

debian systems and derivatives will look for the file
/etc/network/interfaces (see interfaces man page)

/etc/hostname Contains the name of the system (either the
fully qualified domain name or just the nodename)

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

NIC configuration in debian linux and its derivatives

NIC configuration in debian linux and derivatives at boot
time

Sample /etc/network/interfaces with just one NIC
manually configured

The loopback network interface

auto lo

iface lo inet loopback

The primary network interface

#allow-hotplug eth0

auto eth0

iface eth0 inet static

address 192.168.1.99

netmask 255.255.255.0

network 192.168.1.0

broadcast 192.168.1.255

gateway 192.168.1.1

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

NIC configuration in debian linux and its derivatives

NIC configuration in debian linux and derivatives at boot
time

Sample /etc/network/interfaces with just two NICs

root@abyecto:~# cat /etc/network/interfaces

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

The loopback network interface

auto lo eth0 eth1

iface lo inet loopback

The primary network interface

allow-hotplug eth0

iface eth0 inet dhcp

internal network

allow-hotplug eth1

iface eth1 inet static

address 192.168.1.100

netmask 255.255.255.0

network 192.168.1.0

breadcast 192.168.1.255

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Interaction with Network Manager

Introduction: Network Configuration in
Debian based Linux systems

→Interaction with Network Manager

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Interaction with Network Manager

Interacción con Network Manager

Network Manager is a package that gets instaled on most
desktop linuxes

Consists of a daemon executing in the background root and a
font-end dependant on the desktop environment

Network Manager wpould try to manage all NICs non declared
on the system’s configuration files

To see the devices managed byNetwork Manager

#nmcli dev status

Network Manager’s configurations resides on
/etc/NetworkManager/NetworkManager.conf

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Interaction with Network Manager

Interfaces managed by Network Manager

If we want an interface NOT MANAGED by Network
Manager we must

get the interface configured at /etc/network/interfaces
have the following lines included in
/etc/NetworkManager/NetworkManager.conf

[main]

plugins=ifupdown

[ifupdown]

managed=false

interfaces managed by the Network Manager can be also
configured by the nmcli command

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Interaction with Network Manager

Network Manager

If we want NetworkManager to be temporarily stopped
Network Manager one of these commands (depending on the
distribution)

service NetworkManager stop

/etc/init.d/network-mmanager stop

systemctl stop NetworkManager.service

If we want it no to be started at boot time

chkconfig NetworkManager off

update-rc.d network-manager remove

insserv -r network-manager

systemctl disable NetworkManager.service

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Network interface aliasing

Introduction: Network Configuration in
Debian based Linux systems

→Network interface aliasing

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Network interface aliasing

interface aliasing

By interface aliasing we refer to the act of giving a Network
Interface Card more than one IP address.

the simplest way is to configure these alias as we would do
with a non-aliased interface but using the names eth0:0,
eth0:1. . . , eth1:0. . . .
To get it configured at boot time we just add an entry for it in
the file /etc/network/interfaces as we would do with a
non-aliased interface.

ifconfig eth0:0 192.168.1.11 up

ip addr add 192.168.1.45 dev eth0

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Network interface aliasing

interface aliasing

As the ip command allows an interface to have multiple
addresses we can configure these alias as we would do with a
non-aliased interface using the ip addr command.

We simply add internet addresses to the interface

ip addr add 192.168.2.100 dev p2p1

ip addr add 192.168.29.18 dev p2p1

if we want this to get configured at boot time we can add
addresses to the interfaces at /etc/network/interfaces file

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Network interface aliasing

example of /etc/network/interface

This file describes the network interfaces available on your system

and how to activate them. For more information, see interfaces(5).

The loopback network interface

auto lo

iface lo inet loopback

auto enp0s3

iface enp0s3 inet dhcp

auto enp0s8

iface enp0s8 inet static

address 192.168.10.102/24

iface enp0s8 inet static

address 192.168.11.102/24

iface enp0s8 inet static

address 192.168.12.102/24

Hardening Network

Introduction: Network Configuration in Debian based Linux systems

Network interface aliasing

interface aliasing: old way

we cal also define the aliased interfaces as
interface name:number. The example above would look like
this

.....

auto enp0s8

iface enp0s8 inet static

address 192.168.10.102

netmask 255.255.255.0

auto enp0s8:1

iface enp0s8:1 inet static

address 192.168.11.102

net,ask 255.255.255.0

auto enp0s8:2

iface enp0s8:2 inet static

address 192.168.12.102

netmask 255.255.255.0

aliases defined this way are visible with the old ifconfig

command

Hardening Network

inetd

inetd

Hardening Network

inetd

inetd

inetd is called the internet superserver.

Some internet services listen directly to their corresponding
port, others are started by inetd

When a conexion request arrives on a designated port, inetd
starts the appropiated server program

This allows for server programs to run only when needed, thus
saving resources on the system

Two files control the working of inetd
/etc/services

/etc/inetd.conf

Hardening Network

inetd

/etc/services

/etc/inet/services on some systems

this file has a mapping between the port numbers and
protocol to the services names. Info can be found in the
services man page. A fragment from an acual
/etc/services is shown

ftp 21/tcp

fsp 21/udp fspd

ssh 22/tcp # SSH Remote Login Protocol

ssh 22/udp

telnet 23/tcp

smtp 25/tcp mail

time 37/tcp timserver

time 37/udp timserver

rlp 39/udp resource # resource location

nameserver 42/tcp name # IEN 116

whois 43/tcp nicname

Hardening Network

inetd

/etc/inetd.conf

This file associates the service name to the program actually
providing the service

The format for one line of this file is

service_name socket_type protocol wait/nowait user.group program args

Hardening Network

inetd

/etc/inetd.conf

As lines started with the # are treated as comments, we can
disable one service, by simply comenting out the
corresponding line

Example of the telnetd service disabled

#telnet stream tcp nowait root /usr/sbin/in.telnetd in.telnetd

debian linux does not include inetd, it can be installed as
package openbsd-inetd (usually as a dependence of other
network packages)

Hardening Network

inetd

inetd in fedora linux

Fedora linux, (as do some distrbutions of linux), does not
include inetd. It includes xinetd a inetd replacement

However, it is no necessary to use xinetd to use such services
such as telnetd or ftpd

For example, should have we installed pure-ftpd as the ftp
server we can enable that ftp service by doing

systemctl enable pure-ftpd

systemctl start pure-ftpd

Hardening Network

Access control: tcpwrappers

Access control: tcpwrappers

Hardening Network

Access control: tcpwrappers

tcpwrappers

An aditional layer can be placed between inetd and the
server program to perform access control based on host name,
network address or ident queries
This layer is usally called tcpwrappers or, by the name of the
program, tcpd.

the program tcpd gets called by inetd and receives the server
to start as a parameter
tcpd checks its configuration files to see if the access must be
granted or denied
in case the access is granted tcpd starts the server program
supplied as parameter

the corresponding line for ths telnetd server using
tcpwrappers would look like this

telnet stream tcp nowait telnetd /usr/sbin/tcpd /usr/sbin/in.telnetd

This allows to have access control at an application lever for
applications that do not provide it

Hardening Network

Access control: tcpwrappers

tcpwrappers

the configuration for the tcpwrappers resides in the files
/etc/hosts.allow and /etc/hosts.deny

the manual page hosts access documents the use of these
files

Access will be granted when a (daemon,client) pair matches an
entry in the /etc/hosts.allow file.
Otherwise, access will be denied when a (daemon,client) pair
matches an entry in the /etc/hosts.deny file.
Otherwise, access will be granted.

Hardening Network

Access control: tcpwrappers

tcpwrappers

xinetd can also implement this access control

programs that have been compiled with libtcpwrappers (some
times called libtcpd or libwrap) support access control on their
own (either called directly or through inet) and need not be
called through tcpd

Some modern versions of the tcpwrappers combo use a
’simplified’ format of the /etc/hosts.allow and
/etc/hosts.deny files: only the /etc/hosts.allow is
necessary,. As of version 12, debian still uses both files.

the operator EXCEPT can be used to define more precisely a
set of connections.

Hardening Network

Access control: tcpwrappers

tcpwrappers: sample hosts.allow and hosts.deny entries

the following configuration woul allow ssh conectiond from
every machine, and ftp connections only from network
192.168.2 and domain example.com (we assume that in.ftpd
is the ftp server program)

cat /etc/hosts.allow

in.ftpd : 192.168.2.*

in.ftpd : .example.com

sshd : ALL

cat /etc/hosts.deny

in.ftpd : ALL

Hardening Network

Access control: Packet Filtering

Access control: Packet Filtering

Hardening Network

Access control: Packet Filtering

Packet filtering

A packet filter is a program the checks the headers of each
network packet that reaches to it, and upon inspecting it,
decides to perform an action such as rejecting it, drop it or
accept it

In linux we have such packet filter in the kernel as part of the
packet managing infrastructure (Netfilter).

Configuration is lost when rebooting the machine, so it must
be included in some of the initiation scripts

Netfilter contains different tables for the different functions it
supports, being filter the table for packet filtering

Hardening Network

Access control: Packet Filtering

Packet filtering

the filter table operates on chains

each chain has a set of rules that operate on the packets
belonging to that chain

rules are checked in order. When the packed matches one rule
that action is executed and no more rules are checked for that
packet

should the packet not match any of the rules, the default
action for that chain is taken

Hardening Network

Access control: Packet Filtering

linux packet filtering: iptables

Access control: Packet Filtering
→linux packet filtering: iptables

Hardening Network

Access control: Packet Filtering

linux packet filtering: iptables

Packet filtering

we can define as many chains as we’d like to

the system has three predefined chains: INPUT, OUTPUT
and FORWARD

INPUT packets that intend to go to one or our system’s processes
OUTPUT packets that originate in one of our machine processes and go

out
FORWARD packets that arrive to our machine and go to another. This

chain is of concern only to machines acting as routers

Hardening Network

Access control: Packet Filtering

linux packet filtering: iptables

Packet filtering

packets and chains.

| |

-->[routing]--->|FORWARD|---------> Out

[decision] |_______| ^

| |

v ______

_____ | |

| | |OUTPUT|

|INPUT| |______|

|_____| ^

| |

v---->Local processes-----

Hardening Network

Access control: Packet Filtering

linux packet filtering: iptables

Iptables: chain manipulation

we use the program iptables to modify the netfilter table

we can use it to manipulate the chains

chain creation: iptables -N chain name.
chain deletion: iptables -X chain name.
changing default chain policy:
iptables -P chain name action, where action can be

DROP packet is discarded
ACCEPT packet is accepted
REJECT packet is discarded and an ICMP is sent to the
sender

Hardening Network

Access control: Packet Filtering

linux packet filtering: iptables

Iptables: chain manipulation

list rules on a chain: iptables -L chain name.

selete all the rules ona a chain (flush): iptables -F cadena.

here we have an example

root@hardenin:/home/antonio# iptables -L INPUT

Chain INPUT (policy ACCEPT)

target prot opt source destination

ACCEPT all -- anywhere anywhere

ACCEPT icmp -- anywhere anywhere icmp any

DROP tcp -- anywhere anywhere tcp flags:FIN,SYN,RST,PSH,ACK,URG/FIN,SYN,RST,PSH,ACK,URG

DROP tcp -- anywhere anywhere tcp flags:FIN,SYN,RST,PSH,ACK,URG/NONE

ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED

root@hardenin:/home/antonio# iptables -F INPUT

root@hardenin:/home/antonio# iptables -L INPUT

Chain INPUT (policy ACCEPT)

target prot opt source destination

root@hardenin:/home/antonio#

Hardening Network

Access control: Packet Filtering

linux packet filtering: iptables

Iptables: rule manipulation

we can manipulate rules with the iptables command. Note
that as rules are numbered operations such as delete or insert
use the rules number (we gan get the actual numbers with the
--list-numbers option when invoking iptables -L)

Add a rule to a chain: iptables -A chain rulespec
Delete a rule from a chain: iptables -D chain rulenumber.
Inserting a rule: iptables -I chain number rulespec.
Replacing a rule: iptables -R chain number rulespec.

Hardening Network

Access control: Packet Filtering

linux packet filtering: iptables

Iptables: rules specification

rules are formed by two components

packet selection, i.e. specify the packets on which the rule
operates
action to take, i.e. what to do on those packets

so, a rule specification (rulespec in the previous syntax), has
the following form

packet_selection -j ACTION

Hardening Network

Access control: Packet Filtering

linux packet filtering: iptables

Iptables: packet selection

the first part of specifying a rule is the packet selection

we can select a packet by

protocol: -p protocol (protocol can be tcp, udp, icmp or
all)

source port: --sport port

destination port: --dport port

the following example selects a udp packet comming from
port 156

-p udp --sport 156

Hardening Network

Access control: Packet Filtering

linux packet filtering: iptables

Iptables: packet selection

source address: -s address/mask

destination address: -d address/mask

input interface: -i iface name

output interface: -o iface name

we use ! to deny, for example -i ! eth1 means any input
interface except eth1

Hardening Network

Access control: Packet Filtering

linux packet filtering: iptables

Iptables: packet selection

we can select packet fragmets (not the first fragment) with -f

we can identify connecting packets --syn

for icmp we can specify the type with --icmp-type type,
example -p icmp --icmp-type ping

with can check if the state matches some states, example -m

state --state STABLISHED,RELATED

Hardening Network

Access control: Packet Filtering

linux packet filtering: iptables

Iptables: Actions

We specify what is to be done with the packet with -j action.
Action can be one of the following:

DROP the packet is dropped (this would be seen as no response)
REJECT the packet is rejected (this would be seen as connection refused
ACCEPT the packet is accepted

LOG a log entry is generated for this packed. This action does not
end the rule checking for the packet

Hardening Network

Access control: Packet Filtering

linux packet filtering: iptables

Iptables: Example

allowing all traffic in the loopback interface
iptables -I INPUT 1 -i lo -j ACCEPT

allowing stablished connections
iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

allowing incomming connections to web server (port 80) from
anywhere
iptables -A INPUT -p tcp --dport 80 -j ACCEPT

allowing (and logging) ssh coonections to interface eth1
comming from network 193.144.51.0
iptables -A INPUT -p tcp --dport 23 -i eth1 -s 193.144.51.0/24 -j LOG

iptables -A INPUT -p tcp --dport 23 -i eth1 -s 193.144.51.0/24 -j ACCEPT o

rejecting pings.
iptables -A INPUT -p icmp --icmp-type ping -j DROP

allow stablished connections in interface eth0
iptables -A INPUT -i eth0 -p tcp -m state --state ESTABLISHED -j ACCEPT

establishing default policy in input chain to DROP
iptables -P INPUT DROP

Hardening Network

Access control: Packet Filtering

linux packet filtering: iptables

Iptables: Saving and restoring configuration

we can save the current configuration of the filter table with
iptables-save

it writes the iptables configuration (list of rules) to the
standard output
should we want it in a file we can redirect it to a file with
iptables-save > file name

we can restore the configuration saved previously in a file (in
the format iptables-save does) with iptables-restore

file name has a previously saved configuration we could restore
it with iptables-restore file name

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

Access control: Packet Filtering
→linux packet filtering: nftables

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables

nftables is the modern Linux kernel packet classification
framework

available from Linux kernels 3.13

rulesets can be arranged in treelike structure thus reducing the
time to inspect each packet (iptables rules were secuential)

accesible through the nft command

we can still use the old iptables command to access the
packet filter in the kernel.

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

andvantages of nftables

Faster packet classification

Simplified dual stack IPv4/IPv6 administration

Nicer and more compact syntax

Better dynamic ruleset updates

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: differences with iptables

syntax is different

nftables does not have predefined tables or chains

a single rule of nftables can take more than one action: a rule
consists of zero or more expressions and one or more
statements. Expressions are evaluated left to right (AND
logic, if one expression is matched we continue to the next). If
the packet matches the last expression, then it has matched
all the expressions and the statements are executed on it. As
with the expressions, the statements are executed in order
(left to right)

support to new protocols could be added with user level
software (intead of requiring a kernel upgrade)

there exist a command iptables-translate that translates
iptables rules to the equivalent nft

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: families

rules defined nft get lost at rebooting

if we want some rules to be permanent we include them at
/etc/nftables.conf and will be loaded when the service is
reinitiated

to see our set of rules nft list ruleset

rules are stored in chains, which in turn are stored in tables.

there are not predefined tables or chains

the number of tables and their names are used defined

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: families

each table has only one family of addresses and applies only
to addreses in that family

families are

ip ipv4 (old iptables command)
ip6 ipv6 (old ip6tables command)
inet ipv4 and ipv6

bridge bridge (old brtables command)
arp arp (old arptables command)

by default, the family ip is assumed

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: tables

we can create a table with ’nft add table [family]

table name’ (if family is omited ip is assumed)

nft add table Filtrado

we can delete a table with ’nft delete table [family]

table name’. family need only be specified if theres a table
with the same name in different families. This would delete
table Filtrado created before

nft delete table Filtrado

we can see the tables with ’nft list tables’

to flush a table we use ’nft flush table [family]

table name’. Again family need only be specified if theres a
table with the same name in different families.

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: chains

chains store the rules that we’re going to define

there are no predefined chains (as is the case with iptables)

there are two types of chains

Normal chains: can be used as targets for jumps
Base chains: a base chain is one that is registered into one of
the Netfilter Hooks (see figure on the packets through the
TCP/IP stack)

to create a chain we use ’nft add chain [family]

table name chain name’ For example, to create a chain in
table Filtrado we would do

nft add chain Filtrado cadenaPrimera

to delete a chain we use ’nft delete chain [family]

table name chain name’

we can see the chains we created with ’nft list chains’

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: base chains

to create a base chain we use ’nft add chain [family]

table chain name {type what type hook what hook

priority prio; policy what policy;}’
type can be either filter, route or nat

hook dependes on the family. The hooks available are

ip/ip6/inet prerouting, input, forward, output, postrouting
arp input, output

bridge prerouting, input, forward, output, postrouting

priority is an integer. Chains with lower values are processed
first (negative values can be used)

policy can be one of accept or drop

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: netfilter hooks

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: base chains

if we don’t specifie type what type . . . into curly brackets a
normal chain will be created instead of a base chain

As the shell processes certain characteres (curly braces, the
semicolon. . .), to create a base chain, we need to escape the
characters or quote everything. Example
nft add chain Filtrado cadenaEntrada ’{ type filter hook input priority 1; policy accept;}’

only base chains see packets through its hook; non base
chains see backets when they are jumped to

we can delete chains with ’nft delete chain [family]
table chain name’, provided that the chain is empty.

if necessary, we may need to flush the chain first with ’nft

flush chain [family] table chain name’

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: base chains

When you create a chain, the priority specifies the order in
which chains with the same hook value traverse

For families ip,ip6 and inet we can specify the priority as an
integer or use one of the predefined named priorities
name value
raw -300

mangle -150

dstnat -100

filter 0

security 50

srcnat 100

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: rules

a table refers to a container of chains. A chain within a table
refers to a container of rules. A rule refers to an action to be
configured within a chain.

to add a rule we use
nft add rule [family] table name chain name <matches> <statements>

matches allow us tho select the packest to which we want the
statements applied
statements the action (or actions we take on those packets)

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: rules

if we add a rule with
nft add rule ...

that rule would get added at the end of the ruleset. With
nft insert rule [family] table name chain name <matches> <sttments>

the rule would get added at the begining of the rule set.

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: rules

we can specify the position in which we want to add a rule
nft add rule [family] table name chain name position <handle> <matches> <statements>

adds a rule after the one with handle handle

we can specify the position in which we want to add a rule
nft insert rule [family] table name chain name position <handle> <matches> <statements>

adds a rule before the one with handle handle

we can delete a rule with
nft delete rule [family] table name chain name handle <handle>. Examples
#nft add rule Filtrado cadenaEntrada position 6 tcp dport 22 drop

#nft insert rule Filtrado cadenaEntrada position 9 iifname ‘‘eth0’’ accept

#nft delete rule Filtrado cadenaEntrada handle 7

to see the handles of the rules we use nft -a when listing

#nft -a list ruleset

#nft -a list chain Filtrado cadenaEntrada

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: rules matches

most usual matches (ip)
ip protocol prot. prot can be icmp, esp, ah, comp, udp,

udplite, tcp, dccp, sctp, a set as in {tcp, udp} or !=.
Examples:

ip protocol tcp

ip protocol != {tcp, icmp}

ip saddr|daddr addr. addr can be an (source or destination)
address, a set or range of addresses or != Examples:

ip saddr != 192.168.2.0/24

ip saddr 192.168.3.1 ip daddr 192.168.3.100

ip saddr != 192.168.0.1-192.168.0.100

ip daddr { 192.168.2.1, 192.168.2.2, 192.168.2.3 }

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: rules matches

most usual matches (tcp udp)
tcp sport|dport port. (source o destination) port can be a
port number, name, a set, a range or != Examples:

tcp dport {telnet, http, https }

tcp sport != 33-45

udp sport|dport port. (source o destination) port can be a
port number, name, a set, a range or !=

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: rules matches

most usual matches (icmp)
icmp type typ typ can be any of echo-reply,
destination-unreachable, source-quench, redirect,

echo-request, time-exceeded, parameter-problem,

timestamp-request, timestamp-reply, info-request,

info-reply, address-mask-request,

address-mask-reply, router-advertisement,

router-solicitation. Example

icmp type != { echo-reply, redirect }

Other usual matches are: tcp length, tcp checksum tcp flags
. . . , udp length, udp checksum . . . icmp code, icmp checksum,
icmp id . . .

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: rules matches

most usual matches (ct)
ct state stat stat can be one in {new, established,

related, untracked, invalid}, a set o a negation (!=).
Example

ct state != related

ct state {new, established}

ct direction dir.dir can be {original, reply}
ct status stat stat can be one in
{expected,seen-reply,assured,confirmed,snat,dnat,dying},
a set o a negation (!=). Example

ct status expected

ct status {snat,dnat}

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: rules statements

accept Accept the packet and stop the remaining rules
evaluation.

drop Drop the packet and stop the remain rules evaluation.

queue Queue the packet to userspace and stop the remain
rules evaluation.

continue Continue the ruleset evaluation with the next rule.

return Return from the current chain and continue at the next
rule of the last chain. In a base chain it is equivalent to accept

jump chain Continue at the first rule of chain. It will
continue at the next rule after a return statement is issued

goto chain Similar to jump, but after the new chain the
evaluation will continue at the next chain instead of the one
containing the goto statement

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: rules statements

log [level lev]. lev is one of the following: emerg, alert,

crit, err, warn, notice, info, debug. Examples

log

log level crit

reject [with imcp type typ]. typ is one of the following:
host-unreachable, net-unreachable, prot-unreachable,

port-unreachable, net-prohibited, host-prohibited,

admin-prohibited. Examples

reject

reject with imcp type net-unreachable

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: rules statements

limit rate [over] value unit [burst value unit]. Example

limit rate over 40/day

limit rate over 400/week

limit rate over 1023/second burst 10 packets

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: rules statements

dnat to destination address [:port]

snat to source address [:port]

masquerade [to :port]

redirect [to :port]

The masquerade statement is a special form of snat which
always uses the outgoing interface’s IP address to translate to

The redirect statement is a special form of dnat which always
translates the destination address to the local host’s one

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: scripting

nft can be used in scripts. Here we have an example of script
that creates a ipv4 firewall
#!/usr/sbin/nft -f

flush ruleset

table firewall {

chain incoming {

type filter hook input priority 0; policy drop;

established/related connections

ct state established,related accept

loopback interface

iifname lo accept

icmp

icmp type echo-request accept

open tcp ports: sshd (22), httpd (80)

tcp dport {ssh, http} accept

}

}

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: scripting

The preivious script is squivalent to this script (or to
executing those commands from the command line)
#!/bin/sh

nft flush ruleset

nft add table firewall

nft add chain firewall incoming ’{type filter hook input priority filter;\

policy drop;}’

nft add rule firewall incoming ct state {established, related} accept

nft add rule firewall incoming iifname "lo" accept

nft add rule firewall incoming icmp type echo-request accept

nft add rule firewall incoming tcp dport {22, 80} accept

Hardening Network

Access control: Packet Filtering

linux packet filtering: nftables

nftables: scripting

Should we want to create a script with the rules we have
created at some point

nft list ruleset > nules-nft

we can now re-estblish that very same configuration with

nft flush ruleset

nft -f ./rules-nft

or we can create a standalone script by adding these two lines
at the begining of file rules-nft (and giving it execution
permission)

#!/usr/sbin/nft -f

nft flush ruleset

Hardening Network

Example: Securing the sshd server

Example: Securing the sshd server

Hardening Network

Example: Securing the sshd server

sshd configuration

ssh is the de facto standard for remote acces to machines,
having made telnet, rlogin, rsh . . . obsolete

its name stands for secure shell and the communication
between the server and the client is crypted

it is fairly secure, although protocol 1 had a serious
vulnerability some years ago

as is the tool of choice for accessing unix/linux servers we
want to have it as secured as possible

here are some tips. unless otherwise specified, they refer to
options in the server’s configuration file,
/etc/ssh/sshd connfig

Hardening Network

Example: Securing the sshd server

securing sshd

disable root login. We don’t want the root to login directly
onto the machine, so ssh is no exception

PermitRootLogin no

use only protocol 2, as protocol 1 has some known security
holes

Protocol 2

force user into passwords policy and disable null passwords in
ssh

PermitEmptyPasswords no

limit connections only to the machines you need to be able to
connect from, using tcpwrappers (files hosts.allow and
hosts.deny) and/or a firewall

Hardening Network

Example: Securing the sshd server

securing sshd

if possible, allow only some users to login (the ones who
actually need to use the service)

AllowUsers user1 user2 user5

put a maximun waiting time untill a connection happens

LoginGraceTime 60

limiting the maximum number of concurrent connections to
make brute force attacks more difficult

MaxStartups 2

log off user after being idle sometime (in this example 6
minutes: 360 secs)

ClientAliveInterval 300

ClientAliveCountMax 0

Hardening Network

Example: Securing the sshd server

securing sshd

if possible use a non stardard port a listen only at one specific
address (in case your machine has various addresses)

Port 2222

ListenAddress 192.168.0.10

forwarding options

X11Forwarding no

AllowTcpForwarding no

use some utility like fail2ban that blocks burte force
authetication attempts

if possible use a non password based authentication

if possible use a 2 step authentication

Hardening Network

Example: Securing the sshd server

public/private key authetication

Example: Securing the sshd server
→public/private key authetication

Hardening Network

Example: Securing the sshd server

public/private key authetication

public/private key authetication

we can use ssh to login remotely on a machine without having
to send the password (which, although being crypted, could
be vulnerable to man in the middle attacks)

what we do is generate a pair of public/private keys. We keep
our private key on our client machine, and place a copy of the
public key on any of the server machines we want to connect
to.

we can now connect directly to those servers.

Hardening Network

Example: Securing the sshd server

public/private key authetication

public/private key authetication

ssh-keygen -t rsa generates the pair of keys. A passphase
can be added to protect the key, otherwise any with access to
our client machine will have direct access to our server
machines

the private key is .ssh/id rsa and the public key is
.ssh/id rsa.pub

the public key should be added to the file
.shh/authorized keys in the host

.ssh directory should have permissions 0700 and any file in it
should have 0600

Hardening Network

Example: Securing the sshd server

two step authenticator

Example: Securing the sshd server
→two step authenticator

Hardening Network

Example: Securing the sshd server

two step authenticator

google authenticator

we install google authenticator app in our phone

we install the pam module pam google authenticator

(with apt-get install libpam-google-authenticator)

each user must generate a key with google-authenticator

to be read in the mobile app

we add the following line to /etc/pam.d/sshd (nullok, to
still allow users who had not generated the key to login)

auth required pam_google_authenticator.so nullok

and have the following option in the sshd configuration file
ChallengeResponseAuthentication yes

	Introduction: Network Configuration in Debian based Linux systems
	Basic network configuration
	Naming network devices
	NIC configuration in debian linux and its derivatives
	Interaction with Network Manager
	Network interface aliasing

	inetd
	Access control: tcpwrappers
	Access control: Packet Filtering
	linux packet filtering: iptables
	linux packet filtering: nftables

	Example: Securing the sshd server
	public/private key authetication
	two step authenticator

