

ADMINISTRACIÓN
DE SISTEMAS OPERATIVOS

GRUPO: JFF

Brais Vázquez Villa Tomé Maseda Dorado

Xián García Ferreiro Sergio Rega Domato

Julio Fernández Fernández Lucía Pérez Rego

POWERSHELL: ¿QUE ÉS?

PowerShell, llamado Windows PowerShell originariamente, es una interfaz de línea de

comandos o CLI (Command-Line Interface) que tiene la posibilidad de ejecutar Scripts (unión

de comandos) y que facilita la configuración, administración y automatización de tareas

multiplataforma, además dispone de un lenguaje de scripting. Powershell tiene una salida

basada en objetos por lo que acepta y devuelve objetos de .NET ya que está basado en .NET

CLR (Common Language Runtime), esto es ideal para la automatización de procesos.

La principal diferencia de PowerShell respecto a otras interfaces de línea de comandos es que

PowerShell puede tratar con objetos, en comparación con otros CLI que solo devuelven texto.

Estos comandos, llamados cmdlet, devuelven una instancia de un objeto que da lugar a una

información de salida mucho más completa que los demás intérpretes de comandos, además

los otros CLI necesitan de este para poder obtener la información de salida, mientras que un

cmdlet obtiene la información de salida por sí mismo.

PowerShell permite un conjunto de comandos extensible a diferencia de otros CLI que su

conjunto de comandos está integrado, se pueden crear nuevos cmdlets a partir de scripts o

código compilado, también si necesitamos nuestro propio cmdlet podemos crearlo. Este CLI

trabaja con alias de comandos para facilitar su manejo, un alias es un nombre que designa a un

comando, así si estamos acostumbrados a trabajar con otros CLI, podemos asignar alias a los

comandos de PowerShell y seguir usando los mismos comandos. Por ejemplo, podemos

asignar el alias listar-directorios al comando dir que nos mostrará una lista de directorios,

cuando ejecutemos uno u otro nombre, siempre mostrará el mismo resultado.

El código fuente de PowerShell se liberó el 15 de agosto de 2016 y Microsoft, que es su

desarrollador, lo publico en GitHub, que ahora le pertenece al haberlo comprado un par de

años más tarde. La versión inicial de PowerShell fue lanzada en noviembre de 2006 para

Windows XP Service Pack 2, Windows Vista y Windows Server 2003 Service Pack 1, la versión

actual, después de algunos cambios de nombre intermedios, es la PowerShell 7.0 que está

construida sobre .NET Core 3.1.

PLATAFORMAS SOPORTADAS

Las plataformas soportadas por Powershell son las siguientes:

- Windows 8.1 y 10

- Windows Server 2012 R2, 2016, 2019

- Ubuntu 16.04, 18.04, 20.04 y Ubuntu 19.10 y 20.10 mediante paquete Snap

- Debian 9 y 10

- CentOS 7 y 8

- Red Hat Enterprise Linux 7 y 8

- Fedora 31 y superiores

- Alpine 3.10, 3.11 y superiores

- MacOS 10.13+

- Arco

- Raspbian

- Kali

- AppImage (funciona en varias plataformas Linux)

SEGURIDAD

Dentro de lo referido a la seguridad, el cmdlet Get-ExecutionPolicy simplemente le indica en

cuál de las cuatro políticas de ejecución (políticas que determinan cuáles son los scripts de

Windows PowerShell, en su caso, se ejecutarán en su ordenador) se encuentra actualmente en

la fuerza.

Las directivas de ejecución de Windows PowerShell se incluyen los siguientes:

- Restricted (restringido): No hay secuencias de comandos se pueden ejecutar.

Windows PowerShell sólo se puede utilizar en modo interactivo.

- AllSigned (todos firmados): Sólo guiones firmados por un editor de confianza se

pueden ejecutar.

- RemoteSigned (firmados remotamente): Guiones descargados deben ser firmados

por un editor de confianza antes de que se pueden ejecutar.

- Unrestricted (sin restricción): No hay restricciones de libre disposición; todos los

scripts de Windows PowerShell se pueden ejecutar.

Mostramos a continuación un ejemplo de cómo se haría un cambio del tipo de la política de

seguridad.

COMO INICIAR POWERSHELL

La consola de Windows Powershell es accesible a través de la búsqueda de Windows:

Se puede acceder a ella también a través de las teclas

rápidas “Windows+X” o usando “Windows+R” y

escribiendo powershell en la ventana de comandos

Ejecutar

En otros sistemas operativos como mac o

distribuciones linux podemos descargar powershell a

través del repositorio de github:

https://github.com/PowerShell/PowerShell

https://github.com/PowerShell/PowerShell

SISTEMA DE AYUDA

Get-Command se usa para buscar cmdlets que son comandos que realizan una acción y

normalmente devuelven un objeto Microsoft .NET. Son comandos únicos que participan en la

semántica de canalización de PowerShell.

Get-Help nos sirve para obtener información sobre un cmdlet determinado. Este cmdlet dará

información sobre otros cmdlets, sobre todo la sintaxis a usar.

Get-Process sirve para mostrar una lista completa de procesos que se están ejecutando en la

computadora y si queremos saber los procesos que pertenecen a una aplicación específica le

añadimos un argumento.

Ejemplo: get-process winword obtendrá todos los procesos que Word esté ejecutando.

Get-Member nos proporciona información sobre los miembros, las propiedades y métodos de

un objeto. Ejemplo de uso con get-service:

El comando Update-Help actualizará los temas de ayuda (requiere acceso a internet).

ESTRUCTURA DE COMANDOS

Los comandos de Powershell están estructurados de la siguiente manera: Un verbo y un

nombre en singular separados por un guión (verbo-nombre). Ejemplo: Get-command

El verbo describe la acción a realizar sobre el nombre. En el ejemplo anterior recuperamos

(Get) los comandos (Command)

En Powershell hay varios verbos genéricos como Get, Set, Add, Remove… que se combinan con

nombres como Path, Variable, Item, Objetc, Computer…

Estos comandos pueden escribirse indistintamente en mayúsculas o minúsculas, por lo que el

analizador sintáctico de PowerShell no es case sensitive.

POWERSHELL: ¿PARA QUE SIRVE?

PowerShell sirve para facilitar a los administradores de sistemas tareas de automatización,

administración y configuración de sistemas Windows, aunque también sirve para otros

programas de Microsoft como SQL Server, Exchange o IIS. Con PowerShell puedes declarar

variables de todo tipo, incluye operadores aritméticos y de asignación, se pueden crear

vectores y compararlos, crear hashtables y un sinfín de opciones más que permitirán que la

automatización de tareas sea aún más sencilla, es por esto por lo que es mayormente usada

por los administradores de sistemas.

También puedes usar PowerShell en tu PC con Windows, tan solo tienes que escribir

PowerShell en el recuadro de búsqueda de la barra de tareas de Windows, incluso puedes

poner a PowerShell como tu consola por defecto para Windows 10, con esta CLI además

podrás gestionar el sistema operativo o incluso gestionar unidades de discos, aunque esto

también puedes hacerlo con Diskpart, dispone de comandos y utilidades dedicadas para la

gestión de las unidades de tu PC.

Otra de las utilidades es realizar script para automatizar las tareas normales, no

necesariamente tenemos que ser un administrador de sistemas o ejecutar Windows Server

para realizar esto. Por ejemplo, podemos usar PowerShell para conectar y realizar tareas

administrativas o crear informes de Microsoft Office 365 o Azure. También puedes crear tus

propios alias para hacer funcionar los comandos de PowerShell si estás acostumbrado a unos

comandos concretos usados en cualquier otro CLI.

Pero PowerShell está más orientado a facilitar la administración, gestión y configuración de

sistemas Windows o programas de Microsoft. Los administradores de sistemas pueden crear sus

propios scripts para automatizar las tareas que desempeñen más habitualmente y siempre hay

margen para ir añadiendo o mejorando las que ya disponen, para finalmente dejar un sistema

perfectamente automatizado y vigilado muy de cerca por el administrador por si surgen fallos.

CARACTERÍSTICAS

Este shell de comandos modernos cuenta con varias características a resaltar:

• Lenguaje de scripting.

• Diseñado para administradores de sistemas.

• Entorno interactivo y shell básica.

• Basado en .NET (.NET es una plataforma de desarrollo para la creación de todas las

aplicaciones: web, para dispositivos móviles, escritorio, juegos, loT y mucho más. Se

admite en Windows, Linux y macOS).

• Controla y automatiza el SO.

• Permite controlar también aplicaciones de Windows.

• Mejora de la antigua shell de Windows y elimina problemas antiguos.

• Incorpora conceptos y ventajas de distintos entornos.

• Realizar tareas de administración relacionadas con el registro, procesos, servicios,

eventos, etc.

• Gestión de WMI (Windows Management Instrumentation).

• Diseño sencillo.

• Seguridad. Tiene sistemas que controlan la ejecución de scripts y así se evita la

ejecución de scripts no deseados.

• Orientación a objetos. Aunque los cmdlets se escriben como texto, se comportan

como objetos.

• Se pueden administrar remotamente.

• Los proveedores de Windows PowerShell permiten obtener acceso a almacenes de

datos con la misma simplicidad con que se obtiene acceso al sistema de archivos.

• Permite realizar automatizaciones al tener el control del sistema operativo.

• Se puede ejecutar en cualquier SO.

CMDLET

El intérprete de línea de comandos (en inglés, command-line interpreter o CLI) de PowerShell

proporciona al usuario acceso a las funciones internas del sistema operativo mediante

entradas de teclado. Un cmdlet es un comando que se usa en el entorno de PowerShell.

Existen canalizaciones entre varios cmdlets, esto es, la salida de un segmento del cmdlet es la

entrada de otro. Es uno de los conceptos más útiles porque permite relaciones de unos

cmdlets con otros. Se produce con objetos y no con textos. Las operaciones que se pueden

hacer con cmdlet son: seleccionar, agrupar, ordenar, contar, comparar, dar formato...

Podemos ver algunos comandos que son comunes a varias terminales como pueden ser: cd,

ls/dir, rm, cp, echo, cat… Pero esto no ocurre para todos los comandos, vamos a ver a

continuación algunos ejemplos de comandos “cotidianos” que son diferentes en PowerShell.

Get-Service

Comando que se utiliza para ver todos los procesos con estado RUNNING, STOPPED... Este

comando es similar al comando top de Unix. Si queremos profundizar un poco más, podemos

filtrar por estados los procesos con un comando similar:

• Get-Service | Where-Object {$_.Status -eq 'Running'} refleja sólo los comandos en

estado RUNNING.

Tasklist

Este comando muestra una lista de los procesos que se encuentran actualmente en el equipo

local o en un equipo remoto.

Taskkill

Este comando mata a un proceso que se encuentre actualmente en ejecución. Podemos

pasarle tanto el pid del proceso como el nombre del proceso. Usamos además varios

parámetros:

• /PID: Especificamos el pid del proceso, el cual podemos obtener con el comando

tasklist mencionado anteriormente.

• /F: Fuerza a acabar el proceso.

• /IM: Nombre de la imagen del proceso que queremos cerrar. Si ponemos un *

podríamos cerrar todos los procesos.

Gestión de usuarios y grupos

Ya que hemos visto como se llevan a cabo esta tarea en distintos sistemas operativos,

queremos hacer referencia a como se realizaría en PowerShell, para de esta forma poder

apreciar las diferencias entre ellos.

En las siguientes imágenes se aprecia como creamos un usuario y un grupo, añadimos el

usuario al grupo y posteriormente eliminamos todo lo que hemos creado. Además, para

apreciar que se ha creado correctamente, listamos los usuarios y los grupos.

Alias

El usuario puede llamar al comando como él quiera. Esto se proporciona con el fin de permitir

a los usuarios nuevos, la capacidad de interactuar rápidamente con el sistema. Existen dos

tipos de alias principales:

• Alias predefinidos: Nombres predefinidos alternativos para Windows, Unix…

• Altas definidos por el usuario: Nombres personalizados alternativos creados por el

usuario.

Para obtener una lista de todos los alias predefinidos existentes en PowerShell, usemos el

siguiente cmdlet: Get-Alias.

A continuación, mostramos un ejemplo de cómo crear y eliminar un alias:

Además, los alias pueden importarse y exportarse, el propósito de esto es hacer que los alias

definidos por el usuario estén disponibles en múltiples máquinas. Esto se puede conseguir de

varias maneras:

La primera de ellas es válida en los casos en los que queramos exportar a una máquina

que no tiene los mismos alias que la máquina origen.

→ Ejecutamos en la máquina origen: Export-Alias –Path <fichero.txt>. Con este comando

exportamos todos los alias al documento.

→ Ejecutamos en la máquina destino: Import-Alias –Path <fichero.txt>. En este caso

importamos el contenido de los alias al PowerShell.

En caso de querer exportar tan sólo un alias, haremos lo siguiente:

→ Ejecutamos en la máquina origen: Export-Alias –Path <fichero.txt> -Name

<nombre_alias>. Gracias a esto conseguimos exportar tan sólo ese alias.

→ Ejecutamos en la máquina destino: Import-Alias –Path <fichero.txt>.

El fichero.txt se genera automáticamente cuando hacemos el export y podemos darle el

nombre que queramos.

Si hacemos estos pasos y cerramos PowerShell, nos daremos cuenta de que al volver a abrirlo

habremos perdido está configuración. Para hacer que los alias exportados se guarden

permanentemente tendremos que crear perfiles. Los perfiles permiten personalizar el entorno

de PowerShell en tiempo de lanzamiento. Por tanto, para crear un nuevo perfil, debemos

hacer lo siguiente:

→ Lo primero es comprobar como tenemos nuestra política de ejecución, esto lo haremos

con Get-ExecutionPolicy.

→ Posteriormente, cambiamos nuestra política a Unrestricted.

→ A continuación, podemos comprobar si hay un perfil creado mediante test-path $Profile.

Si el resultado es false, significa que no existe el perfil por lo que se puede crear. En caso

de que sea true, el perfil ya existe y, por tanto, hay que tener cuidado ya que, si creamos

uno nuevo, se borrará el existente.

→ Ejecutamos el comando New-Item –Path $Profile –ItemType file –Force.

→ Por último, hacemos notepad $Profile, y escribiremos en él la sentencia de creación del

alias que queramos que sea permanente.

Una vez hecho esto, podemos cerrar y abrir de nuevo el PowerShell y comprobaremos

que si ejecutamos ese alias que hemos creado, funcionará correctamente.

SCRIPTS

En PowerShell se puede escribir, ejecutar y probar scripts de maneras que no están disponibles

en la consola de Windows de PowerShell. El entorno de scripting integrado se utiliza para

crear, ejecutar y depurar comandos o scripts, en definitiva, es una mejora del símbolo del

sistema.

Es un requisito fundamental que el PowerShell tenga permisos totales sobre el servidor para su

utilización, por tanto, al abrirlo será necesario escoger la opción de “ejecutar como

administrador”.

Por último, es importante destacar que dichos ficheros deben tener la extensión ‘.ps1’.

FUNCIONES

Las funciones se declaran con la palabra clave “function”, seguida del nombre de dicha

función y unas llaves de apertura y cierre. Se podrá ejecutar una función invocando su nombre

desde línea de comandos.

A las funciones no se les asignarán valores de forma estática, sino que usaremos parámetros y

variables. Es un buen uso el asignar como nombre del parámetro, los cmdlets

predeterminados siempre que sea posible.

En PowerShell existen funciones avanzadas. La diferencia entre las funciones estándar y las

avanzadas es que esta última tiene una serie de parámetros comunes que se agregan

automáticamente a la función. Algunos de estos parámetros son verbose y debug.

A continuación, veremos un ejemplo de una función en PowerShell y de su ejecución.

VERSIONES DE POWERSHELL

¿Cómo puedo comprobar que versión de powershell tengo instalada?

Mostrando la variable $PSVersionTable.

PowerShell 1.0 (Noviembre 2006)

Esta es la versión inicial de PowerShell, fue lanzada para Windows XP SP2, Windows Server

2003 SP1 y Windows Vista. Es un componente opcional de Windows Server 2008.

Inicialmente PowerShell incluye:

• Más de 130 cmdlets para realizar tareas comunes de administración de sistema.

• Herramientas de línea de comandos que están diseñados para ser fáciles de aprender

y fácil de usar.

• Compatibilidad con lenguajes de secuencias de comandos existentes en ese momento,

las herramientas de línea de comandos existentes y varias versiones de Windows.

• Características que permiten a los usuarios navegar por los almacenes de datos, como

el registro y los almacenes de certificados, como si se tratara de un sistema de

archivos.

• Utilidades estándar para administrar datos de Windows en diferentes almacenes y

formatos, como HTML y XML.

• Expresiones sofisticadas de análisis y manipulación de objetos .NET en la línea de

comandos.

• Una interfaz extensible que permite a los proveedores de software independientes y

desarrolladores empresariales generar cmdlets personalizados para satisfacer los

requerimientos únicos de la administración de aplicaciones y del sistema.

PowerShell 2.0 (Octubre 2009)

PowerShell 2.0 está integrado con Windows 7 y Windows Server 2008 R2 y se lanza para

Windows XP con Service Pack 3, Windows Server 2003 con Service Pack 2 y Windows Vista con

Service Pack 1.

Esta versión incluye cambios en el lenguaje de scripts y en la API de hospedaje, además de

incluir más de 240 nuevos cmdlets.

PowerShell 3.0 (Septiembre 2012)

PowerShell 3.0 está integrado con Windows 8 y con Windows Server 2012. Microsoft también

ha puesto a disposición PowerShell 3.0 para Windows 7, Windows Server 2008 y Windows

Server 2008 R2 con Service Pack 1.

PowerShell 3.0 es parte de un paquete más grande, Windows Management Framework 3.0

(WMF3), que también contiene el servicio WinRM para apoyar el remoting.

WinRM es equivalente a las llamadas RPC, se utiliza para la administración y ejecución de

procesos sobre un equipo remoto, también permite recuperar información de estos.

PowerShell 4.0 (Octubre 2013)

PowerShell 4.0 está integrado con Windows 8.1 y con Windows Server 2012 R2. Microsoft

también ha hecho que PowerShell 4.0 esté disponible para Windows 7 SP1, Windows Server

2008 R2 SP1 y Windows Server 2012.

PowerShell 5.0 (Febrero 2016)

Windows Management Framework (WMF) 5.0 RTM que incluye PowerShell 5.0 fue relanzado a

la web el 24 de febrero de 2016, después de un lanzamiento inicial con un grave bug.

Las características clave incluyen cmdlets OneGet PowerShell para soportar la administración

de paquetes basada en el repositorio de Chocolatey y la ampliación del soporte para la

administración de conmutadores a los conmutadores de red de capa 2.

PowerShell 5.1 (Enero 2017)

WMF 5.1 cambia la detección automática de módulos para usar $env:PSModulePath

completamente.

Esto permite que un módulo creado por el usuario que define los comandos que proporciona

PowerShell (por ejemplo, Get-ChildItem) se cargue automáticamente y reemplace

correctamente el comando integrado.

Windows 10 agregó compatibilidad con secuencias de escape de VT100. PowerShell ignorará

ciertas secuencias de escape con formato VT100 al calcular los anchos de tabla.

PowerShell Core 6.0 (Enero 2018)

PowerShell Core 6.0 fue anunciado por primera vez el 18 de agosto de 2016, cuando Microsoft

dio a conocer PowerShell Core y su decisión de hacer que el producto sea multiplataforma,

independiente de Windows, de código libre y abierto.

El cambio más significativo en esta versión de PowerShell es la expansión a las otras

plataformas. Para los administradores de Windows, esta versión de PowerShell carece de

nuevas características importantes.

PowerShell 7 (Marzo 2020)

PowerShell 7 es el producto de reemplazo para los productos PowerShell Core 6.x, así como

para Windows PowerShell 5.1, que es la última versión de Windows PowerShell soportada.

Para que PowerShell 7 sea un reemplazo viable para Windows PowerShell 5.1 debe tener casi

paridad con Windows PowerShell en términos de compatibilidad con los módulos que se

envían con Windows.

- Las nuevas características de PowerShell 7 incluyen:

• Construido sobre .NET Core 3.1 (LTS)

• ForEach-Object -Parallel

• Envoltura de compatibilidad con Windows.

• Notificación de nueva versión.

• Nueva vista de error y cmdlet Get-Error.

• Operadores de la cadena de oleoductos (&& y ||)

• ?: operador ternario (a ? b : c)

• Asignación nula y operadores de coalescencia nula (??= y ??)

• Invocación de plataforma Invoke-DscResource (experimental).

• Out-GridView, -ShowWindow y otros cmdlets GUI heredados están de vuelta

en Windows.

RESUMEN DE LAS COMPATIBILIDADES POR VERSIÓN

CURIOSIDADES SOBRE LAS VERSIONES

¿PowerShell 2.0 por defecto?

Windows 10 instala por defecto PowerShell para todos los usuarios, concretamente la versión

5.0 de esta consola, la última versión hasta la fecha. Sin embargo, además de instalar esta

versión, el sistema operativo de Microsoft también deja habilitadas otras versiones de la

misma, como PowerShell 2.0, versión ya obsoleta de esta consola.

Como ocurre con cualquier software, no se recomienda bajo ningún concepto utilizar o tener

instalado software sin soporte ya que cualquier fallo de seguridad puede poner en peligro

nuestro sistema.

Para comprobar si tenemos habilitada la consola PowerShell 2.0 en Windows 10, tan solo

debemos abrir una ventana de esta consola con permisos de administrador y ejecutar el

siguiente comando:

Get-WindowsOptionalFeature -Online -FeatureName MicrosoftWindowsPowerShellV2

Si el resultado es el mismo que podemos ver en la captura anterior, entonces tenemos esta

versión habilitada, y podemos estar en peligro dado que mientras que PowerShell 5.0 cuenta

con protección contra malware, la versión 2.0 no lo tiene, y los piratas informáticos fácilmente

pueden hacer una llamada al motor de la versión 2.0 para llevar a cabo sus ataques.

¿Tiene Windows PowerShell futuro?

No, el futuro pertenece a PowerShell Core. Tal y como están las cosas ahora, Microsoft sólo

proporcionará correcciones de características para PowerShell Core, Windows PowerShell solo

recibirá correcciones de errores y actualizaciones de seguridad.

Aclaración:

Windows PowerShell es el nombre del producto hasta la versión PowerShell 5.1.

PowerShell Core es el nombre del producto desde la versión PowerShell Core 6.0 en adelante.

¿Debo seguir trabajando con Windows PowerShell o cambiar a PowerShell 7 ahora?

Esto depende de tu entorno, si todos sus sistemas tienen PowerShell 7 instalado, podrías

considerar cambiarte ahora. Sin embargo, PowerShell 7 todavía tiene problemas de

compatibilidad con algunos módulos. Por lo tanto, deberías asegurarte primero de que tienes

todos los módulos necesarios disponibles.

