ADMINISTRACION
DE SISTEMAS OPERATIVOS

‘:——*‘ .-‘:.‘ UNIVERSIDADE DA CORUNA

GRUPO: JFF
Brais Vazquez Villa Tomé Maseda Dorado
Xian Garcia Ferreiro Sergio Rega Domato

Julio Fernandez Fernandez Lucia Pérez Rego

POWERSHELL: ¢ QUE ES?

PowerShell, lamado Windows PowerShell originariamente, es una interfaz de linea de
comandos o CLI (Command-Line Interface) que tiene la posibilidad de ejecutar Scripts (unién
de comandos) y que facilita la configuracién, administracidn y automatizacién de tareas
multiplataforma, ademas dispone de un lenguaje de scripting. Powershell tiene una salida
basada en objetos por lo que acepta y devuelve objetos de .NET ya que estd basado en .NET
CLR (Common Language Runtime), esto es ideal para la automatizacién de procesos.

La principal diferencia de PowerShell respecto a otras interfaces de linea de comandos es que
PowerShell puede tratar con objetos, en comparacién con otros CLI que solo devuelven texto.
Estos comandos, llamados cmdlet, devuelven una instancia de un objeto que da lugar a una
informacidn de salida mucho mas completa que los demas intérpretes de comandos, ademds
los otros CLI necesitan de este para poder obtener la informacidn de salida, mientras que un
cmdlet obtiene la informacién de salida por si mismo.

PowerShell permite un conjunto de comandos extensible a diferencia de otros CLI que su
conjunto de comandos estd integrado, se pueden crear nuevos cmdlets a partir de scripts o
cddigo compilado, también si necesitamos nuestro propio cmdlet podemos crearlo. Este CLI
trabaja con alias de comandos para facilitar su manejo, un alias es un nombre que designa a un
comando, asi si estamos acostumbrados a trabajar con otros CLI, podemos asignar alias a los
comandos de PowerShell y seguir usando los mismos comandos. Por ejemplo, podemos
asignar el alias listar-directorios al comando dir que nos mostrard una lista de directorios,
cuando ejecutemos uno u otro nombre, siempre mostrard el mismo resultado.

El cédigo fuente de PowerShell se liberé el 15 de agosto de 2016 y Microsoft, que es su
desarrollador, lo publico en GitHub, que ahora le pertenece al haberlo comprado un par de
afios mas tarde. La version inicial de PowerShell fue lanzada en noviembre de 2006 para
Windows XP Service Pack 2, Windows Vista y Windows Server 2003 Service Pack 1, la version
actual, después de algunos cambios de nombre intermedios, es la PowerShell 7.0 que estd
construida sobre .NET Core 3.1.

PLATAFORMAS SOPORTADAS

Las plataformas soportadas por Powershell son las siguientes:

- Windows 8.1y 10

- Windows Server 2012 R2, 2016, 2019
- Ubuntu 16.04, 18.04, 20.04 y Ubuntu 19.10 y 20.10 mediante paquete Snap
- Debian9y 10

- CentOS7y8

- Red Hat Enterprise Linux 7y 8

- Fedora 31y superiores

- Alpine 3.10, 3.11 y superiores

- Mac0S 10.13+

- Arco

- Raspbian

- Kali
- Applmage (funciona en varias plataformas Linux)

SEGURIDAD

Dentro de lo referido a la seguridad, el cmdlet Get-ExecutionPolicy simplemente le indica en
cual de las cuatro politicas de ejecucidn (politicas que determinan cudles son los scripts de
Windows PowerShell, en su caso, se ejecutaran en su ordenador) se encuentra actualmente en
la fuerza.

Las directivas de ejecucién de Windows PowerShell se incluyen los siguientes:

- Restricted (restringido): No hay secuencias de comandos se pueden ejecutar.
Windows PowerShell sélo se puede utilizar en modo interactivo.

- AliSigned (todos firmados): Sélo guiones firmados por un editor de confianza se
pueden ejecutar.

- RemoteSigned (firmados remotamente): Guiones descargados deben ser firmados
por un editor de confianza antes de que se pueden ejecutar.

- Unrestricted (sin restriccion): No hay restricciones de libre disposicion; todos los
scripts de Windows PowerShell se pueden ejecutar.

Mostramos a continuacién un ejemplo de cémo se haria un cambio del tipo de la politica de
seguridad.

E¥ Administrador: Windows PowerShell - O x

t Corporation. To

211 multiplataforma http

icha directiva, podrias
en

COMO INICIAR POWERSHELL

La consola de Windows Powershell es accesible a través de la busqueda de Windows:

Todo Aplicaciones Correo electrénico Web Més ¥ Comentarios
Mejor coincidencia
g Windows PowerShell g
Aplicacién
CRlIEEbTs Windows PowerShell
‘Windows PowerShell ISE > Aplicacién
‘Windows PowerShell (x86) >
‘Windows PowerShell ISE (x86) > 7 Abrir
Buscar en Internet > Ejecutar como administrador
£ powershell - Ver resultados web > B gecutar ISt como administrador
O powershell 7 5 B windows PowerShell ISE
£ powershell download > ~
2 powershell if >
A powershell array >
£ powershell ise >
£ powershell for loop >
A powershell 7 download >
pagnad Configuracién (3)
£ powershell [© g ¥

Aplicaciones y caracteristicas
Centro de movilidad
Opciones de energia

Visor de eventos

Sistema
Se puede acceder a ella también a través de las teclas
rapidas “Windows+X” o usando “Windows+R"” y

escribiendo powershell en la ventana de comandos
Administracion de discos Ejecutar

Administrador de dispositivos

Conexiones de red

Administracion de equipos
Windows PowerShell

Windows PowerShell (Administrador) En otros sistemas operativos como mac o
distribuciones linux podemos descargar powershell a
través del repositorio de github:

Configuracién https://github.com/PowerShell/PowerShell

Administrador de tareas

Explorador de archivos
Buscar

Ejecutar

Apagar o cerrar sesion

Escritorio

https://github.com/PowerShell/PowerShell

SISTEMA DE AYUDA

Get-Command se usa para buscar cmdlets que son comandos que realizan una acciény
normalmente devuelven un objeto Microsoft .NET. Son comandos Unicos que participan en la
semantica de canalizacién de PowerShell.

PS C:\Users\super> Get-s ice | Get-member

TypeName: System.ServiceProcess.ServiceController

Name MemberType Definition
AliasProperty Name = Se cellame

RequiredServices AliasProperty RequiredServices = ServicesDependedOn

Disposed Event System.EventHandler Disposed(System.Object, System.EventArgs)
Method void Close()
Method void Continue()
Method System.Runtime.Remoting.0bjRef CreateObjRef(type requestedType)
Method void Dispose(), void IDisposable.Dispose()
Method bool Equals(System.Object obj)

ExecuteCommand Method void ExecuteCommand(int command)

GetHashCode Method int GetHashCode()

GetLifetimeService Method System.Object GetlifetimeService()

GetType Method type GetType()

InitializelifetimeService Method System.Object InitializelifetimeService()

Pause Method void Pause()

C:\Users\super> get-command get-volume
Name Version Source

Get-Volume

Get-Help nos sirve para obtener informacion sobre un cmdlet determinado. Este cmdlet dard
informacion sobre otros cmdlets, sobre todo la sintaxis a usar.

PS C:\Users\super> get-help get-process

NOMBRE
Get-Process

INTAXIS
Get-Process [[-Name] <string[]»] [<CommonParameters>]

Get-Process [[-Mame] <string[]>] [<CommonParameters>
Get-Process [<CommonParameters

Get-Process [<CommonParamete

Get-Process [<CommonParamete

Get-Process [<CommonParameters>]

Get-Help no encuentra los archivos de Ayuda para este cmdlet en el equipo. Mostrard solo una parte de la Ayuda.
-- Para descargar e instalar los archivos de Ayuda para el médulo que incluye este cmdlet, use Update-Help.
-- Para ver en linea el tema de Ayuda de este cmdlet, escriba "Get-Help Get-Process -Online” o
vaya a https://go.microsoft.com/fwlink/?LinkID=113324.

Get-Process sirve para mostrar una lista completa de procesos que se estan ejecutando en la
computadora y si queremos saber los procesos que pertenecen a una aplicacion especifica le
afiadimos un argumento.

Ejemplo: get-process winword obtendrd todos los procesos que Word esté ejecutando.

Id SI Processhame

Get-Member nos proporciona informacién sobre los miembros, las propiedades y métodos de
un objeto. Ejemplo de uso con get-service:

Users\super> Get-se e | Get-membery

Typellame: System.ServiceProcess.ServiceController
Name MemberType Definition

AliasProperty Name = Ser
AliasProperty RequiredSer ServicesDependedOn
Event System.EventHandler Disposed(System.Object, System.EventArgs)
Method void Close()
Method void Continue()
Method System.Runtime.Remoting.ObjRef CreateObjRef(type requestedType)
Method void Dispose(), void IDisposable.Dispose()
Method bool Equals(System.Object obj)
ExecuteCommand Method void ExecuteCommand(int command)
GetHashCode Method int GetHashCode()
GetLifetimeService Method System.Object GetlLifetimeService()
GetType Method type GetType()
InitializelifetimeService Method System.Object InitializelifetimeService()
Pause Method void Pause()
Refresh Method void Refresh()
Method void Start(), void Start(string[] args)
Method void Stop()
WaitForStatus Method void WaitForStatus(System.ServiceProcess.ServiceControllerStatus desiredStat.
CanPauseAndContinue Property bool CanPauseAndContinue {get;}
CanShutdown Property bool CanShutdown {get;}
Stop Property bool CanStop {get;}
Container Property System.ComponentModel. IContainer Container {get;}
DependentServices Property System. ServiceProcess.ServiceController[] DependentServices {get;}
Displayhame Property string DisplayMame {get;set;}
Property string Machinelame {get;set;}
ceHandle Property System.Runtime.InteropServices.SafeHandle ServiceHandle {get;}
ellame Property string lame {get;set;}
icesDependedOn Property System. i .ServiceController[] ServicesDependedOn {get;}
Property System. .ServiceType ServiceType {get;}
Property System.ComponentModel.ISite Site {get;set;}
Property System. riceProcess.ServiceStartMode StartType {get;}
Property System. ServiceProcess.ServiceControllerStatus Status {get;}
ToString ScriptMethod System.Object ToString();

El comando Update-Help actualizara los temas de ayuda (requiere acceso a internet).

ESTRUCTURA DE COMANDOS

Los comandos de Powershell estan estructurados de la siguiente manera: Un verbo y un
nombre en singular separados por un guién (verbo-nombre). Ejemplo: Get-command

El verbo describe la accidn a realizar sobre el nombre. En el ejemplo anterior recuperamos
(Get) los comandos (Command)

En Powershell hay varios verbos genéricos como Get, Set, Add, Remove... que se combinan con
nombres como Path, Variable, Item, Objetc, Computer...

Estos comandos pueden escribirse indistintamente en mayusculas o minusculas, por lo que el
analizador sintactico de PowerShell no es case sensitive.

POWERSHELL: ¢PARA QUE SIRVE?

PowerShell sirve para facilitar a los administradores de sistemas tareas de automatizacion,
administracién y configuracidn de sistemas Windows, aunque también sirve para otros
programas de Microsoft como SQL Server, Exchange o 1IS. Con PowerShell puedes declarar
variables de todo tipo, incluye operadores aritméticos y de asignacidn, se pueden crear
vectores y compararlos, crear hashtables y un sinfin de opciones mas que permitirdn que la
automatizacién de tareas sea aun mas sencilla, es por esto por lo que es mayormente usada
por los administradores de sistemas.

También puedes usar PowerShell en tu PC con Windows, tan solo tienes que escribir
PowerShell en el recuadro de busqueda de la barra de tareas de Windows, incluso puedes
poner a PowerShell como tu consola por defecto para Windows 10, con esta CLI ademds
podrds gestionar el sistema operativo o incluso gestionar unidades de discos, aunque esto
también puedes hacerlo con Diskpart, dispone de comandos y utilidades dedicadas para la
gestién de las unidades de tu PC.

Otra de las utilidades es realizar script para automatizar las tareas normales, no
necesariamente tenemos que ser un administrador de sistemas o ejecutar Windows Server
para realizar esto. Por ejemplo, podemos usar PowerShell para conectar y realizar tareas
administrativas o crear informes de Microsoft Office 365 o Azure. También puedes crear tus
propios alias para hacer funcionar los comandos de PowerShell si estds acostumbrado a unos
comandos concretos usados en cualquier otro CLI.

Pero PowerShell estd mas orientado a facilitar la administracién, gestion y configuracién de
sistemas Windows o programas de Microsoft. Los administradores de sistemas pueden crear sus
propios scripts para automatizar las tareas que desempefnen mds habitualmente y siempre hay
margen para ir afadiendo o mejorando las que ya disponen, para finalmente dejar un sistema
perfectamente automatizado y vigilado muy de cerca por el administrador por si surgen fallos.

CARACTERISTICAS

Este shell de comandos modernos cuenta con varias caracteristicas a resaltar:

e Lenguaje de scripting.

e Diseflado para administradores de sistemas.

e Entorno interactivo y shell basica.

e Basado en .NET (.NET es una plataforma de desarrollo para la creacion de todas las
aplicaciones: web, para dispositivos moviles, escritorio, juegos, loT y mucho mas. Se
admite en Windows, Linux y macOS).

e Controla y automatiza el SO.

e Permite controlar también aplicaciones de Windows.

e Mejora de la antigua shell de Windows y elimina problemas antiguos.

e Incorpora conceptos y ventajas de distintos entornos.

e Realizar tareas de administracidon relacionadas con el registro, procesos, servicios,
eventos, etc.

e Gestion de WMI (Windows Management Instrumentation).

e Disefo sencillo.

e Seguridad. Tiene sistemas que controlan la ejecucidn de scripts y asi se evita la
ejecucién de scripts no deseados.

e Orientacidn a objetos. Aunque los cmdlets se escriben como texto, se comportan
como objetos.

e Se pueden administrar remotamente.

e Los proveedores de Windows PowerShell permiten obtener acceso a almacenes de
datos con la misma simplicidad con que se obtiene acceso al sistema de archivos.

e Permite realizar automatizaciones al tener el control del sistema operativo.

e Se puede ejecutar en cualquier SO.

CMDLET

El intérprete de linea de comandos (en inglés, command-line interpreter o CLI) de PowerShell
proporciona al usuario acceso a las funciones internas del sistema operativo mediante
entradas de teclado. Un cmdlet es un comando que se usa en el entorno de PowerShell.

Existen canalizaciones entre varios cmdlets, esto es, la salida de un segmento del cmdlet es |a
entrada de otro. Es uno de los conceptos mas utiles porque permite relaciones de unos
cmdlets con otros. Se produce con objetos y no con textos. Las operaciones que se pueden
hacer con cmdlet son: seleccionar, agrupar, ordenar, contar, comparar, dar formato...

Podemos ver algunos comandos que son comunes a varias terminales como pueden ser: cd,
Is/dir, rm, cp, echo, cat... Pero esto no ocurre para todos los comandos, vamos a ver a
continuacién algunos ejemplos de comandos “cotidianos” que son diferentes en PowerShell.

Get-Service

Comando que se utiliza para ver todos los procesos con estado RUNNING, STOPPED... Este
comando es similar al comando top de Unix. Si queremos profundizar un poco mas, podemos
filtrar por estados los procesos con un comando similar:
e Get-Service | Where-Object {S_.Status -eq 'Running'} refleja sélo los comandos en
estado RUNNING.

EX administrador: Windows PowerShell -] X

Tasklist

Este comando muestra una lista de los procesos que se encuentran actualmente en el equipo
local o en un equipo remoto.

X Administrador: Windows PowerShell - [m] X

Taskkill

Este comando mata a un proceso que se encuentre actualmente en ejecucién. Podemos
pasarle tanto el pid del proceso como el nombre del proceso. Usamos ademads varios
pardmetros:
e /PID: Especificamos el pid del proceso, el cual podemos obtener con el comando
tasklist mencionado anteriormente.
e /F: Fuerza a acabar el proceso.
e /IM: Nombre de la imagen del proceso que queremos cerrar. Si ponemos un *
podriamos cerrar todos los procesos.

Gestidn de usuarios y grupos

Ya que hemos visto como se llevan a cabo esta tarea en distintos sistemas operativos,
gueremos hacer referencia a como se realizaria en PowerShell, para de esta forma poder
apreciar las diferencias entre ellos.

En las siguientes imagenes se aprecia como creamos un usuario y un grupo, afiadimos el
usuario al grupo y posteriormente eliminamos todo lo que hemos creado. Ademas, para
apreciar que se ha creado correctamente, listamos los usuarios y los grupos.

EN Administrador: Windows PowerShell - O *

1Group amarillo

1GroupMember Antonio amarillo

E¥ Administrador: Windows PowerShell — O X
0 Get-LocalG

min i del equipo o dominio

Cuenta integrada para e omo invitade al equipo o dominio

Una cuenta de usuario que el sistema administra y usa para escenarios de Proteccidn de ap...

Alias

El usuario puede Ilamar al comando como él quiera. Esto se proporciona con el fin de permitir
a los usuarios nuevos, la capacidad de interactuar rdpidamente con el sistema. Existen dos
tipos de alias principales:

e Alias predefinidos: Nombres predefinidos alternativos para Windows, Unix...

e Altas definidos por el usuario: Nombres personalizados alternativos creados por el
usuario.

Para obtener una lista de todos los alias predefinidos existentes en PowerShell, usemos el
siguiente cmdlet: Get-Alias.

A continuacidn, mostramos un ejemplo de cémo crear y eliminar un alias:

2| Sin titulo: Bloc de notas

Archive Edicién Formesto Ver Ayuda

Ademas, los alias pueden importarse y exportarse, el propdsito de esto es hacer que los alias
definidos por el usuario estén disponibles en multiples maquinas. Esto se puede conseguir de
varias maneras:

La primera de ellas es vdlida en los casos en los que queramos exportar a una maquina
gue no tiene los mismos alias que la maquina origen.

— Ejecutamos en la maquina origen: Export-Alias —Path <fichero.txt>. Con este comando
exportamos todos los alias al documento.

— Ejecutamos en la maquina destino: Import-Alias —Path <fichero.txt>. En este caso
importamos el contenido de los alias al PowerShell.

En caso de querer exportar tan sélo un alias, haremos lo siguiente:

— Ejecutamos en la maquina origen: Export-Alias —Path <fichero.txt> -Name
<nombre_alias>. Gracias a esto conseguimos exportar tan sélo ese alias.
— Ejecutamos en la maquina destino: Import-Alias —Path <fichero.txt>.

El fichero.txt se genera automaticamente cuando hacemos el export y podemos darle el
nombre que queramos.

Si hacemos estos pasos y cerramos PowerShell, nos daremos cuenta de que al volver a abrirlo
habremos perdido estd configuracién. Para hacer que los alias exportados se guarden
permanentemente tendremos que crear perfiles. Los perfiles permiten personalizar el entorno
de PowerShell en tiempo de lanzamiento. Por tanto, para crear un nuevo perfil, debemos
hacer lo siguiente:

— Lo primero es comprobar como tenemos nuestra politica de ejecucién, esto lo haremos
con Get-ExecutionPolicy.

— Posteriormente, cambiamos nuestra politica a Unrestricted.

— A continuaciéon, podemos comprobar si hay un perfil creado mediante test-path $SProfile.

Si el resultado es false, significa que no existe el perfil por lo que se puede crear. En caso

de que sea true, el perfil ya existe y, por tanto, hay que tener cuidado ya que, si creamos

uno nuevo, se borrara el existente.

Ejecutamos el comando New-Item —Path SProfile —ItemType file —Force.

Por dltimo, hacemos notepad $Profile, y escribiremos en él la sentencia de creacidén del

alias que queramos que sea permanente.

ﬁ
ﬁ

Una vez hecho esto, podemos cerrar y abrir de nuevo el PowerShell y comprobaremos
que si ejecutamos ese alias que hemos creado, funcionara correctamente.

SCRIPTS

En PowerShell se puede escribir, ejecutar y probar scripts de maneras que no estan disponibles
en la consola de Windows de PowerShell. El entorno de scripting integrado se utiliza para
crear, ejecutar y depurar comandos o scripts, en definitiva, es una mejora del simbolo del
sistema.

Es un requisito fundamental que el PowerShell tenga permisos totales sobre el servidor para su
utilizacion, por tanto, al abrirlo serd necesario escoger la opcién de “ejecutar como
administrador”.

Por ultimo, es importante destacar que dichos ficheros deben tener la extensién “.ps1’.

param
(
[Parameter(Mandatory=$true, ValueFromPipeline=$true)]
[String[]]
[AllowEmptyString()]
$User,$Pass

)

begin
I

L
Write-Host "Probando un script de login"
$usercorrecto="Antonio™
$passcorrecto="AS0"

3

process
{
if($User -eq $usercorrecto -and $Pass -eq $passcorrecto)

$ok=1

Write-Host "User correcto”

else

{

1
I

Write-Host "Fin de login"

3

Write-Host "User no correcto™

EN Administradon Windows PowerShell — O

FUNCIONES

Las funciones se declaran con la palabra clave “function”, seguida del nombre de dicha
funcidn y unas llaves de apertura y cierre. Se podra ejecutar una funcién invocando su nombre
desde linea de comandos.

A las funciones no se les asignardn valores de forma estdtica, sino que usaremos parametros y
variables. Es un buen uso el asignar como nombre del parametro, los cmdlets
predeterminados siempre que sea posible.

En PowerShell existen funciones avanzadas. La diferencia entre las funciones estandar y las
avanzadas es que esta Ultima tiene una serie de parametros comunes que se agregan
automaticamente a la funcién. Algunos de estos parametros son verbose y debug.

A continuacidn, veremos un ejemplo de una funcién en PowerShell y de su ejecucién.

N Windows PowerShell — [m| X

osoft Corporation. Todos los derechos

Prueba la nueva tecnologia PowerShell multiplataforma https

io» function loginPrueba

rue, ValueFromPipeline=&true)

EN Windows PowerShell - [m} X

rgio>

VERSIONES DE POWERSHELL

éComo puedo comprobar que version de powershell tengo instalada?

Mostrando la variable SPSVersionTable.

E¥ Windows PowerShell

indows PowerShell
Copyright (C) Microsoft Corporation. Todos los derechos reservados.

Prueba la nueva tecnologia PowerShell multiplataforma https://aka.ms/pscoreb

.1.19a841. 986

sktop

.e, 2.8, 3.0, 4.8...}
8.19841.986
.38319.42008

PSVersion

PSEdition

PSCompatibleVersions

BuildVersion

CLRVersion

WSManStackVersion

PSRemotingProtocolVersion
erializationVersion

==

8
.8
3

[N T ="

I

PowerShell 1.0 (Noviembre 2006)

Esta es la versidn inicial de PowerShell, fue lanzada para Windows XP SP2, Windows Server
2003 SP1 y Windows Vista. Es un componente opcional de Windows Server 2008.

Inicialmente PowerShell incluye:

e Mas de 130 cmdlets para realizar tareas comunes de administracion de sistema.

e Herramientas de linea de comandos que estan disefiados para ser faciles de aprender
y facil de usar.

e Compatibilidad con lenguajes de secuencias de comandos existentes en ese momento,
las herramientas de linea de comandos existentes y varias versiones de Windows.

e Caracteristicas que permiten a los usuarios navegar por los almacenes de datos, como
el registro y los almacenes de certificados, como si se tratara de un sistema de
archivos.

e Utilidades estdndar para administrar datos de Windows en diferentes almacenes y
formatos, como HTML y XML.

e Expresiones sofisticadas de andlisis y manipulacidn de objetos .NET en la linea de
comandos.

e Unainterfaz extensible que permite a los proveedores de software independientes y
desarrolladores empresariales generar cmdlets personalizados para satisfacer los
requerimientos Unicos de la administracién de aplicaciones y del sistema.

PowerShell 2.0 (Octubre 2009)

PowerShell 2.0 estd integrado con Windows 7 y Windows Server 2008 R2 y se lanza para
Windows XP con Service Pack 3, Windows Server 2003 con Service Pack 2 y Windows Vista con
Service Pack 1.

Esta version incluye cambios en el lenguaje de scripts y en la APl de hospedaje, ademas de
incluir mas de 240 nuevos cmdlets.

PowerShell 3.0 (Septiembre 2012)

PowerShell 3.0 estd integrado con Windows 8 y con Windows Server 2012. Microsoft también
ha puesto a disposicién PowerShell 3.0 para Windows 7, Windows Server 2008 y Windows
Server 2008 R2 con Service Pack 1.

PowerShell 3.0 es parte de un paquete mas grande, Windows Management Framework 3.0
(WMPF3), que también contiene el servicio WinRM para apoyar el remoting.

WinRM es equivalente a las llamadas RPC, se utiliza para la administracién y ejecucién de
procesos sobre un equipo remoto, también permite recuperar informacion de estos.

PowerShell 4.0 (Octubre 2013)

PowerShell 4.0 esta integrado con Windows 8.1 y con Windows Server 2012 R2. Microsoft
también ha hecho que PowerShell 4.0 esté disponible para Windows 7 SP1, Windows Server
2008 R2 SP1 y Windows Server 2012.

PowerShell 5.0 (Febrero 2016)

Windows Management Framework (WMF) 5.0 RTM que incluye PowerShell 5.0 fue relanzado a
la web el 24 de febrero de 2016, después de un lanzamiento inicial con un grave bug.

Las caracteristicas clave incluyen cmdlets OneGet PowerShell para soportar la administracion
de paquetes basada en el repositorio de Chocolatey y la ampliacidn del soporte para la
administracién de conmutadores a los conmutadores de red de capa 2.

PowerShell 5.1 (Enero 2017)

WMF 5.1 cambia la deteccién automatica de mddulos para usar Senv:PSModulePath
completamente.

Esto permite que un mddulo creado por el usuario que define los comandos que proporciona
PowerShell (por ejemplo, Get-Childltem) se cargue automdaticamente y reemplace
correctamente el comando integrado.

Windows 10 agregd compatibilidad con secuencias de escape de VT100. PowerShell ignorara
ciertas secuencias de escape con formato VT100 al calcular los anchos de tabla.

PowerShell Core 6.0 (Enero 2018)

PowerShell Core 6.0 fue anunciado por primera vez el 18 de agosto de 2016, cuando Microsoft
dio a conocer PowerShell Core y su decisidon de hacer que el producto sea multiplataforma,
independiente de Windows, de cédigo libre y abierto.

El cambio mas significativo en esta versién de PowerShell es la expansion a las otras
plataformas. Para los administradores de Windows, esta version de PowerShell carece de
nuevas caracteristicas importantes.

PowerShell 7 (Marzo 2020)

PowerShell 7 es el producto de reemplazo para los productos PowerShell Core 6.x, asi como
para Windows PowerShell 5.1, que es la dltima versién de Windows PowerShell soportada.
Para que PowerShell 7 sea un reemplazo viable para Windows PowerShell 5.1 debe tener casi
paridad con Windows PowerShell en términos de compatibilidad con los médulos que se
envian con Windows.

- Las nuevas caracteristicas de PowerShell 7 incluyen:
e Construido sobre .NET Core 3.1 (LTS)
e ForEach-Object -Parallel
e Envoltura de compatibilidad con Windows.
e Notificacién de nueva version.
e Nueva vista de error y cmdlet Get-Error.
e Operadores de la cadena de oleoductos (&& Yy | |)
e ?:operadorternario(a?b:c)
e Asignacion nulay operadores de coalescencia nula (??=vy ?7?)
e Invocacion de plataforma Invoke-DscResource (experimental).
e Out-GridView, -ShowWindow y otros cmdlets GUI heredados estan de vuelta
en Windows.

RESUMEN DE LAS COMPATIBILIDADES POR VERSION

PowerShell
Version

Release Date

Default Windows Versions

Available Windows
Versions

PowerShell 1.0

November
2006

Windows Server 2008 (%)

Windows XP S5P2
Windows XP 5P3
Windows Server 2003 SP1
Windows Server 2003 5P2
Windows Server 2003 R2
Windows Vista

Windows Vista SP2

PowerShell 2.0

October 2009

Windows 7
Windows Server 2008 R2 (*)

Windows XP 5P3
Windows Server 2003 SP2
Windows Vista SP1
Windows Vista SP2
Windows Server 2008 SP1
Windows Server 2008 SP2

PowerShell 3.0

September
2012

Windows 8
Windows Server 2012

Windows 7 SP1
Windows Server 2008 SP2

Windows Server 2008 R2
SP1

PowerShell 4.0

October 2013

Windows 8.1
Windows Server 2012 R2

Windows 7 SP1

Windows Server 2008 R2
SP1

Windows Server 2012

PowerShell 5.0

February 2016

Windows 10

Windows 7 SP1

Windows 8.1

Windows Server 2012
Windows Server 2012 R2

PowerShell 5.1

January 2017

Windows 10 Anniversary
Update

Windows Server 2016

Windows 7 SP1
Windows 8.1

Windows Server 2008 R2
SP1

Windows Server 2012
Windows Server 2012 R2

PowerShell Core 6

January 2018

N/A

Windows 7 SP1
Windows 8.1

Windows Server 2008 R2
SP1

Windows Server 2012
Windows Server 2012 R2

PowerShell 7

March 2020

N/A

Windows 7 SP1
Windows 8.1

Windows Server 2008 R2
SP1

Windows Server 2012
Windows Server 2012 R2

CURIOSIDADES SOBRE LAS VERSIONES

éPowerShell 2.0 por defecto?

Windows 10 instala por defecto PowerShell para todos los usuarios, concretamente la version
5.0 de esta consola, la ultima versidn hasta la fecha. Sin embargo, ademas de instalar esta
version, el sistema operativo de Microsoft también deja habilitadas otras versiones de la
misma, como PowerShell 2.0, versidn ya obsoleta de esta consola.

Como ocurre con cualquier software, no se recomienda bajo ningln concepto utilizar o tener
instalado software sin soporte ya que cualquier fallo de seguridad puede poner en peligro
nuestro sistema.

Para comprobar si tenemos habilitada la consola PowerShell 2.0 en Windows 10, tan solo
debemos abrir una ventana de esta consola con permisos de administrador y ejecutar el
siguiente comando:

Get-WindowsOptionalFeature -Online -FeatureName MicrosoftWindowsPowerShellV2

pindows Power5hell
Copyright (C) Microsoft Corporation. Todos los derechos reservados.

Prueba la nueva tecnologia PowerShell multiplataforma https://aka.ms/pscoreb

PS C:\Windows\system32> Get-WindowsOptionalFeature MicrosoftWindowsPowershellV2

Featurelame : MicrosoftWindowsPowerShellV2

DisplayName : Motor de Windows PowerShell 2.0

Description : Agrega o quita el motor de Windows PowerShell 2.0
RestartRequired : Possible

State : Enabled

CustomProperties :

PS C:\Windows\system32>

Si el resultado es el mismo que podemos ver en la captura anterior, entonces tenemos esta
version habilitada, y podemos estar en peligro dado que mientras que PowerShell 5.0 cuenta
con proteccion contra malware, la version 2.0 no lo tiene, y los piratas informaticos facilmente
pueden hacer una llamada al motor de la versién 2.0 para llevar a cabo sus ataques.

é¢Tiene Windows PowerShell futuro?

No, el futuro pertenece a PowerShell Core. Tal y como estdn las cosas ahora, Microsoft sélo
proporcionara correcciones de caracteristicas para PowerShell Core, Windows PowerShell solo
recibira correcciones de errores y actualizaciones de seguridad.

Aclaracion:
Windows PowerShell es el nombre del producto hasta la versién PowerShell 5.1.

PowerShell Core es el nombre del producto desde la versién PowerShell Core 6.0 en adelante.

éDebo seguir trabajando con Windows PowerShell o cambiar a PowerShell 7 ahora?

Esto depende de tu entorno, si todos sus sistemas tienen PowerShell 7 instalado, podrias
considerar cambiarte ahora. Sin embargo, PowerShell 7 todavia tiene problemas de
compatibilidad con algunos mdédulos. Por lo tanto, deberias asegurarte primero de que tienes
todos los médulos necesarios disponibles.

