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1. Determine if the following sets G with the indicated operation form a group by
checking the group axioms. If not, point out which of the group axioms fail.

(a) G = {1, 5} with operation ∗ multiplication modulo 6.

Solution:

Check closure and identity and inverse with a 2x2 group table. Associativity
in groups under modular multiplication follows from associativity of integers
under multiplication. So G is a group.

(b) G = {1, 3, 5, 7, 9} with operation ∗ multiplication modulo 10.

Solution:

This is not a group since 5 doesn’t have an inverse. You can show this by
either finding the inverses of 1, 3, 7, and 9 (3 is inverse of 7, 9 is own inverse)
and showing 5 is not its own inverse. Or you can argue that since 5 is not
relatively prime to 10, there is no such k such that 5k = 10j + 1 for some j.

(c) G = {functions fa,b = ax + b such that a, b ∈ R, a 6= 0}, the set of linear
functions of a real variable x with ∗ given by composition of functions.

Solution:

This is a group under composition of functions.

fc,d ◦ fa,b(x) = fc,d(ax + b) = c(ax + b) + d

which is again a linear function with ac 6= 0 if a, c 6= 0. The identity function
is the linear function which takes x → x, so pick a = 1 and b = 0. For inverses,
looking at the above composition, we need to pick c, d so that (ca)x+cb+d =
x, the identity element. So choose c = 1/a and d = −b/a which is well-defined
since a 6= 0. Associativity follows since composition of functions is always
associative.

(d) G = R − {0}, the set of non-zero real numbers with operation ∗ given by
a ∗ b = a2b. So for example, 2 ∗ 3 = 22(3) = 12.

Solution:

This fails several of the group axioms. First, there is no identity element,
since for any proposed identity e,

a ∗ e = a2e which must equal a if e is the identity

So then e = 1/a. Pick any other real number b 6= a and then b∗1/a = b2/a 6=
b. If there’s no identity element, then there is no way to define inverses. It
further fails associativity:

(a ∗ b) ∗ c = a2b ∗ c = a4b2c 6= a2b2c = a ∗ (b ∗ c)
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2. Show that G = Z[i] = {a+ bi, complex numbers such that a, b ∈ Z} forms a group
under addition of complex numbers. Then find 2 proper subgroups (i.e. not {e}
or the entire group G) of this group (that is, check that the 2 proper subsets you
choose satisfy the axioms required to be a subgroup).

Solution:

The addition in the complex numbers is given by

a + bi ∗ c + di = (a + c) = (b + d)i

so all of the group axioms essentially follow from those of the integers. It’s closed
since the sum of any two integers is an integer, hence (a + c) and (b + d) are
both integers. The identity element is just 0 = 0 + 0i and inverses are −a − bi
for any element a + bi. Associativity follows since the addition in the integers is
associative. To find proper subgroups, there are many approaches. In particular,

pick any element g and consider the subgroup generated by g, denoted < g >. This
will always be a proper subgroup since G is not cyclic. Here are some examples of
that:

(a) The integers form a group under addition, and are contained in Z[i] so they
form a subgroup (generated by (1)).

(b) The subgroup of all even integers, generated by the element (2).

(c) The subgroup of all a + bi such that a = b, generated by the element (1+i)

(d) The subgroup of all a + bi such that a is even and b is a multiple of 3. This
is an example of a proper subgroup not generated by a single element. It is
generated by 2 and 3i.
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3. (a) Find the order of the following elements of S7, the symmetric group on the
set {1, 2, . . . , 7}.

i. ( 1 2 )(3 4 5)(6)(7)
Solution:
The least common multiple of cycle lengths is 6 and the permutation is
written as a product of disjoint cycles, so the order of the element is 6.

ii. ( 1 2)(1 3)(4 3 5 7)
Solution:
This permutation is not composed of disjoint cycles. We need to rewrite
it as a product of disjoint ones. Doing this we find the above is equal to

(4 2 1 3 5 7)

which has order 6.

iii. (1 2 3 4 5 6 7)(1 2 3 4 5 6 7)
Solution:
The cycle (1 2 3 4 5 6 7) is of length 7, so this element, call it x has order
7. But the permutation above is x2. Since 2 and 7 are relatively prime,
no smaller power of x2 is taken to the identity, so the order of x2 is also
7. (Note (x2)7 = x14 = e.) One could also just rewrite the above as a
product of disjoint cycles:

(1 3 5 7 2 4 6)

which is of order 7.

(b) Find a subgroup of order 6 in S7.

Solution:

There are lots of ways to find such a subgroup. One is to consider the sub-
group generated by a single element of order 6, like either of the ones you
found in part (a) or (b) above. Then the order of the subgroup is just the num-
ber of distinct powers of the generating element, so also equal to 6. There
are other subgroups of order 6 as well, like S3, which permutes just 1,2,3.
These permutations are a subset of those that permute 1,2,3,4,5,6,7. They
fix 4 through 7. So this is a subgroup of order 6.
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4. Prove or find a counterexample to the following statement: The elements of order
≤ 3 in a group G form a subgroup.

Solution:

You can prove every subgroup axiom except closure, and this is the real problem.
An element of order 2 and an element of order 3 typically have a product whose
order is 6. (Unless the group has order 6, in which case the product may be the
identity as in D3.) There are lots of counterexamples that you can suggest. Dn

for n > 3 works, as does Sn for n > 3. Or even Z/6Z under addition. There, 2
has order 3 and 3 has order 2, but 2+3 = 5 has order 6.
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5. If G is a group such that x2 = e for all x in G, prove that G is abelian.

Solution:

There are many ways to get from x2 = e for all x ∈ G to showing xy = yx for
all pairs x, y in G. The key observation is that any element is its own inverse
according to this assumption. Here’s one proof: For any x, y in G

(x ∗ y)2 = x ∗ y ∗ x ∗ y = e since x ∗ y ∈ G by closure

But
x ∗ y ∗ y ∗ x = x ∗ (y ∗ y) ∗ x = x ∗ e ∗ x = e

using associativity, and the x2 = e assumption. So putting these together

x ∗ y ∗ x ∗ y = x ∗ y ∗ y ∗ x

Cancelling x and y on the left b multiplying by inverses gives the result.
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6. If G is a group with an even number of elements, show that the number of elements
with order exactly equal to 2 is odd. (Hint: first show that an element of order 2
always exists for such a group.)

Solution:

To show that an element of order 2 exists, note that the order of the group is
even and the identity is one of these. This leaves an odd number of non-identity
elements. Now G is a group so every element has a unique inverse. Pairing these
odd number of elements up, at least one element in the group must be its own
inverse. That is x ∗ x = e. So this x is of order 2. Note that there could never
be an even number of non-identity elements which are their own inverse since this
would leave an odd number of remaining non-identity elements, which all must be
uniquely paired with other elements. Hence, the number of non-identity elements
which are their own inverse is odd. These are the elements of order 2 in G.


