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Propositional Linear-time Temporal Logic (LTL)

Syntax
Σ = set of atoms or propositions. Example: Σ = {p,q, r}
usual propositional operators ⊥,>,∧,∨,¬,→,↔
plus modal operators to talk about (linear) time

Modal operators:
unary operators:
2 = “forever”
3 = “eventually”
© = “next”

binary operators:
U = “until”
W = “until” (weak version)
R = “release” (dual of U)
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Propositional Linear-time Temporal Logic (LTL)

Precedence of operators
More priority ¬ 2 3©
left assoc. U R W

∧
∨
→

Less priority ↔
Examples:

p W 3q ∧ r = (p W (3q)) ∧ r

2p U ¬q R r → s =

((
(2p) U ¬q

)
R r

)
→ s
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Semantics

Definition 1 (State)
Given a set of propositions Σ, a state s is a truth valuation
s : Σ −→ {True,False}.

It can be represented as the set of (true) atoms. Example: if
Σ = {p,q, r} state s = {p, r} means
s(p) = True, s(q) = False, s(r) = True.

Definition 2 (Interpretation or trace)
An interpretation (or trace) M is an infinite sequence of states
s0, s1, s2, . . .

Example:

{p,q} {p, r} {q} {q, r} ∅

• // • // • // • // • // . . .

s0 s1 s2 s3 s4
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Definition 3 (Satisfaction)
Let M = s0, s1, . . . with i ≥ 0. We say that M, i |= α when:

M, i |= p if p ∈ si (for p ∈ Σ)
M, i |= 2α if M, j |= α for all j ≥ i
M, i |= 3α if M, j |= α for some j ≥ i
M, i |=©α if M, i + 1 |= α

M, i |= α U β if there exists n ≥ i , M,n |= β and
M, j |= α for all i ≤ j<n.
M, i |= αW β if M, i |= 2α or M, i |= α U β
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Semantics

©α
α

• // • // • // . . . // • // . . .

2α
α α α α

• // • // • // . . . // • // . . .

3α
α

• // • // • // . . . // • // . . .
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Semantics

α U β = repeat α until (mandatorily) β

α α α α β

• // • // • // . . . // • // • // . . .

α R β = there is a α before any state in which ¬β

α ¬β

• // • // • // . . . // • // • // . . .
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Semantics

> U β = repeat > until (mandatorily) β

> > > > β

• // • // • // . . . // • // • // . . .

This is equivalent to 3β.

⊥ R β = there is a ⊥ before any state with ¬β.
That is, we cannot have ¬φ, i.e., β must hold forever 2β

β β β β β

• // • // • // . . . // • // • // . . .
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Some standard logical terminology

Interpretation M is a model of theory Γ, written M |= Γ, iff M,0 |= α
for each formula α ∈ Γ.

Formula α is inconsistent or unsatisfiable iff it has no models.
α is a tautology or is valid iff any interpretation is a model of α.

α is a “logical consequence of” or “is entailed by” Γ, written Γ |= α,
iff any model of Γ satisfies α. Therefore, when Γ = ∅, what does
|= α mean?

Two formulas are equivalent iff they have the same models.

LTL satisfies {α} |= β iff |= α→ β

In particular, α and β are equivalent iff |= α↔ β.
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Some interesting equivalences

3α ↔ > U α (1)
2α ↔ ⊥ R α (2)
2α ↔ ¬3¬α (3)
3α ↔ ¬2¬α (4)
2α ↔ α ∧©2α (5)
3α ↔ α ∨©3α (6)

α U β ↔ (αW β) ∧3β (7)
αW β ↔ (α U β) ∨2α (8)
α U β ↔ β ∨ α ∧©(α U β) (9)
α R β ↔ ¬(¬α U ¬β) (10)
α R β ↔ β W (α ∧ β) (11)
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(Monadic) First Order Logic

LTL can be seen as a fragment of First Order Logic (predicate
calculus)

MFO(<) = Monadic First Order Logic with < relation
I All predicates are monadic (1 argument) p(x),q(y), . . .

I except binary (infix) predicate x ≤ y , a linear ordering

I arguments x , y represent time points

I constant 0 represents initial time point

Example: 2p can be translated as ∀x(x ≥ 0→ p(x))
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(Monadic) First Order Logic

We adopt some useful abbreviations

x = y def
= x ≤ y ∧ y ≤ x

x < y def
= x ≤ y ∧ ¬(y ≤ x)

x ≤ y ≤ z def
= x ≤ y ∧ y ≤ z

∃x ≥ i : α(x)
def
= ∃x(i ≤ x ∧ α(x))

∀x ≥ i : α(x)
def
= ∀x(i ≤ x → α(x))

∃x ∈ i ..j : α(x)
def
= ∃x(i ≤ x ≤ j ∧ α(x))

∀x ∈ i ..j : α(x)
def
= ∀x(i ≤ x ≤ j → α(x))

We use function ‘+1’ whose meaning can be defined with axiom:

(x + 1) = y def
= x < y ∧ ¬∃z(y < z ∧ z < x)
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Kamp’s translation

Temporal formula α at time point i becomes MFO(<) formula α(i)

(p)(i) def
= p(i)

(¬α)(i) def
= ¬α(i)

(α ∨ β)(i) def
= α(i) ∨ β(i)

(α ∧ β)(i) def
= α(i) ∧ β(i)

(©α)(i) def
= α(i + 1)

(3α)(i) def
= ∃j ≥ i : α(j)

(2α)(i) def
= ∀j ≥ i : α(j)

(α U β)(i) def
= ∃j ≥ i : (β(j) ∧ (∀k ∈ i ..j − 1 : α(k)))

(α R β)(i) def
= ∀j ≥ i : (β(j) ∨ (∃k ∈ i ..j − 1 : α(k)))
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Kamp’s translation

The translation is correct:

Theorem 4
M, i |= α if and only if M |= α(i) in MFO(<)

but in fact . . .

Theorem 5 (Kamp’s theorem, 1968)
LTL is exactly as expressive as MFO(<):

As we saw, any LTL formula can be naturally written in MFO(<)

The real interest of this theorem is the other direction:
any MFO(<) formula can be expressed back in LTL
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Kamp’s translation

Example: prove the tautology ¬(α U β)↔ ¬α R ¬β
Assume any arbitrary time point i ≥ 0. Then:

(¬(α U β))(i) ↔ ¬ (α U β)(i)
↔ ¬∃j ≥ i : (β(j) ∧ (∀k ∈ i ..j − 1 : α(k)))

↔ ∀j ≥ i : ¬(β(j) ∧ (∀k ∈ i ..j − 1 : α(k)))

↔ ∀j ≥ i : (¬β(j) ∨ ¬(∀k ∈ i ..j − 1 : α(k)))

↔ ∀j ≥ i : (¬β(j) ∨ (∃k ∈ i ..j − 1 : ¬α(k)))

↔ ∀j ≥ i : ((¬β)(j) ∨ (∃k ∈ i ..j − 1 : (¬α)(k)))

↔ (¬α R ¬β)(i)
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Kamp’s translation

Example 2: prove the tautology 2α↔ α ∧©2α

(2α)(i) ↔ ∀j ≥ i : α(j)
↔ α(i) ∧ ∀j ≥ i + 1 : α(j)
↔ α(i) ∧ (2α)(i + 1)

↔ α(i) ∧ (©2α)(i)
↔ (α ∧©2α)(i)
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Exercises

Exercise 1
Prove validity of (6) and (9).

Exercise 2
Prove the validity of the following formulas:

β → 3β

β → α U β
α U β → 3β
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Exercises

Exercise 3
Which are the models of ⊥ Up? Which are the models of (©p) U¬p ?

Exercise 4
Define an operator B (“before”) so that α B β means
for any state in which β will occur, then some α will occur before.

Exercise 5
Try to express the formula whose models satisfy: p is true in all even
states 0,2,4, . . . and false in odd states.

Exercise 6

Try to express the formula whose models satisfy: p is true in all even
states 0,2,4, . . . varying p freely in odd states.
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Outline

1 Syntax and semantics

2 Specification with LTL

3 Complexity and expressiveness

4 Deductive system

5 Semantic tableaux
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Examples of properties specification

Figure out the meaning of these example formulas:
2((¬passport ∨ ¬ticket)→©¬board))

2(requested → 3received)

2(received →©processed)

2(processed → 32done)

“It can’t be that we continually resend a request that is never
done.” The statement: 2requested ∧2¬done should be
inconsistent.
That is, we should be able to derive 2requested → 3done.
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An example: trains crossing

Railroad, single rail and a road level-crossing.

Goal: specifying properties to be satisfied.

Propositions representing events
I a = “A train is approaching"
I c = “A train is crossing"
I ` = “The `ight is blinking"
I b = “The barrier is down"
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Safety properties

Safety property = something bad never happens = 2¬bad .

When a train is crossing, the barrier must be down
Solution: 2(c → b) ≡ 2¬(c ∧ ¬b)

If a train is approaching or crossing, the light must be blinking
Solution: 2(a ∨ c → `) ≡ 2¬((a ∨ c) ∧ ¬`)
If the barrier is up and the light is off, then no train is coming or
crossing. Solution: 2(¬b ∧¬`→ ¬a∧¬c) ≡ 2¬(¬b ∧¬`∧ (a∨ c))
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Safety properties

Counterexamples of safety properties 2¬bad
It suffices with showing finite prefix of the counterexample trace
until bad occurs

For instance, a counterexample of 2(c → b) is a trace satisfying
3(c ∧ ¬b)

S1 S2 S3 S4 = {c} S5

• // • // • // • // • // . . .

c ∧ ¬b

The states from S5 on are irrelevant and we can only focus on the
execution from S1 to S4
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Liveness properties

Liveness property = something initiated eventually terminates =
2(initiated → 3terminates)

When a train is approaching, a train will eventually cross
Solution: 2(a→ 3c)

Sometimes we can use U ,W or R to propagate a condition until
termination.

When a train is approaching (and nobody is crossing), the barrier
will be eventually down before it crosses (if it does so)
Solution: 2(a ∧ ¬c → ¬c W b)

If a train finishes crossing, the barrier will be eventually risen
Solution: 2(c ∧©¬c →©3¬b) Altenative: 2¬(c ∧ c U(¬c ∧2b))
≡ 2(c → ¬c R(¬c → 3¬b))
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Liveness properties

Counterexamples of liveness properties 2(initiated → 3terminates)

A finite prefix does not suffice

For instance, a counterexample of 2(a→ 3c) is a trace satisfying
3(a ∧2¬c)

S1 S2 S3 S4 = {a} S5 S6

• // • // • // • // • // • // . . .

2¬c ¬c ¬c . . .

Fortunately, in LTL, if a formula has a model (or a countermodel) it
also has at least a cyclic model, i.e., it has a periodic prefix that
iterates forever

S1 S2 S3 S4 = {a}

• // • // • // • // • // •
{{

2¬c ¬c ¬c
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Infinitely often vs latching condition

Something happens infinitely often = 23something.
Example: The barrier is risen infinitely often = 23¬b

The dual is a latching condition = 32α.
Example: at a given point, no more trains are approaching =
32¬a
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Fairness

Fairness means that if a choice holds sufficiently often, then it is taken
sufficiently often. Some examples:

Unconditional or absolute fairness (a.k.a. impartiality)
every process should be executed infinitely often 23executedi

Strong fairness every process enabled infinitely often should be
executed infinitely often 23enabledi → 23executedi

Weak fairness every process permanently enabled after some
point should be executed infinitely often
32enabledi → 23executedi
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Outline

1 Syntax and semantics

2 Specification with LTL

3 Complexity and expressiveness

4 Deductive system

5 Semantic tableaux
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Complexity

In complexity theory, solving a decision problem means building
an algorithm that, in a finite number of steps, answers yes or no to
a given input query.

For instance, SAT (propositional satisfiability, i.e., “does a formula
α have any model?”) is a decision problem, and its complexity
class is NP-complete.

Other examples of NP-complete problems are: the Travelling
Salesman problem, the Graph Coloring problem, Subset Sum
problem (find non-empty subset of integers that sum 0).
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Meaning of NP-completeness

0 0 0 1 A B 2 0 00... ...

q
4

A Turing Machine (TM) is a theoretical device that operates on an
infinite tape with cells containing symbols in a finite alphabet
(including the blank or ’0’)

The TM has a current state Si among a finite set of states
(including ’Halt ’), and a head pointing to the “current” cell in the
tape.

It has an associated transition function that describes the next
step.
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Meaning of NP-completeness

Example: with scanned symbol 0 and state q4, write 1, move Left
and go to state q2. That is:

0 0 0 1 A B 2 0 00... ...

q
4

t(0,q4) = (1,Left ,q2)

0 0 1 1 A B 2 0 00... ...

q
2

P. Cabalar ( Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es )T4. Linear Temporal Logic 22 de febrero de 2023 34 / 61



Meaning of NP-completeness

A decision problem consists in providing a given tape input and
asking the Turing Machine for a final output symbol answering Yes
or No.

Example: SAT = given (an encoding of) a propositional formula,
does it have at least one model?

A decision problem is in complexity class P iff the number of steps
carried out by the TM is polynomial on the size n of the input.
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Meaning of NP-completeness

Now, a non-deterministic Turing Machine (NDTM) is such that the
transition function is replaced by a transition relation.
We may have different possibilities for the next step.
Example: t(0,q4,1,Left ,q2), t(0,q4,0,Right ,q3)

0 0 1 1 A B 2 0 00... ...

q
2

0 0 0 1 A B 2 0 00... ...

q
4

0 0 1 A B 2 0 00... ...

q
3

0
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Meaning of NP-completeness

Keypoint: an NDTM provides an affirmative answer to a decision
problem when at least one of the executions for the same input
answers Yes.

A decision problem is in class NP iff the number of steps carried
out by the NDTM is polynomial on the size n of the input.

For SAT , we can build an NDTM that performs two steps:
1 For each atom, generate 1 or 0 nondeterministically. This provides

an arbitrary interpretation in linear time.

2 Test whether the current interpretation is a model or not.

The sequence of these two steps takes polynomial time.
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Meaning of NP-completeness

Unsolved problem

P ?
= NP

The most accepted conjecture is that P ⊂ NP. But remains
unproved.

It is one of the 7 Millenium Prize Problems
http://www.claymath.org/millennium/P_vs_NP/
The Clay Mathematics Institute designated $1 million prize for its
solution!
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Meaning of NP-completeness

A problem X is C-complete, for some complexity class C, iff any
problem Y in C is reducible to X in polynomial-time.

A complete problem is a representative of the class. Example: if
an NP-complete problem happened to be in P then P = NP.

SAT was the first problem to be identified as NP-complete (Cook’s
theorem, 1971).

SAT is commonly used nowadays for showing that a problem X is
at least as complex as NP. To this aim, just encode SAT into X .
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LTL-satisfiability is PSPACE-complete

Theorem 6
[Halpern & Reif 1981], [Sistla & Clarke, 1982]
LTL-satisfiability is PSPACE-complete.

PSPACE is the set of decision problems that can be solved by a
Turing Machine using a polynomial amount of space (for a finite,
unlimited time).
There is no difference when the machine is non-deterministic
NPSPACE = PSPACE [Savitch 1970].
On the other hand, NP ⊆ PSPACE. Again, unsolved question
NP ?

= PSPACE but strongly suspected to be 6=.
Other PSPACE-complete problems are: Quantified Boolean
Formula satisfiability, AI-Planning (STRIPS) existence of plan.
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LTL and automata

An finite state machine or finite automaton is a tuple (Q,A, δ,q0,F)
where

I Q is a finite set of states
I A is a finite set called the alphabet
I δ : Q × A→ Q is the transition function
I q0 is the initial state
I F is the set of accepting or final states

Example: this automaton recognizes words containing an even

number of 0’s

q0start q1

1
0

1

0
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LTL and automata

ω-automata are a variation where the accepted language consists
of words of infinite length. They define different acceptance
conditions (when we consider a word to be “accepted”)

A Büchi automaton (BA) is an ω-automaton with the acceptance
condition:
There is some run that visits (at least) one of the states in F
infinitely often

Example: this automaton recognizes the language (0 + 1)∗0ω

q0start q1

0

1

0

0
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LTL and automata

During model checking, LTL properties are translated into
“equivalent” BA’s

By equivalent we mean they recognize the same language. The
BA alphabet A corresponds to the set of possible LTL states.

Example: if the formula uses atoms Σ = {p,q} then
A = 2Σ = {∅, {p}, {q}, {p,q}}
Usually, each BA arc is labelled with a set of states that yield the
same transition. This set of states is actually represented as an
LTL formula.
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LTL and automata

A language accepted by a non-deterministic BA is called regular
ω-language.

An important restriction: LTL is less expressive than Büchi
automata.

For instance, Exercise 6 (make p true in even states and free in all
the rest) cannot be represented in LTL whereas it is accepted by
the Büchi automaton:

q0start q1

p

p,¬p

Other temporal logics do cover regular ω-languages.
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Outline

1 Syntax and semantics

2 Specification with LTL

3 Complexity and expressiveness

4 Deductive system

5 Semantic tableaux
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Inference Methods

Inference or formal proof: we make syntactic manipulation of formulae.
To do so, we use:

An initial set of formulae: axioms.

Syntactic manipulation rules: inference rules.

As a result of applying these rules, we go obtaining new formulae:
theorems
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Inference methods

Notation: Γ ` α means that formula α can be derived or inferred
from theory Γ.

Usually, axioms are not represented inside Γ. Thus, ` α means
that α is a theorem (from logic L).

Given a language L, a logic L is a subset of L. It can be defined:
I Semantically: L = {α ∈ L | |= α}.
I Syntactically: L = {α ∈ L | ` α}.

What should we expect from an inference method?
I Soundness (or correctness): if ` α then |= α
I Completeness: if |= α then ` α
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A deductive system

We define the LTL deductive system as follows.

Axioms:

Ax0 PC Any substitution instance of any
Propositional Calculus tautology

Ax1 ` 2(α→ β)→ (2α→ 2β) Distribution of 2 over →
Ax2 ` ©(α→ β)→ (©α→©β) Distribution of © over →
Ax3 ` 2α→ (α ∧©α ∧©2α) Expansion of 2

Ax4 ` 2(α→©α)→ (α→ 2α) Induction

Ax5 ` ©α↔ ¬©¬α Linearity

Inference rules:

MP `α, `α→β
`β Modus Ponens

N `α
`2α Necessitation
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A deductive system

An example of a proof

Theorem 7 (transitivity)
` 22p ↔ 2p

Proof:

1. ` 22p → 2p Expansion
2. ` 2p →©2p Expansion
3. ` 2(2p →©2p) Necessitation on 2
4. ` 2(2p →©2p)→ (2p → 22p) Induction
5. ` 2p → 22p Modus Ponens on 3,4
6. ` 22p ↔ 2p P.C. 1,5

Q.E.D.
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A deductive system

Derived inference rules:

G2
`α→β
`2α→2β 2−Generalization

G© `α→β
`©α→©β ©−Generalization

Ind `α→©α
`α→2α Induction

These rules can be derived from previous axioms and rules.
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A deductive system

Exercises

Exercise 7
Prove the following theorems:

` 2(p ∧ q)↔ 2p ∧2q
` 3(p ∨ q)↔ 3p ∨3q

Exercise 8
Prove the theorem

` 2p ∨2q → 2(p ∨ q)

and find a counterexample for:

2(p ∨ q)→ 2p ∨2q
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Semantic tableaux

For simplicity, we assume α→ β
def
= ¬α ∨ β and

α↔ β
def
= (α ∧ β) ∨ (¬α ∧ ¬β)

With respect to Propositional Calculus tableaux, we add unfolding
rules for modal operators as follows:

Propositional Calculus rules Modal rules

Formula Branch 1 Branch 2
α ∨ β α β

α ∧ β α, β

¬(α ∨ β) ¬α,¬β
¬(α ∧ β) ¬α ¬β
¬¬α α

Formula Branch 1 Branch 2
2α α,©2α
¬3α ¬α,¬©3α
3α α ©3α
¬2α ¬α ¬©2α
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Semantic tableaux

When these rules are exhausted, each tableau leaf is boxed and
(partially) represents a state
The state usually contains©-formulas like©α or ¬© α. In such
a case, we generate a transition to a next state whose content is
fixed with the new rules:

Formula Next state
©α α

¬© α ¬α

We can reach a state repeated in previous tableau node. If so, we
just label the previous node and reuse it
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Semantic tableaux

Example: take (p ∨ q) ∧©(¬p ∧ ¬q)

(p ∨ q) ∧©(¬p ∧ ¬q)

(p ∨ q),©(¬p ∧ ¬q)

p,©(¬p ∧ ¬q) q,©(¬p ∧ ¬q)

Both open branches yield to a transition to a new state where:

¬p ∧ ¬q

¬p,¬q
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Semantic tableaux

That is, any model of (p ∨ q) ∧©(¬p ∧ ¬q) must contain one of
the following structures:

s0 s1

p // ¬p
¬q

s0 s1

q // ¬p
¬q

These are called Hintikka structures. They can be expanded to
interpretations (arbitrarily completing the truth of the rest of atoms)
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Semantic tableaux

Example 2: is 2(p ∧ q)→ 2p valid?

We negate the formula and check if we obtain a closed tableau

¬(2(p ∧ q)→ 2p)

l0 : 2(p ∧ q),3¬p

p ∧ q,©2(p ∧ q),3¬p

p,q,©2(p ∧ q),3¬p

p,q,
©2(p ∧ q),¬p

p,q,
©2(p ∧ q),
©3¬p

×

We would create a new state with 2(p ∧ q),3¬p = l0
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Semantic tableaux

The tableau is open but generates the following Hintikka structure:

s0 s1 s2

p,q // p,q // p,q // . . .

or simply
s0

p,q
		

which is never a model because 3¬p is never fulfilled

For open tableaux, we will have to check fulfillment of 3α formulas
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Semantic tableaux

Example 23p

l1 : 23p

l2 : 3p,©23p

l3 : p,©23p l4 :©3p,©23p

To l1 l5 : 3p,23p

To l2

3α formulas are fulfilled, so the Hintikka structure represents
possible models:

s0 s1

p 44

��
ptt
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