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Propositional Linear-time Temporal Logic (LTL)

Syntax
@ Y =set of atoms or propositions. Example: ¥ = {p, g, r}
@ usual propositional operators L, T, A, V, =, —, <>
@ plus modal operators to talk about (linear) time

Modal operators:
@ unary operators:

o = “forever’
& = “eventually’
O ="“next’

@ binary operators:
U ="“unti

W = “until’ (weak version)
R = “release” (dual of /)

P. Cabalar T4. Linear Temporal Logic 22 de febrero de 2023 3/61



Propositional Linear-time Temporal Logic (LTL)

@ Precedence of operators
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Semantics

Definition 1 (State)

Given a set of propositions ¥, a state s is a truth valuation
s: ¥ — {True, False}.

It can be represented as the set of (true) atoms. Example: if
Y ={p,q,r} state s = {p, r} means
s(p) = True, s(q) = False, s(r) = True.

Definition 2 (Interpretation or trace)

An interpretation (or trace) M is an infinite sequence of states
So, 51,82, - -

Example:
{p.q} {p.r} {a} {q.r} 0
So St So S3 Sy
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Definition 3 (Satisfaction)

Let M = sy, s1,... with i > 0. We say that M,/ = « when:
e M iEpifpes;(forpeX)
o M i=Daif M,j=aforallj>i

M,i = Saif M,j = o forsomej > i

M,il=Qaif M i+1E«

M,i = a U S if there exists n > i, M,n = § and

M,j = aforalli <j<n.

o MiEaWgiftM,iEoaorM,iEalp
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Semantics
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Semantics

@ o U [ =repeat a until (mandatorily)

« « « « I5]

@ o R [ =thereis a a before any state in which =3

o -6
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Semantics

@ T U [ =repeat T until (mandatorily) 5

T T T T I6]

This is equivalent to <.

@ | R [ =thereis a L before any state with —4.
That is, we cannot have —¢, i.e., 5 must hold forever 03

B B B B B
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Some standard logical terminology

@ Interpretation M is a model of theory I', written M |= T, iff M,0 = «
for each formula oo € T.

@ Formula « is inconsistent or unsatisfiable iff it has no models.
« is a tautology or is valid iff any interpretation is a model of «.

@ «is a “logical consequence of” or “is entailed by” I', written I |= «,
iff any model of I satisfies «.. Therefore, when I' = (), what does
= a mean?

@ Two formulas are equivalent iff they have the same models.
@ LTL satisfies {a} = fiff =a —
In particular, « and g are equivalent iff = o «» .
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Some interesting equivalences

Ca » TU«w (1)
Oa < LR« (2)
Oa <+ —<Ona (3)
Ca & O« (4)
Oa < aAQOw (5)
Ca « aVvV(Olx (6)
aldf < (aWP)AOS (7)
aWp < (alp)Vioa (8)
aldp < BVarnOlalp) 9)
aRpB + —(-ald-—p) (10)
aRpB < BW(aAp) (11)
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(Monadic) First Order Logic

@ LTL can be seen as a fragment of First Order Logic (predicate
calculus)

@ MFO(<) = Monadic First Order Logic with < relation
» All predicates are monadic (1 argument) p(x), q(y), ...

v

except binary (infix) predicate x < y, a linear ordering

v

arguments x, y represent time points

v

constant 0 represents initial time point

@ Example: 0p can be translated as Vx(x > 0 — p(x))
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(Monadic) First Order Logic

@ We adopt some useful abbreviations

X=Yy
x<y
x<y<z
Ix >i:a(x)
Vx >0 a(x)
dx €i.j:a(x)
(%)

Vx €i.f:a(x

dgf
déf
dgf
dgf
dgf
dgf

def

X<yny<x
X<yA=(y <x)
x<yny<z
Ax(i < x A a(x))
x(i < x — ax))
Ix(F < x <jAa(x))
(

VX(i < x <j— ax))

@ We use function ‘+1’ whose meaning can be defined with axiom:

(x+1)=y

X<yAN-3z(y <zANz<X)
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Kamp’s translation

Temporal formula « at time point i becomes MFO(<) formula «(/)

P £ pl)

(o)) & —a(i)

(avA)i) B ali)v A

(anB)i) B ali)nB()

(Oa)() £ ai+1)

(©a)(i) E =i a()

(Ca)() £ vji>i:a())
(U B)(i) E = i:(BU)A(k €if—1:a(k)))
(@R B B V=i (B()V(Ekeij—1:a(k)
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Kamp’s translation

The translation is correct:

Theorem 4

M. i = o if and only if M |= (i) in MFO(<) J
but in fact ...

Theorem 5 (Kamp’s theorem, 1968)

LTL is exactly as expressive as MFO(<): J

@ As we saw, any LTL formula can be naturally written in MFO(<)

@ The real interest of this theorem is the other direction:
any MFO(<) formula can be expressed back in LTL
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Kamp’s translation

@ Example: prove the tautology —(a U ) <» —a R =3

@ Assume any arbitrary time point / > 0. Then:

P. Cabalar

(=(atd $))(i)

r¢rrer e

- (U B)(i)
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Kamp’s translation

@ Example 2: prove the tautology 0o <+ a A OO«

(Oa)(i) < Vj>i:al))
a(YAYf>i+1:a())
al() A (Oa)(i+1)
a(i) A (ODa)(i)

(a A Ooa)(i)

rr e
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Exercises

Exercise 1
Prove validity of (6) and (9).

Exercise 2
Prove the validity of the following formulas:

p = OB
8 — alp
aldp — Op
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Exercises

Exercise 3
Which are the models of | Up? Which are the models of (Op) U—p ? )

Exercise 4

Define an operator 3 (“before”) so that « B 5 means
for any state in which [ will occur, then some « will occur before.

Exercise 5

Try to express the formula whose models satisfy: p is true in all even
states 0,2.4. ... and false in odd states.

Exercise 6

Try to express the formula whose models satisfy: p is true in all even
states 0,2, 4, ... varying p freely in odd states.
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@ Specification with LTL
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Examples of properties specification

Figure out the meaning of these example formulas:
@ 0O((—passport v —ticket) — (O—board))

O(requested — <received)
O(received — (Oprocessed)
O(processed — <nidone)

“It can’t be that we continually resend a request that is never
done.” The statement: Orequested N O—done should be
inconsistent.

That is, we should be able to derive Orequested — <done.
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An example: trains crossing

@ Railroad, single rail and a road level-crossing.

@ Goal: specifying properties to be satisfied.

@ Propositions representing events
» a="Atrain is approaching"

¢ =“Atrain is crossing"

¢ =*The /ight is blinking"

b = “The barrier is down"

v vyy
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Safety properties

Safety property = something bad never happens = O—bad.

@ When a train is crossing, the barrier must be down
Solution: 0(¢c — b) = O—(c A —b)

@ If a train is approaching or crossing, the light must be blinking
Solution: 0(aVv ¢ — ¢) = 0—-((aVv ¢c) A ()

@ If the barrier is up and the light is off, then no train is coming or
crossing. Solution: O(—=b A —¢ — =aA—c) = d-(-bA—-LA(aVc))
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Safety properties

Counterexamples of safety properties o—bad

@ It suffices with showing finite prefix of the counterexample trace
until bad occurs

@ For instance, a counterexample of 0(c — b) is a trace satisfying
(e A —-b)

Sy S, 83 S, = {C} Ss

cA—-b

The states from S5 on are irrelevant and we can only focus on the
execution from S; to S,
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Liveness properties

Liveness property = something initiated eventually terminates =
O(initiated — <terminates)

@ When a train is approaching, a train will eventually cross
Solution: t(a — <c)

@ Sometimes we can use U/, VV or R to propagate a condition until
termination.

@ When a train is approaching (and nobody is crossing), the barrier
will be eventually down before it crosses (if it does so)
Solution: o(aA —-¢ — =¢c W b)

@ If a train finishes crossing, the barrier will be eventually risen
Solution: 0o(c A O—c — (O<©—b) Altenative: 0—(c A cU(—c A TOb))
= o(c — ¢ R(—c — O-b))
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Liveness properties

Counterexamples of liveness properties ti(initiated — <terminates)
@ A finite prefix does not suffice

@ For instance, a counterexample of t(a — <c) is a trace satisfying

O(an o-ce)
81 82 83 S4 = {a} S5 SG
° ° ° ° ° °

o-C -C -C

@ Fortunately, in LTL, if a formula has a model (or a countermodel) it
also has at least a cyclic model, i.e., it has a periodic prefix that
iterates forever

Sy S S Si= Ea}/\

0o—-cC -C -C
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Infinitely often vs latching condition

@ Something happens infinitely often = o< something.
Example: The barrier is risen infinitely often = 0&-b

@ The dual is a latching condition = ¢Oa.
Example: at a given point, no more trains are approaching =
oo-a
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Fairness

Fairness means that if a choice holds sufficiently often, then it is taken
sufficiently often. Some examples:

@ Unconditional or absolute fairness (a.k.a. impartiality)
every process should be executed infinitely often 0<Cexecuted;

@ Strong fairness every process enabled infinitely often should be
executed infinitely often o< enabled; — O executed;

@ Weak fairness every process permanently enabled after some
point should be executed infinitely often
OOenabled; — OC executed;
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e Complexity and expressiveness
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Complexity

@ In complexity theory, solving a decision problem means building
an algorithm that, in a finite number of steps, answers yes or no to
a given input query.

@ For instance, SAT (propositional satisfiability, i.e., “does a formula
« have any model?”) is a decision problem, and its complexity
class is NP-complete.

@ Other examples of NP-complete problems are: the Travelling
Salesman problem, the Graph Coloring problem, Subset Sum
problem (find non-empty subset of integers that sum 0).
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Meaning of NP-completeness

@ A Turing Machine (TM) is a theoretical device that operates on an
infinite tape with cells containing symbols in a finite alphabet
(including the blank or ’0’)

@ The TM has a current state S; among a finite set of states
(including 'Halt’), and a head pointing to the “current” cell in the
tape.

@ It has an associated transition function that describes the next
step.
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Meaning of NP-completeness

@ Example: with scanned symbol 0 and state qu, write 1, move Left
and go to state g». That is:
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Meaning of NP-completeness

@ A decision problem consists in providing a given tape input and
asking the Turing Machine for a final output symbol answering Yes
or No.

@ Example: SAT = given (an encoding of) a propositional formula,
does it have at least one model?

@ A decision problem is in complexity class P iff the number of steps
carried out by the TM is polynomial on the size n of the input.
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Meaning of NP-completeness

@ Now, a non-deterministic Turing Machine (NDTM) is such that the
transition function is replaced by a transition relation.

@ We may have different possibilities for the next step.
@ Example: (0, g4, 1, Left, g2), t(0, qa4, 0, Right, g3)
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Meaning of NP-completeness

@ Keypoint: an NDTM provides an affirmative answer to a decision
problem when at least one of the executions for the same input
answers Yes.

@ A decision problem is in class NP iff the number of steps carried
out by the NDTM is polynomial on the size n of the input.

@ For SAT, we can build an NDTM that performs two steps:

@ For each atom, generate 1 or 0 nondeterministically. This provides
an arbitrary interpretation in linear time.

@ Test whether the current interpretation is a model or not.

The sequence of these two steps takes polynomial time.
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Meaning of NP-completeness

@ Unsolved problem

P< NP

@ The most accepted conjecture is that P C NP. But remains
unproved.

@ lItis one of the 7 Millenium Prize Problems
http://www.claymath.org/millennium/P_vs_NP/
The Clay Mathematics Institute designated $1 million prize for its
solution!
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Meaning of NP-completeness

@ A problem X is C-complete, for some complexity class C, iff any
problem Y in C is reducible to X in polynomial-time.

@ A complete problem is a representative of the class. Example: if
an NP-complete problem happened to be in P then P = NP.

@ SAT was the first problem to be identified as NP-complete (Cook’s
theorem, 1971).

@ SAT is commonly used nowadays for showing that a problem X is
at least as complex as NP. To this aim, just encode SAT into X.
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LTL-satisfiability is PSPACE-complete

Theorem 6

[Halpern & Reif 1981], [Sistla & Clarke, 1982]
LTL-satisfiability is PSPACE-complete.

@ PSPACE is the set of decision problems that can be solved by a
Turing Machine using a polynomial amount of space (for a finite,
unlimited time).

@ There is no difference when the machine is non-deterministic
NPSPACE = PSPACE [Savitch 1970].

@ On the other hand, NP € PSPACE. Again, unsolved question
NP < PSPACE but strongly suspected to be .

@ Other PSPACE-complete problems are: Quantified Boolean
Formula satisfiability, Al-Planning (STRIPS) existence of plan.
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LTL and automata

@ An finite state machine or finite automaton is a tuple (Q, A, 9, o, F)
where

Q is a finite set of states

Ais a finite set called the alphabet

0: Q@ x A— Qis the transition function
Qo is the initial state

F is the set of accepting or final states

vV vy vy VvYyy

@ Example: this automaton recognizes words containing an even

1 1
0
*NOEBO
0
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LTL and automata

@ w-automata are a variation where the accepted language consists
of words of infinite length. They define different acceptance
conditions (when we consider a word to be “accepted”)

@ A Bichi automaton (BA) is an w-automaton with the acceptance
condition:
There is some run that visits (at least) one of the states in F
infinitely often

@ Example: this automaton recognizes the language (0 + 1)*0¢
0 0

0
(2
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LTL and automata

@ During model checking, LTL properties are translated into
“equivalent” BA’s

@ By equivalent we mean they recognize the same language. The
BA alphabet A corresponds to the set of possible LTL states.

@ Example: if the formula uses atoms ~ = {p, g} then
A=2>={0.{p}.{a}.{p.q}}

@ Usually, each BA arc is labelled with a set of states that yield the
same transition. This set of states is actually represented as an
LTL formula.
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LTL and automata

@ A language accepted by a non-deterministic BA is called regular
w-language.

@ An important restriction: LTL is less expressive than Blchi
automata.

@ For instance, Exercise 6 (make p true in even states and free in all
the rest) cannot be represented in LTL whereas it is accepted by
the Bichi automaton:

p
start _’
pP,—p

@ Other temporal logics do cover regular w-languages.
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e Deductive system
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Inference Methods

Inference or formal proof: we make syntactic manipulation of formulae.
To do so, we use:

@ An initial set of formulae: axioms.
@ Syntactic manipulation rules: inference rules.

@ As a result of applying these rules, we go obtaining new formulae:
theorems
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Inference methods

@ Notation: I = o means that formula « can be derived or inferred
from theory I'.

@ Usually, axioms are not represented inside I'. Thus, - « means
that « is a theorem (from logic L).
@ Given a language £, a logic L is a subset of L. It can be defined:
» Semantically: L = {a € L | = a}.
» Syntactically: L = {a € L | + a}.
@ What should we expect from an inference method?

» Soundness (or correctness): if - a then = «
» Completeness: if = a then - «
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A deductive system

We define the LTL deductive system as follows.
Axioms:

Ax0 PC Any substitution instance of any
Propositional Calculus tautology

Ax1 +FO(a — ) — (0Da — 0p)  Distribution of O over —
Ax2 + O(a — ) = (Oa — OpB) Distribution of O over —
Ax3 FoOa— (aANQaN Qo) Expansion of O

Ax4 + oO(a— Oa) — (o« — 0Oa)  Induction

AxX5 FOa <+ -0« Linearity

Inference rules:

MP % Modus Ponens
o

N o Necessitation
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A deductive system

An example of a proof

Theorem 7 (transitivity)

Fogp <+ op J
Proof:

1. Fogp—op Expansion

2. Fop— OoOp Expansion

3. Fo(ap— Oap) Necessitation on 2

4. +o(op — Oop) — (op — oop) Induction

5 +oap—oop Modus Ponens on 3,4

6. FoOOp<« Op PC. 1,5

P. Cabalar

T4. Linear Temporal Logic

Q.E.D.

22 de febrero de 2023 50/61



A deductive system

Derived inference rules:

Fa—p . .
Go rmasos O — Generalization

Go red; O — Generalization

Ind 72292 Induction

These rules can be derived from previous axioms and rules.
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A deductive system

Exercises

Exercise 7
Prove the following theorems:

Fa(pAg) < OpAOg
FO(pVQg) « OpVvog

Exercise 8

Prove the theorem
Fopvog— a(pVQ)

and find a counterexample for:

o(pvq)— OpVaoq
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e Semantic tableaux
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Semantic tableaux

@ For simplicity, we assume o — f3 v p and
a B (anB)V(~an-p)

@ With respect to Propositional Calculus tableaux, we add unfolding
rules for modal operators as follows:

Propositional Calculus rules Modal rules
Formula | Branch 1 | Branch 2 Formula | Branch 1 Branch 2
aVp « 15} Oa o, OO«
alp a, B O =, O O
—(aV pB) | ~a,—f Oa « (@)
—(a A p) | - -0 e’ - O 0«

0%

P. Cabalar
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Semantic tableaux

@ When these rules are exhausted, each tableau leaf is boxed and
(partially) represents a state

@ The state usually contains (O)-formulas like Oa or = O a. In such
a case, we generate a transition to a next state whose content is
fixed with the new rules:

Formula | Next state
O« @
O« le

@ We can reach a state repeated in previous tableau node. If so, we
just label the previous node and reuse it
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Semantic tableaux

@ Example: take (pV q) A O(—p A —q)

(pVag)A C\)(ﬂp A Q)

(pVQq), O(-pA—Qq)
/ \
p, O(=p A —Qq) q, O(=p A ~q)

@ Both open branches yield to a transition to a new state where:

|

—p,q
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Semantic tableaux

@ That s, any model of (pV q) A O(—p A —q) must contain one of
the following structures:

So Sq So Sq

@ These are called Hintikka structures. They can be expanded to
interpretations (arbitrarily completing the truth of the rest of atoms)
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Semantic tableaux

@ Example 2:is t(p A q) — Dp valid?
@ We negate the formula and check if we obtain a closed tableau
~(o(pAq) — Op)
o : D(pA‘ q),o-p
pAQ,OO(pAQ),O-p

p,q. OO(p A q), O—p

/

(e p.q;
Oo(pAq),—p Oo(p A ),
Oo—p
X

We would create a new state with O(p A q), o—p = Iy
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Semantic tableaux

@ The tableau is open but generates the following Hintikka structure:

So Sq So

So

which is never a model because <—p is never fulfilled

or simply

@ For open tableaux, we will have to check fulfillment of ¢Ca formulas
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Semantic tableaux

@ Example 0Cp
I oCp

\
b Op, OOCp
/ \
h:p, OOCP ls - OCp, OOCP

[ [
To h 5 : Op,0Cp

\
To /2

<o formulas are fulfilled, so the Hintikka structure represents

possible models:
So Sq
=0y
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