Software Validation and Verification Section II: Model Checking

Topic 4. Linear Temporal Logic

Pedro Cabalar

Department of Computer Science and IT University of Corunna, SPAIN
cabalar@udc.es
22 de febrero de 2023

Propositional Linear-time Temporal Logic (LTL)

Syntax

- $\Sigma=$ set of atoms or propositions. Example: $\Sigma=\{p, q, r\}$
- usual propositional operators $\perp, \top, \wedge, \vee, \neg, \rightarrow, \leftrightarrow$
- plus modal operators to talk about (linear) time

Modal operators:

- unary operators:
$\square=$ "forever"
$\diamond=$ "eventually"
= "next"
- binary operators:

$$
\begin{aligned}
\mathcal{U} & =\text { "untip" } \\
\mathcal{W} & =\text { "untip" (weak version) } \\
\mathcal{R} & =\text { "release" (dual of } \mathcal{U})
\end{aligned}
$$

Propositional Linear-time Temporal Logic (LTL)

- Precedence of operators

More priority	$\neg \square \diamond \bigcirc$
left assoc.	$\mathcal{U} \mathcal{R} \mathcal{W}$
	\wedge
	\vee
	\rightarrow
Less priority	\leftrightarrow

- Examples:

$$
\begin{aligned}
p \mathcal{W} \diamond q \wedge r & =(p \mathcal{W}(\diamond q)) \wedge r \\
\square p \mathcal{U} \neg q \mathcal{R} r \rightarrow s & =(((\square p) \mathcal{U} \neg q) \mathcal{R} r) \rightarrow s
\end{aligned}
$$

Semantics

Definition 1 (State)
Given a set of propositions Σ, a state s is a truth valuation $s: \Sigma \longrightarrow\{$ True, False $\}$.

It can be represented as the set of (true) atoms. Example: if $\Sigma=\{p, q, r\}$ state $s=\{p, r\}$ means
$s(p)=$ True, $s(q)=$ False, $s(r)=$ True.
Definition 2 (Interpretation or trace)
An interpretation (or trace) M is an infinite sequence of states $s_{0}, s_{1}, s_{2}, \ldots$

Example:

Definition 3 (Satisfaction)

Let $M=s_{0}, s_{1}, \ldots$ with $i \geq 0$. We say that $M, i \models \alpha$ when:

- $M, i \models p$ if $p \in s_{i}$ (for $p \in \Sigma$)
- $M, i \models \square \alpha$ if $M, j \models \alpha$ for all $j \geq i$
- $M, i \models \diamond \alpha$ if $M, j \models \alpha$ for some $j \geq i$
- $M, i \models \bigcirc \alpha$ if $M, i+1 \models \alpha$
- $M, i \models \alpha \mathcal{U} \beta$ if there exists $n \geq i, M, n \models \beta$ and
$M, j \models \alpha$ for all $i \leq j<n$.
- $M, i \models \alpha \mathcal{W} \beta$ if $M, i \models \square \alpha$ or $M, i \models \alpha \mathcal{U} \beta$

Semantics

- $\bigcirc \alpha$

- $\square \alpha$

- $\diamond \alpha$

Semantics

- $\alpha \mathcal{U} \beta=$ repeat α until (mandatorily) β

- $\alpha \mathcal{R} \beta=$ there is a α before any state in which $\neg \beta$

Semantics

- $\top \mathcal{U} \beta=$ repeat T until (mandatorily) β

This is equivalent to $\diamond \beta$.

- $\perp \mathcal{R} \beta=$ there is a \perp before any state with $\neg \beta$.

That is, we cannot have $\neg \phi$, i.e., β must hold forever $\square \beta$

Some standard logical terminology

- Interpretation M is a model of theory Γ, written $M \models \Gamma$, iff $M, 0 \models \alpha$ for each formula $\alpha \in \Gamma$.
- Formula α is inconsistent or unsatisfiable iff it has no models. α is a tautology or is valid iff any interpretation is a model of α.
- α is a "logical consequence of" or "is entailed by" Γ, written $\Gamma \models \alpha$, iff any model of Γ satisfies α. Therefore, when $\Gamma=\emptyset$, what does $\neq \alpha$ mean?
- Two formulas are equivalent iff they have the same models.
- LTL satisfies $\{\alpha\} \models \beta$ iff $\models \alpha \rightarrow \beta$ In particular, α and β are equivalent iff $\models \alpha \leftrightarrow \beta$.

Some interesting equivalences

$$
\begin{align*}
\diamond \alpha & \leftrightarrow \top \mathcal{U} \alpha \tag{1}\\
\square \alpha & \leftrightarrow \perp \mathcal{R} \alpha \tag{2}\\
\square \alpha & \leftrightarrow \neg \diamond \neg \alpha \tag{3}\\
\diamond \alpha & \leftrightarrow \neg \square \neg \alpha \tag{4}\\
\square \alpha & \leftrightarrow \alpha \wedge \bigcirc \square \alpha \tag{5}\\
\diamond \alpha & \leftrightarrow \alpha \vee \bigcirc \diamond \alpha \tag{6}\\
\alpha \mathcal{U} \beta & \leftrightarrow(\alpha \mathcal{W} \beta) \wedge \diamond \beta \tag{7}\\
\alpha \mathcal{W} \beta & \leftrightarrow(\alpha \mathcal{U} \beta) \vee \square \alpha \tag{8}\\
\alpha \mathcal{U} \beta & \leftrightarrow \beta \vee \alpha \wedge \bigcirc(\alpha \mathcal{U} \beta) \\
\alpha \mathcal{R} \beta & \leftrightarrow \neg(\neg \alpha \mathcal{U} \neg \beta) \tag{10}\\
\alpha \mathcal{R} \beta & \leftrightarrow \beta \mathcal{W}(\alpha \wedge \beta) \tag{11}
\end{align*}
$$

(9)

(Monadic) First Order Logic

- LTL can be seen as a fragment of First Order Logic (predicate calculus)
- MFO $(<)=$ Monadic First Order Logic with $<$ relation
- All predicates are monadic (1 argument) $p(x), q(y), \ldots$
- except binary (infix) predicate $x \leq y$, a linear ordering
- arguments x, y represent time points
- constant 0 represents initial time point
- Example: $\square p$ can be translated as $\forall x(x \geq 0 \rightarrow p(x))$

(Monadic) First Order Logic

- We adopt some useful abbreviations

$$
\begin{aligned}
x=y & \stackrel{\text { def }}{=} x \leq y \wedge y \leq x \\
x<y & \stackrel{\text { def }}{=} x \leq y \wedge \neg(y \leq x) \\
x \leq y \leq z & \stackrel{\text { def }}{=} x \leq y \wedge y \leq z \\
\exists x \geq i: \alpha(x) & \stackrel{\text { def }}{=} \exists x(i \leq x \wedge \alpha(x)) \\
\forall x \geq i: \alpha(x) & \stackrel{\text { def }}{=} \forall x(i \leq x \rightarrow \alpha(x)) \\
\exists x \in i . . j: \alpha(x) & \stackrel{\text { def }}{=} \exists x(i \leq x \leq j \wedge \alpha(x)) \\
\forall x \in i . . j: \alpha(x) & \stackrel{\text { def }}{=} \forall x(i \leq x \leq j \rightarrow \alpha(x))
\end{aligned}
$$

- We use function ' +1 ' whose meaning can be defined with axiom:

$$
(x+1)=y \stackrel{\text { def }}{=} x<y \wedge \neg \exists z(y<z \wedge z<x)
$$

Kamp's translation

Temporal formula α at time point i becomes $\mathrm{MFO}(<)$ formula $\alpha(i)$

$$
\begin{aligned}
(p)(i) & \stackrel{\text { def }}{=} p(i) \\
(\neg \alpha)(i) & \stackrel{\text { def }}{=} \neg \alpha(i) \\
(\alpha \vee \beta)(i) & \stackrel{\text { def }}{=} \alpha(i) \vee \beta(i) \\
(\alpha \wedge \beta)(i) & \stackrel{\text { def }}{=} \alpha(i) \wedge \beta(i) \\
(\bigcirc \alpha)(i) & \stackrel{\text { def }}{=} \alpha(i+1) \\
(\diamond \alpha)(i) & \stackrel{\text { def }}{=} \exists j \geq i: \alpha(j) \\
(\square \alpha)(i) & \stackrel{\text { def }}{=} \forall j \geq i: \alpha(j) \\
(\alpha \mathcal{U} \beta)(i) & \stackrel{\text { def }}{=} \exists j \geq i:(\beta(j) \wedge(\forall k \in i . . j-1: \alpha(k))) \\
(\alpha \mathcal{R} \beta)(i) & \stackrel{\text { def }}{=} \forall j \geq i:(\beta(j) \vee(\exists k \in i . . j-1: \alpha(k)))
\end{aligned}
$$

Kamp's translation

The translation is correct:
Theorem 4
$M, i \models \alpha$ if and only if $M \models \alpha(i)$ in $M F O(<)$
but in fact ...
Theorem 5 (Kamp's theorem, 1968)
LTL is exactly as expressive as MFO(<):

- As we saw, any LTL formula can be naturally written in $M F O(<)$
- The real interest of this theorem is the other direction: any $M F O(<)$ formula can be expressed back in LTL

Kamp's translation

- Example: prove the tautology $\neg(\alpha \mathcal{U} \beta) \leftrightarrow \neg \alpha \mathcal{R} \neg \beta$
- Assume any arbitrary time point $i \geq 0$. Then:

$$
\begin{aligned}
(\neg(\alpha \mathcal{U} \beta))(i) & \leftrightarrow \neg(\alpha \mathcal{U} \beta)(i) \\
& \leftrightarrow \neg \exists j \geq i:(\beta(j) \wedge(\forall k \in i . . j-1: \alpha(k))) \\
& \leftrightarrow \forall j \geq i: \neg(\beta(j) \wedge(\forall k \in i . . j-1: \alpha(k))) \\
& \leftrightarrow \forall j \geq i:(\neg \beta(j) \vee \neg(\forall k \in i . . j-1: \alpha(k))) \\
& \leftrightarrow \forall j \geq i:(\neg \beta(j) \vee(\exists k \in i . . j-1: \neg \alpha(k))) \\
& \leftrightarrow \forall j \geq i:((\neg \beta)(j) \vee(\exists k \in i . . j-1:(\neg \alpha)(k))) \\
& \leftrightarrow(\neg \alpha \mathcal{R} \neg \beta)(i)
\end{aligned}
$$

Kamp's translation

- Example 2: prove the tautology $\square \alpha \leftrightarrow \alpha \wedge \bigcirc \square \alpha$

$$
\begin{aligned}
(\square \alpha)(i) & \leftrightarrow \forall j \geq i: \alpha(j) \\
& \leftrightarrow \alpha(i) \wedge \forall j \geq i+1: \alpha(j) \\
& \leftrightarrow \alpha(i) \wedge(\square \alpha)(i+1) \\
& \leftrightarrow \alpha(i) \wedge(\bigcirc \square \alpha)(i) \\
& \leftrightarrow(\alpha \wedge \bigcirc \square \alpha)(i)
\end{aligned}
$$

Exercises

Exercise 1

Prove validity of (6) and (9).

Exercise 2

Prove the validity of the following formulas:

$$
\begin{aligned}
\beta & \rightarrow \diamond \beta \\
\beta & \rightarrow \alpha \mathcal{U} \beta \\
\alpha \mathcal{U} \beta & \rightarrow \diamond \beta
\end{aligned}
$$

Exercises

Exercise 3

Which are the models of $\perp \mathcal{U} p$? Which are the models of $(\bigcirc p) \mathcal{U} \neg p$?

Exercise 4

Define an operator \mathcal{B} ("before") so that $\alpha \mathcal{B} \beta$ means for any state in which β will occur, then some α will occur before.

Exercise 5

Try to express the formula whose models satisfy: p is true in all even states $0,2,4, \ldots$ and false in odd states.

Exercise 6

Try to express the formula whose models satisfy: p is true in all even states $0,2,4, \ldots$ varying p freely in odd states.

Outline

(1) Syntax and semantics

(2) Specification with LTL
(3) Complexity and expressiveness

4 Deductive system
(5) Semantic tableaux

Examples of properties specification

Figure out the meaning of these example formulas:

- $\square((\neg$ passport $\vee \neg$ ticket $) \rightarrow \bigcirc \neg$ board $))$
- $\square($ requested $\rightarrow \diamond$ received $)$
- \square (received \rightarrow Oprocessed)
- \square (processed $\rightarrow \diamond \square$ done)
- "It can't be that we continually resend a request that is never done." The statement: \square requested $\wedge \square \neg$ done should be inconsistent.
That is, we should be able to derive \square requested $\rightarrow \diamond$ done.

An example: trains crossing

- Railroad, single rail and a road level-crossing.
- Goal: specifying properties to be satisfied.
- Propositions representing events
- $a=$ "A train is approaching"
- $c=$ "A train is crossing"
- $\ell=$ "The light is blinking"
- $b=$ "The barrier is down"

Safety properties

Safety property = something bad never happens $=\square \neg$ bad .

- When a train is crossing, the barrier must be down Solution: $\square(c \rightarrow b) \equiv \square \neg(c \wedge \neg b)$
- If a train is approaching or crossing, the light must be blinking Solution: $\square(a \vee c \rightarrow \ell) \equiv \square \neg((a \vee c) \wedge \neg \ell)$
- If the barrier is up and the light is off, then no train is coming or crossing. Solution: $\square(\neg b \wedge \neg \ell \rightarrow \neg a \wedge \neg c) \equiv \square \neg(\neg b \wedge \neg \ell \wedge(a \vee c))$

Safety properties

Counterexamples of safety properties $\square \neg$ bad

- It suffices with showing finite prefix of the counterexample trace until bad occurs
- For instance, a counterexample of $\square(c \rightarrow b)$ is a trace satisfying $\diamond(c \wedge \neg b)$

The states from S_{5} on are irrelevant and we can only focus on the execution from S_{1} to S_{4}

Liveness properties

Liveness property $=$ something initiated eventually terminates $=$ \square (initiated $\rightarrow \diamond$ terminates)

- When a train is approaching, a train will eventually cross Solution: $\square(a \rightarrow \diamond c)$
- Sometimes we can use \mathcal{U}, \mathcal{W} or \mathcal{R} to propagate a condition until termination.
- When a train is approaching (and nobody is crossing), the barrier will be eventually down before it crosses (if it does so) Solution: $\square(a \wedge \neg c \rightarrow \neg c \mathcal{W} b)$
- If a train finishes crossing, the barrier will be eventually risen Solution: $\square(c \wedge \bigcirc \neg c \rightarrow \bigcirc \diamond \neg b)$ Altenative: $\square \neg(c \wedge c \mathcal{U}(\neg c \wedge \square b))$ $\equiv \square(c \rightarrow \neg c \mathcal{R}(\neg c \rightarrow \diamond \neg b))$

Liveness properties

Counterexamples of liveness properties \square (initiated $\rightarrow \diamond$ terminates)

- A finite prefix does not suffice
- For instance, a counterexample of $\square(a \rightarrow \diamond c)$ is a trace satisfying
$\diamond(a \wedge \square \neg C)$

- Fortunately, in LTL, if a formula has a model (or a countermodel) it also has at least a cyclic model, i.e., it has a periodic prefix that iterates forever

Infinitely often vs latching condition

- Something happens infinitely often $=\square \diamond$ something. Example: The barrier is risen infinitely often $=\square \diamond \neg b$
- The dual is a latching condition $=\diamond \square \alpha$. Example: at a given point, no more trains are approaching = $\diamond \square \neg a$

Fairness

Fairness means that if a choice holds sufficiently often, then it is taken sufficiently often. Some examples:

- Unconditional or absolute fairness (a.k.a. impartiality) every process should be executed infinitely often $\square \diamond$ executed $_{i}$
- Strong fairness every process enabled infinitely often should be executed infinitely often $\square \diamond$ enabled $_{i} \rightarrow \square \diamond$ executed $_{i}$
- Weak fairness every process permanently enabled after some point should be executed infinitely often $\diamond \square$ enabled $_{i} \rightarrow \square \diamond$ executed $_{i}$

Outline

(1) Syntax and semantics

(2) Specification with LTL
(3) Complexity and expressiveness

4 Deductive system
(5) Semantic tableaux

Complexity

- In complexity theory, solving a decision problem means building an algorithm that, in a finite number of steps, answers yes or no to a given input query.
- For instance, SAT (propositional satisfiability, i.e., "does a formula α have any model?") is a decision problem, and its complexity class is NP-complete.
- Other examples of NP-complete problems are: the Travelling Salesman problem, the Graph Coloring problem, Subset Sum problem (find non-empty subset of integers that sum 0).

Meaning of NP-completeness

- A Turing Machine (TM) is a theoretical device that operates on an infinite tape with cells containing symbols in a finite alphabet (including the blank or '0')
- The TM has a current state S_{i} among a finite set of states (including 'Halt'), and a head pointing to the "current" cell in the tape.
- It has an associated transition function that describes the next step.

Meaning of NP-completeness

- Example: with scanned symbol 0 and state q_{4}, write 1, move Left and go to state q_{2}. That is:

$$
t\left(0, q_{4}\right)=\left(1, L e f t, q_{2}\right)
$$

Meaning of NP-completeness

- A decision problem consists in providing a given tape input and asking the Turing Machine for a final output symbol answering Yes or No.
- Example: SAT = given (an encoding of) a propositional formula, does it have at least one model?
- A decision problem is in complexity class \mathbf{P} iff the number of steps carried out by the TM is polynomial on the size n of the input.

Meaning of NP-completeness

- Now, a non-deterministic Turing Machine (NDTM) is such that the transition function is replaced by a transition relation.
- We may have different possibilities for the next step.
- Example: $t\left(0, q_{4}, 1\right.$, Left, $\left.q_{2}\right), t\left(0, q_{4}, 0\right.$, Right, $\left.q_{3}\right)$

Meaning of NP-completeness

- Keypoint: an NDTM provides an affirmative answer to a decision problem when at least one of the executions for the same input answers Yes.
- A decision problem is in class NP iff the number of steps carried out by the NDTM is polynomial on the size n of the input.
- For SAT, we can build an NDTM that performs two steps:
(1) For each atom, generate 1 or 0 nondeterministically. This provides an arbitrary interpretation in linear time.
(2) Test whether the current interpretation is a model or not.

The sequence of these two steps takes polynomial time.

Meaning of NP-completeness

- Unsolved problem

$$
\mathbf{P} \stackrel{?}{=} \mathbf{N P}
$$

- The most accepted conjecture is that $\mathbf{P} \subset \mathbf{N P}$. But remains unproved.
- It is one of the 7 Millenium Prize Problems
http://www.claymath.org/millennium/P_vs_NP/ The Clay Mathematics Institute designated $\$ 1$ million prize for its solution!

Meaning of NP-completeness

- A problem X is C-complete, for some complexity class \mathbf{C}, iff any problem Y in \mathbf{C} is reducible to X in polynomial-time.
- A complete problem is a representative of the class. Example: if an NP-complete problem happened to be in \mathbf{P} then $\mathbf{P}=\mathbf{N P}$.
- SAT was the first problem to be identified as NP-complete (Cook's theorem, 1971).
- SAT is commonly used nowadays for showing that a problem X is at least as complex as NP. To this aim, just encode SAT into X.

LTL-satisfiability is PSPACE-complete

```
Theorem 6
[Halpern \& Reif 1981], [Sistla \& Clarke, 1982]
LTL-satisfiability is PSPACE-complete.
```

- PSPACE is the set of decision problems that can be solved by a Turing Machine using a polynomial amount of space (for a finite, unlimited time).
- There is no difference when the machine is non-deterministic NPSPACE = PSPACE [Savitch 1970].
- On the other hand, NP \subseteq PSPACE. Again, unsolved question NP $\stackrel{?}{=}$ PSPACE but strongly suspected to be \neq.
- Other PSPACE-complete problems are: Quantified Boolean Formula satisfiability, AI-Planning (STRIPS) existence of plan.

LTL and automata

- An finite state machine or finite automaton is a tuple $\left(Q, A, \delta, q_{0}, F\right)$ where
- Q is a finite set of states
- A is a finite set called the alphabet
- $\delta: Q \times A \rightarrow Q$ is the transition function
- q_{0} is the initial state
- F is the set of accepting or final states
- Example: this automaton recognizes words containing an even
number of 0's

LTL and automata

- ω-automata are a variation where the accepted language consists of words of infinite length. They define different acceptance conditions (when we consider a word to be "accepted")
- A Büchi automaton (BA) is an ω-automaton with the acceptance condition:
There is some run that visits (at least) one of the states in F infinitely often
- Example: this automaton recognizes the language $(0+1)^{*} 0^{\omega}$

LTL and automata

- During model checking, LTL properties are translated into "equivalent" BA's
- By equivalent we mean they recognize the same language. The BA alphabet A corresponds to the set of possible LTL states.
- Example: if the formula uses atoms $\Sigma=\{p, q\}$ then $A=2^{\Sigma}=\{\emptyset,\{p\},\{q\},\{p, q\}\}$
- Usually, each BA arc is labelled with a set of states that yield the same transition. This set of states is actually represented as an LTL formula.

LTL and automata

- A language accepted by a non-deterministic BA is called regular ω-language.
- An important restriction: LTL is less expressive than Büchi automata.
- For instance, Exercise 6 (make p true in even states and free in all the rest) cannot be represented in $L T L$ whereas it is accepted by the Büchi automaton:

- Other temporal logics do cover regular ω-languages.

Outline

(1) Syntax and semantics

(2) Specification with LTL
(3) Complexity and expressiveness

4 Deductive system
(5) Semantic tableaux

Inference Methods

Inference or formal proof: we make syntactic manipulation of formulae. To do so, we use:

- An initial set of formulae: axioms.
- Syntactic manipulation rules: inference rules.
- As a result of applying these rules, we go obtaining new formulae: theorems

Inference methods

- Notation: $\Gamma \vdash \alpha$ means that formula α can be derived or inferred from theory Γ.
- Usually, axioms are not represented inside Г. Thus, $\vdash \alpha$ means that α is a theorem (from logic \mathbf{L}).
- Given a language \mathcal{L}, a logic L is a subset of \mathcal{L}. It can be defined:
- Semantically: $\mathbf{L}=\{\alpha \in \mathcal{L} \mid \models \alpha\}$.
- Syntactically: $\mathbf{L}=\{\alpha \in \mathcal{L} \mid \vdash \alpha\}$.
- What should we expect from an inference method?
- Soundness (or correctness): if $\vdash \alpha$ then $\vDash \alpha$
- Completeness: if $\models \alpha$ then $\vdash \alpha$

A deductive system

We define the $L T L$ deductive system as follows.
Axioms:

Ax0 $P C$

Ax1 $\vdash \square(\alpha \rightarrow \beta) \rightarrow(\square \alpha \rightarrow \square \beta)$
Ax2 $\vdash \bigcirc(\alpha \rightarrow \beta) \rightarrow(\bigcirc \alpha \rightarrow \bigcirc \beta)$
Ax3 $\vdash \square \alpha \rightarrow(\alpha \wedge \bigcirc \alpha \wedge \bigcirc \square \alpha)$
Ax4 $\vdash \square(\alpha \rightarrow \bigcirc \alpha) \rightarrow(\alpha \rightarrow \square \alpha)$ Induction
Ax5 $\vdash \bigcirc \alpha \leftrightarrow \neg \bigcirc \neg \alpha$

Any substitution instance of any Propositional Calculus tautology

Distribution of \square over \rightarrow
Distribution of \bigcirc over \rightarrow
Expansion of \square

Linearity

Inference rules:
MP $\frac{\vdash \alpha, \vdash \alpha \rightarrow \beta}{\vdash \beta}$ Modus Ponens
N $\frac{\vdash \alpha}{\vdash \square \alpha} \quad$ Necessitation

A deductive system

An example of a proof
Theorem 7 (transitivity)
$\vdash \square \square p \leftrightarrow \square p$
Proof:

1. $\vdash \square \square p \rightarrow \square p$
2. $\vdash \square p \rightarrow \bigcirc \square p$
3. $\vdash \square(\square p \rightarrow \bigcirc \square p)$
4. $\vdash \square(\square p \rightarrow \bigcirc \square p) \rightarrow(\square p \rightarrow \square \square p)$
5. $\vdash \square p \rightarrow \square \square p$
6. $\vdash \square \square p \leftrightarrow \square p$

Expansion
Expansion
Necessitation on 2
Induction
Modus Ponens on 3, 4
P.C. 1, 5

A deductive system

Derived inference rules:
$\mathbf{G}_{\square} \frac{\vdash \alpha \rightarrow \beta}{\vdash \square \alpha \rightarrow \square \beta} \quad \square-$ Generalization
$\mathbf{G}_{\bigcirc} \frac{\vdash \alpha \rightarrow \beta}{\vdash \bigcirc \alpha \rightarrow \bigcirc \beta} \quad \bigcirc$ - Generalization
Ind $\frac{\vdash \alpha \rightarrow \bigcirc \alpha}{\vdash \alpha \rightarrow \square \alpha}$ Induction
These rules can be derived from previous axioms and rules.

A deductive system

Exercises

Exercise 7

Prove the following theorems:

$$
\begin{aligned}
& \vdash \square(p \wedge q) \leftrightarrow \square p \wedge \square q \\
& \vdash \diamond(p \vee q) \leftrightarrow \diamond p \vee \diamond q
\end{aligned}
$$

Exercise 8

Prove the theorem

$$
\vdash \square p \vee \square q \rightarrow \square(p \vee q)
$$

and find a counterexample for:

$$
\square(p \vee q) \rightarrow \square p \vee \square q
$$

Outline

(1) Syntax and semantics
(2) Specification with LTL
(3) Complexity and expressiveness

4 Deductive system
(5) Semantic tableaux

Semantic tableaux

- For simplicity, we assume $\alpha \rightarrow \beta \stackrel{\text { def }}{=} \neg \alpha \vee \beta$ and $\alpha \leftrightarrow \beta \stackrel{\text { def }}{=}(\alpha \wedge \beta) \vee(\neg \alpha \wedge \neg \beta)$
- With respect to Propositional Calculus tableaux, we add unfolding rules for modal operators as follows:
Propositional Calculus rules
Modal rules

Formula	Branch 1	Branch 2	Formula	Branch 1	Branch 2
$\alpha \vee \beta$	α	β	$\square \alpha$	$\alpha, \bigcirc \square \alpha$	
$\alpha \wedge \beta$	α, β		$\neg \diamond \alpha$	$\neg \alpha, \neg \bigcirc \diamond \alpha$	
$\neg(\alpha \vee \beta)$	$\neg \alpha, \neg \beta$		$\diamond \alpha$	α	$\bigcirc \diamond \alpha$
$\neg(\alpha \wedge \beta)$	$\neg \alpha$	$\neg \beta$	$\neg \square \alpha$	$\neg \alpha$	$\neg \bigcirc \square \alpha$
$\neg \neg \alpha$	α				

Semantic tableaux

- When these rules are exhausted, each tableau leaf is boxed and (partially) represents a state
- The state usually contains \bigcirc-formulas like $\bigcirc \alpha$ or $\neg \bigcirc \alpha$. In such a case, we generate a transition to a next state whose content is fixed with the new rules:

Formula	Next state
$\bigcirc \alpha$	α
$\neg \bigcirc \alpha$	$\neg \alpha$

- We can reach a state repeated in previous tableau node. If so, we just label the previous node and reuse it

Semantic tableaux

- Example: take $(p \vee q) \wedge \bigcirc(\neg p \wedge \neg q)$

- Both open branches yield to a transition to a new state where:

Semantic tableaux

- That is, any model of $(p \vee q) \wedge \bigcirc(\neg p \wedge \neg q)$ must contain one of the following structures:

- These are called Hintikka structures. They can be expanded to interpretations (arbitrarily completing the truth of the rest of atoms)

Semantic tableaux

- Example 2: is $\square(p \wedge q) \rightarrow \square p$ valid?
- We negate the formula and check if we obtain a closed tableau

We would create a new state with $\square(p \wedge q), \diamond \neg p=I_{0}$

Semantic tableaux

- The tableau is open but generates the following Hintikka structure:

or simply

which is never a model because $\diamond \neg p$ is never fulfilled
- For open tableaux, we will have to check fulfillment of $\diamond \alpha$ formulas

Semantic tableaux

- Example $\square \diamond p$

$\diamond \alpha$ formulas are fulfilled, so the Hintikka structure represents possible models:

