
Software Validation and Verification
Section II: Model Checking

Topic 4. Linear Temporal Logic

Pedro Cabalar

Department of Computer Science and IT
University of Corunna, SPAIN

cabalar@udc.es

22 de febrero de 2023

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 1 / 61

Propositional Linear-time Temporal Logic (LTL)

Syntax
Σ = set of atoms or propositions. Example: Σ = {p,q, r}
usual propositional operators ⊥,>,∧,∨,¬,→,↔
plus modal operators to talk about (linear) time

Modal operators:
unary operators:
2 = “forever”
3 = “eventually”
© = “next”

binary operators:
U = “until”
W = “until” (weak version)
R = “release” (dual of U)

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 3 / 61

Propositional Linear-time Temporal Logic (LTL)

Precedence of operators
More priority ¬ 2 3©
left assoc. U R W

∧
∨
→

Less priority ↔
Examples:

p W 3q ∧ r = (p W (3q)) ∧ r

2p U ¬q R r → s =

((
(2p) U ¬q

)
R r

)
→ s

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 4 / 61

Semantics

Definition 1 (State)
Given a set of propositions Σ, a state s is a truth valuation
s : Σ −→ {True,False}.

It can be represented as the set of (true) atoms. Example: if
Σ = {p,q, r} state s = {p, r} means
s(p) = True, s(q) = False, s(r) = True.

Definition 2 (Interpretation or trace)
An interpretation (or trace) M is an infinite sequence of states
s0, s1, s2, . . .

Example:

{p,q} {p, r} {q} {q, r} ∅

• // • // • // • // • // . . .

s0 s1 s2 s3 s4
P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 5 / 61

Definition 3 (Satisfaction)
Let M = s0, s1, . . . with i ≥ 0. We say that M, i |= α when:

M, i |= p if p ∈ si (for p ∈ Σ)
M, i |= 2α if M, j |= α for all j ≥ i
M, i |= 3α if M, j |= α for some j ≥ i
M, i |=©α if M, i + 1 |= α

M, i |= α U β if there exists n ≥ i , M,n |= β and
M, j |= α for all i ≤ j<n.
M, i |= αW β if M, i |= 2α or M, i |= α U β

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 6 / 61

Semantics

©α
α

• // • // • // . . . // • // . . .

2α
α α α α

• // • // • // . . . // • // . . .

3α
α

• // • // • // . . . // • // . . .

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 7 / 61

Semantics

α U β = repeat α until (mandatorily) β

α α α α β

• // • // • // . . . // • // • // . . .

α R β = there is a α before any state in which ¬β

α ¬β

• // • // • // . . . // • // • // . . .

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 8 / 61

Semantics

> U β = repeat > until (mandatorily) β

> > > > β

• // • // • // . . . // • // • // . . .

This is equivalent to 3β.

⊥ R β = there is a ⊥ before any state with ¬β.
That is, we cannot have ¬φ, i.e., β must hold forever 2β

β β β β β

• // • // • // . . . // • // • // . . .

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 9 / 61

Some standard logical terminology

Interpretation M is a model of theory Γ, written M |= Γ, iff M,0 |= α
for each formula α ∈ Γ.

Formula α is inconsistent or unsatisfiable iff it has no models.
α is a tautology or is valid iff any interpretation is a model of α.

α is a “logical consequence of” or “is entailed by” Γ, written Γ |= α,
iff any model of Γ satisfies α. Therefore, when Γ = ∅, what does
|= α mean?

Two formulas are equivalent iff they have the same models.

LTL satisfies {α} |= β iff |= α→ β

In particular, α and β are equivalent iff |= α↔ β.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 10 / 61

Some interesting equivalences

3α ↔ > U α (1)
2α ↔ ⊥ R α (2)
2α ↔ ¬3¬α (3)
3α ↔ ¬2¬α (4)
2α ↔ α ∧©2α (5)
3α ↔ α ∨©3α (6)

α U β ↔ (αW β) ∧3β (7)
αW β ↔ (α U β) ∨2α (8)
α U β ↔ β ∨ α ∧©(α U β) (9)
α R β ↔ ¬(¬α U ¬β) (10)
α R β ↔ β W (α ∧ β) (11)

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 11 / 61

(Monadic) First Order Logic

LTL can be seen as a fragment of First Order Logic (predicate
calculus)

MFO(<) = Monadic First Order Logic with < relation
I All predicates are monadic (1 argument) p(x),q(y), . . .

I except binary (infix) predicate x ≤ y , a linear ordering

I arguments x , y represent time points

I constant 0 represents initial time point

Example: 2p can be translated as ∀x(x ≥ 0→ p(x))

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 12 / 61

(Monadic) First Order Logic

We adopt some useful abbreviations

x = y def
= x ≤ y ∧ y ≤ x

x < y def
= x ≤ y ∧ ¬(y ≤ x)

x ≤ y ≤ z def
= x ≤ y ∧ y ≤ z

∃x ≥ i : α(x)
def
= ∃x(i ≤ x ∧ α(x))

∀x ≥ i : α(x)
def
= ∀x(i ≤ x → α(x))

∃x ∈ i ..j : α(x)
def
= ∃x(i ≤ x ≤ j ∧ α(x))

∀x ∈ i ..j : α(x)
def
= ∀x(i ≤ x ≤ j → α(x))

We use function ‘+1’ whose meaning can be defined with axiom:

(x + 1) = y def
= x < y ∧ ¬∃z(y < z ∧ z < x)

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 13 / 61

Kamp’s translation

Temporal formula α at time point i becomes MFO(<) formula α(i)

(p)(i) def
= p(i)

(¬α)(i) def
= ¬α(i)

(α ∨ β)(i) def
= α(i) ∨ β(i)

(α ∧ β)(i) def
= α(i) ∧ β(i)

(©α)(i) def
= α(i + 1)

(3α)(i) def
= ∃j ≥ i : α(j)

(2α)(i) def
= ∀j ≥ i : α(j)

(α U β)(i) def
= ∃j ≥ i : (β(j) ∧ (∀k ∈ i ..j − 1 : α(k)))

(α R β)(i) def
= ∀j ≥ i : (β(j) ∨ (∃k ∈ i ..j − 1 : α(k)))

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 14 / 61

Kamp’s translation

The translation is correct:

Theorem 4
M, i |= α if and only if M |= α(i) in MFO(<)

but in fact . . .

Theorem 5 (Kamp’s theorem, 1968)
LTL is exactly as expressive as MFO(<):

As we saw, any LTL formula can be naturally written in MFO(<)

The real interest of this theorem is the other direction:
any MFO(<) formula can be expressed back in LTL

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 15 / 61

Kamp’s translation

Example: prove the tautology ¬(α U β)↔ ¬α R ¬β
Assume any arbitrary time point i ≥ 0. Then:

(¬(α U β))(i) ↔ ¬ (α U β)(i)
↔ ¬∃j ≥ i : (β(j) ∧ (∀k ∈ i ..j − 1 : α(k)))

↔ ∀j ≥ i : ¬(β(j) ∧ (∀k ∈ i ..j − 1 : α(k)))

↔ ∀j ≥ i : (¬β(j) ∨ ¬(∀k ∈ i ..j − 1 : α(k)))

↔ ∀j ≥ i : (¬β(j) ∨ (∃k ∈ i ..j − 1 : ¬α(k)))

↔ ∀j ≥ i : ((¬β)(j) ∨ (∃k ∈ i ..j − 1 : (¬α)(k)))

↔ (¬α R ¬β)(i)

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 16 / 61

Kamp’s translation

Example 2: prove the tautology 2α↔ α ∧©2α

(2α)(i) ↔ ∀j ≥ i : α(j)
↔ α(i) ∧ ∀j ≥ i + 1 : α(j)
↔ α(i) ∧ (2α)(i + 1)

↔ α(i) ∧ (©2α)(i)
↔ (α ∧©2α)(i)

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 17 / 61

Exercises

Exercise 1
Prove validity of (6) and (9).

Exercise 2
Prove the validity of the following formulas:

β → 3β

β → α U β
α U β → 3β

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 18 / 61

Exercises

Exercise 3
Which are the models of ⊥ Up? Which are the models of (©p) U¬p ?

Exercise 4
Define an operator B (“before”) so that α B β means
for any state in which β will occur, then some α will occur before.

Exercise 5
Try to express the formula whose models satisfy: p is true in all even
states 0,2,4, . . . and false in odd states.

Exercise 6

Try to express the formula whose models satisfy: p is true in all even
states 0,2,4, . . . varying p freely in odd states.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 19 / 61

Outline

1 Syntax and semantics

2 Specification with LTL

3 Complexity and expressiveness

4 Deductive system

5 Semantic tableaux

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 21 / 61

Examples of properties specification

Figure out the meaning of these example formulas:
2((¬passport ∨ ¬ticket)→©¬board))

2(requested → 3received)

2(received →©processed)

2(processed → 32done)

“It can’t be that we continually resend a request that is never
done.” The statement: 2requested ∧2¬done should be
inconsistent.
That is, we should be able to derive 2requested → 3done.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 22 / 61

An example: trains crossing

Railroad, single rail and a road level-crossing.

Goal: specifying properties to be satisfied.

Propositions representing events
I a = “A train is approaching"
I c = “A train is crossing"
I ` = “The `ight is blinking"
I b = “The barrier is down"

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 23 / 61

Safety properties

Safety property = something bad never happens = 2¬bad .

When a train is crossing, the barrier must be down
Solution: 2(c → b) ≡ 2¬(c ∧ ¬b)

If a train is approaching or crossing, the light must be blinking
Solution: 2(a ∨ c → `) ≡ 2¬((a ∨ c) ∧ ¬`)
If the barrier is up and the light is off, then no train is coming or
crossing. Solution: 2(¬b ∧¬`→ ¬a∧¬c) ≡ 2¬(¬b ∧¬`∧ (a∨ c))

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 24 / 61

Safety properties

Counterexamples of safety properties 2¬bad
It suffices with showing finite prefix of the counterexample trace
until bad occurs

For instance, a counterexample of 2(c → b) is a trace satisfying
3(c ∧ ¬b)

S1 S2 S3 S4 = {c} S5

• // • // • // • // • // . . .

c ∧ ¬b

The states from S5 on are irrelevant and we can only focus on the
execution from S1 to S4

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 25 / 61

Liveness properties

Liveness property = something initiated eventually terminates =
2(initiated → 3terminates)

When a train is approaching, a train will eventually cross
Solution: 2(a→ 3c)

Sometimes we can use U ,W or R to propagate a condition until
termination.

When a train is approaching (and nobody is crossing), the barrier
will be eventually down before it crosses (if it does so)
Solution: 2(a ∧ ¬c → ¬c W b)

If a train finishes crossing, the barrier will be eventually risen
Solution: 2(c ∧©¬c →©3¬b) Altenative: 2¬(c ∧ c U(¬c ∧2b))
≡ 2(c → ¬c R(¬c → 3¬b))

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 26 / 61

Liveness properties

Counterexamples of liveness properties 2(initiated → 3terminates)

A finite prefix does not suffice

For instance, a counterexample of 2(a→ 3c) is a trace satisfying
3(a ∧2¬c)

S1 S2 S3 S4 = {a} S5 S6

• // • // • // • // • // • // . . .

2¬c ¬c ¬c . . .

Fortunately, in LTL, if a formula has a model (or a countermodel) it
also has at least a cyclic model, i.e., it has a periodic prefix that
iterates forever

S1 S2 S3 S4 = {a}

• // • // • // • // • // •
{{

2¬c ¬c ¬c
P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 27 / 61

Infinitely often vs latching condition

Something happens infinitely often = 23something.
Example: The barrier is risen infinitely often = 23¬b

The dual is a latching condition = 32α.
Example: at a given point, no more trains are approaching =
32¬a

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 28 / 61

Fairness

Fairness means that if a choice holds sufficiently often, then it is taken
sufficiently often. Some examples:

Unconditional or absolute fairness (a.k.a. impartiality)
every process should be executed infinitely often 23executedi

Strong fairness every process enabled infinitely often should be
executed infinitely often 23enabledi → 23executedi

Weak fairness every process permanently enabled after some
point should be executed infinitely often
32enabledi → 23executedi

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 29 / 61

Outline

1 Syntax and semantics

2 Specification with LTL

3 Complexity and expressiveness

4 Deductive system

5 Semantic tableaux

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 31 / 61

Complexity

In complexity theory, solving a decision problem means building
an algorithm that, in a finite number of steps, answers yes or no to
a given input query.

For instance, SAT (propositional satisfiability, i.e., “does a formula
α have any model?”) is a decision problem, and its complexity
class is NP-complete.

Other examples of NP-complete problems are: the Travelling
Salesman problem, the Graph Coloring problem, Subset Sum
problem (find non-empty subset of integers that sum 0).

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 32 / 61

Meaning of NP-completeness

0 0 0 1 A B 2 0 00... ...

q
4

A Turing Machine (TM) is a theoretical device that operates on an
infinite tape with cells containing symbols in a finite alphabet
(including the blank or ’0’)

The TM has a current state Si among a finite set of states
(including ’Halt ’), and a head pointing to the “current” cell in the
tape.

It has an associated transition function that describes the next
step.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 33 / 61

Meaning of NP-completeness

Example: with scanned symbol 0 and state q4, write 1, move Left
and go to state q2. That is:

0 0 0 1 A B 2 0 00... ...

q
4

t(0,q4) = (1,Left ,q2)

0 0 1 1 A B 2 0 00... ...

q
2

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 34 / 61

Meaning of NP-completeness

A decision problem consists in providing a given tape input and
asking the Turing Machine for a final output symbol answering Yes
or No.

Example: SAT = given (an encoding of) a propositional formula,
does it have at least one model?

A decision problem is in complexity class P iff the number of steps
carried out by the TM is polynomial on the size n of the input.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 35 / 61

Meaning of NP-completeness

Now, a non-deterministic Turing Machine (NDTM) is such that the
transition function is replaced by a transition relation.
We may have different possibilities for the next step.
Example: t(0,q4,1,Left ,q2), t(0,q4,0,Right ,q3)

0 0 1 1 A B 2 0 00... ...

q
2

0 0 0 1 A B 2 0 00... ...

q
4

0 0 1 A B 2 0 00... ...

q
3

0

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 36 / 61

Meaning of NP-completeness

Keypoint: an NDTM provides an affirmative answer to a decision
problem when at least one of the executions for the same input
answers Yes.

A decision problem is in class NP iff the number of steps carried
out by the NDTM is polynomial on the size n of the input.

For SAT , we can build an NDTM that performs two steps:
1 For each atom, generate 1 or 0 nondeterministically. This provides

an arbitrary interpretation in linear time.

2 Test whether the current interpretation is a model or not.

The sequence of these two steps takes polynomial time.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 37 / 61

Meaning of NP-completeness

Unsolved problem

P ?
= NP

The most accepted conjecture is that P ⊂ NP. But remains
unproved.

It is one of the 7 Millenium Prize Problems
http://www.claymath.org/millennium/P_vs_NP/
The Clay Mathematics Institute designated $1 million prize for its
solution!

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 38 / 61

http://www.claymath.org/millennium/P_vs_NP/

Meaning of NP-completeness

A problem X is C-complete, for some complexity class C, iff any
problem Y in C is reducible to X in polynomial-time.

A complete problem is a representative of the class. Example: if
an NP-complete problem happened to be in P then P = NP.

SAT was the first problem to be identified as NP-complete (Cook’s
theorem, 1971).

SAT is commonly used nowadays for showing that a problem X is
at least as complex as NP. To this aim, just encode SAT into X .

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 39 / 61

LTL-satisfiability is PSPACE-complete

Theorem 6
[Halpern & Reif 1981], [Sistla & Clarke, 1982]
LTL-satisfiability is PSPACE-complete.

PSPACE is the set of decision problems that can be solved by a
Turing Machine using a polynomial amount of space (for a finite,
unlimited time).
There is no difference when the machine is non-deterministic
NPSPACE = PSPACE [Savitch 1970].
On the other hand, NP ⊆ PSPACE. Again, unsolved question
NP ?

= PSPACE but strongly suspected to be 6=.
Other PSPACE-complete problems are: Quantified Boolean
Formula satisfiability, AI-Planning (STRIPS) existence of plan.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 40 / 61

LTL and automata

An finite state machine or finite automaton is a tuple (Q,A, δ,q0,F)
where

I Q is a finite set of states
I A is a finite set called the alphabet
I δ : Q × A→ Q is the transition function
I q0 is the initial state
I F is the set of accepting or final states

Example: this automaton recognizes words containing an even

number of 0’s

q0start q1

1
0

1

0

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 41 / 61

LTL and automata

ω-automata are a variation where the accepted language consists
of words of infinite length. They define different acceptance
conditions (when we consider a word to be “accepted”)

A Büchi automaton (BA) is an ω-automaton with the acceptance
condition:
There is some run that visits (at least) one of the states in F
infinitely often

Example: this automaton recognizes the language (0 + 1)∗0ω

q0start q1

0

1

0

0

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 42 / 61

LTL and automata

During model checking, LTL properties are translated into
“equivalent” BA’s

By equivalent we mean they recognize the same language. The
BA alphabet A corresponds to the set of possible LTL states.

Example: if the formula uses atoms Σ = {p,q} then
A = 2Σ = {∅, {p}, {q}, {p,q}}
Usually, each BA arc is labelled with a set of states that yield the
same transition. This set of states is actually represented as an
LTL formula.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 43 / 61

LTL and automata

A language accepted by a non-deterministic BA is called regular
ω-language.

An important restriction: LTL is less expressive than Büchi
automata.

For instance, Exercise 6 (make p true in even states and free in all
the rest) cannot be represented in LTL whereas it is accepted by
the Büchi automaton:

q0start q1

p

p,¬p

Other temporal logics do cover regular ω-languages.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 44 / 61

Outline

1 Syntax and semantics

2 Specification with LTL

3 Complexity and expressiveness

4 Deductive system

5 Semantic tableaux

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 46 / 61

Inference Methods

Inference or formal proof: we make syntactic manipulation of formulae.
To do so, we use:

An initial set of formulae: axioms.

Syntactic manipulation rules: inference rules.

As a result of applying these rules, we go obtaining new formulae:
theorems

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 47 / 61

Inference methods

Notation: Γ ` α means that formula α can be derived or inferred
from theory Γ.

Usually, axioms are not represented inside Γ. Thus, ` α means
that α is a theorem (from logic L).

Given a language L, a logic L is a subset of L. It can be defined:
I Semantically: L = {α ∈ L | |= α}.
I Syntactically: L = {α ∈ L | ` α}.

What should we expect from an inference method?
I Soundness (or correctness): if ` α then |= α
I Completeness: if |= α then ` α

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 48 / 61

A deductive system

We define the LTL deductive system as follows.

Axioms:

Ax0 PC Any substitution instance of any
Propositional Calculus tautology

Ax1 ` 2(α→ β)→ (2α→ 2β) Distribution of 2 over →
Ax2 ` ©(α→ β)→ (©α→©β) Distribution of © over →
Ax3 ` 2α→ (α ∧©α ∧©2α) Expansion of 2

Ax4 ` 2(α→©α)→ (α→ 2α) Induction

Ax5 ` ©α↔ ¬©¬α Linearity

Inference rules:

MP `α, `α→β
`β Modus Ponens

N `α
`2α Necessitation

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 49 / 61

A deductive system

An example of a proof

Theorem 7 (transitivity)
` 22p ↔ 2p

Proof:

1. ` 22p → 2p Expansion
2. ` 2p →©2p Expansion
3. ` 2(2p →©2p) Necessitation on 2
4. ` 2(2p →©2p)→ (2p → 22p) Induction
5. ` 2p → 22p Modus Ponens on 3,4
6. ` 22p ↔ 2p P.C. 1,5

Q.E.D.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 50 / 61

A deductive system

Derived inference rules:

G2
`α→β
`2α→2β 2−Generalization

G© `α→β
`©α→©β ©−Generalization

Ind `α→©α
`α→2α Induction

These rules can be derived from previous axioms and rules.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 51 / 61

A deductive system

Exercises

Exercise 7
Prove the following theorems:

` 2(p ∧ q)↔ 2p ∧2q
` 3(p ∨ q)↔ 3p ∨3q

Exercise 8
Prove the theorem

` 2p ∨2q → 2(p ∨ q)

and find a counterexample for:

2(p ∨ q)→ 2p ∨2q

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 52 / 61

Outline

1 Syntax and semantics

2 Specification with LTL

3 Complexity and expressiveness

4 Deductive system

5 Semantic tableaux

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 54 / 61

Semantic tableaux

For simplicity, we assume α→ β
def
= ¬α ∨ β and

α↔ β
def
= (α ∧ β) ∨ (¬α ∧ ¬β)

With respect to Propositional Calculus tableaux, we add unfolding
rules for modal operators as follows:

Propositional Calculus rules Modal rules

Formula Branch 1 Branch 2
α ∨ β α β

α ∧ β α, β

¬(α ∨ β) ¬α,¬β
¬(α ∧ β) ¬α ¬β
¬¬α α

Formula Branch 1 Branch 2
2α α,©2α
¬3α ¬α,¬©3α
3α α ©3α
¬2α ¬α ¬©2α

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 55 / 61

Semantic tableaux

When these rules are exhausted, each tableau leaf is boxed and
(partially) represents a state
The state usually contains©-formulas like©α or ¬© α. In such
a case, we generate a transition to a next state whose content is
fixed with the new rules:

Formula Next state
©α α

¬© α ¬α

We can reach a state repeated in previous tableau node. If so, we
just label the previous node and reuse it

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 56 / 61

Semantic tableaux

Example: take (p ∨ q) ∧©(¬p ∧ ¬q)

(p ∨ q) ∧©(¬p ∧ ¬q)

(p ∨ q),©(¬p ∧ ¬q)

p,©(¬p ∧ ¬q) q,©(¬p ∧ ¬q)

Both open branches yield to a transition to a new state where:

¬p ∧ ¬q

¬p,¬q

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 57 / 61

Semantic tableaux

That is, any model of (p ∨ q) ∧©(¬p ∧ ¬q) must contain one of
the following structures:

s0 s1

p // ¬p
¬q

s0 s1

q // ¬p
¬q

These are called Hintikka structures. They can be expanded to
interpretations (arbitrarily completing the truth of the rest of atoms)

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 58 / 61

Semantic tableaux

Example 2: is 2(p ∧ q)→ 2p valid?

We negate the formula and check if we obtain a closed tableau

¬(2(p ∧ q)→ 2p)

l0 : 2(p ∧ q),3¬p

p ∧ q,©2(p ∧ q),3¬p

p,q,©2(p ∧ q),3¬p

p,q,
©2(p ∧ q),¬p

p,q,
©2(p ∧ q),
©3¬p

×

We would create a new state with 2(p ∧ q),3¬p = l0
P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 59 / 61

Semantic tableaux

The tableau is open but generates the following Hintikka structure:

s0 s1 s2

p,q // p,q // p,q // . . .

or simply
s0

p,q
		

which is never a model because 3¬p is never fulfilled

For open tableaux, we will have to check fulfillment of 3α formulas

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 60 / 61

Semantic tableaux

Example 23p

l1 : 23p

l2 : 3p,©23p

l3 : p,©23p l4 :©3p,©23p

To l1 l5 : 3p,23p

To l2

3α formulas are fulfilled, so the Hintikka structure represents
possible models:

s0 s1

p 44

��
ptt
		

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T4. Linear Temporal Logic 22 de febrero de 2023 61 / 61

	Syntax and semantics
	Specification with LTL
	Complexity and expressiveness
	Deductive system
	Semantic tableaux

