
Software Validation and Verification
Section II: Model Checking

Topic 3. Promela and SPIN

Pedro Cabalar

Department of Computer Science and IT
University of Corunna, SPAIN

cabalar@udc.es

22 de febrero de 2023

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 1 / 51

Outline

1 Sequential programs

2 Concurrency

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 2 / 51

Promela/SPIN

We will use the tool SPIN (Simple Promela INterpreter)
http://spinroot.com

Bibliography:

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 3 / 51

http://spinroot.com

Promela language

Language = PROMELA
PROtocol/PROcess MEta LAnguage

It is not a “programming” language!
The analyzed (target) code will be written in Java, C, python, . . .
or even in all of them!

It is a modelling and specification language that allows describing
the (concurrent) behavior of a protocol or a set of processes

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 4 / 51

SPIN model checker

The specification is the input of model checker SPIN

SPIN performs exhaustive search for errors

Real system

server
(java)

database
active proctype admin() {
 ...
}

active proctype server() {
 ...
}

active proctype device1() {
 ...
}

active proctype device2() {
 ...
}

active proctype database() {
 ...
}

device1 device2

admin
application
(C language)

Promela model

SPIN

...
errors: 0
...

...
errors: 1
...

Execution trail
(device1) [i=max]
(device2) [x=3]
...
(admin) [i++]
Error: assertion violated

Report

Report

Assertions
0<=i && i<=max

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 5 / 51

Promela

Hello world!
init {
printf("Hello World!\n")

}

A first example of sequential program.

init {
int value=123;
int reversed;
reversed=

(value % 10)*100 \
+((value/10)%10)*10 \
+(value/100);

printf("value=%d,reversed=%d\n",value,reversed)
}

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 6 / 51

Promela

Operators and assignments: mostly like C or Java

Exception: ++ and -- can only be postfix and shouldn’t be
combined with other assignments.

Small variation: C conditional operator (cond ? expr1 :
expr2) is written (cond -> expr1 : expr2). Example:

active proctype P() {
int a=1,b=3;
int max = (a>=b -> a : b);
printf("max=%d\n",max)

}

define statements work as in C
#define N 10
#define sum(a,b) ((a)+(b))

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 7 / 51

Promela

Types

Type Values Size (bits)
bit, bool 0,1,false,true 1
byte 0 . . . 255 8
short −32768 . . . 32767 16
int −231 . . . 231 − 1 32
unsigned 0 . . . 2n − 1 ≤ 32

We also have a special type called mtype that allows symbolic
values
mtype={red,yellow,green};
mtype light=green;

We can only define mtype once. We cannot define different
mtype’s

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 8 / 51

Promela

The printf statement works as in C but limited to:
%c a single character
%d a decimal value
%e an mtype constant
%o an unsigned octal value
%u an unsigned integer value
%x a hexadecimal value

We have a skip statement: increases the instruction pointer but
does nothing else

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 9 / 51

Promela

Conditional statement:

if
:: condition1 -> statement1

...
:: conditionn -> statementn
fi

Semantics: non-deterministically take any true condition and
proceed to execute its statement

If all conditions are false, then wait until one becomes true (or
forever!)

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 10 / 51

Promela

An example:

init {
int i=3,x;
if
:: i>1 -> x=1
:: i==5 -> x=2
:: i<0 -> x=3
fi;
printf("x=%d\n",x);

}

Try with i=5, i=-2 or i=0
Message timeout means no enabled command to execute next

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 11 / 51

Promela

Watchout: there is no default else
if
:: i==0 -> j++
fi

this gets blocked if i 6= 0. For a default else you should write
if
:: i==0 -> j++
:: i!=0 -> skip
fi

or use the else clause (the conjunction of negations for rest of
conditions)
if
:: i==0 -> j++
:: else -> skip
fi

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 12 / 51

Promela

An example using non-deterministic conditional

init {
int a=3, b=3, max, branch;
if
:: a>=b -> max=a; branch=1
:: a<=b -> max=b; branch=2

fi;
printf("max=%d, branch=%d\n",max,branch);

}

Make several executions. Do you always get the same value for
branch?

Exercise: make a program that prints x = 1, x = 2 or x = 3
non-deterministically

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 13 / 51

Promela

Iterative statement:

do
:: condition1 -> statement1

...
:: conditionn -> statementn
od

Semantics: non-deterministically take any true condition and
proceed to execute its statement.

If that statement is break, exit the loop. Otherwise, repeat.

If all conditions are false, then wait until one is true (or forever!)

Exercise: print all numbers from 1 to 10

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 14 / 51

Promela

An example combining do and if

mtype = {red, yellow, green};
mtype light=green;

init {
do
:: if

:: light==red -> light=green
:: light==yellow -> light=red
:: light==green -> light=yellow
fi;
printf("The light is now %e\n",light)

od
}

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 15 / 51

Promela

If you execute

$ spin tlight.pml

you get an infinite loop

You can fix a limit in the number of execution steps (6= loop
iterations)

$ spin -u40 tlight.pml

Exercise: remove the 3rd branch fixing light=red and execute
again. What happens? Why does it happen?

When we reach light==yellow the if gets “blocked” (no true
condition to follow).

Notice the difference with respect to an infinite (but enabled)
execution

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 16 / 51

Promela

In Promela, a condition can be used as a statement
int x=1;
init {
(x>0);
printf("%d\n",x);

}

Semantics: (x>0) is a test. If the condition holds, we skip to the
next statement.

If not, it waits forever (timeout). . .
or perhaps until another process modifies x
(x is a global variable = shared memory)

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 17 / 51

Promela

An example of loop: Euclid’s algorithm for Greatest Common
Divisor
init {
int x=15, y=20;
int a=x, b=y;
do
:: a>b -> a=a-b
:: b>a -> b=b-a
:: a==b -> break
od;

printf("The GCD of %d and %d is = %d\n",x,y,a);
}

Note the need for a break statement

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 18 / 51

Promela

Exercise: make a program that non-deterministically prints any
number between 1 and some constant N. Use, for instance:
#define N 10

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 19 / 51

Assertions

We can use the assert condition clause to introduce
assertions. If the condition is not satisfied, execution stops and
shows the violated assertion

Try this (erroneous) variation:
init {
int x=15, y=20;
int a=x, b=y;
do
:: a>b -> a=a-b+1
:: b>a -> b=b-a
:: a==b -> break
od;
printf("The GCD of %d and %d is = %d\n",x,y,a);
assert (x%a==0 && y%a==0);
// necessary test: a is some common divisor

}

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 20 / 51

Assertions

Exercise: fill the gap for the postcondition

init {
int x=15, y=4;
int q, r;
assert (x>=0 && y>0); // precondition
q=0;
r=x;
do
:: r>y -> q++; r=r-y
:: else -> break
od;
printf("%d/%d = %d; remainder %d\n", x,y,q,r);
assert _________________;

}

Try with x = 15 and y = 3. Does it work?

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 21 / 51

Assertions

Consider this (wrong) program

init {
int a=3, b=3, max;
if
:: a>=b -> max=a
:: a<=b -> max=b+1

fi;
assert (max==a || max==b) && max>=a && max>=b;

}

The program is wrong, but in some executions, the assertion
violation is not raised

This is because we are using simulation mode. However, the
interesting use of SPIN is exhaustive verification mode (model
checking).

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 22 / 51

Model checking

To throw an exhaustive verification, we must actually perform
these steps
spin -a max.pml
gcc -o pan pan.c
pan

or abbreviated in the single call
spin -search max.pml

gcc -o pan pan.c -Wformat-overflow=0
Use this option in Linux gcc to avoid excessive number of
warnings
If errors are found (deadlocks or violated assertions) a .trail file
will be generated (counterexample). In this case max.pml.trail
We can execute the file using -t option. We can use -p to see all
the steps.
spin -t -p -l max.pml

option -l prints the value of all local variablesP. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 23 / 51

Model checking

Exercise: execute this program and try to get 100

#define N 100
init {
int i=1;

do
:: break
:: i<N -> i++

od;
printf("%d\n",i)

}

Is 100 a probable output? (compute the probability)

Is 100 a possible output? use the model checker to answer

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 24 / 51

Model checking

http://spinroot.com/spin/Man/1_Exercises.html

Exercise: simulate this program

init { // file: ex_1a.pml
byte i=0;
do
:: i++
od
}

spin -u514 -p -l ex_1a.pml

Try the following:
I Simulate without -u514.
I Exhaustive search: how many reachable states should you we get?
I Change the variable type to bool or to short

Hint: default search depth = 10000 steps (truncates at 9999). Use
option -m70000

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 25 / 51

http://spinroot.com/spin/Man/1_Exercises.html

Outline

1 Sequential programs

2 Concurrency

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 26 / 51

Macros

Promela has no procedures or subroutines. We can only use macros:

// single line macro
#define printnum(n) printf("%d\n",n)

// multiple line macro
inline printnums(a,b) {
int i=a;
do
:: i<=b -> printnum(i); i++
:: i>b -> break;
od

}

init
{ printnums(1,10) }

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 27 / 51

Concurrent processes

Instead of procedures, we can define concurrent processes

We may declare a process using proctype and simultaneously
launch it using active

active proctype P() {
...

}
active proctype Q() {

...
}

Processes are assigned a number (_pid) by their creation order
in the source code. P will be process 0 and Q process 1.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 28 / 51

Interleaving

Important: after creation, execution is interleaved. Example:

byte n=0;
active proctype P() {

n=1;
printf("Process P, n = %d\n",n);

}
active proctype Q() {

n=2;
printf("Process Q, n = %d\n",n);

}

How many different executions can we get?

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 29 / 51

Interleaving

Important: after creation, execution is interleaved. Example:

byte n=0;
active proctype P() {

n=1;
printf("Process P, n = %d\n",n);

}
active proctype Q() {

n=2;
printf("Process Q, n = %d\n",n);

}

How many different executions can we get?

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 30 / 51

Interleaving

Exercise 1
We have two sequential processes P and Q, with m > 0 and n > 0
instructions respectively. How many different interleaved executions do
we get?

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 31 / 51

Interleaving

We can declare a group of statements to be atomic

Example: modify the previous code as follows

byte n=0;
active proctype P() {

atomic {
n=1;
printf("Process P, n = %d\n",n);

}
}
active proctype Q() {

n=2;
printf("Process Q, n = %d\n",n);

}

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 32 / 51

Interleaving

Non-determinism: choose the next enabled instruction. Example:
int n = 5; // try also n=0, n=-5
active proctype P() {
do
:: n<10 -> printf("%d\n",n); n++
:: n==5 -> n = 7
:: n==10 -> break
od

}
active proctype Q() {
if :: n<0 -> n=0 fi

}
active proctype R() {
(n==5);
printf("five\n")

}

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 33 / 51

Example: critical section

An example of critical section problem. P and Q use some
common resource
active proctype P() {
do
:: printf("Non-critical section P\n");

wantP=true;
printf("Critical section P\n");
wantP=false;

od
}
active proctype Q() {
do
:: printf("Non-critical section Q\n");

wantQ=true;
printf("Critical section Q\n");
wantQ=false;

od
}

Execute the file spin critical.pml. Apparently everything
goes ok

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 34 / 51

Mutual exclusion

How can we check that both do not enter the critical section?

Solution 1: use a global counter critical plus an assertion
active proctype P() {
do
:: printf("Non-critical section P\n");

wantP=true;
critical++;
printf("Critical section P\n");
assert (critical<=1);
critical--;
wantP=false;

od
}
active proctype Q() {
... // idem
}

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 35 / 51

Mutual exclusion

If you try, spin -p critical.pml several times, you’ll probably
violate the assertion at some point

If you want to be exhaustive, generate a pan.c as before

Suppose we try to avoid this using a “stop condition”. For
instance, P waits for wantQ to be false and vice versa

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 36 / 51

Synchronization

bool wantP=false, wantQ=false;
byte critical=0;
#define mutex (critical <=1)

active proctype P() {
do
:: printf("Non-critical section P\n");

wantP=true;
!wantQ;
critical++;
printf("Critical section P\n");
critical--;
wantP=false;

od
}

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 37 / 51

Synchronization

active proctype Q() {
do
:: printf("Non-critical section Q\n");

wantQ=true;
!wantP;
critical++;
printf("Critical section Q\n");
critical--;
wantQ=false;

od
}

Execute several times: assertion is not violated but . . .

New surprise: if we execute several times, simulation stops with a
timeout !

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 38 / 51

Deadlock

Spin generates a timeout when there is no next statement
available

In other words: all processes are waiting = deadlock

If you use exhaustive verification
spin -search critical3.pml
you’ll find a trail where both wantP and wantQ become 1, and
both processes are waiting for them to be 0

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 39 / 51

Deadlock vs mutual exclusion

But can we guarantee that critical section satisfies mutual
exclusion exhaustively?

For this, we can use spin -a combined with a temporal formula.

Example: remove the asserts and add instead

#define mutex (critical<2)

To check that 2mutex is true (critical is always lower than 2), we
negate the formula and use option -f as follows:

spin -a -f ’![]mutex’ critical4.pml

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 40 / 51

Deadlock vs mutual exclusion

Instead of using “ghost” variable critical we can use statement
labels
bool wantP=false, wantQ=false;
active proctype P() {
do
:: printf("Non-critical section P\n");

wantP=true;
!wantQ;

cs: printf("Critical section P\n");
wantP=false;

od
}

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 41 / 51

Deadlock vs mutual exclusion

active proctype Q() {
do
:: printf("Non-critical section Q\n");

wantQ=true;
!wantP;

cs: printf("Critical section Q\n");
wantQ=false;

od

To check mutual exclusion we would write
spin -a -f ’![]!(P@cs && Q@cs)’ critical5.pml

or simply

spin -a -f ’<>(P@cs && Q@cs)’ critical5.pml

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 42 / 51

Semaphores

We still get an error due to the deadlock. If we want to ignore
deadlocks we must use -E option in pan executable

pan -E

Can we avoid the deadlock? Idea: using a semaphore

Two atomic operations: wait (or P) and signal (or V)

In our case: wait for process P would be

atomic {
!wantQ;
wantP=true;

}

and signal for P would just be wantP=false

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 43 / 51

Semaphores

A general semaphore is just an integer variable sem.

inline wait(sem) { // macro definition
atomic {
sem>0;
sem--

}
}
inline signal(sem) {
sem++

}

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 44 / 51

Semaphores

A binary semaphore is just a Boolean variable sem.

inline wait(sem) { // macro definition
atomic {
sem;
sem=false

}
}
inline signal(sem) {
sem=true

}

Exercise: modify the example to use a single binary semaphore
mutex instead WantP and WantQ. Check mutual exclusion and
absence of deadlocks with spin -a -f ...

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 45 / 51

Multiple copies of processes

We can define multiple copies of a given process by declaring
active[N]

active[3] proctype P() {
do
:: printf("Non-critical section P\n");

wait(mutex);
cs: printf("Critical section P\n");

signal(mutex)
od

}

Process numbers are assigned incrementally following the source
code ordering.

Variable _pid returns the current process identifier.
Variable _nr_pr returns the number of active processes

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 46 / 51

Process init

For a more elaborated creation of processes, we can use init. If
defined, init becomes process 0 and the first to be executed.

We define the process code without the active keyword. We can
use parameters.
proctype P(byte c; int n) {
printf("Executing process %c (%d)\n", c, n);

}

Then, the init process may create active copies of a process
with the special instruction run.
init {
printf("Starting...\n");
run P(’A’, 0);
run P(’B’, 1);
printf("All process terminated\n")

}

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 47 / 51

Process init

Exercise: the previous example does not guarantee that message
All process terminated is the last one to be printed. Can
you find a way to force that situation?

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 48 / 51

Liveness

Suppose that process Q has this modified code

active proctype Q() {
do
:: printf("Non-critical section Q\n");

atomic {
!wantP;
wantQ=true;

}
false;

cs: printf("Critical section Q\n");
wantQ=false;

od
}

The critical section cs is unreachable!

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 49 / 51

Liveness

We can use instruction labels in formulas: procname@label to
check that procname is at instruction label. With multiple copies
of a process, we use the pid number: procname[pid]@label

To check liveness, i.e., that Q reaches cs, we use:
spin -a -f ’!<>(Q@cs)’ critical7.pml
gcc -o pan pan.c
pan -a -f

pan -a -f looks for a counterexample in the form of infinite loop
(we repeat an infinite sequence of steps that prevents reaching
cs)

When we execute the trail, spin -p -t critical7.pml it will
show «START OF CYCLE» to show the infinite loop

To check a fairness condition, we would use -f ’![]<>cs’ (cs
is reached infinitely often)

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 50 / 51

Interleaving

Solution: we will execute m + n instructions we can locate at
1 2 3 4 5 . . . m + n
P Q P P Q . . . P

Each interleaved execution can be seen as a selection of a set of
positions where P takes the CPU (the rest will be taken by Q).

In the example: P’s positions are the m elements in
{1,3,4, . . . ,m + n}
The number of possible sets that can be formed corresponds to
combinations of m + n taken in groups of m:(

m + n
m

)
=

(m + n)!
(m + n −m)! m!

=
(m + n)!

n! m!

For instance, for m = n = 2 we get 4!
2! 2! = 6 but for m = n = 3 we

obtain 6!
3! 3! = 20

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T3. Promela and SPIN 22 de febrero de 2023 51 / 51

	Sequential programs
	Concurrency

