
Software Validation and Verification
Section II: Model Checking

Topic 1. Introduction

Pedro Cabalar

Department of Computer Science and IT
University of Corunna, SPAIN

cabalar@udc.es

2020/2021

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 1 / 26

Software as a product

Software is a complex, conceptual product⇒ errors are inherent

, Good news: computers always do what we tell them to do!

/ Bad news: what we tell is not always what we want

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 2 / 26

When the outcome was not expected . . .

Why program outcome 6= expected outcome?
Example: “I want to print my salary for the first six months”
for (i=0;i<=5;i++)
printf("%d\n",salary[j]);

this program is wrong because variable j should be i

Someone else tells me to “print the total salary for the first six
months”
for (i=0;i<=5;i++)
printf("%d\n",salary[i]);

error with j fixed, but it is the wrong program!
total=0;
for (i=0; i<=5; i++)
total+=salary[i];

printf("%d\n",total);

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 3 / 26

When the outcome was not expected . . .

So a program behaviour can be faulty or unexpected
Faulty: is this program right?⇒ verification

Unexpected: is this the right program?⇒ validation

In verification we assume we understood what the program must do
but want to check that it is done correctly.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 4 / 26

An example

We want to compute the greatest common divisor of two integers
x > y > 0, gcd(x , y)

The following code is obviously correct:

gcd=1;
for (i=2; i<=y; i++)
if (x % i == 0 && y % i == 0)
gcd=i;

but rather inefficient. How many steps do we need for
gcd(10000000,1000000) ?

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 5 / 26

An example

a=x;
b=y;
while (a!=b)

if (a>b)
a=a-b;

else
b=b-a;

gcd=a;

Euclid, by José de Ribera Euclid’s algorithm [∼ 300 BC]

Obviously faster but . . .

Exercise 1 (0,5 points T.G.R.)
Can you prove it is correct? (if not, a real shock after 2.300 years!)

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 6 / 26

Another example: Collatz conjecture

Things can be hard even for simple loops . . .

// int x, x>=0
while (x!=1)
if (x%2==0)

x=x/2;
else

x=3*x+1;

Lothar Collatz
6/7/1910 - 26/9/1990

Does this loop stop (i.e. reach x = 1) for any starting value x ≥ 0?
This is an unsolved problem!

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 7 / 26

Outline

1 Introduction

2 Formal Verification

3 A bit of History

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 8 / 26

Formal Verification

Goal: prove or disprove the correctness of a given system like
software (algorithms, protocols) or hardware (circuits).

Formal methods
1 Formal specification:

formulas asserting what the system should do, not how.
2 Formal verification: prove that the system satisfies the specification.

formal = use mathematical objects to model the system.
Examples: finite state machines, Petri nets, program semantics,
process algebras, logics (classical, modal, temporal), etc.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 9 / 26

Formal Specification

Goal: write a formula that describes the problem solution

Keypoint: how strong is the formula?
Always correct: prove a necessary and sufficient condition
The program is correct if and only if:

x mod a = 0∧y mod a = 0∧¬∃z > a (x mod z = 0∧y mod z = 0)

Sometimes correct: prove a necessary condition.
If the program is correct, it must satisfy:

x = k ∗ y ⇒ a = y

Correct for some test case (a stronger necessary condition).
x = 60 ∧ y = 45 ⇒ a = 15

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 10 / 26

Verification

Test cases

x=60 & y=45 -> a=15?

x=30 & y=12 -> a=6?

x=100 & y=10 -> a=10?

...

Test generators
e.g. quickcheck

k in [1..1000]
& x=k*y -> a=y?

Model checking
necessary

& sufficient

BUT

requires finite domain

Theorem Proving
necessary

& sufficient

Test cases

x=60 & y=45 -> a=15?

x=30 & y=12 -> a=6?

x=100 & y=10 -> a=10?

...

Test generators
e.g. quickcheck

k in [1..1000]
& x=k*y -> a=y?

Model checking
necessary

& sufficient

BUT

requires finite domain

Theorem Proving
necessary

& sufficient

Test design

Software Engineering

Formal

Verification

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 11 / 26

Formal Verification

Trial-and-error testing Formal verification

Confidence 100 % never reached Mathematical methods

Keypoint good design of test cases good specification

Input object We depend on a program We work with an algorithm

Efficiency execution time, complexity
measurement memory consumed

Warning: tests are still necessary for validation. We can prove that a
property holds, but perhaps it’s not the right property to be proved!

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 12 / 26

Formal Verification

The ideal situation of Formal Verification
Program + formulas −→ Correct?

I Yes : correctness proof
I No : counterexample
I ??: sometimes we may have no answer!

Alan Turing
(1912 – 1952)

Halting problem [Turing 1936] is undecidable:
no algorithm can decide in finite time
whether any arbitrary pair (program, input)
will eventually halt or run forever.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 13 / 26

Approach 1. Theorem proving

Theorem proving uses logical inference.

Semi-automated: it usually requires user’s supervision or selection
of proof strategies.

May deal with infinite domains . . . but the method is undecidable

Best suited for proving correctness during the algorithm design.

Examples of theorem provers: Isabelle, ACL2, Coq, PVS.

In Coq, the proof is constructive: we can automatically derive a
correct program in a functional language.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 14 / 26

Approach 2. Model Checking

Model checking: systematically exhaustive exploration of the
states and transitions in the model.

Decidable . . . but requires finite domain
(or infinite domain with a finite representation)

Fully automated: no user supervision required

Best suited for finding counterexamples on an already built
system.

Typically applied to reactive systems: they have inifinite execution,
but must satisfy some properties expressed in temporal logics.

Those properties are checked using tools that (intelligently)
explore the state space. These tools are called model checkers.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 15 / 26

Outline

1 Introduction

2 Formal Verification

3 A bit of History

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 16 / 26

A bit of history . . .

But up to late 60’s: GOTO statements, “spaghetti code”

10 i = 0
20 i = i + 1
30 PRINT i; " squared = "; i * i
40 IF i >= 10 THEN GOTO 60
50 GOTO 20
60 PRINT "Program Completed."
70 END

During the 1960’s algorithm design was born.
Structured programming [Böhm & Jacopini 66]:
any program = {sequential + conditional + iterative} instructions.

for (i=1; i<=10; i++)
printf("%d squared= %d\n",i,i*i);

printf("Program completed.\n");

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 17 / 26

Formal reasoning in AI

John McCarthy
(1927 – 2011)

Turing Award 1971

[McCarthy 1951] ”A basis for a Mathematical Theory of
Computation”
First proposal of replacing trial-and-error by formal proof of
correctness.

[McCarthy 1960] ”Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part I” = LISP language.
First example of program semantics (operational semantics) using
lambda calculus for LISP.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 18 / 26

Formal reasoning in AI

Allen Newell Herbert Simon
(1927 – 1992) (1916 – 2001)

Turing Award 1975 Turing Award 1975
Nobel (Economics) 1978

[Herbert & Simon 1955] Logic Theorist:
First successful theorem prover
(proved 38 theorems from Russell’s Principia Mathematica)

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 19 / 26

Algorithm design and correctness

Sir C. Anthony R. Hoare (1934 –)
Turing Award 1980

[H. 1962] designs the Quicksort algorithm. Was it correct?
crucial point: defining a program semantics
[H. 1969] Hoare Logic (axiomatic semantics).

{Q} prog {R} = If precondition Q initially true,
then program prog terminates
satisfying postcondition R.

“There are two ways of constructing a piece of software:
One is to make it so simple that there are obviously no errors,
and the other is to make it so complicated that there are no
obvious errors.” Tony Hoare.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 20 / 26

Algorithm design and correctness

Edsger W. Dijkstra (1930 – 2002)
Turing Award 1972

[D. 1959] algorithm for shortest path tree,

[D. 1965] introduces the idea of semaphore for controlling shared
resources in a concurrent environment.

[D. 1968] Go To Statement Considered Harmful.

[D. 1976] A Discipline of Programming:
formal verification, weakest precondition, program derivation,
guarded commands programming language.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 21 / 26

Denotational semantics

Dana S. Scott (1932 –)
Turing Award 1976

[Scott & Rabin 1959] “Finite Automata and Their Decision
Problems” (nondeterministic machines, automata theory)

[Scott & Strachey 1971] “Toward a mathematical semantics for
computer languages” denotational semantics.

“Denotation” = function from input to output.

A semantics is compositional when the meaning of a sentence is
built on the meaning of its sub-sentences⇒ basis of functional
languages with concurrency (e.g. Haskell).

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 22 / 26

Model Checking main approaches

Amir Pnueli Edmund M. Clarke Allen Emerson
(1941 – 2009) (1945 –) (1954 –)

Turing Award 1996 Turing Award 2007 Turing Award 2007

Model checking: two main approaches
Linear Temporal Logic (LTL) proposed by Pnueli in the 70’s. It is
used by the SPIN model checker. More oriented to (concurrent)
software verification.

Computation Tree Logic (CTL) proposed by Clarke and Emerson.
It constitutes the basis of SMV, NuMV, nuXmv model checkers.
More oriented to circuit verification.

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 23 / 26

Model Checking main approaches

See Clarke’s invited talk on model checking
at Vienna Summer of Logic 2014

https://vimeo.com/103456257

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 24 / 26

https://vimeo.com/103456257

Model Checking main approaches

See Vardi’s invited talk on LTL synthesis at ECAI 2020

https://digital.ecai2020.eu/conference/
the-siren-song-of-temporal-synthesis/

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 25 / 26

https://digital.ecai2020.eu/conference/the-siren-song-of-temporal-synthesis/
https://digital.ecai2020.eu/conference/the-siren-song-of-temporal-synthesis/

Master

Máster en Métodos Formales en Ingeniería Informática

Tres universidades: Complutense, Autónoma y Politécnica de
Madrid

60 ECTS = 1 año

https://informatica.ucm.es/estudios/
master-mfingenieriainf

Vídeo de presentación
https://www.youtube.com/watch?v=yAm_VFEgk1I

P. Cabalar (Department of Computer Science and IT University of Corunna, SPAIN cabalar@udc.es)T1. Introduction 2020/2021 26 / 26

https://informatica.ucm.es/estudios/master-mfingenieriainf
https://informatica.ucm.es/estudios/master-mfingenieriainf
https://www.youtube.com/watch?v=yAm_VFEgk1I

	Introduction
	Formal Verification
	A bit of History

