
tExplain: Information Extraction with
Explanations

Pedro Cabalar, Adrian Dorsey, Jorge Fandinno, Yuliya Lierler,
Brais Muñiz, and Joel Sare

University of A Coruna, University of Nebraska Omaha
{cabalar,brais.mcastro}@udc.es

{jfandinno, ylierler,joelsare}@unomaha.edu
dorsey.adrian.adrian@gmail.com

Abstract. We present a narrative understanding tool that takes as an
input a narrative in natural English language that contains both sen-
tences describing actions as well as questions and outputs answers to
those questions together with natural language explanations justifying
those answers. We evaluate our tool on the several tasks of Facebook’s
bAbI challenge where it achieves 100% accuracy.

1 Introduction

In this work, we design a narrative understanding tool named tExplain. This
tool takes as an input a narrative in natural English language that contains both
sentences describing actions as well as questions, regarding the entities described
in the narrative. Consider the following narrative as an example:

1 Daniel went to the bedroom.
2 Daniel picked up the apple there.
3 Mary went to the bathroom.
4 John moved to the hallway.
5 Mary travelled to the office.
6 Daniel put down the apple there.
7 Where is the apple?

The output of tExplain are the answers to the questions contained in the nar-
rative together with an explanation about the reasoning the system followed to
achieve that conclusion. Figure 1 illustrates the output obtained from tExplain
given the above narrative that asks where the location of the apple is. This an-
swer states that the apple is located at the bedroom and shows two different
reasons how that can be deduced. The first, by noting that Daniel moved to the
bedroom and, then, picked the apple. Since Daniel did not move afterwards, the
apple is still in the bedroom where it was picked. The second explanation focus
on the fact that Daniel dropped the apple while he was in the bedroom.

It is due to remark that the sample narrative provided above stems from
the bAbI tasks published by Facebook Research in 2015 [15]. Conglomeration of

2 Cabalar, Dorsey, Fandinno, Lierler, Muniz, and Sare

Answer 1
*
|__apple is located at bedroom
| |__daniel moved to bedroom in sentence 1
| |__since daniel obtained the apple in sentence 2

*
|__apple is located at bedroom
| |__daniel moved to bedroom in sentence 1
| |__since daniel dropped the apple in sentence 6

Fig. 1. Output of tExplain stating that the apple is in the bedroom and the two
alternative explanations that justify this conclusion.

such narratives together with valid answers and explanations in the form of the
numbers of related sentences in deriving an answer forms this synthetic dataset.

In building tExplain, we leverage two different existing tools such as in-
formation extraction system text2alm [12] and answer set solver xclingo [4],
which enhances clingo [8] with explanations capabilities. Both text2alm and
xclingo are built on the backbone of Answer Set Programming [7] or ASP
— a knowledge representation declarative programming paradigm with roots in
deductive databases, logic programming and satisfiability testing. The system
text2alm produces an ASP program from natural language narratives whose
solutions, called answer sets, can be used to answer several queries about the
narrative. xclingo [4] is an ASP based tool that constructs explanations for
found answer sets based on the rules occurring in a program. It also allows users
to annotate their programs with snippets of text to produce natural language
explanations. System tExplain, developed in this work, combines xclingo and
text2alm to provide natural language answers and explanations for questions
about simple English narratives focused on action verbs.

The natural language understanding capabilities of the tool target the bAbI
benchmark Tasks 2, 3, and 6. Tasks 2 and 3 involve describing where an entity
is located and using two or three supporting facts to achieve those conclusions,
respectively. Task 6 involves answering yes/no questions about the locations
of entities throughout the narrative. As part of the evaluation efforts, system
tExplain is benchmarked on these tasks where it achieved 100% accuracy.

The rest of the paper is organized as follows. We start by reviewing the build-
ing blocks of tExplain, namely, text2alm and xclingo (Section2). Then, de-
scribe the new system (Section 3) and we report on the experimental evaluation
on the bAbI challenge (Section 4). Finally, Section 5 concludes the paper.

2 Background

This section reviews the two building blocks of tExplain, namely, ASP based
systems text2alm and xclingo.

tExplain: Information Extraction with Explanations 3

2.1 Information extraction tool text2alm

System text2alm provides the basis for this work. It is an information extrac-
tion tool capable of narrative understanding with a focus on action verbs [12].
This tool uses an action language ALM [10] to perform inferences on complex
interactions of events described in narratives. An ALM model is then translated
into a logic program under answer set semantics [7] and a tool called answer
set solver, specifically, clingo [8] is used to obtain solutions to this program.
The text2alm system relied on a conglomeration of resources and techniques
from two distinct fields of artificial intelligence (i) knowledge representation and
reasoning and (ii) natural language processing. In a nutshell, text2alm takes a
narrative in English and converts the narrative into a logic program under an-
swer set semantics. The process of conversion involves “invocation” of the relevant
background knowledge that is triggered by the action verbs utilized within the
considered narrative. The knowledge is obtained from the knowledge base called
CoreAlmLib [9] and is also converted into the form of a logic program. The
CoreAlmLib is an ALM library of generic commonsense knowledge for model-
ing dynamic domains developed by Inclezan [9]. The library’s foundation is the
Component Library or CLib [6], which is a collection of general, reusable, and
interrelated components of knowledge1. A logic program representing a given
narrative together with related background knowledge is then processed with
the state-of-the-art answer set solver clingo, which finds an answer set for the
program that represents entities and events occurring within the narrative as
well as encodes the state of affairs at various points of the narrative timeline.

We now provide a brief overview of text2alm by considering a sample input
and resulting output from the system. The same sample input will be used in the
sequel presentation of tExplain. As mentioned, text2alm takes narratives in
natural language as input. Here is a shortened narrative from Section 1 which is
referred to as narrative 1:

Mary went to the bathroom.
John moved to the hallway.
Mary travelled to the office.

Given this narrative, text2alm produces facts about this text in a structured
form that machines can interpret. Figure 2 shows a subset of the text2alm
output that is grouped together for readability by related predicates. The first
group tells us basic information about the three events that happened within the
narrative, namely, e1, e2, and e3. For example, the three events in this narrative
are instances of action move. The text2alm tool relies on the verbnet [11, 13]
ontology to identify different verbs occurring in given texts with specific actions.
Note how different verbs occurring in our sample narrative, i.e., went, moved,
travel, are mapped by text2alm into the same action move. The event_agent
and event_destination facts of Group 2 provide us with the details of the
participants of events e1, e2, and e3. For example, event_agent(e1, mary)

1 CLib was populated with knowledge stemming from linguistic and ontological re-
sources, such as verbnet [2], wordnet [3], framenet [1], and English dictionaries.

4 Cabalar, Dorsey, Fandinno, Lierler, Muniz, and Sare

Group 1:
instance(e1, move),
instance(e2, move),
instance(e3, move)

Group 2:
event_agent(e1, mary),
event_agent(e2, john),
event_agent(e3, mary)
event_destination(e1, bathroom),
event_destination(e2, hallway),
event_destination(e3, office)

Group 3:
occurs(e1, 0),
occurs(e2, 1),
occurs(e3, 2)

Group 4:
location(mary, bathroom, 1),
location(mary, bathroom, 2),
location(mary, office, 3),
location(john, hallway, 2),
location(john, hallway, 3)

Fig. 2. A subset of the facts produced by text2alm.

and event_destination(e1, bathroom) tell us that mary is the acting entity
of the move action e1 and bathroom is the destination of mary in the scope
of e1. Facts, for example occurs(e1,0), contain information pertaining to the
time point associated with event e1. Within the text2alm framework, each
sentence is associated with a time point value, where 0 denotes the time point
for the first sentence within the narrative. For every sentence following the first,
the time point is incremented by one. The facts within Group 4 tell us the
location of various entities within the narrative for time points 1, 2, and 3. Let
us look at the first fact within Group 4: location(mary, bathroom, 1). This
fact contains information that Mary is located in the bathroom at time point 1.
This information is associated with the completion of the first sentence within
the narrative. There are more conclusions than what is shown in these four
groups as text2alm encodes more information for the full answer set given this
three-sentence narrative. For example, looking at Group 1, one can assume that
the events e1, e2, and e3 relate to the idea of “movement”.

There is a noticable distinction between the facts in Groups 1-3 and Group 4
pertaining to their nature. The facts in Groups 1-3 stem directly from text.
text2alm uses various natural language processing tools to retrieve informa-
tion and generate these facts directly. However, for Group 4, text2alm uses
knowledge contained in the CoreALM Library. This library contains axioms for
multiple actions which give text2alm commonsense knowledge about behavior.
For our input narrative, axioms for the action move are retrieved and used. Then,
text2alm uses facts within Groups 1-3, common sense knowledge, and the law
of inertia to obtain information that is implicitly expressed within a narrative
to generate the facts occurring in Group 4. This information allows us to use
text2alm to answer questions like: “where was John at the end of the story”?
The answer to this is the hallway because John explicitly moved to the hallway
in sentence two and there’s no information to show that he moved somewhere
else after sentence three. We can obtain this answer from text2alm by looking
at fact location(john, hallway, 3) in Group 4 of its output.

Figure 3 shows the building blocks for text2alm. The Text2LP block is
responsible for parsing natural language text, translating information carried

tExplain: Information Extraction with Explanations 5

Fig. 3. System text2alm

by the text into logic program form and expanding it with background knowl-
edge also in the form of a logic program. The Text2LP block translates a given
narrative into a logic program in the language of answer set solver Sparc [5].
The answer set solver Sparc translates this program into the format of answer
set solver clingo [8] and invokes clingo to compute answer sets of a given
program. The groups of facts presented within our running example stem from
computed answer sets.

2.2 “Explainable” answer set solver xclingo

System xclingo is a tool in answer set programming that allows the user to cre-
ate annotations for logic programs so the solved program is shown together along
with explanations in natural language. Without these annotations, xclingo
solves and outputs just like the answer set solver clingo [8]. We illustrate
xclingo annotations with an example. We consider an ASP program that is
inspired by the first line within narrative 1: Mary went to the bathroom.

instance(e1,move). event_agent(e1,mary).
occurs(e1,0). event_destination(e1, bathroom).

location(O,D,T) :- occurs(E,T-1), instance(E,move),
event_agent(E,O), event_destination(E,D).

The answer set of this program follows:

instance(e1,move) event_agent(e1,mary)
occurs(e1,0) event_destination(e1,bathroom)
location(mary,bathroom,1)

To transform this output into natural language statements, we may add xclingo
annotations. For this example, we focus on the predicate location/3:

%!trace {"% is located at % at time %",O,L,T} location (O,L,T).
%!show_trace location(O,L,T).

The %!trace annotation creates a label for the atom location/3. Whenever an
atom that has a label is shown in the answer set of a program, an explanation
is triggered. In our running example, a label has the form of the tuple

{"% is located at % at time %",O,L,T},

6 Cabalar, Dorsey, Fandinno, Lierler, Muniz, and Sare

the first element within this tuple contains a string that serves as the output
phrase. The various % symbols occurring within this string serve as placeholders
for the remaining values in the tuple. For example, the first % symbol will get re-
placed with whatever value variable O has. Atoms of the form location(O,D,T)
are associated with this %!trace annotation within our example.

Only atoms with a %!show_trace annotation are displayed as output. Below
is the output by running xclingo on our ASP program with the above %!trace
and %!show_trace annotations:

Answer: 1
>> location(mary,bathroom,1)

*
|__"mary is located at bathroom at time 1"

Another example was given in Figure 1.

3 System tExplain and what goes into annotations

In this work, we propose to utilize answer set solver xclingo to augment system
text2alm capabilities with explanations. Figure 4 presents an enhanced version
of text2alm titled tExplain that

– introduces annotations for logic programs produced within text2alm, namely
the xclingo Trace File which then extend a logic program produced by orig-
inal text2alm components,

– turns a question associated with the end point of the narrative into a query
supported by xclingo annotations, and

– utilizes xclingo in place of clingo

so that the explanations on relations of interest are provided to the user.
Logic programs produced by the Text2LP/Sparc block of the text2alm

system are complex and therefore some considerations are required in order to
create annotations. In this section, we show xclingo annotations and some
additional rules used in this to accomplish our goal. Both trace rules and new
predicates are introduced within the xclingo Trace File. These predicates play

Fig. 4. tExplain in a Nutshell

tExplain: Information Extraction with Explanations 7

two roles. First, some of these predicates may streamline the form of explanations
that we obtain. Second, some of these predicates serve a role of “query-predicates”
so that questions about a considered narrative can be formulated by means of
the specific instances of these predicates and the help of %!show_trace directive
of the xclingo.

Consider the following rule and annotation in the xclingo Trace File:

locationT2(Oname,Lname,T) :- location(Oref,L,T),
is_a(Oref,Oname),
is_a(Lref Lname).

%!trace {"% is located at % in sentence %", O, L, T}
locationT2(O, L, T).

The provided trace rule encodes an explanation for the location of an entity at a
specific sentence. Logic programs produced by the Text2LP block of text2alm
use location argument referents such as r1 or r2 instead of names such as “ball”
or “mary”. These referents and names are linked together through the relation
is_a(_,_) elsewhere in the program. The first argument in relation is_a(_,_) is
for the referent and the second is for the English name. Therefore, we use the
auxiliary is_a(Oref, Oname) together to instruct the trace to display “ball” and
“mary” instead of r1 and r2. Similarly, is_a(Lref, Lname) is used for locations.

Note how the trace rule is instructed to produce explanations by tracing
newly defined predicate locationT2 in place of location. Besides replacing
the identifier by its corresponding name, this is essential because predicate
locationT2 is never used within the program produced by text2LP and hence
there may not be “nested” explanations due to this predicate. We use locationT2
and not location for explanations because various logic rules that encode back-
ground knowledge rely on location/3 in many ways. Because of this, location/3-
atoms get used as explanations according to other location/3-atoms. This
means the xclingo system would perform a chain of explanations recursively
for every location/3-atom. This level of detail is hard to follow and would not
be considered natural to human reasoning. Introducing locationT2/3 allows
us to avoid these undesired explanations. It is worth recalling that the rules
for location/3 are automatically produced as output of Sparc, something we
cannot change. This shows that xclingo can be used to add explanations to
existing answer set programs with a great deal of elaboration tolerance: only
new rules and xclingo directives are added and no modification to the code
produced by Sparc was necessary.

Here we show an example of the use %!show_trace, which selects atoms with
predicate symbol locationT2 as the ones to be be explained:

%!show_trace locationT2(O,D,T).

In addition to %!show_trace statements, the xclingo Trace File includes %!trace
statements to produce human-readable subexplanations. For instance, consider
the following group of rules from this xclingo Trace File:

top_concept(move). top_concept(obtain). top_concept(relinquish).

8 Cabalar, Dorsey, Fandinno, Lierler, Muniz, and Sare

link_r(X,X’) :- link(X,X’).
link_r(X,X’) :- link_r(X,X1), link(X1,X’).
event_top_concept(E,C) :- link_r(E,C), top_concept(C).

%!trace {"Since % %ed the % in sentence %",X0’, A, B’, X2 + 1}
happened(X1,X2) :
is_a(X1, X1’), event_recipient(X1, X0), event_object(X1, B),
is_a(X0, X0’), event_top_concept(X1’, A), is_a(B, B’).

This %!trace statements produces a subexplanation for location whenever the
atom happended/2 was used to derive the atom being explained. We define
three top_concepts: ‘move’, ‘obtain’, and ‘relinquish’. Relation link_r/2 and
event_top_concept/2 are also defined, with the latter itself being defined in
terms of top_concept and link. The rationale behind these helper rules is that
in the answer set program produced by text2alm before processed by xclingo,
the immediate events of, for example, an entity picking up an object, are defined
using verbnet terms. In the case of an entity picking up an object, the verbnet
term would be ‘get_13_5_1_1’. However, the verbnet term for grabbing even-
tually links to the overarching verb ‘obtain.’ The Text2ALM answer set program
contains the notion of link/2 which we leverage in our link_r/2 rule in order to
propagate the verbnet term for grabbing up to our top_concept/1 of ‘obtain.’
The same applies to the event of an entity moving to a location. The verb-
net term associated with moving gets propagated up to our top_concept/1
of ‘move’. Verbs associated with entities dropping objects are propagated up to
our top_concept/1 of ‘relinquish.’ This propagation from verbnet terms to
top_concept/1 allows us to accomplish our goal of generating output in natural
language.

The relation happened/2 encodes an event with a time point. The trace rule
includes several is_a/2 relations so that the explanation can display English
words instead of abstractions such as r1. Additionally, it utilizes the relations
event_object/2 and even_recipient/2 in order to associate the entity that
participated in the event happened/2 with the recipient of the action of the
event in happened/2. The event_top_concept/2 relation is defined above the
discussed trace rule and is part of xclingo Trace File. In total, there are three
trace rules in the xclingo trace file that help justify the location of entities.

The %!mute directive of xclingo marks atoms of some form as untraceable.
This means the generated explanations will not include/follow them. In the
above example, all atoms of the form dom_location(X,Y,Z) will not appear in
xclingo output. In our xclingo trace file, there are 86 %!mute trace rules.

4 Evaluation and enhancements of tExplain

We evaluate tExplain on Facebook’s bAbI dataset. In particular, we chose bAbI
Tasks 1 (single supporting fact), 2 (two supporting facts), 3 (three supporting
facts), and 6 (Yes/No questions). Each task splits its narratives into training
and testing sets so that we can follow the best practice of the machine learning

tExplain: Information Extraction with Explanations 9

community and focus on the extensions of tExplain utilizing examples from
a training set of bAbI, while the evaluation data that we present stems from
testing portion of the dataset. The difference though was that it was a knowl-
edge engineer who inspected the bAbI training dataset tasks to identify whether
and how tExplain can be equipped to tackle it. This is achieved by adding
annotations that instruct a system what kind of information and explanations a
user is interested in as described in Section 3. For each of these tasks, we

1. annotate the relations of interest to produce English sentence that read as a
valid answer to a bAbI question that accompanies a narrative

2. annotate the relations of interest to produce explanations for derived answers
3. turn a question posed by bAbI into a statement within annotation language

of xclingo so that tExplain is capable of taking as an input a narrative-
question pair and produce an English sentence as an answer accompanied
with the explanations.

4.1 bAbI dataset

The bAbI dataset [15] by Facebook AI Research was designed to be a baseline
benchmark for automated text understanding and reasoning. The bAbI dataset
consists of several tasks for systems to experiment on, ranging from yes/no ques-
tions, basic deduction, and path finding. In these tasks, there are entities of var-
ious types such as locations, objects, people, etc. and various actions can operate
upon these entities. These entities also have internal states such as location,
whether they have objects on top of or in them, the mental state of actions,
and properties such as size, color, and entity. Figure 5 provides a snippet from
one of the tasks of bAbI, namely, Task 2 called "two supporting facts". Note
how bAbI narratives are simple stories, where various entities perform actions.
These narratives also contain questions prompted at various time points. The
bAbI dataset is of especial interest in this project as many of its tasks specifically
target reasoning of action verbs that original text2alm system was geared for.

Now let us examine bAbI questions and the numeric annotations that come
with them. Consider Line 7 in Figure 5. In this line, bAbI suggests that the
answer to where the apple is located is in the bedroom. The two numbers ap-
pearing after word “bedroom” are the two sentences that support this answer.
Consequently, we can read this line as saying that

Upon the completion of the narrative composed of sentences in lines 1
through 6, apple is located in bedroom because we have been told that
Daniel went to the bedroom in sentence one and then he put down the
apple in sentence six.

In the design of tExplain we were targeting to create a system that is capable
of the output in style presented above. It is easy to see how sample entry in the
bAbI task presented in Figure 5 lends itself into what we will call the bAbINQAE
tuple. Indeed, we have (1) a narrative given to us composed of 6 sentences; (2) a
question Where is the apple?; (3) a word bedroom that encodes an answer; and

10 Cabalar, Dorsey, Fandinno, Lierler, Muniz, and Sare

1 Daniel went to the bedroom. 4 Mary left the milk.
2 Daniel picked up the apple there. 5 John journeyed to the office.
3 Mary grabbed the milk there. 6 Daniel put down the apple there.

7 Where is the apple? bedroom 6 1

Fig. 5. Example entry from the bAbI task called two supporting facts

1 Daniel went to the bedroom.
2 Daniel picked up the apple there.
3 Mary grabbed the milk there.
4 Mary left the milk.
5 John journeyed to the office.
6 Daniel put down the apple there.
7 Where is the apple? bedroom 6 1
8 John picked up the milk there.
9 Sandra got the football there.
10 Where is the apple? bedroom 6 1
11 Daniel journeyed to the hallway.
12 John left the milk.
13 Where is the milk? office 12 5
14 Sandra travelled to the office.
15 Sandra put down the football there.
16 Where is the football? office 15 14
17 Sandra grabbed the milk there.
18 John grabbed the football there.
19 Sandra moved to the bathroom.
20 John went to the bedroom.
21 Where is the football? bedroom 18 20

1 person1 <move_to> loc1.
2 person1 <grab> obj1.
3 person2 <grab> obj2.
4 person2 <drop> obj2.
5 person3 <move_to> loc2.
6 person1 <drop> object1.
7 Where is obj1? loc1 6 1
8 person3 <grab> obj2
9 person4 <grab> obj3.
10 Where is obj1? loc1 6 1
11 person1 <move_to> loc2.
12 person3 <drop> obj2.
13 Where is obj2? loc2 12 5
14 person4 <move_to> loc2.
15 person4 <drop> obj3.
16 Where is obj3? loc2 15 14
17 person4 <grab> obj2.
18 person3 <grab> obj3.
19 person4 <move_to> loc3.
20 person3 <move_to> loc1.
21 Where is obj3? loc1 18 20.

Fig. 6. Translating bAbI entry within two supporting facts into pattern format

(4) two identifiers of the sentences that can be seen as explanations for derived
answer.

4.2 Evaluation observations on Task 2

We now proceed to the kind of analysis we performed on Tasks 2, 3, and 6 of
the bAbI dataset. This paper is documenting the analysis of Task 2. Other tasks
are similar and are left out due to space reasons. We refer to Joel’s Sare MS
thesis [14] for a detailed analysis.

bAbI Patterns. In the 20 narratives listed in the training datases there were a to-
tal of 100 narrative-question-answer-explanation (NQAE) tuples. Clear patterns
emerge within the bAbINQAE tuples. This is due to the nature of the bAbI
dataset as it has been created shadowing the simulation environment and tran-
scribing its history [15]. We illustrate the concept of a pattern on an example of
Task 2 consisting of 16 sentences and 5 questions. Figure 6 contains this sample

tExplain: Information Extraction with Explanations 11

bAbI narrative in the left column. We can identify the content of this column
with five NQAE tuples. For instance, the narrative of the first tuple consists of
sentences in lines 1-6; the narrative of the second tuple consists of sentences in
lines 1-6,8, and 9. Lines 7 and 10 enumerate question, answer and explanation
of the first and second tuples, respectively. In the sequel, we frequently identify
each question with its corresponding NQAE tuple.

The right column translates this narrative and questions into a generic pat-
tern form. Note how, for instance, distinct verbs picked up, grabbed, got occurring
in the left column are captured by the same concept grab in the right column;
also specific names of people, objects, and locations are identified with ids of the
form person_p, obj_y, and loc_z, respectively.

bAbI example bAbI pattern

P1

A Daniel went to the bedroom.
B Daniel picked up the apple there.
C Daniel put down the apple there.
Q Where is the apple? bedroom A C

A personP <move_to> locX .
B personP <grab> objY .
C personP <drop> objY .
Q Where is objY ? locX A C

P1′

A Sandra got the football there.
B Sandra travelled to the office.
C Sandra put down the football there.
Q Where is the football? office B C

A personP <grab> objY .
B personP <move_to> locX .
C personP <drop> objY .
Q Where is objY ? locX B C

P2
A John grabbed the football there.
B John went to the bedroom.
Q Where is the football? bedroom A B

A personP <grab> objY .
B personP <move_to> locZ .
Q Where is objY ? locZ A B

Table 1. Task 2 NQAE Patterns

Table 1 captures two patterns of NQAE tuples. Consider pattern P1. Let us
examine the bAbI example column of Table 1. The three declarative sentences
A-C stem from the narrative consisting of lines 1-6 in Figure 6 (left column).
The question Q coincides with the one listed in line 7 in Figure 6 (left column).
These three sentences (out of the total six sentences of the considered narrative)
appear in P1 as each of them refers to a pair of entities related to inferences
required to find the answer to given question Q. In other words to establish
the location of an entity apple we have to analyze its relation to entities Daniel
and bedroom. All other sentences preceding the question in line 7 in Figure 6
(left column) do not refer to any of the three entities among apple, Daniel, and
bedroom. The Pattern format column of Table 1 uncovers the generic form of the
NQAE tuple of the considered example. Now note that the first three questions
(NQAE tuples) in Figure 6 (left column) fall into this pattern P1. Question
in line 21 in Figure 6 (left column) falls into pattern P2 presented in Table 1.
Question in line 16 in Figure 6 (left column) falls into a variant of pattern P1
that we denote as P1′. Pattern P1′ is formed from P1 by switching the order
of sentences of the form A and B presented in Table 1.

12 Cabalar, Dorsey, Fandinno, Lierler, Muniz, and Sare

As mentioned earlier, we focused on processing the narratives listed in the
training dataset. Patterns P1, P1′, P2 are the only ones occurring within these
narratives.

These patterns resurface in the same manner when narratives are being pro-
cessed by tExplain. Figure 2 presents the behavior of system tExplain on
patterns P1, P1′, and P2 from bAbI: these bAbI patterns are repeated once
more in the left hand side column. For all patterns, the explanations given by
tExplain coincide with the ones suggested by bAbI. For patterns P1 and P1′

additional explanations are produced by the tExplain system. For patterns P1
and P1′, these additional explanations are logical in their conclusions and can
both be considered correct. However, bAbI only shows one “correct” explanation
for every NQAE tuple.

bAbI pattern tExplain pattern

P1

A personP <move_to> locX .
B personP <grab> objY .
C personP <drop> objY .
Q Where is objY ? locX A C

A personP <move_to> locX .
B personP <grab> objY .
C personP <drop> objY .
Q Where is objY ? locX A C
Additional explanation by tExplain: A B

P1′

A personP <grab> objY .
B personP <move_to> locX .
C personP <drop> objY .
Q Where is objY ? locX B C

A personP <grab> objY .
B personP <move_to> locX .
C personP <drop> objY .
Q Where is objY ? locX B C
Additional explanation by tExplain: A B

P2
A personP <grab> objY .
B personP <move_to> locZ .
Q Where is objY ? locZ A B

A personP <grab> objY .
B personP <move_to> locZ .
Q Where is objY ? locZ A B

Table 2. Comparison between bAbI and tExplain with Task 2 patterns

5 Conclusion

This paper describes the development of information extraction system tEx-
plain equipped with explanations. The system takes English narratives focused
on action verbs as an input together with a question and produces a logic pro-
gram together with specialized annotations for invoking explanations as an out-
put. Answer set solver xclingo is then used to provide a user with the con-
clusion and explanation that the system derives on the given narrative-question
pair. We used the bAbI dataset to both guide the development of the system
and evaluate its outcomes. The evaluation illustrates that the system achieves
satisfactory performance by not only providing answers to questions but also
sensible explanations. It is remarkable that the tExplain system is built from a
conglomeration of the off-the-shelf tools and datasets stemming from the natu-
ral language processing and knowledge and representation communities whereas

tExplain: Information Extraction with Explanations 13

the major genuine part of this project were the design of systematic mappings
between the resources. On bAbI, tExplain achieved 100% accuracy on Task 2
along with Tasks 3 (Three Supporting Facts) and 6 (Yes/ No Questions).

References

1. Framenet. https://framenet.icsi.berkeley.edu/fndrupal/
2. Verbnet. http://verbs.colorado.edu/ mpalmer/projects/verbnet.htm
3. Wordnet. http://wordnet.princeton.edu/
4. Aguado, F., Cabalar, P., Fandinno, J., Muñiz, B., Pérez, G., Suárez, F.: A

rule-based system for explainable donor-patient matching in liver transplantation.
In: Bogaerts, B., Erdem, E., Fodor, P., Formisano, A., Ianni, G., Inclezan, D.,
Vidal, G., Villanueva, A., Vos, M.D., Yang, F. (eds.) Proceedings 35th
International Conference on Logic Programming (Technical Communications),
ICLP 2019 Technical Communications, Las Cruces, NM, USA, September 20-25,
2019. EPTCS, vol. 306, pp. 266–272 (2019).
https://doi.org/10.4204/EPTCS.306.31, https://doi.org/10.4204/EPTCS.306.31

5. Balai, E., Gelfond, M., Zhang, Y.: Towards answer set programming with sorts.
In: Cabalar, P., Son, T.C. (eds.) Logic Programming and Nonmonotonic
Reasoning. pp. 135–147. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

6. Barker, K., Porter, B., Clark, P.: A Library of Generic Concepts for Composing
Knowledge Bases. Proceedings of the 1st International Conference on Knowledge
Capture - K-CAP pp. 14–21 (2001). https://doi.org/10.1145/500742.500744,
http://portal.acm.org/citation.cfm?doid=500737.500744
http://www.cs.utexas.edu/users/mfkb/papers/kcap01.pdf

7. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011). https://doi.org/10.1145/2043174.2043195

8. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot asp solving
with clingo. Theory and Practice of Logic Programming 19(1), 27–82 (2019).
https://doi.org/10.1017/S1471068418000054

9. Inclezan, D.: CoreALMlib: An ALM library translated from the Component
Library. Theory and Practice of Logic Programming 16(5-6), 800–816 (2016).
https://doi.org/10.1017/S1471068416000363

10. Inclezan, D., Gelfond, M.: Modular action language ALM. TPLP 16(2), 189–235
(2016). https://doi.org/10.1017/S1471068415000095,
http://dx.doi.org/10.1017/S1471068415000095

11. Levin, B.: English verb classes and alternations : a preliminary investigation.
University Of Chicago Press (1993)

12. Lierler, Y., Ling, G., Olson, C.: Information extraction tool text2alm: From
narratives to action language system descriptions and query answering. AI
communications (to appear)

13. Palmer, M.: VerbNet. https://verbs.colorado.edu/verb-index/vn3.3/ (2018)
14. Sare, J.: Extending Text2Alm with Xclingo (2023)
15. Weston, J., Bordes, A., Chopra, S., Mikolov, T.: Towards AI-complete question

answering: A set of prerequisite toy tasks. CoRR abs/1502.05698 (2015),
http://arxiv.org/abs/1502.05698

