An introduction to Prolog

Pedro Cabalar

Department of Computer Science
University of Corunna, SPAIN

February 8, 2016

(3) Flow control

4 Other features

A first glimpse at Prolog

- PROLOG stands for "PROgramming in LOGic" (originally in French "PROgrammation en LOGique").
- Well suited for symbolic, non-numeric computation. Good for dealing with objects and relations.
- Let us start with facts (ground atoms) for some relations (predicates).

Typical example: family relationships

- Example: Juan Carlos is the father of Felipe, Cristina and Elena. This can be expressed by the following three facts:

```
father(juancarlos,felipe).
father(juancarlos,cristina).
father(juancarlos,elena).
```


Their mother is Sofia:

mother(sofia,felipe).
mother(sofia, cristina).
mother (sofia, elena).
Felipe and Letizia have two children:

```
father(felipe,leonor).
father(felipe,sofia2).
mother(letizia,leonor).
mother(letizia,sofia2).
```


Typical example: family relationships

- We can query these facts as a relational data base. Is Juan Carlos, Elena's father? Is he Sofia's father?

```
?- father(juancarlos,elena).
?- father(juancarlos,sofia).
```

- Queries may contain variables (identifiers beginning with capital letters). Solutions = instantiations of variables for which the answer is Yes.
- We type ';' to find more answers or return to stop.
- What would these queries mean?

```
?- father(X,leonor).
?- mother(sofia,X).
?- father(X,Y).
?- mother(X,Y), father(Y,leonor).
```

- How would you check whether Cristina and Elena have the same father?

Typical example: family relationships

- The comma means conjunction. These queries are logically equivalent:

```
?- mother(X,Y), father(Y,leonor).
?- father(Y,leonor), mother(X,Y).
```

although their computation is different, as we will see later.

- Sometimes, a variable is irrelevant. We can use '_' to ignore its value in the answer. Example: is Felipe a father?
?- father(felipe,_).

Who has a father and a mother?
?- father (_, X), mother (_, X).

Notice that the two '_' are different irrelevant variables.

Adding rules

- We can "give name" to queries using rules. For instance, for:

```
?- mother(X,Y), father(Y,Z).
```

we can define a new predicate grandmother using:

- The ': -' symbol is read as if or as a \leftarrow implication.
- In first order logic, we would write:
$\forall x \forall y \forall z(\operatorname{Mother}(x, y) \wedge$ Father $(y, z) \rightarrow \operatorname{Grandmother}(x, z))$
- We can use it now in queries:
?- grandmother(X,leonor).

Adding rules

- We may have several rules to define a predicate. For instance, my mother's mother is also my grandmother:

```
grandmother(X,Z) :- mother(X,Y), father(Y,Z).
grandmother(X,Z) :- mother(X,Y), mother(Y,Z).
```

to obtain solutions to ?- grandmother (X, Y) . we can apply any of these rules.

Adding rules

- Another example: define the parent relation.

```
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).
```

We can use disjunction ';' for rules with same head parent (X,Y) :- father (X,Y) ; mother (X,Y).

- Exercises: who are Felipe's parents? Redefine grandmother with a single rule using the parent relation.

Adding rules

- Some predicates never occur in rule heads, excepting facts. These are called extensional.
- But of course, a predicate may combine rules and facts. For instance, predicate female, we may include some facts

$$
\begin{aligned}
& \text { female(cristina). female(elena). } \\
& \text { female(leonor). female(sofia2). }
\end{aligned}
$$

but we can also derive it from mother
female(X) :- mother(X,_).

Adding rules

- Exercise: define the sister relation.

```
sister(X,Y) :- parent(Z,X), parent(Z,Y), female(X).
?- sister(felipe,X).
?- sister(leonor,X).
```

- Problem: Leonor is sister of herself! We should specify that they are different:

$$
\begin{gathered}
\text { sister }(X, Y):- \text { parent }(Z, X), \text { parent }(Z, Y), \\
\text { female }(Y), X \backslash=Y .
\end{gathered}
$$

Recursion

- Rules can be recursive, that is, a head predicate may also occur in the body.
- For instance, define the ancestor relation as the transitive closure of parent:


```
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
```


Recursion

- Another alternative can be:


```
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(Y,Z), ancestor(X,Y).
```

- In principle, this program is equivalent to:

```
ancestor(X,Z) :- ancestor(X,Y), parent (Y,Z).
ancestor(X,Y) :- parent(X,Y).
```

but Prolog further introduces an evaluation ordering that, for instance, causes query ?- ancestor(X , juancarlos) to iterate forever.

Top-down goal satisfaction

- So, how does this work? Take

```
ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
```

- The query ?- ancestor (sofia, leonor). fixes a first goal. Prolog will look for rule heads that match the current goal.
- For instance, the first rule matches under the replacement $\mathrm{X}=$ sofia, $\mathrm{Y}=$ leonor. This is like having the rule instance:

```
ancestor(sofia,leonor) :- parent(sofia,leonor).
```

- As matching succeeded, we replace our initial goal by the rule body parent (sofia, leonor), which becomes our new goal.

Top-down goal satisfaction

- We try then to match parent (sofia, leonor) with some rule head. This predicate has two rules

```
parent(X,Y) :- father(X,Y).parent(sofia,leonor) :
parent(X,Y) :- mother(X,Y).
```

- The first one matches, so our new goal becomes father (sofia,leonor).
- However, father is extensional (only facts), and this fact is not included in the program. So, our goal fails.
- A failure implies backtracking to the last matching, and looking for new matches.

Top-down goal satisfaction

- So we "reconsider" the last deleted goal parent (sofia, leonor) and try to match another rule

```
parent(X,Y) :- father(X,Y). (failed)
parent(X,Y) :- mother(X,Y).parent(sofia,leonor) :
```

- Our new goal becomes mother (sofia, leonor). But this also fails: mother is extensional and this is not a fact.
- Now, parent (sofia, leonor) has failed in its turn. We backtrack to ancestor (sofia, leonor) looking for another matching head.

```
ancestor(X,Z) :-
```

parent (X, Y), ancestor(Y,Z). ancestor(sofia
parent(sofia, $Y)$, ancestor(Y,leonor).

Top-down goal satisfaction

- Now we have a list of goals parent (sofia, Y),
ancestor (Y, leonor).
- Matching parent (sofia, Y) with parent ($\left.X^{\prime}, Y^{\prime}\right)$:father ($\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$). is possible under replacement $\mathrm{X}^{\prime}=$ sofia, $Y^{\prime}=Y$. This leads to new goal father (sofia, Y) that fails.
- Matching parent (sofia, Y) with parent ($\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$) :mother ($\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}$). leads to new goal mother (sofia, Y) that succeeds for $Y=$ felipe (more matchings are possible).
- Important: assignment $Y=f e l i p e ~ a f f e c t s ~ o u r ~ w h o l e ~ l i s t ~ o f ~ g o a l s . ~$ That is, ancestor (Y, leonor) becomes ancestor(felipe,leonor).

Top-down goal satisfaction

- Matching ancestor (felipe, leonor) with ancestor (X, Y) :- parent (X,Y). leads to goal parent (felipe, leonor).
- Finally, matching parent (felipe, leonor) with parent (X, Y)
:- father (X,Y). leads to new goal
father(felipe, leonor) that succeeds. Prolog answers Yes!

(2) Functions

(3) Flow control

4) Other features

Adding functions

- We can use function symbols to pack some data together as a single structure. Example:

```
born(juancarlos,f(5,1,1938)).
born(felipe,f(30,1,1968)).
born(letizia,f(15,9,1972)).
born(sofia,f(2,11,1938)).
later(f(_,_,Y), f(_,_,Y1)) :- Y>Y1.
later(f(_,M,Y), f(_,M1,Y)) :- M>M1.
later(f(D,M,Y), f(D1,M,Y)) :- D>D1.
birthday(X,d(D,M)) :- born(X,f(D,M,_)).
```

- Predicate $>$ is predefined for arithmetic values.

Adding functions

Some examples of queries:

- Which is Juan Carlos' date of birth?
?- born(juancarlos, X).
- Is Felipe older than Letizia?
?- born(felipe, X), born(letizia, Y), later (Y, X).
- Find two people that were born in the same year
?- $\operatorname{born}\left(X, f\left(_, \ldots, Y\right)\right)$, born $\left(Z, f\left(_, \ldots, Y\right)\right), X \backslash=Z$.
- Which is Sofia's birthday? ?- birthday (sofia, X) .

Adding functions

- Note that, in principle, functions are not evaluated. They are just a way to build data structures.
- We usually call them functors, and they are identified by their name and arity (number of arguments). In the example: $f / 3, \mathrm{~d} / 2$.
- We can use the same name for functors with different arity. For instance, we could have written:
birthday (X, date(D, M)) :- born(X, date(D, M, _)).
- As in First Order Logic, we call terms to any combination of functions, constants and variables. In fact, a constant c is a 0-ary functor c/0.

Adding functions

- Example: we can represent a digital circuit.

and (not (and $(a, b))$, or (b, c))
- Exercise: try to represent this circuit

- Arithmetic operators are also (infix) functors. The term $2+3 * 4$ is not equal to $4 * 3+2$ or 14 .

User-defined functors

- We can also define our own functors using the op directive.
:- op (X,Y,Z).
means we declare operator z with precedence number x (higher $=$ less priority) and associativity Y .
- Associativity can be:
- infix operators: xfx xfy yfx
- prefix operators: fx fy
- postfix operators: xf yf
where:
- f : is the functor position
- x: argument of strictly lower precedence
- y : argument of lower or equal precedence

User-defined functors

- For instance, the fact:

```
equivalent(not(and(A,B)), or(not(A),not(B))).
```

can be written in a more readable way:

```
:- op(800,xfx,<==>).
:- op(700,xfy,v).
:- op(600,xfy,&).
:- op(500,fy,not).
not (A & B) <==> not A v not B.
```

- Try the following ?- $F=($ not $a \operatorname{b} \& \&), F=(H \quad v G)$.
- Note that $=><$:- , are predefined operators. Predicate current_op/ 3 shows the currently defined operators.

Exercise 1

Build a predicate eval/5 that computes the output of any circuit for 3 variables so that eval (A, B, C, Circuit, X) returns the output of Circuit in X for values $\mathrm{a}=\mathrm{A}, \mathrm{b}=\mathrm{B}$ and $\mathrm{c}=\mathrm{C}$.
The predicate must also allow returning the models of the circuit (combinations of values that yield a 1).
Try with the two previous circuits.
Examples:

```
?- eval(1,0,0, a & ( not b v c) ,X).
X = 1.
?- eval(A,B,C, a v not b,1).
A = 1, B = 1 ;
A = 0, B = 0 ;
A = 1, B = 0 ;
```


Unification

- How are functors handled in the goal satisfaction algorithm? When searching a goal, we see whether it matches a rule head.
- To see how it works, we can use the built in =/2 Prolog predicate. Try the following:

$$
\begin{aligned}
& ?-\mathrm{f}(\mathrm{X}, \mathrm{~b})=\mathrm{f}(\mathrm{a}, \mathrm{Y}) . \\
& ?-\mathrm{f}(\mathrm{X}, \mathrm{~b})=\mathrm{f}(\mathrm{X}, \mathrm{Y}) . \\
& ?-\mathrm{f}(\mathrm{f}(\mathrm{Y}), \mathrm{b})=\mathrm{f}(\mathrm{X}, \mathrm{Y}) . \\
& \text { ?- } \mathrm{f}(\mathrm{f}(\mathrm{Y}), \mathrm{b})=\mathrm{f}(\mathrm{a}, \mathrm{Y}) .
\end{aligned}
$$

Unification

- The general algorithm is well-known: Most General Unifier (MGU) [Robinson 1971].
- Given a set of expressions E, we compute a disagreement set searching from left to right the first different symbol and taking the corresponding subexpression.
- For instance, given $p(f(X), Y)$ and $p(f(g(a, Z), f(Z))$ we get the disagreement set $\{X, g(a, Z)\}$.

Unification

- If two atoms can be unified, they have an MGU that can be computed as follows:

```
\sigma:= [ ];
while |E|> 1 {
    D:= disagreement set of E;
    if D contains an X and a term t not containing X {
        E:=E[X/t];
        \sigma:=\sigma\cdot[X/t];}
    else return 'not unifiable';
}
```

- Example $E=\{f(f(Y), b), f(X, Y)\}$. Then $D=\{f(Y), X\}$ and we can replace X by $f(Y)$. E becomes $\{f(f(Y), b), f(f(Y), Y)\}$.
- The new disagreement is $D=\{b, Y\}$. After replacing $E[Y / b]=\{f(f(b), b)\}$ and the algorithm stops $\sigma=[X / f(Y)][Y / b]$.

Lists

- A list can be easily implemented with a functor. Take list (X, L) where X is the head and L is the tail. We could use null to represent an empty list.
- This is not very readable: $1,2,3,4$ would be represented as
list(1,list(2,list(3,list(4, null))))
- Prolog has a predefined operator ' [I] '/2 and a predefined constant [] so that a term like
'[1]'(1,'[1]'(2,'[1]'(3,'[1]'(4, []))))
can be simply abbreviated as $[1,2,3,4]$

Lists

- We can also write ${ }^{\prime}[\mid]^{\prime}(\mathrm{X}, \mathrm{L})$ as [$\left.\mathrm{X} \mid \mathrm{L}\right]$.
- Similarly, [X, Y, Z | L] stands for [X|[Y|[Z|L]]]
- And [X, Y, Z] stands for [X, Y, Z| []]
- Try the query:
?- $\mathrm{L}=[1,2 \mid[3]], \mathrm{L}=[1 \mid[2 \mid[3 \mid[]]]]$.
- Program predicate member (X, Li st)
member (X, [X|_L]).
member (X, [_Y|L]) :- member (X,L).
- Try these queries:
?- member (c, [a,b, c, d, c]).
?- member (X, [a,b,c,d,c]).
?- member (a, X).

Lists

- Program predicate append (L1,L2,L3)

```
append([],L,L).
append([X|L1],L2,[X|L3]):-append(L1,L2,L3).
```

- Try these queries:
?- append([a,b], [c,d,e],L).
?- append ([a,b],L, [a,b,c,d,e]).
?- append(L1,L2, [a,b, c]).
- Use append to find the prefix P and suffix S of a given element X in a list L. For instance, with $\mathrm{X}=$ wed and $\mathrm{L}=$ [sun,mon,tue, wed,thu,fri,sat], we should get $P=[$ sun, mon, tue] and $S=[t h u, f r i, s a t]$.
- In the same list, find the predecessor and successor weekdays to some day X .

Lists

Exercise 2

(1) Use append/3 to define the predicate sublist (S, L) so that S is a sublist of L .
(2) Use append/3 to define the predicate insert ($\mathrm{X}, \mathrm{L}, \mathrm{L} 2$) so that X is arbitrarily inserted in L to produce L2.
(3) Use append/3 to define the predicate del $(\mathrm{X}, \mathrm{L}, \mathrm{L} 2)$ so that X is (arbitrarily) deleted from L to produce L2.
(4) Use previous predicates to define perm ($\mathrm{L}, \mathrm{L} 2$) so that L 2 is an arbitrary permutation of L .
(5) Define predicate flatten (L1, L2) that removes nested lists putting all constants at a same level in a single list. Example:
?- flatten([[a,b], [c, [d]]],L2).
L2 $=[a, b, c, d]$

(1) Prolog

(3) Flow control

4 Other features

The cut predicate

- The cut predicate written! behaves as follows:

$$
H:-B_{1}, \ldots, B_{n},!, B_{n+1}, \ldots, B_{m}
$$

When! is reached, it succeeds but ignores any remaining choice for B_{1}, \ldots, B_{n}.

- Example: the program

```
max(X,Y,X) :- X>=Y.
max(X,Y,Y) :- X<Y.
```

can be replaced by
$\max (X, Y, X):-X>=Y,!$.
$\max (X, Y, Y)$.
assuming that it is called with an unbounded third variable.
Otherwise, a query max $(3,1,1)$ will succeed.

The cut predicate

- This second alternative overcomes that problem

```
max(X,Y,M) :-
    X>=Y,!,M=X
; M=Y.
```

- Another example:
p(1).
p(2) :- !.
p(3).
try the queries
?- $p(X)$.
?- $p(X), p(Y)$.
?- $p(3)$.
?- $\mathrm{p}(\mathrm{X}),!, \mathrm{p}(\mathrm{Y})$.

The cut predicate

- Typically, it improves efficiency but changes the ways in which a predicate can be used.
- In some cases, it is really necessary for a reasonable solution to a programming problem. Example: add a non-existing element as head of a list. If existing, leave the list untouched.

```
add(X,L,L) :- member(X,L),!.
add(X,L, [X|L).
```


Negation as failure

- The fail predicate always fails. The true predicate always succeeds.
- Negation as failure $\backslash+$ can be defined as:

$$
\begin{aligned}
(\backslash+P) & :-P,!, f a i l \\
& ; \text { true. }
\end{aligned}
$$

- Example: all birds fly, excepting penguins.
bird(a). bird(b). bird(c). penguin(b). fly (X) :- bird(X), \+ penguin(X).
- Floundering problem: be careful with unbound variables inside negation. The query ?- $f l_{y}(X)$. will fail if using rule fly(X) :- \+ penguin(X), bird(X).

Predicate repeat

- Predicate repeat always succeeds (like true) but provides an infinite number of choice points.
- This means that anything that fails afterwards, will return to repeat forever.
- Its effect can only be canceled by a cut !

```
writelist(L) :-
    repeat, (member(X,L), write(X), fail; !).
```


(1) Prolog

(3) Flow control

(4) Other features

Arithmetics

- Predicate is evaluates an arithmetic expression. We can use: $+\quad$ * / ** (power) // (integer division) mod (modulo).
- We can make comparisons of numeric values using:
$><>=<=:=\quad=$
- Examples:

```
gcd(X,X,X) :- !.
gcd(X,Y,D) :- X>Y,!,X1 is X-Y,gcd(X1,Y,D).
gcd(X,Y,D) :- X<Y,gcd(Y,X,D).
length([],0).
length([_|L],N):-length(L,M),N is M+1.
```


Arithmetics

Exercise 3

Define predicate set_nth0 ($\mathrm{N}, \mathrm{L} 1, \mathrm{X}, \mathrm{L} 2$) so that the element of list L1 at position N (starting from 0) is replaced by X to produce list L 2 .

Example:

$$
\begin{aligned}
& ?-\text { set_nth0 }(3,[a, b, c, d, e, f], z, L 2) . \\
& L 2=[a, b, c, z, e, f] .
\end{aligned}
$$

Arithmetics

Exercise 4

We have a list of 9 elements that capture the content of a 3×3 grid. The positions in the list corresponds to the grid positions:

0	1	2
3	4	5
6	7	8

Define predicate nextpos ($\mathrm{X}, \mathrm{D}, \mathrm{Y}$), so that Y is the adjacent position to X following direction D varying in $\{\mathrm{u}, \mathrm{d}, \mathrm{l}, \mathrm{r}\}$.

Example:

```
?- nextpos(4,u,X).
X=1.
?- nextpos(4,l,X).
X=3.
```


Input/output

- write (X) writes a term on the standard output; tab (N) writes N spaces; nl writes a newline character.
- Reading a term from standard input read (X). When the end of file is reached, X becomes the special term end_of_file.
- see (Filename) changes standard input to Filename. When finished, we invoke predicate seen.
- Similarly, see (Filename) changes standard output to Filename. When finished, we invoke predicate told.
- put (C) puts character with code C in the standard output.
- get0 (C) gets a character code from standard input. get (C) is similar but ignoring blank or non-printable characters.

Assert/retract

- We can modify the database of facts and rules in a dynamic way.
- assert (T) includes new fact/rule T.
- asserta (T) includes new fact/rule T in the beginning.
- assertz (T) includes new fact/rule T in the end.
- retract (T) retracts fact/rule T. It fails when not possible (the fact did not match to any existing one).
- retractall(T) like retract but retracts all matching facts or rules.
- Some Prolog implementations require that predicates are declared as dynamic.

```
:- dynamic user/1.
user(1).
user(2).
?- asserta(user(0)).
?- user(X).
```


Assert/retract

We can use assert/retract to create a "global variable"
:- dynamic mycounter/1.

```
mycounter(0).
increment(X) :-
    retract(mycounter(C)),
    D is C+X,
    assert(mycounter(D)).
?- mycounter(C).
C=0.
?- increment(5), mycounter(C), increment(10).
C=5.
?- mycounter(C).
C=15.
```


Testing the type of terms

- var (X) true when X is an uninstantiated variable
- nonvar (X) true when X is not a variable or is already instantiated
- atom (X) true when X is a symbolic atom
- integer (X) true when X is an integer number
- float (X) true when X is a floating point number
- number (X) true when X is a numeric atom (either integer or float)
- atomic (X) true when X is atomic (either atom or number)

Dealing with atoms and strings

- Symbolic atoms can contain special characters by using simple quote: mother('Juana la Loca','Carlos I').
- The use of double quotes "Carlos I" stands for a list of ASCII codes [67, 97, 114, 108, 111, 115, 32, 73].
- name (A, L) transforms atom A into a list of ASCII codes or vice versa. Examples:
?- name('Carlos I', L).
$L=[67,97,114,108,111,115,32,73]$
?- append("Hello ", "World !", L), name (A, L).
$L=[72,101,108,108,111,32,87,111$,
114|...],
A = 'Hello World !'

Dealing with atoms and strings

- Any ASCII code for a character c can be retrieved by using $0^{\prime} c$. For instance:
?- name (A, [$0^{\prime} a, 0^{\prime} \$, 0^{\prime} ., 0^{\prime}[$]).
A = 'as.['
- concat_atom (L, A) concatenates a list of atoms into a new atom. Example:
?- concat_atom(['Hello ','World ','!'], A).
$\mathrm{A}=$ 'Hello World !'

Building terms

- The special equiality predicate $\mathrm{X}=\ldots \mathrm{L}$ unifies term X with a list $L=[F, A 1, A 2, \ldots]$ where F is the main functor of X and and A1, A2, . . its arguments. Examples
? $-f(a, b)=. \quad L$.
$L=[f, a, b]$
?- $T=\ldots[+, 3,4]$.
$T=3+4$
- Process a list of terms so that the numeric arguments of unary functors are increased in one.
process([],[]):-!.
process([X|Xs],[Y|Ys]):-

```
    X =.. [F,A], number(A),!, A1 is A+1,
    Y=..[F,A1], process(Xs,Ys).
process([X|Xs],[X|Ys]):- process(Xs,Ys).
```


Higher order predicates

- Predicate call allows calling other predicates handled as arguments.
- Example: apply some function to a list of numbers

```
double(X,Y) :- Y is 2*X.
minus(X,Y) :- Y is -X.
map([],_,[]).
map([X|Xs],P,[Y|Ys]) :- call(P,X,Y), map(Xs,P,Ys).
?- map([1, 3,6],double,L).
?- map([1,3,6],minus,L).
```

- We can also use = . . to build the term to be called:

```
map([],_,[]).
map([X|Xs],P,[Y|Ys]) :-
    T=..[P,X,Y], T, map(Xs,P,Ys).
```


Higher order predicates

- Predicate findall ($\mathrm{T}, \mathrm{G}, \mathrm{L}$) collects in list L all the instantiations for term T that satisfy goal G
- Get a list with all the ancestors of leonor ?- findall(X, ancestor(X,leonor), L).
- Example: convert a list of elements [a, b, c, d] into a list of duplicated pairs
?- findall((X,X), member(X,[a,b,c,d]), L).

