
An introduction to Prolog

Pedro Cabalar

Department of Computer Science
University of Corunna, SPAIN

February 8, 2016

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 1 / 52

1 Prolog

2 Functions

3 Flow control

4 Other features

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 2 / 52

A first glimpse at Prolog

PROLOG stands for “PROgramming in LOGic” (originally in
French “PROgrammation en LOGique”).

Well suited for symbolic, non-numeric computation. Good for
dealing with objects and relations.

Let us start with facts (ground atoms) for some relations
(predicates).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 3 / 52

Typical example: family relationships

Example: Juan Carlos is the father of Felipe, Cristina and Elena.
This can be expressed by the following three facts:
father(juancarlos,felipe).
father(juancarlos,cristina).
father(juancarlos,elena).

Their mother is Sofia:
mother(sofia,felipe).
mother(sofia,cristina).
mother(sofia,elena).

Felipe and Letizia have two children:
father(felipe,leonor).
father(felipe,sofia2).
mother(letizia,leonor).
mother(letizia,sofia2).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 4 / 52

Typical example: family relationships
We can query these facts as a relational data base. Is Juan
Carlos, Elena’s father? Is he Sofia’s father?

?- father(juancarlos,elena).
?- father(juancarlos,sofia).

Queries may contain variables (identifiers beginning with capital
letters). Solutions = instantiations of variables for which the
answer is Yes.

We type ’;’ to find more answers or return to stop.

What would these queries mean?

?- father(X,leonor).
?- mother(sofia,X).
?- father(X,Y).
?- mother(X,Y), father(Y,leonor).

How would you check whether Cristina and Elena have the same
father?

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 5 / 52

Typical example: family relationships

The comma means conjunction. These queries are logically
equivalent:

?- mother(X,Y), father(Y,leonor).
?- father(Y,leonor), mother(X,Y).

although their computation is different, as we will see later.

Sometimes, a variable is irrelevant. We can use ‘_’ to ignore its
value in the answer. Example: is Felipe a father?

?- father(felipe,_).

Who has a father and a mother?

?- father(_,X),mother(_,X).

Notice that the two ‘_’ are different irrelevant variables.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 6 / 52

Adding rules
We can “give name” to queries using rules. For instance, for:

?- mother(X,Y), father(Y,Z).

we can define a new predicate grandmother using:

grandmother(X,Z)grandmother(X,Z)︸ ︷︷ ︸
Rule head

:- mother(X,Y), father(Y,Z).mother(X,Y), father(Y,Z).︸ ︷︷ ︸
Rule body

The ‘:-’ symbol is read as if or as a← implication.
In first order logic, we would write:

∀x∀y∀z
(

Mother(x , y) ∧ Father(y , z)→ Grandmother(x , z)
)

We can use it now in queries:

?- grandmother(X,leonor).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 7 / 52

Adding rules

We may have several rules to define a predicate. For instance, my
mother’s mother is also my grandmother:

grandmother(X,Z) :- mother(X,Y), father(Y,Z).
grandmother(X,Z) :- mother(X,Y), mother(Y,Z).

to obtain solutions to ?- grandmother(X,Y). we can apply
any of these rules.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 8 / 52

Adding rules

Another example: define the parent relation.

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

We can use disjunction ‘;’ for rules with same head
parent(X,Y) :- father(X,Y) ; mother(X,Y).

Exercises: who are Felipe’s parents? Redefine grandmother
with a single rule using the parent relation.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 9 / 52

Adding rules

Some predicates never occur in rule heads, excepting facts.
These are called extensional.

But of course, a predicate may combine rules and facts. For
instance, predicate female, we may include some facts

female(cristina). female(elena).
female(leonor). female(sofia2).

but we can also derive it from mother

female(X) :- mother(X,_).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 10 / 52

Adding rules

Exercise: define the sister relation.

sister(X,Y) :- parent(Z,X), parent(Z,Y), female(X).

?- sister(felipe,X).
?- sister(leonor,X).

Problem: Leonor is sister of herself! We should specify that they
are different:

sister(X,Y) :- parent(Z,X),parent(Z,Y),
female(Y), X \= Y.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 11 / 52

Recursion

Rules can be recursive, that is, a head predicate may also occur in
the body.

For instance, define the ancestor relation as the transitive
closure of parent:

X
parent // Y //

ancestor

>>
. . . // Z

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 12 / 52

Recursion
Another alternative can be:

X //

ancestor

==
. . . // Y

parent // Z

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(Y,Z), ancestor(X,Y).

In principle, this program is equivalent to:

ancestor(X,Z) :- ancestor(X,Y), parent(Y,Z).
ancestor(X,Y) :- parent(X,Y).

but Prolog further introduces an evaluation ordering that, for
instance, causes query ?- ancestor(X,juancarlos) to
iterate forever.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 13 / 52

Top-down goal satisfaction

So, how does this work? Take

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

The query ?- ancestor(sofia,leonor). fixes a first goal.
Prolog will look for rule heads that match the current goal.

For instance, the first rule matches under the replacement
X=sofia, Y=leonor. This is like having the rule instance:

ancestor(sofia,leonor) :- parent(sofia,leonor).

As matching succeeded, we replace our initial goal by the rule
body parent(sofia,leonor), which becomes our new goal.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 14 / 52

Top-down goal satisfaction

We try then to match parent(sofia,leonor) with some rule
head. This predicate has two rules

parent(X,Y) :- father(X,Y).parent(sofia,leonor) :- father(sofia,leonor).
parent(X,Y) :- mother(X,Y).

The first one matches, so our new goal becomes
father(sofia,leonor).

However, father is extensional (only facts), and this fact is not
included in the program. So, our goal fails.

A failure implies backtracking to the last matching, and looking for
new matches.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 15 / 52

Top-down goal satisfaction

So we “reconsider” the last deleted goal
parent(sofia,leonor) and try to match another rule

parent(X,Y) :- father(X,Y). (failed)
parent(X,Y) :- mother(X,Y).parent(sofia,leonor) :- mother(sofia,leonor).

Our new goal becomes mother(sofia,leonor). But this also
fails: mother is extensional and this is not a fact.

Now, parent(sofia,leonor) has failed in its turn. We
backtrack to ancestor(sofia,leonor) looking for another
matching head.

ancestor(X,Z) :-
parent(X,Y), ancestor(Y,Z). ancestor(sofia,leonor) :-
parent(sofia,Y), ancestor(Y,leonor).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 16 / 52

Top-down goal satisfaction

Now we have a list of goals parent(sofia,Y),
ancestor(Y,leonor).

Matching parent(sofia,Y) with parent(X’,Y’) :-
father(X’,Y’). is possible under replacement X’=sofia,
Y’=Y. This leads to new goal father(sofia,Y) that fails.

Matching parent(sofia,Y) with parent(X’,Y’) :-
mother(X’,Y’). leads to new goal mother(sofia,Y) that
succeeds for Y=felipe (more matchings are possible).

Important: assignment Y=felipe affects our whole list of goals.
That is, ancestor(Y,leonor) becomes
ancestor(felipe,leonor).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 17 / 52

Top-down goal satisfaction

Matching ancestor(felipe,leonor) with ancestor(X,Y)
:- parent(X,Y). leads to goal parent(felipe,leonor).

Finally, matching parent(felipe,leonor) with parent(X,Y)
:- father(X,Y). leads to new goal
father(felipe,leonor) that succeeds. Prolog answers Yes!

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 18 / 52

1 Prolog

2 Functions

3 Flow control

4 Other features

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 19 / 52

Adding functions

We can use function symbols to pack some data together as a
single structure. Example:
born(juancarlos,f(5,1,1938)).
born(felipe,f(30,1,1968)).
born(letizia,f(15,9,1972)).
born(sofia,f(2,11,1938)).

later(f(_,_,Y), f(_,_,Y1)) :- Y>Y1.
later(f(_,M,Y), f(_,M1,Y)) :- M>M1.
later(f(D,M,Y), f(D1,M,Y)) :- D>D1.

birthday(X,d(D,M)) :- born(X,f(D,M,_)).

Predicate > is predefined for arithmetic values.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 20 / 52

Adding functions

Some examples of queries:
Which is Juan Carlos’ date of birth?
?- born(juancarlos,X).

Is Felipe older than Letizia?
?- born(felipe,X),born(letizia,Y),later(Y,X).

Find two people that were born in the same year

?- born(X,f(_,_,Y)),born(Z,f(_,_,Y)),X\=Z.

Which is Sofia’s birthday? ?- birthday(sofia,X).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 21 / 52

Adding functions

Note that, in principle, functions are not evaluated. They are just a
way to build data structures.

We usually call them functors, and they are identified by their
name and arity (number of arguments). In the example: f/3, d/2.

We can use the same name for functors with different arity. For
instance, we could have written:
birthday(X,date(D,M)) :- born(X,date(D,M,_)).

As in First Order Logic, we call terms to any combination of
functions, constants and variables. In fact, a constant c is a 0-ary
functor c/0.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 22 / 52

Adding functions
Example: we can represent a digital circuit.

a

b

c

and(not(and(a,b)),or(b,c))
Exercise: try to represent this circuit

a

b

c

Arithmetic operators are also (infix) functors. The term 2+3*4 is
not equal to 4*3+2 or 14.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 23 / 52

User-defined functors

We can also define our own functors using the op directive.

:- op(X,Y,Z).

means we declare operator Z with precedence number X (higher =
less priority) and associativity Y.

Associativity can be:
I infix operators: xfx xfy yfx
I prefix operators: fx fy
I postfix operators: xf yf

where:
I f: is the functor position
I x: argument of strictly lower precedence
I y: argument of lower or equal precedence

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 24 / 52

User-defined functors

For instance, the fact:

equivalent(not(and(A,B)), or(not(A),not(B))).

can be written in a more readable way:

:- op(800,xfx,<==>).
:- op(700,xfy,v).
:- op(600,xfy,&).
:- op(500,fy,not).
not (A & B) <==> not A v not B.

Try the following ?- F=(not a v b & c), F=(H v G).

Note that = > < :- , are predefined operators. Predicate
current_op/3 shows the currently defined operators.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 25 / 52

Exercise 1
Build a predicate eval/5 that computes the output of any circuit for 3
variables so that eval(A,B,C,Circuit,X) returns the output of
Circuit in X for values a=A, b=B and c=C.
The predicate must also allow returning the models of the circuit
(combinations of values that yield a 1).
Try with the two previous circuits.

Examples:

?- eval(1,0,0, a & (not b v c) ,X).
X = 1.

?- eval(A,B,C, a v not b,1).
A = 1, B = 1 ;
A = 0, B = 0 ;
A = 1, B = 0 ;

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 26 / 52

Unification

How are functors handled in the goal satisfaction algorithm?
When searching a goal, we see whether it matches a rule head.

To see how it works, we can use the built in =/2 Prolog predicate.
Try the following:
?- f(X,b)=f(a,Y).
?- f(X,b)=f(X,Y).
?- f(f(Y),b)=f(X,Y).
?- f(f(Y),b)=f(a,Y).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 27 / 52

Unification

The general algorithm is well-known: Most General Unifier (MGU)
[Robinson 1971].
Given a set of expressions E , we compute a disagreement set
searching from left to right the first different symbol and taking the
corresponding subexpression.

For instance, given p(f (X),Y) and p(f (g(a,Z), f (Z)) we get the
disagreement set {X ,g(a,Z)}.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 28 / 52

Unification
If two atoms can be unified, they have an MGU that can be
computed as follows:

σ := [];
while |E | > 1 {

D := disagreement set of E ;
if D contains an X and a term t not containing X {

E := E [X/t];
σ := σ · [X/t]; }

else return ‘not unifiable’;
}

Example E = {f (f (Y),b), f (X ,Y)}. Then D = {f (Y),X} and we
can replace X by f (Y). E becomes {f (f (Y),b), f (f (Y),Y)}.
The new disagreement is D = {b,Y}. After replacing
E [Y/b] = {f (f (b),b)} and the algorithm stops σ = [X/f (Y)][Y/b].

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 29 / 52

Lists

A list can be easily implemented with a functor. Take list(X,L)
where X is the head and L is the tail. We could use null to
represent an empty list.

This is not very readable: 1,2,3,4 would be represented as

list(1,list(2,list(3,list(4,null))))

Prolog has a predefined operator ’[|]’/2 and a predefined
constant [] so that a term like

’[|]’(1,’[|]’(2,’[|]’(3,’[|]’(4,[]))))

can be simply abbreviated as [1,2,3,4]

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 30 / 52

Lists

We can also write ’[|]’(X,L) as [X | L].

Similarly, [X, Y, Z | L] stands for [X|[Y|[Z|L]]]
And [X, Y, Z] stands for [X,Y,Z|[]]

Try the query:
?- L=[1,2|[3]], L=[1|[2|[3|[]]]].

Program predicate member(X,List)

member(X,[X|_L]).
member(X,[_Y|L]) :- member(X,L).

Try these queries:
?- member(c,[a,b,c,d,c]).
?- member(X,[a,b,c,d,c]).
?- member(a,X).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 31 / 52

Lists

Program predicate append(L1,L2,L3)

append([],L,L).
append([X|L1],L2,[X|L3]):-append(L1,L2,L3).

Try these queries:
?- append([a,b],[c,d,e],L).
?- append([a,b],L,[a,b,c,d,e]).
?- append(L1,L2,[a,b,c]).

Use append to find the prefix P and suffix S of a given element X
in a list L. For instance, with X=wed and L=
[sun,mon,tue,wed,thu,fri,sat], we should get
P=[sun,mon,tue] and S=[thu,fri,sat].

In the same list, find the predecessor and successor weekdays to
some day X.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 32 / 52

Lists

Exercise 2
1 Use append/3 to define the predicate sublist(S,L) so that S

is a sublist of L.

2 Use append/3 to define the predicate insert(X,L,L2) so that
X is arbitrarily inserted in L to produce L2.

3 Use append/3 to define the predicate del(X,L,L2) so that X is
(arbitrarily) deleted from L to produce L2.

4 Use previous predicates to define perm(L,L2) so that L2 is an
arbitrary permutation of L.

5 Define predicate flatten(L1,L2) that removes nested lists
putting all constants at a same level in a single list. Example:
?- flatten([[a,b],[c,[d]]],L2).
L2 = [a,b,c,d]

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 33 / 52

1 Prolog

2 Functions

3 Flow control

4 Other features

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 34 / 52

The cut predicate

The cut predicate written ! behaves as follows:

H:- B1, . . . ,Bn, !,Bn+1, . . . ,Bm.

When ! is reached, it succeeds but ignores any
remaining choice for B1, . . . ,Bn.

Example: the program
max(X,Y,X) :- X>=Y.
max(X,Y,Y) :- X<Y.

can be replaced by
max(X,Y,X) :- X>=Y,!.
max(X,Y,Y).
assuming that it is called with an unbounded third variable.
Otherwise, a query max(3,1,1) will succeed.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 35 / 52

The cut predicate

This second alternative overcomes that problem
max(X,Y,M) :-

X>=Y,!,M=X
; M=Y.

Another example:
p(1).
p(2) :- !.
p(3).
try the queries
?- p(X).
?- p(X),p(Y).
?- p(3).
?- p(X),!,p(Y).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 36 / 52

The cut predicate

Typically, it improves efficiency but changes the ways in which a
predicate can be used.

In some cases, it is really necessary for a reasonable solution to a
programming problem. Example: add a non-existing element as
head of a list. If existing, leave the list untouched.

add(X,L,L) :- member(X,L),!.
add(X,L,[X|L).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 37 / 52

Negation as failure

The fail predicate always fails. The true predicate always
succeeds.
Negation as failure \+ can be defined as:
(\+ P) :- P,!,fail

; true.

Example: all birds fly, excepting penguins.

bird(a). bird(b). bird(c). penguin(b).

fly(X) :- bird(X), \+ penguin(X).

Floundering problem: be careful with unbound variables inside
negation. The query ?- fly(X). will fail if using rule
fly(X) :- \+ penguin(X), bird(X).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 38 / 52

Predicate repeat

Predicate repeat always succeeds (like true) but provides an
infinite number of choice points.

This means that anything that fails afterwards, will return to
repeat forever.

Its effect can only be canceled by a cut !
writelist(L) :-
repeat, (member(X,L), write(X), fail; !).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 39 / 52

1 Prolog

2 Functions

3 Flow control

4 Other features

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 40 / 52

Arithmetics

Predicate is evaluates an arithmetic expression. We can use:
+ - * / ** (power) // (integer division) mod (modulo).

We can make comparisons of numeric values using:
> < >= <= =:= =\=

Examples:
gcd(X,X,X) :- !.
gcd(X,Y,D) :- X>Y,!,X1 is X-Y,gcd(X1,Y,D).
gcd(X,Y,D) :- X<Y,gcd(Y,X,D).

length([],0).
length([_|L],N):-length(L,M),N is M+1.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 41 / 52

Arithmetics

Exercise 3
Define predicate set_nth0(N,L1,X,L2) so that the element of list
L1 at position N (starting from 0) is replaced by X to produce list L2.

Example:

?- set_nth0(3,[a,b,c,d,e,f],z,L2).
L2=[a,b,c,z,e,f].

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 42 / 52

Arithmetics

Exercise 4
We have a list of 9 elements that capture the content of a 3 × 3 grid.
The positions in the list corresponds to the grid positions:

0 1 2
3 4 5
6 7 8

Define predicate nextpos(X,D,Y) , so that Y is the adjacent position
to X following direction D varying in {u,d,l,r}.

Example:

?- nextpos(4,u,X).
X=1.
?- nextpos(4,l,X).
X=3.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 43 / 52

Input/output

write(X) writes a term on the standard output; tab(N) writes N
spaces; nl writes a newline character.

Reading a term from standard input read(X). When the end of
file is reached, X becomes the special term end_of_file.

see(Filename) changes standard input to Filename. When
finished, we invoke predicate seen.

Similarly, see(Filename) changes standard output to
Filename. When finished, we invoke predicate told.

put(C) puts character with code C in the standard output.

get0(C) gets a character code from standard input. get(C) is
similar but ignoring blank or non-printable characters.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 44 / 52

Assert/retract

We can modify the database of facts and rules in a dynamic way.
I assert(T) includes new fact/rule T.
I asserta(T) includes new fact/rule T in the beginning.
I assertz(T) includes new fact/rule T in the end.
I retract(T) retracts fact/rule T. It fails when not possible (the

fact did not match to any existing one).
I retractall(T) like retract but retracts all matching facts or

rules.

Some Prolog implementations require that predicates are
declared as dynamic.
:- dynamic user/1.
user(1).
user(2).

?- asserta(user(0)).
?- user(X).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 45 / 52

Assert/retract
We can use assert/retract to create a “global variable”

:- dynamic mycounter/1.

mycounter(0).

increment(X) :-
retract(mycounter(C)),
D is C+X,
assert(mycounter(D)).

?- mycounter(C).
C=0.
?- increment(5), mycounter(C), increment(10).
C=5.
?- mycounter(C).
C=15.

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 46 / 52

Testing the type of terms

var(X) true when X is an uninstantiated variable
nonvar(X) true when X is not a variable or is already instantiated
atom(X) true when X is a symbolic atom
integer(X) true when X is an integer number
float(X) true when X is a floating point number
number(X) true when X is a numeric atom (either integer or float)
atomic(X) true when X is atomic (either atom or number)

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 47 / 52

Dealing with atoms and strings

Symbolic atoms can contain special characters by using simple
quote: mother(’Juana la Loca’,’Carlos I’).

The use of double quotes "Carlos I" stands for a list of ASCII
codes [67, 97, 114, 108, 111, 115, 32, 73].
name(A,L) transforms atom A into a list of ASCII codes or vice
versa. Examples:
?- name(’Carlos I’,L).

L = [67, 97, 114, 108, 111, 115, 32, 73]

?- append("Hello ","World !",L),name(A,L).

L = [72, 101, 108, 108, 111, 32, 87, 111,
114|...],
A = ’Hello World !’

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 48 / 52

Dealing with atoms and strings

Any ASCII code for a character c can be retrieved by using 0’c.
For instance:
?- name(A,[0’a,0’$,0’.,0’[]).

A = ’a$.[’

concat_atom(L,A) concatenates a list of atoms into a new
atom. Example:
?- concat_atom([’Hello ’,’World ’,’!’],A).

A = ’Hello World !’

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 49 / 52

Building terms
The special equiality predicate X =..L unifies term X with a list
L=[F,A1,A2,...] where F is the main functor of X and and
A1,A2,... its arguments. Examples
?- f(a,b) =.. L.

L = [f, a, b]

?- T=..[+,3,4].

T = 3+4
Process a list of terms so that the numeric arguments of unary
functors are increased in one.
process([],[]):-!.

process([X|Xs],[Y|Ys]):-
X =.. [F,A], number(A),!, A1 is A+1,
Y=..[F,A1], process(Xs,Ys).

process([X|Xs],[X|Ys]):- process(Xs,Ys).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 50 / 52

Higher order predicates

Predicate call allows calling other predicates handled as
arguments.
Example: apply some function to a list of numbers
double(X,Y) :- Y is 2*X.
minus(X,Y) :- Y is -X.
map([],_,[]).
map([X|Xs],P,[Y|Ys]) :- call(P,X,Y), map(Xs,P,Ys).

?- map([1,3,6],double,L).
?- map([1,3,6],minus,L).

We can also use =.. to build the term to be called:
map([],_,[]).
map([X|Xs],P,[Y|Ys]) :-

T=..[P,X,Y], T, map(Xs,P,Ys).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 51 / 52

Higher order predicates

Predicate findall(T,G,L) collects in list L all the instantiations
for term T that satisfy goal G

Get a list with all the ancestors of leonor
?- findall(X, ancestor(X,leonor), L).

Example: convert a list of elements [a,b,c,d] into a list of
duplicated pairs
?- findall((X,X), member(X,[a,b,c,d]), L).

P. Cabalar (Department of Computer Science University of Corunna, SPAIN)Prolog February 8, 2016 52 / 52

	Prolog
	Functions
	Flow control
	Other features

