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A first glimpse at Prolog

PROLOG stands for “PROgramming in LOGic” (originally in
French “PROgrammation en LOGique”).

Well suited for symbolic, non-numeric computation. Good for
dealing with objects and relations.

Let us start with facts (ground atoms) for some relations
(predicates).
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Typical example: family relationships

Example: Juan Carlos is the father of Felipe, Cristina and Elena.
This can be expressed by the following three facts:
father(juancarlos,felipe).
father(juancarlos,cristina).
father(juancarlos,elena).

Their mother is Sofia:
mother(sofia,felipe).
mother(sofia,cristina).
mother(sofia,elena).

Felipe and Letizia have two children:
father(felipe,leonor).
father(felipe,sofia2).
mother(letizia,leonor).
mother(letizia,sofia2).
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Typical example: family relationships
We can query these facts as a relational data base. Is Juan
Carlos, Elena’s father? Is he Sofia’s father?

?- father(juancarlos,elena).
?- father(juancarlos,sofia).

Queries may contain variables (identifiers beginning with capital
letters). Solutions = instantiations of variables for which the
answer is Yes.

We type ’;’ to find more answers or return to stop.

What would these queries mean?

?- father(X,leonor).
?- mother(sofia,X).
?- father(X,Y).
?- mother(X,Y), father(Y,leonor).

How would you check whether Cristina and Elena have the same
father?
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Typical example: family relationships

The comma means conjunction. These queries are logically
equivalent:

?- mother(X,Y), father(Y,leonor).
?- father(Y,leonor), mother(X,Y).

although their computation is different, as we will see later.

Sometimes, a variable is irrelevant. We can use ‘_’ to ignore its
value in the answer. Example: is Felipe a father?

?- father(felipe,_).

Who has a father and a mother?

?- father(_,X),mother(_,X).

Notice that the two ‘_’ are different irrelevant variables.
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Adding rules
We can “give name” to queries using rules. For instance, for:

?- mother(X,Y), father(Y,Z).

we can define a new predicate grandmother using:

grandmother(X,Z)grandmother(X,Z)︸ ︷︷ ︸
Rule head

:- mother(X,Y), father(Y,Z).mother(X,Y), father(Y,Z).︸ ︷︷ ︸
Rule body

The ‘:-’ symbol is read as if or as a← implication.
In first order logic, we would write:

∀x∀y∀z
(

Mother(x , y) ∧ Father(y , z)→ Grandmother(x , z)
)

We can use it now in queries:

?- grandmother(X,leonor).
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Adding rules

We may have several rules to define a predicate. For instance, my
mother’s mother is also my grandmother:

grandmother(X,Z) :- mother(X,Y), father(Y,Z).
grandmother(X,Z) :- mother(X,Y), mother(Y,Z).

to obtain solutions to ?- grandmother(X,Y). we can apply
any of these rules.
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Adding rules

Another example: define the parent relation.

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

We can use disjunction ‘;’ for rules with same head
parent(X,Y) :- father(X,Y) ; mother(X,Y).

Exercises: who are Felipe’s parents? Redefine grandmother
with a single rule using the parent relation.
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Adding rules

Some predicates never occur in rule heads, excepting facts.
These are called extensional.

But of course, a predicate may combine rules and facts. For
instance, predicate female, we may include some facts

female(cristina). female(elena).
female(leonor). female(sofia2).

but we can also derive it from mother

female(X) :- mother(X,_).
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Adding rules

Exercise: define the sister relation.

sister(X,Y) :- parent(Z,X), parent(Z,Y), female(X).

?- sister(felipe,X).
?- sister(leonor,X).

Problem: Leonor is sister of herself! We should specify that they
are different:

sister(X,Y) :- parent(Z,X),parent(Z,Y),
female(Y), X \= Y.
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Recursion

Rules can be recursive, that is, a head predicate may also occur in
the body.

For instance, define the ancestor relation as the transitive
closure of parent:

X
parent // Y //

ancestor

>>
. . . // Z

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).
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Recursion
Another alternative can be:

X //

ancestor

==
. . . // Y

parent // Z

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(Y,Z), ancestor(X,Y).

In principle, this program is equivalent to:

ancestor(X,Z) :- ancestor(X,Y), parent(Y,Z).
ancestor(X,Y) :- parent(X,Y).

but Prolog further introduces an evaluation ordering that, for
instance, causes query ?- ancestor(X,juancarlos) to
iterate forever.
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Top-down goal satisfaction

So, how does this work? Take

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Z) :- parent(X,Y), ancestor(Y,Z).

The query ?- ancestor(sofia,leonor). fixes a first goal.
Prolog will look for rule heads that match the current goal.

For instance, the first rule matches under the replacement
X=sofia, Y=leonor. This is like having the rule instance:

ancestor(sofia,leonor) :- parent(sofia,leonor).

As matching succeeded, we replace our initial goal by the rule
body parent(sofia,leonor), which becomes our new goal.
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Top-down goal satisfaction

We try then to match parent(sofia,leonor) with some rule
head. This predicate has two rules

parent(X,Y) :- father(X,Y).parent(sofia,leonor) :- father(sofia,leonor).
parent(X,Y) :- mother(X,Y).

The first one matches, so our new goal becomes
father(sofia,leonor).

However, father is extensional (only facts), and this fact is not
included in the program. So, our goal fails.

A failure implies backtracking to the last matching, and looking for
new matches.
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Top-down goal satisfaction

So we “reconsider” the last deleted goal
parent(sofia,leonor) and try to match another rule

parent(X,Y) :- father(X,Y). (failed)
parent(X,Y) :- mother(X,Y).parent(sofia,leonor) :- mother(sofia,leonor).

Our new goal becomes mother(sofia,leonor). But this also
fails: mother is extensional and this is not a fact.

Now, parent(sofia,leonor) has failed in its turn. We
backtrack to ancestor(sofia,leonor) looking for another
matching head.

ancestor(X,Z) :-
parent(X,Y), ancestor(Y,Z). ancestor(sofia,leonor) :-
parent(sofia,Y), ancestor(Y,leonor).
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Top-down goal satisfaction

Now we have a list of goals parent(sofia,Y),
ancestor(Y,leonor).

Matching parent(sofia,Y) with parent(X’,Y’) :-
father(X’,Y’). is possible under replacement X’=sofia,
Y’=Y. This leads to new goal father(sofia,Y) that fails.

Matching parent(sofia,Y) with parent(X’,Y’) :-
mother(X’,Y’). leads to new goal mother(sofia,Y) that
succeeds for Y=felipe (more matchings are possible).

Important: assignment Y=felipe affects our whole list of goals.
That is, ancestor(Y,leonor) becomes
ancestor(felipe,leonor).
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Top-down goal satisfaction

Matching ancestor(felipe,leonor) with ancestor(X,Y)
:- parent(X,Y). leads to goal parent(felipe,leonor).

Finally, matching parent(felipe,leonor) with parent(X,Y)
:- father(X,Y). leads to new goal
father(felipe,leonor) that succeeds. Prolog answers Yes!
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Adding functions

We can use function symbols to pack some data together as a
single structure. Example:
born(juancarlos,f(5,1,1938)).
born(felipe,f(30,1,1968)).
born(letizia,f(15,9,1972)).
born(sofia,f(2,11,1938)).

later(f(_,_,Y), f(_,_,Y1)) :- Y>Y1.
later(f(_,M,Y), f(_,M1,Y)) :- M>M1.
later(f(D,M,Y), f(D1,M,Y)) :- D>D1.

birthday(X,d(D,M)) :- born(X,f(D,M,_)).

Predicate > is predefined for arithmetic values.
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Adding functions

Some examples of queries:
Which is Juan Carlos’ date of birth?
?- born(juancarlos,X).

Is Felipe older than Letizia?
?- born(felipe,X),born(letizia,Y),later(Y,X).

Find two people that were born in the same year

?- born(X,f(_,_,Y)),born(Z,f(_,_,Y)),X\=Z.

Which is Sofia’s birthday? ?- birthday(sofia,X).
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Adding functions

Note that, in principle, functions are not evaluated. They are just a
way to build data structures.

We usually call them functors, and they are identified by their
name and arity (number of arguments). In the example: f/3, d/2.

We can use the same name for functors with different arity. For
instance, we could have written:
birthday(X,date(D,M)) :- born(X,date(D,M,_)).

As in First Order Logic, we call terms to any combination of
functions, constants and variables. In fact, a constant c is a 0-ary
functor c/0.
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Adding functions
Example: we can represent a digital circuit.

a

b

c

and(not(and(a,b)),or(b,c))
Exercise: try to represent this circuit

a

b

c

Arithmetic operators are also (infix) functors. The term 2+3*4 is
not equal to 4*3+2 or 14.

P. Cabalar ( Department of Computer Science University of Corunna, SPAIN )Prolog February 8, 2016 23 / 52



User-defined functors

We can also define our own functors using the op directive.

:- op(X,Y,Z).

means we declare operator Z with precedence number X (higher =
less priority) and associativity Y.

Associativity can be:
I infix operators: xfx xfy yfx
I prefix operators: fx fy
I postfix operators: xf yf

where:
I f: is the functor position
I x: argument of strictly lower precedence
I y: argument of lower or equal precedence
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User-defined functors

For instance, the fact:

equivalent(not(and(A,B)), or(not(A),not(B))).

can be written in a more readable way:

:- op(800,xfx,<==>).
:- op(700,xfy,v).
:- op(600,xfy,&).
:- op(500,fy,not).
not (A & B) <==> not A v not B.

Try the following ?- F=(not a v b & c), F=(H v G).

Note that = > < :- , are predefined operators. Predicate
current_op/3 shows the currently defined operators.
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Exercise 1
Build a predicate eval/5 that computes the output of any circuit for 3
variables so that eval(A,B,C,Circuit,X) returns the output of
Circuit in X for values a=A, b=B and c=C.
The predicate must also allow returning the models of the circuit
(combinations of values that yield a 1).
Try with the two previous circuits.

Examples:

?- eval(1,0,0, a & ( not b v c) ,X).
X = 1.

?- eval(A,B,C, a v not b,1).
A = 1, B = 1 ;
A = 0, B = 0 ;
A = 1, B = 0 ;
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Unification

How are functors handled in the goal satisfaction algorithm?
When searching a goal, we see whether it matches a rule head.

To see how it works, we can use the built in =/2 Prolog predicate.
Try the following:
?- f(X,b)=f(a,Y).
?- f(X,b)=f(X,Y).
?- f(f(Y),b)=f(X,Y).
?- f(f(Y),b)=f(a,Y).
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Unification

The general algorithm is well-known: Most General Unifier (MGU)
[Robinson 1971].
Given a set of expressions E , we compute a disagreement set
searching from left to right the first different symbol and taking the
corresponding subexpression.

For instance, given p(f (X ),Y ) and p(f (g(a,Z ), f (Z )) we get the
disagreement set {X ,g(a,Z )}.
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Unification
If two atoms can be unified, they have an MGU that can be
computed as follows:

σ := [ ];
while |E | > 1 {

D := disagreement set of E ;
if D contains an X and a term t not containing X {

E := E [X/t ];
σ := σ · [X/t ]; }

else return ‘not unifiable’;
}

Example E = {f (f (Y ),b), f (X ,Y )}. Then D = {f (Y ),X} and we
can replace X by f (Y ). E becomes {f (f (Y ),b), f (f (Y ),Y )}.
The new disagreement is D = {b,Y}. After replacing
E [Y/b] = {f (f (b),b)} and the algorithm stops σ = [X/f (Y )][Y/b].
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Lists

A list can be easily implemented with a functor. Take list(X,L)
where X is the head and L is the tail. We could use null to
represent an empty list.

This is not very readable: 1,2,3,4 would be represented as

list(1,list(2,list(3,list(4,null))))

Prolog has a predefined operator ’[|]’/2 and a predefined
constant [] so that a term like

’[|]’(1,’[|]’(2,’[|]’(3,’[|]’(4,[]))))

can be simply abbreviated as [1,2,3,4]

P. Cabalar ( Department of Computer Science University of Corunna, SPAIN )Prolog February 8, 2016 30 / 52



Lists

We can also write ’[|]’(X,L) as [X | L].

Similarly, [X, Y, Z | L] stands for [X|[Y|[Z|L]]]
And [X, Y, Z] stands for [X,Y,Z|[]]

Try the query:
?- L=[1,2|[3]], L=[1|[2|[3|[]]]].

Program predicate member(X,List)

member(X,[X|_L]).
member(X,[_Y|L]) :- member(X,L).

Try these queries:
?- member(c,[a,b,c,d,c]).
?- member(X,[a,b,c,d,c]).
?- member(a,X).
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Lists

Program predicate append(L1,L2,L3)

append([],L,L).
append([X|L1],L2,[X|L3]):-append(L1,L2,L3).

Try these queries:
?- append([a,b],[c,d,e],L).
?- append([a,b],L,[a,b,c,d,e]).
?- append(L1,L2,[a,b,c]).

Use append to find the prefix P and suffix S of a given element X
in a list L. For instance, with X=wed and L=
[sun,mon,tue,wed,thu,fri,sat], we should get
P=[sun,mon,tue] and S=[thu,fri,sat].

In the same list, find the predecessor and successor weekdays to
some day X.
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Lists

Exercise 2
1 Use append/3 to define the predicate sublist(S,L) so that S

is a sublist of L.

2 Use append/3 to define the predicate insert(X,L,L2) so that
X is arbitrarily inserted in L to produce L2.

3 Use append/3 to define the predicate del(X,L,L2) so that X is
(arbitrarily) deleted from L to produce L2.

4 Use previous predicates to define perm(L,L2) so that L2 is an
arbitrary permutation of L.

5 Define predicate flatten(L1,L2) that removes nested lists
putting all constants at a same level in a single list. Example:
?- flatten([[a,b],[c,[d]]],L2).
L2 = [a,b,c,d]
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The cut predicate

The cut predicate written ! behaves as follows:

H:- B1, . . . ,Bn, !,Bn+1, . . . ,Bm.

When ! is reached, it succeeds but ignores any
remaining choice for B1, . . . ,Bn.

Example: the program
max(X,Y,X) :- X>=Y.
max(X,Y,Y) :- X<Y.

can be replaced by
max(X,Y,X) :- X>=Y,!.
max(X,Y,Y).
assuming that it is called with an unbounded third variable.
Otherwise, a query max(3,1,1) will succeed.
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The cut predicate

This second alternative overcomes that problem
max(X,Y,M) :-

X>=Y,!,M=X
; M=Y.

Another example:
p(1).
p(2) :- !.
p(3).
try the queries
?- p(X).
?- p(X),p(Y).
?- p(3).
?- p(X),!,p(Y).
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The cut predicate

Typically, it improves efficiency but changes the ways in which a
predicate can be used.

In some cases, it is really necessary for a reasonable solution to a
programming problem. Example: add a non-existing element as
head of a list. If existing, leave the list untouched.

add(X,L,L) :- member(X,L),!.
add(X,L,[X|L).
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Negation as failure

The fail predicate always fails. The true predicate always
succeeds.
Negation as failure \+ can be defined as:
(\+ P) :- P,!,fail

; true.

Example: all birds fly, excepting penguins.

bird(a). bird(b). bird(c). penguin(b).

fly(X) :- bird(X), \+ penguin(X).

Floundering problem: be careful with unbound variables inside
negation. The query ?- fly(X). will fail if using rule
fly(X) :- \+ penguin(X), bird(X).
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Predicate repeat

Predicate repeat always succeeds (like true) but provides an
infinite number of choice points.

This means that anything that fails afterwards, will return to
repeat forever.

Its effect can only be canceled by a cut !
writelist(L) :-
repeat, (member(X,L), write(X), fail; !).
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Arithmetics

Predicate is evaluates an arithmetic expression. We can use:
+ - * / ** (power) // (integer division) mod (modulo).

We can make comparisons of numeric values using:
> < >= <= =:= =\=

Examples:
gcd(X,X,X) :- !.
gcd(X,Y,D) :- X>Y,!,X1 is X-Y,gcd(X1,Y,D).
gcd(X,Y,D) :- X<Y,gcd(Y,X,D).

length([],0).
length([_|L],N):-length(L,M),N is M+1.
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Arithmetics

Exercise 3
Define predicate set_nth0(N,L1,X,L2) so that the element of list
L1 at position N (starting from 0) is replaced by X to produce list L2.

Example:

?- set_nth0(3,[a,b,c,d,e,f],z,L2).
L2=[a,b,c,z,e,f].
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Arithmetics

Exercise 4
We have a list of 9 elements that capture the content of a 3 × 3 grid.
The positions in the list corresponds to the grid positions:

0 1 2
3 4 5
6 7 8

Define predicate nextpos(X,D,Y) , so that Y is the adjacent position
to X following direction D varying in {u,d,l,r}.

Example:

?- nextpos(4,u,X).
X=1.
?- nextpos(4,l,X).
X=3.
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Input/output

write(X) writes a term on the standard output; tab(N) writes N
spaces; nl writes a newline character.

Reading a term from standard input read(X). When the end of
file is reached, X becomes the special term end_of_file.

see(Filename) changes standard input to Filename. When
finished, we invoke predicate seen.

Similarly, see(Filename) changes standard output to
Filename. When finished, we invoke predicate told.

put(C) puts character with code C in the standard output.

get0(C) gets a character code from standard input. get(C) is
similar but ignoring blank or non-printable characters.
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Assert/retract

We can modify the database of facts and rules in a dynamic way.
I assert(T) includes new fact/rule T.
I asserta(T) includes new fact/rule T in the beginning.
I assertz(T) includes new fact/rule T in the end.
I retract(T) retracts fact/rule T. It fails when not possible (the

fact did not match to any existing one).
I retractall(T) like retract but retracts all matching facts or

rules.

Some Prolog implementations require that predicates are
declared as dynamic.
:- dynamic user/1.
user(1).
user(2).

?- asserta(user(0)).
?- user(X).
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Assert/retract
We can use assert/retract to create a “global variable”

:- dynamic mycounter/1.

mycounter(0).

increment(X) :-
retract(mycounter(C)),
D is C+X,
assert(mycounter(D)).

?- mycounter(C).
C=0.
?- increment(5), mycounter(C), increment(10).
C=5.
?- mycounter(C).
C=15.
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Testing the type of terms

var(X) true when X is an uninstantiated variable
nonvar(X) true when X is not a variable or is already instantiated
atom(X) true when X is a symbolic atom
integer(X) true when X is an integer number
float(X) true when X is a floating point number
number(X) true when X is a numeric atom (either integer or float)
atomic(X) true when X is atomic (either atom or number)
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Dealing with atoms and strings

Symbolic atoms can contain special characters by using simple
quote: mother(’Juana la Loca’,’Carlos I’).

The use of double quotes "Carlos I" stands for a list of ASCII
codes [67, 97, 114, 108, 111, 115, 32, 73].
name(A,L) transforms atom A into a list of ASCII codes or vice
versa. Examples:
?- name(’Carlos I’,L).

L = [67, 97, 114, 108, 111, 115, 32, 73]

?- append("Hello ","World !",L),name(A,L).

L = [72, 101, 108, 108, 111, 32, 87, 111,
114|...],
A = ’Hello World !’
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Dealing with atoms and strings

Any ASCII code for a character c can be retrieved by using 0’c.
For instance:
?- name(A,[ 0’a,0’$,0’.,0’[ ]).

A = ’a$.[’

concat_atom(L,A) concatenates a list of atoms into a new
atom. Example:
?- concat_atom([’Hello ’,’World ’,’!’],A).

A = ’Hello World !’
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Building terms
The special equiality predicate X =..L unifies term X with a list
L=[F,A1,A2,...] where F is the main functor of X and and
A1,A2,... its arguments. Examples
?- f(a,b) =.. L.

L = [f, a, b]

?- T=..[+,3,4].

T = 3+4
Process a list of terms so that the numeric arguments of unary
functors are increased in one.
process([],[]):-!.

process([X|Xs],[Y|Ys]):-
X =.. [F,A], number(A),!, A1 is A+1,
Y=..[F,A1], process(Xs,Ys).

process([X|Xs],[X|Ys]):- process(Xs,Ys).
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Higher order predicates

Predicate call allows calling other predicates handled as
arguments.
Example: apply some function to a list of numbers
double(X,Y) :- Y is 2*X.
minus(X,Y) :- Y is -X.
map([],_,[]).
map([X|Xs],P,[Y|Ys]) :- call(P,X,Y), map(Xs,P,Ys).

?- map([1,3,6],double,L).
?- map([1,3,6],minus,L).

We can also use =.. to build the term to be called:
map([],_,[]).
map([X|Xs],P,[Y|Ys]) :-

T=..[P,X,Y], T, map(Xs,P,Ys).
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Higher order predicates

Predicate findall(T,G,L) collects in list L all the instantiations
for term T that satisfy goal G

Get a list with all the ancestors of leonor
?- findall( X, ancestor(X,leonor), L).

Example: convert a list of elements [a,b,c,d] into a list of
duplicated pairs
?- findall( (X,X), member(X,[a,b,c,d]), L).
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