An introduction to Prolog

Pedro Cabalar

Department of Computer Science
University of Corunna, SPAIN

February 8, 2016

P. Cabalar Prolog February 8, 2016 1/52

0 Prolog

P. Cabalar Prolog

A first glimpse at Prolog

@ PROLOG stands for “PROgramming in LOGic” (originally in
French “PROgrammation en LOGique”).

@ Well suited for symbolic, non-numeric computation. Good for
dealing with objects and relations.

@ Let us start with facts (ground atoms) for some relations
(predicates).

P. Cabalar Prolog February 8, 2016 3/52

Typical example: family relationships

@ Example: Juan Carlos is the father of Felipe, Cristina and Elena.

This can be expressed by the following three facts:
father (juancarlos, felipe) .
father (juancarlos,cristina).
father (juancarlos,elena) .

Their mother is Sofia:
mother (sofia, felipe) .

mother (sofia,cristina) .
mother (sofia,elena).

Felipe and Letizia have two children:
father (felipe, leonor) .
father (felipe,sofia?2).
mother (letizia, leonor) .
mother (letizia, sofia2).

P. Cabalar Prolog February 8, 2016 4/52

Typical example: family relationships
@ We can query these facts as a relational data base. Is Juan
Carlos, Elena’s father? Is he Sofia’s father?
?—- father (juancarlos,elena) .

?— father (juancarlos, sofia).

@ Queries may contain variables (identifiers beginning with capital
letters). Solutions = instantiations of variables for which the
answer is Yes.

@ We type ’;’ to find more answers or return to stop.

@ What would these queries mean?

?— father (X, leonor) .
?— mother (sofia, X) .
?— father (X,Y) .

(

?— mother (X,Y), father(Y,leonor).

@ How would you check whether Cristina and Elena have the same
father?

P. Cabalar Prolog February 8, 2016 5/52

Typical example: family relationships

@ The comma means conjunction. These queries are logically
equivalent:

?- mother (X,Y), father (Y, leonor).
?— father (Y, leonor), mother(X,Y).

although their computation is different, as we will see later.

@ Sometimes, a variable is irrelevant. We can use ‘_’ to ignore its
value in the answer. Example: is Felipe a father?

?— father (felipe,_).
Who has a father and a mother?

?- father (_,X),mother (_,X).
Notice that the two ‘ ’ are different irrelevant variables.

P. Cabalar Prolog February 8, 2016

6/52

Adding rules

@ We can “give name” to queries using rules. For instance, for:
?- mother (X,Y), father(Y,Zz).
we can define a new predicate grandmother using:

grandmother (X, Z) grandmother (X, Z2) :—mother(X,Y), fa
Rule head

@ The *: -’ symbol is read as if or as a «— implication.
@ In first order logic, we would write:

VxVyVz (Mother(x,y) A Father(y, z) — Grandmother(x, z))

@ We can use it now in queries:

?— grandmother (X, leonor) .

P. Cabalar Prolog February 8, 2016 7152

Adding rules

@ We may have several rules to define a predicate. For instance, my
mother’s mother is also my grandmother:

grandmother (X, Z) :- mother(X,Y), father(Y,Zz).
grandmother (X,Z) :— mother(X,Y), mother(Y,Zz).

to obtain solutions to ?— grandmother (X, Y) . we can apply
any of these rules.

P. Cabalar Prolog February 8, 2016 8/52

Adding rules

@ Another example: define the parent relation.

parent (X,Y) :— father (X,Y).
parent (X,Y) :— mother(X,Y).

We can use disjunction ‘;’ for rules with same head
parent (X,Y) :— father(X,Y) ; mother(X,Y).

@ Exercises: who are Felipe’s parents? Redefine grandmother
with a single rule using the parent relation.

P. Cabalar Prolog February 8, 2016 9/52

Adding rules

@ Some predicates never occur in rule heads, excepting facts.
These are called extensional.

@ But of course, a predicate may combine rules and facts. For
instance, predicate female, we may include some facts

female (cristina). female(elena).
female (leonor) . female (sofia2) .

but we can also derive it from mother

female (X) :— mother(X,_).

P. Cabalar Prolog February 8, 2016

10/52

Adding rules

@ Exercise: define the sister relation.

sister (X,Y) :- parent (Z,X), parent(Z,Y), female (X).

?— sister(felipe,X).
?— sister (leonor,X).

@ Problem: Leonor is sister of herself! We should specify that they
are different:

sister(X,Y) :- parent(Z,X),parent (Z,Y),
female(Y), X \= Y.

P. Cabalar Prolog February 8, 2016 11/52

Recursion

@ Rules can be recursive, that is, a head predicate may also occur in
the body.

@ For instance, define the ancestor relation as the transitive
closure of parent:

ancestor

ancestor (X,Y) :—- parent (X,Y).
ancestor (X,Z) :—- parent(X,Y), ancestor(Y,Z).

P. Cabalar Prolog February 8, 2016 12/52

Recursion
@ Another alternative can be:

C :parent C :

ancestor
ancestor (X,Y) :- parent(X,Y).
ancestor (X,Z) :—- parent(Y,Z), ancestor(X,Y).

@ In principle, this program is equivalent to:

ancestor (X,Z) :- ancestor(X,Y), parent(Y,Z).
ancestor (X,Y) :—- parent(X,Y).

but Prolog further introduces an evaluation ordering that, for
instance, causes query ?— ancestor (X, juancarlos) to
iterate forever.

P. Cabalar Prolog February 8, 2016

13/52

Top-down goal satisfaction

@ So, how does this work? Take

ancestor (X,Y) :- parent(X,Y).
ancestor (X,Z) :- parent(X,Y), ancestor(Y,Z).

@ The query ?— ancestor (sofia, leonor) . fixes a first goal.
Prolog will look for rule heads that match the current goal.

@ For instance, the first rule matches under the replacement
X=sofia, Y=1leonor. This is like having the rule instance:

ancestor (sofia, leonor) :- parent(sofia, leonor).

@ As matching succeeded, we replace our initial goal by the rule
body parent (sofia, leonor), which becomes our new goal.

P. Cabalar Prolog February 8, 2016 14 /52

Top-down goal satisfaction

@ We try then to match parent (sofia, leonor) with some rule
head. This predicate has two rules

parent (X,Y) :— father (X,Y) .parent (sofia,leonor) :-
parent (X,Y) :— mother(X,Y).
@ The first one matches, so our new goal becomes

father (sofia, leonor).

@ However, father is extensional (only facts), and this fact is not
included in the program. So, our goal fails.

@ A failure implies backtracking to the last matching, and looking for
new matches.

P. Cabalar Prolog February 8, 2016 15/52

Top-down goal satisfaction

@ So we “reconsider” the last deleted goal
parent (sofia, leonor) and try to match another rule

parent (X,Y) :— father (X,Y). (failed)
parent (X,Y) :— mother (X,Y) .parent (sofia, leonor)

@ Our new goal becomes mother (sofia, leonor). But this also
fails: mother is extensional and this is not a fact.

@ Now, parent (sofia, leonor) has failed in its turn. We
backtrack to ancestor (sofia, leonor) looking for another
matching head.

ancestor (X, 72) :—
parent (X,Y), ancestor(Y,Z). ancestor (sofia
parent (sofia,Y), ancestor (Y, leonor).

P. Cabalar Prolog February 8, 2016 16 /52

Top-down goal satisfaction

@ Now we have a list of goals parent (sofia,Y),
ancestor (Y, leonor).

@ Matching parent (sofia,Y) with parent (X’ ,Y") :-
father (X’,Y’) . is possible under replacement X’ =sofia,
Y’ =Y. This leads to new goal father (sofia,Y) that fails.

@ Matching parent (sofia,Y) with parent (X’ ,Y") :-
mother (X’ ,Y’) . leads to new goal mother (sofia,Y) that
succeeds for yY=felipe (more matchings are possible).

@ Important: assignment vy=felipe affects our whole list of goals.
Thatis, ancestor (Y, leonor) becomes
ancestor (felipe, leonor).

P. Cabalar Prolog February 8, 2016 17/52

Top-down goal satisfaction

@ Matching ancestor (felipe, leonor) with ancestor (X, Y)
:— parent (X, Y) . leads to goal parent (felipe, leonor).

@ Finally, matching parent (felipe, leonor) with parent (X, Y)
:— father (X, Y) . leads to new goal
father (felipe, leonor) that succeeds. Prolog answers ves!

P. Cabalar Prolog February 8, 2016 18/52

e Functions

P. Cabalar Prolog

Adding functions

@ We can use function symbols to pack some data together as a
single structure. Example:
born (juancarlos, £(5,1,1938)).
born (felipe, £(30,1,1968)).
born (letizia, £(15,9,1972)).
born(sofia,f(2,11,1938)).

later(£f(_,_,Y), £(.,_,Y1)) :— ¥Y>Y1.
later(f(_,M,Y), £(_,M1,Y)) :— M>M1.
later(£(D,M,Y), £(D1,M,Y)) :— D>DI1.
birthday (X,d(D,M)) :- born(X,f(D,M,_)).

@ Predicate > is predefined for arithmetic values.

P. Cabalar Prolog February 8, 2016 20/52

Adding functions

Some examples of queries:

@ Which is Juan Carlos’ date of birth?
?— born (juancarlos, X) .

@ Is Felipe older than Letizia?
?— born(felipe,X),born(letizia,¥Y),later(Y,X).

@ Find two people that were born in the same year
?— born(X,f(_,_,Y)),born(Z,£(_,_,Y)),X\=2.

@ Which is Sofia’s birthday? - birthday (sofia, X) .

P. Cabalar Prolog February 8, 2016 21/52

Adding functions

@ Note that, in principle, functions are not evaluated. They are just a
way to build data structures.

@ We usually call them functors, and they are identified by their
name and arity (number of arguments). In the example: £/3, d/2.

@ We can use the same name for functors with different arity. For
instance, we could have written:
birthday (X,date(D,M)) :- born (X,date(D,M,_)).

@ As in First Order Logic, we call terms to any combination of
functions, constants and variables. In fact, a constant c is a 0-ary
functor c/0.

P. Cabalar Prolog February 8, 2016 22/52

Adding functions

@ Example: we can represent a digital circuit.

a
b

c

and (not (and(a,b)),or(b,c))
@ Exercise: try to represent this circuit

a — \
’)
c_)_

@ Arithmetic operators are also (infix) functors. The term 2+3+4 is
not equal to 4x3+2 or 14.

P. Cabalar Prolog February 8, 2016 23/52

User-defined functors

@ We can also define our own functors using the op directive.

- op(X,Y,2).
means we declare operator z with precedence number x (higher =
less priority) and associativity Y.

@ Associativity can be:
» infix operators: xfx xfy yfx
» prefix operators: fx fy
» postfix operators: xf vyf

where:
» f:is the functor position
» x: argument of strictly lower precedence
» y: argument of lower or equal precedence

P. Cabalar Prolog February 8, 2016 24 /52

User-defined functors

@ For instance, the fact:
equivalent (not (and(A,B)), or(not(A),not(B))).

can be written in a more readable way:

op (800, xfx, <==>) .
:— op (700, xfy,Vv) .
op (600, xfy, &) .
:— op (500, fy,not) .
not (A & B) <==> not A v not B.

@ Try the following ?— F=(not a v b & c), F=(H v G).

@ Notethat= > < :- , are predefined operators. Predicate
current_op/3 shows the currently defined operators.

P. Cabalar Prolog February 8, 2016 25/52

Exercise 1
Build a predicate eval/5 that computes the output of any circuit for 3
variables so thateval (A,B,C,Circuit, X) returns the output of
Circuit inX for values a=2, b=B and c=C.

The predicate must also allow returning the models of the circuit
(combinations of values that yield a 1).

Try with the two previous circuits.

Examples:

?- eval(1,0,0, a & (not b v ¢) ,X).
X = 1.

?- eval(A,B,C, a v not b,1).

A=1, B=1;

A =20, B 0 ;

A =1, B=20;

P. Cabalar Prolog February 8, 2016 26 /52

Unification

@ How are functors handled in the goal satisfaction algorithm?
When searching a goal, we see whether it matches a rule head.

@ To see how it works, we can use the built in =/2 Prolog predicate.
Try the following:
?— £(X,b)=f(a,Y).

7= £(X,b)=£(X,Y).
?— £(f ()) =£(X,Y) .
= £(£(Y),b)=£f(a,Y).

P. Cabalar Prolog February 8, 2016 27/52

Unification

@ The general algorithm is well-known: Most General Unifier (MGU)
[Robinson 1971].

@ Given a set of expressions £, we compute a disagreement set
searching from left to right the first different symbol and taking the
corresponding subexpression.

@ Forinstance, given p(f(X), Y) and p(f(g(a,Z),f(Z)) we get the
disagreement set { X, g(a.Z)}.

P. Cabalar Prolog February 8, 2016 28/52

Unification

@ If two atoms can be unified, they have an MGU that can be
computed as follows:

o=l
while |[E| > 1 {
D := disagreement set of E;
if D contains an X and a term ¢t not containing X {
E = E[X/t];
o:=o-[X/t; }
else return ‘not unifiable’;

}

@ Example E = {f(f(Y),b),f(X,Y)}. Then D = {f(Y), X} and we
can replace X by 7(Y). E becomes {f(f(Y),b), f(f(Y),Y)}.

@ The new disagreementis D = {b, Y'}. After replacing
E[Y/b] = {f(f(b), b)} and the algorithm stops o = [X/f(Y)][Y/b].

P. Cabalar Prolog February 8, 2016 29/52

Lists

@ A list can be easily implemented with a functor. Take 1ist (X, L)
where X is the head and L is the tail. We could use null to
represent an empty list.

@ This is not very readable: 1, 2, 3, 4 would be represented as

list(1,1list(2,1ist(3,1ist (4,null))))

@ Prolog has a predefined operator * [|]’ /2 and a predefined
constant [] so that a term like

COETT L, Ty 2, 3, L (4, 01))))

can be simply abbreviated as [1, 2, 3, 4]

P. Cabalar Prolog February 8, 2016 30/52

Lists

@ Wecanalsowrite " [|]’ (X,L) as [X | L].
@ Similarly, [x, Y, z | L] standsfor [X|[Y|[Z|L]]]
@ And [X, Y, 7] standsfor [X,Y,Z]|[]]
@ Try the query:
?— L=[1,21[3]1], L=[11[2]1[3I[]111].
@ Program predicate member (X, List)

member (X, [X]|_L]) .
member (X, [_Y|L]) :- member (X,L).

@ Try these queries:
?- member (c, [a,b,c,d,c]).
?—- member (X, [a,b,c,d,c]).
?—- member (a, X) .

P. Cabalar Prolog February 8, 2016 31/52

Lists
@ Program predicate append (L1, L2, L3)

append ([],L,L).
append ([X|L1],L2, [X|L3]) :—append (L1, L2,L3).

@ Try these queries:
?— append([a,b
?— append([a,b

I, [c,d,el, L) .
]
?—- append(Ll,L2,

[
, L, [a b,c,d,el).
[a,b,c]).

@ Use append to find the prefix P and suffix s of a given element x
in a list L. For instance, with X=wed and L=
[sun,mon, tue,wed, thu, fri, sat], we should get
P=[sun,mon,tue] and S=[thu, fri, sat].

@ In the same list, find the predecessor and successor weekdays to
some day X.

P. Cabalar Prolog February 8, 2016 32/52

Lists

Exercise 2

@ Use append/3 to define the predicate sublist (S, L) so thats
is a sublist of L.

@ Use append/ 3 to define the predicate insert (X, 1, 12) so that
X is arbitrarily inserted in 1. to produce 1.2.

© Use append/ 3 to define the predicate del (X, 1., 1.2) so thatX is
(arbitrarily) deleted from L to produce 1.2.

© Use previous predicates to define perm (1., 1.2) so that L2 is an
arbitrary permutation of L.

© Define predicate flatten (L1,L2) that removes nested lists
putting all constants at a same level in a single list. Example:

?— flatten([[a,b]l, [c,[d]]],L2).
L2 = [alblcld]

v

P. Cabalar Prolog February 8, 2016 33/52

0 Flow control

P. Cabalar Prolog

The cut predicate
@ The cut predicate written ! behaves as follows:

H:_ B1,...7Bn,!,Bn+‘|,...7Bm.

When | is reached, it succeeds but ignores any
remaining choice for By, . .., Bp.

@ Example: the program
max (X,Y,X) :— X>=Y.
max (X,Y,Y) :— X<Y.

can be replaced by

max (X,Y,X) :— X>=Y,!.

max (X,Y,Y) .

assuming that it is called with an unbounded third variable.
Otherwise, a query max (3, 1, 1) will succeed.

P. Cabalar Prolog February 8, 2016

35/52

The cut predicate

@ This second alternative overcomes that problem
max (X,Y,M) :-
X>=Y, !, M=X
; M=Y.
@ Another example:
p(l).
p(2) :— 1.
p(3).
try the queries
?- p(X).
?— p(X),p(Y).
2= p(3).
= p(X),,p(Y).

P. Cabalar Prolog February 8, 2016 36 /52

The cut predicate

@ Typically, it improves efficiency but changes the ways in which a
predicate can be used.

@ In some cases, it is really necessary for a reasonable solution to a
programming problem. Example: add a non-existing element as
head of a list. If existing, leave the list untouched.

add(X,L,L) :— member (X,L),!.
add (X, L, [X|L) .

P. Cabalar Prolog February 8, 2016 37/52

Negation as failure

@ The fail predicate always fails. The t rue predicate always
succeeds.

@ Negation as failure \+ can be defined as:
(\+ P) :—- P, !, fail
; true.

@ Example: all birds fly, excepting penguins.
bird(a). bird(b). bird(c). penguin(b).
fly(X) :- bird(X), \+ penguin (X).

@ Floundering problem: be careful with unbound variables inside
negation. The query 2— fly (x) . will fail if using rule
fly (X) := \+ penguin (X), bird(X).

P. Cabalar Prolog February 8, 2016 38/52

Predicate repeat

@ Predicate repeat always succeeds (like t rue) but provides an
infinite number of choice points.

@ This means that anything that fails afterwards, will return to
repeat forever.

@ lts effect can only be canceled by a cut !

writelist (L) :-—
repeat, (member(X,L), write(X), fail; !).

P. Cabalar Prolog February 8, 2016 39/52

° Other features

P. Cabalar Prolog

Arithmetics

@ Predicate is evaluates an arithmetic expression. We can use:

+ - %= /% (power) // (integer division) mod (modulo).
@ We can make comparisons of numeric values using:
> < >= <= =:= =\=
@ Examples:
gcd(X,X,X) :— .
gcd(X,Y,D) :—= X>Y,!,X1 is X-Y,gcd(X1,Y,D).
gcd(X,Y,D) :— X<Y,gcd(Y,X,D).

length([],0).
length([_|L],N):-length(L,M),N is M+1.

P. Cabalar Prolog February 8, 2016 41/52

Arithmetics

Define predicate set_nth0 (N, L1, X,L2) so that the element of list
L1 at position N (starting from 0) is replaced by x to produce list 1.2.

Example:

?- set_nth0(3, [a,b,c,d,e, f],z,L2).
L2=[a,b,c,z,e, f].

P. Cabalar Prolog February 8, 2016 42/52

Arithmetics

Exercise 4

We have a list of 9 elements that capture the content of a 3 x 3 grid.
The positions in the list corresponds to the grid positions:

0|12
3|14|5
6|78

Define predicate nextpos (X, D, Y) , SO that Y is the adjacent position
to X following direction D varying in {u,d, 1, r}.

v

Example:

?— nextpos (4,u,X) .
X=1.
?— nextpos (4,1,X).
X=3.

P. Cabalar Prolog February 8, 2016 43 /52

Input/output

@ write (X) writes a term on the standard output; tab (N) writes N
spaces; n1 writes a newline character.

@ Reading a term from standard input read (x) . When the end of
file is reached, x becomes the special term end_of_file.

@ see (Filename) changes standard input to Filename. When
finished, we invoke predicate seen.

@ Similarly, see (Filename) changes standard output to
Filename. When finished, we invoke predicate told.

@ put (C) puts character with code C in the standard output.

@ get0 (C) gets a character code from standard input. get (C) is
similar but ignoring blank or non-printable characters.

P. Cabalar Prolog February 8, 2016 44 /52

Assert/retract

@ We can modify the database of facts and rules in a dynamic way.

>

>
>
>

assert (T) includes new fact/rule T.

asserta (includes new fact/rule T in the beginning.
assertz (includes new fact/rule T in the end.

retract (T) retracts fact/rule T. It fails when not possible (the
fact did not match to any existing one).

retractall (T) like retract butretracts all matching facts or
rules.

T)
T)

@ Some Prolog implementations require that predicates are
declared as dynamic.
:— dynamic user/1.
user (1) .
user (2) .

?— asserta (user (0)).
?— user (X).

P. Cabalar Prolog February 8, 2016 45/52

Assert/retract
We can use assert/retract to create a “global variable”

:— dynamic mycounter/1.
mycounter (0) .

increment (X) :-—-
retract (mycounter (C)),
D is C+X,
assert (mycounter (D)) .

?— mycounter (C) .

C=0.

?— increment (5), mycounter (C), increment (10).
C=5.

?— mycounter (C) .

Cc=15.

P. Cabalar Prolog February 8, 2016 46 /52

Testing the type of terms

var (X) true when X is an uninstantiated variable

nonvar (X) true when x is not a variable or is already instantiated
atom (X) true when x is a symbolic atom

integer (X) true when X is an integer number

float (X) true when x is a floating point number

number (X) true when X is a numeric atom (either integer or float)

atomic (X) true when x is atomic (either atom or number)

P. Cabalar Prolog February 8, 2016 47 /52

Dealing with atoms and strings

@ Symbolic atoms can contain special characters by using simple
quote: mother (' Juana la Loca’,’Carlos I').

@ The use of double quotes "Carlos 1" stands for a list of ASCII
codes [67, 97, 114, 108, 111, 115, 32, 73].

@ name (A, L) transforms atom A into a list of ASCII codes or vice
versa. Examples:
?— name (' Carlos I’,L).

L = [e7, 97, 114, 108, 111, 115, 32, 73]
?— append("Hello ", "World !",L),name(A,L).

L =1[72, 101, 108, 108, 111, 32, 87, 111,
114)...71,
A = "Hello World !’

P. Cabalar Prolog February 8, 2016 48 /52

Dealing with atoms and strings

@ Any ASCII code for a character ¢ can be retrieved by using 0’ c.
For instance:
?- name (A, [07a,07$,07.,0"[1).

A= "as.[’
@ concat_atom (L, A) concatenates a list of atoms into a new

atom. Example:
?— concat_atom([’Hello ’,’World ’',"!"1,A).

A = "Hello World !’

P. Cabalar Prolog February 8, 2016 49/52

Building terms

@ The special equiality predicate X =. .L unifies term X with a list
L=[F,Al,A2, ...] where F is the main functor of X and and
Al,A2, ... its arguments. Examples
?— f(a,b) =.. L.

L = [f, a, Db]
?- T=..[+,3,4].

T = 3+4

@ Process a list of terms so that the numeric arguments of unary
functors are increased in one.
process ([],[]):="!.

process ([X|Xs], [Y|Ys]) :—

X =.. [F,A]l, number(dA),!, Al is A+1,
Y=..[F,Al], process(Xs,Ys).
process ([X|Xs], [X|Ys]) :— process (Xs,Y¥Ys).

P. Cabalar Prolog February 8, 2016 50/52

Higher order predicates

@ Predicate call allows calling other predicates handled as

arguments.
@ Example: apply some function to a list of numbers
double(X,Y) :— Y is 2*X.
minus (X,Y) :—= Y is -X.
map ([1,_,[1)
map ([X|Xs],P, [Y|Ys]) :— call(P,X,Y), map(Xs,P,Y¥Ys).

?— map([1l,3,6],double,L).
?- map([1,3,6],minus,L).

@ We can also use =. . to build the term to be called:
map ([],_,[]).

map ([X|Xs],P, [Y|Ys]) :—

(
T=..[P,X,Y], T, map(Xs,P,¥s).

P. Cabalar Prolog February 8, 2016 51/52

Higher order predicates

@ Predicate findall (T, G, L) collects in list L all the instantiations

for term T that satisfy goal G

@ Get a list with all the ancestors of leonor

?- findall(X, ancestor (X, leonor), L).

@ Example: convert a list of elements [a, b, ¢, d] into a list of
duplicated pairs

?— findall((X,X), member (X, [a,b,c,d]l), L).

P. Cabalar Prolog February 8, 2016

52/52

	Prolog
	Functions
	Flow control
	Other features

