
Minimal logic programs

Pedro Cabalar1, David Pearce2 and Agust́ın Valverde3?

1 Corunna University (Corunna, Spain), cabalar@udc.es
2 Universidad Rey Juan Carlos (Madrid, Spain), davidandrew.pearce@urjc.es

3 University of Málaga (Málaga, Spain), a valverde@ctima.uma.es

Abstract. bb We consider the problem of obtaining a minimal logic
program strongly equivalent (under the stable models semantics) to a
given arbitrary propositional theory. We propose a method consisting
in the generation of the set of prime implicates of the original theory,
starting from its set of countermodels (in the logic of Here-and-There),
in a similar vein to the Quine-McCluskey method for minimisation of
boolean functions. As a side result, we also provide several results about
fundamental rules (those that are not tautologies and do not contain re-
dundant literals) which are combined to build the minimal programs. In
particular, we characterise their form, their corresponding sets of coun-
termodels, as well as necessary and sufficient conditions for entailment
and equivalence among them.

Keywords: logic programming, answer set programming, minimisation of
boolean and multivalued functions.

1 Introduction

The nonmonotonic formalism of Equilibrium Logic [1], based on the nonclassical
logic of here-and-there (henceforth: HT), yields a logical characterisation for the
answer set semantics of logic programs [2]. By capturing concepts such as the
strong equivalence of programs and providing a means to generalise all previous
extensions of answer set semantics, HT and equilibrium logic provide a useful
foundation for Answer Set Programming (ASP) (see [3,4]). There has recently
been an increasing interest in ASP in the expressiveness of logic programs and
the analysis of program rules in a more logical setting. Properties of Equilibrium
Logic have allowed, for instance, the extension of the traditional definition of
answer set (now equivalent to the concept of equilibrium model) to the most
general syntax of arbitrary propositional [5] and first order [6] theories.

In the case of propositional theories (of crucial importance for current ASP
solvers), in [7] it was actually shown that any arbitrary theory in Equilibrium
Logic is strongly equivalent to (that is, can always be replaced by) a disjunc-
tive logic program possibly allowing default negation in the head. In this way,
? This research was partially supported by Spanish MEC coordinated project TIN-

2006-15455-C03, subprojects 01, 02, 03.

this type of rule constitutes a normal form for general ASP when dealing with
arbitrary theories. Aside from its interest as an expressiveness result, as [5] has
shown, the important concept of aggregate in ASP [8] can be captured by for-
mulas with nested implications, making such syntactic extensions of practical
value. In addition, the problem of generating a program from an arbitrary the-
ory, or merely from another logic program, immediately raises the question of
how good is this generation. A study of the complexity and efficiency of transla-
tion methods from arbitrary theories to logic programs was already carried out
in [9]. A different and perhaps more practically relevant topic has to do with the
quality or simplicity of the resulting program, rather than the effort required to
obtain it. In ASP various methods, including equilibrium logic, have been used
to analyse program simplification, both for ground programs [10,11,12,13] and
more recently for programs with variables [14,15].

In this paper we consider the problem of generating a minimal or simpler
logic program strongly equivalent to some initial propositional theory (what
includes, of course, the case of a logic program). We propose a method that
follows steps similar to the Quine-McCluskey algorithm [16,17], well-known from
the problem of minimising boolean functions. Our algorithm computes the set
of prime implicates of the original theory starting from its set of countermodels
in HT. In a second step, a minimal set of prime implicates is selected to cover
the whole set of countermodels. Obviously, these two steps mean a considerable
computational cost whose reward is the guarantee of syntactic minimality of the
obtained program, something not achieved before, to the best of our knowledge.

As we will discuss later in Section 7, the interest of such a minimisation
method lies in its two main potential application areas: (i) it may become a useful
tool for theoretical research, helping to find minimal logic program patterns
obtained from translations of other constructions; and (ii) what possibly has
a greater practical impact, it allows an offline minimisation of a ground logic
program, which can be perhaps later (re-)used in several different contexts. Apart
from the method itself, the paper also provides side results of additional interest
from the viewpoint of expressiveness. We identify the normal form of fundamental
rules, used to conform the minimal programs. In this way, these rules are non-
trivial in the sense that they are not tautological and do not contain redundant
literals. The paper characterises the set of countermodels of any fundamental
rule and provides necessary and sufficient conditions (see Section 6) for capturing
entailment and equivalence among them.

The paper is organised as follows. Section 2 recalls the Quine-McCluskey
algorithm for minimising boolean functions. Next, Section 3 contains a brief
overview of Equilibrium Logic, including some basic definitions about logic pro-
grams. Section 4 presents the algorithm for obtaining prime implicates and the
next section contains a small example. Then, Section 6 presents an alternative
definition of minimal program (based on semantic entailment) and finally, Sec-
tion 7 concludes the paper. Proofs have been included in the Appendix of an
extended version of this document [18].

2 Quine-McCluskey algorithm

The Quine-McCluskey algorithm [16,17] allows obtaining a minimal normal form
equivalent to any classical propositional theory Γ . The algorithm is dual in the
sense that it can be equally used to obtain a minimal DNF from the set of models
of Γ or to obtain a minimal CNF from its set of countermodels. Although the
former is the most popular version, we will actually focus on the latter for the
sake of comparison. After all, as shown in [7], logic programs constitute a CNF
for HT. The Quine-McCluskey algorithm computes the prime implicates of a
theory Γ starting from its countermodels. To get a minimal CNF, a second
algorithm (typically, Petrick’s method [19]) must be used afterwards to select
a minimal subset of prime implicates that suffice to cover all countermodels of
Γ . In what follows, we skip many definitions from classical propositional logic
assuming the reader’s familiarity.

Let At be a set of atoms (called the propositional signature). We represent
a classical propositional interpretation as a set of atoms I ⊆ At selecting those
assigned truth value 1 (true). As usual, a literal is an atom p (positive literal)
or its negation ¬p (negative literal). A clause is a disjunction of literals and a
formula in CNF is a conjunction of clauses. The empty disjunction and conjunc-
tion respectively correspond to ⊥ and >. We will use letters C,D, . . . to denote
clauses. Satisfaction of formulas is defined in the usual way. A clause is said to
be fundamental if it contains no repeated atom occurrences. Non-fundamental
clauses are irrelevant: any repeated literal can be just removed, and any clause
containing p ∨ ¬p too, since it is a tautology. We say that a clause C subsumes
a clause D, written C ⊆ D, iff all literals of C occur in D.

Proposition 1. Let C,D be fundamental clauses. Then, C ⊆ D iff |= C → D.

Proposition 2. An interpretation I is a countermodel of a fundamental clause
C iff p 6∈ I for all positive literals p occurring in C and p ∈ I for all negative
literals ¬p occurring in C.

Proposition 2 provides a compact way to represent a fundamental clause C
(and its set of countermodels). We can just define a labelling, let us write it

−→
C ,

that for each atom p ∈ At contains a pair:

– (p, 1) ∈
−→
C when ¬p occurs in C (meaning p true in all countermodels),

– (p, 0) ∈
−→
C when p occurs as positive literal in C (meaning p false in all

countermodels) or
– (p, -) ∈

−→
C if p does not occur in C (meaning that the value of p is indifferent).

Note that it is also possible to retrieve the fundamental clause C corresponding
to an arbitrary labelling

−→
C , so the relation is one-to-one. Typically, we further

omit the atom names (assuming alphabetical ordering) and we just write
−→
C as

a vector of labels. As an example, given the ordered signature {p, q, r, s} and
the clause C = ¬p ∨ q ∨ ¬s, we would have

−→
C = {(p, 1), (q, 0), (r, -), (s, 1)} or

simply
−→
C = 10-1. When all atoms in the signature occur in a fundamental

clause, the latter is said to be developed. Proposition 2 implies that a developed
clause C has a single countermodel – note that in this case

−→
C does not contain

indifference symbols. By abuse of notation, we identify a countermodel I with
its corresponding developed clause {(p, 1) | p ∈ I} ∪ {(p, 0) | p ∈ At \ I}.

An implicate C of a theory Γ is any fundamental clause satisfying Γ |= C.
Clearly, countermodels of C are countermodels of Γ too. As any CNF formula
Π equivalent to Γ will consist of implicates of Γ , the task of finding Π can be
seen as a search of a set of implicates whose countermodels suffice to comprise
the whole set of countermodels of Γ . However, if we want Π to be as simple
as possible, we will be interested in implicates with minimal size. An implicate
of Γ is said to be prime iff it is not subsumed by another implicate of Γ . The
Quine-McCluskey algorithm computes all implicates of Γ by collecting their
labelling vectors in successive sets Si. In fact, at each step, Si collects all the
vectors with i indifference labels, starting with i = 0 indifferences (i.e. with
S0 equal to the set of countermodels of Γ). To compute the next set Si+1 the
algorithm groups pairs of implicate vectors

−→
C ,
−→
D in Si that just differ in one

atom p, say, for instance (p, 1) ∈
−→
C and (p, 0) ∈

−→
D . Then, it inserts a new vector

−→
E =

(−→
C \ {(p, 1)}

)
∪ {(p, -)} in Si+1 and marks both

−→
C and

−→
D as non-prime

(it is easy to see that clauses C,D are both subsumed by the new implicate
E). When no new vector is formed, the algorithm finishes, returning the set of
non-marked (i.e., prime) implicates.

Example 1. The table in Figure 2 schematically shows the result of applying the
algorithm for a signature At = {p, q, r, s} and starting from a set of countermod-
els shown in column S0. Numbers between parentheses represent the counter-
models of a given implicate (using the decimal representation of their vector of
labels). The horizontal lines separate the implicates in each Si by their number
of 1’s. Finally, ‘*’ marks mean that the implicate has been subsumed by another
one. The prime (i.e., non-marked) implicates are therefore: -100 (¬q∨r∨s), 10--
(¬p ∨ q), 1--0 (¬p ∨ s) and 1-1- (¬p ∨ ¬r).

3 Equilibrium Logic

We begin defining the (monotonic) logic of here-and-there (HT). A formula is
defined in the usual way as a well-formed combination of the operators ⊥,∧,∨,→
with atoms in a propositional signature At. We define ¬ϕ def= ϕ → ⊥ and > def=
¬⊥. As usual, by theory we mean a set of formulas.

An HT-interpretation is a pair 〈H,T 〉 of sets of atoms with H ⊆ T . When
H = T the HT-interpretation is said to be total. We recursively define when
〈H,T 〉 satisfies a formula ϕ, written 〈H,T 〉 |= ϕ as follows:

– 〈H,T 〉 6|= ⊥

S0 S1 S2

∗ 0100 (4)
∗ 1000 (8)

∗ 1001 (9)
∗ 1010 (10)
∗ 1100 (12)

∗ 1011 (11)
∗ 1110 (14)

∗ 1111 (15)

-100 (4, 12)
∗ 100- (8, 9)
∗ 10-0 (8, 10)
∗ 1-00 (8, 12)

∗ 10-1 (9, 11)
∗ 101- (10, 11)
∗ 1-10 (10, 14)
∗ 11-0 (12, 14)

∗ 1-11 (11, 15)
∗ 111- (14, 15)

10-- (8, 9, 10, 11)
1--0 (8, 10, 12, 14)

1-1- (10, 11, 14, 15)

Fig. 1. Example of computation of Quine McCluskey algorithm.

– 〈H,T 〉 |= p if p ∈ H, for any atom p ∈ At
– 〈H,T 〉 |= ϕ ∧ ψ if 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ
– 〈H,T 〉 |= ϕ ∨ ψ if 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ
– 〈H,T 〉 |= ϕ→ ψ if both (i) 〈H,T 〉 6|= ϕ or 〈H,T 〉 |= ψ; and (ii) T |= ϕ→ ψ

(in classical logic).

An HT-interpretation is a model of a theory Γ if it satisfies all formulas in
Γ . As usual, we say that a theory Γ entails a formula ϕ, written Γ |= ϕ, when
any model of Γ is a model of ϕ. A formula true in all models is said to be valid
or a tautology. An equilibrium model of a theory Γ is any total model 〈T, T 〉 of
Γ such that no 〈H,T 〉 with H ⊂ T is model of Γ . Equilibrium Logic is the logic
induced by equilibrium models.

An alternative definition of HT can be given in terms of a three-valued se-
mantics (Gödel’s three-valued logic). Under this viewpoint, an HT-interpretation
M = 〈H,T 〉 can be seen as a three-valued mapping M : At → {0, 1, 2} where,
for any atom p, M(p) = 2 if p ∈ H (p is true), M(p) = 0 if p ∈ At \ T (p is
false) and M(p) = 1 if p ∈ T \H (p is undefined). The valuation of formulas is
defined so that the valuation of conjunction (resp. disjunction) is the minimum
(resp. maximum) value, M(⊥) = 0 and M(ϕ → ψ) = 2 if M(ϕ) ≤ M(ψ) or
M(ϕ → ψ) = M(ψ) otherwise. Finally, models of a theory Γ are captured by
those HT-interpretations M such that M(ϕ) = 2 for all ϕ ∈ Γ .

Lemma 1. In HT, the following formulas are valid:

α ∧ ϕ ∧ ¬ϕ→ β (1)
α ∧ ϕ→ β ∨ ϕ (2)

(α ∧ ϕ→ β ∨ ¬ϕ)↔ (α ∧ ϕ→ β) (3)
(α ∧ ¬ϕ→ β ∨ ϕ)↔ (α ∧ ¬ϕ→ β) (4)

(α→ β)→ (α ∧ γ → β) (5)
(α→ β)→ (α→ β ∨ γ) (6)

The following property of HT will have important consequences for adapting
the Quine-McCluskey method to this logic:

Property 1. For any theory Γ , 〈H,T 〉 |= Γ implies 〈T, T 〉 |= Γ .

We can rephrase the property in terms of countermodels: if 〈T, T 〉 is a coun-
termodel of Γ then any 〈H,T 〉 will also be a countermodel. As a result, contrarily
to what happened in classical logic (or in Lukasiewicz three-valued logic, for in-
stance), we cannot use an arbitrary set S of HT-interpretations to represent the
countermodels of some theory. Let us define the total-closure (t-closure) of a set
of interpretations S as:

St def= S ∪ { 〈H,T 〉 | 〈T, T 〉 ∈ S, H ⊆ T }

We say that S is t-closed if St = S.

Property 2 (Theorem 2 in [7]). Each t-closed set S of interpretations is the set
of countermodels of a logic program.

This fact was used in [7] to compute the number of possible HT-theories (modulo
semantic equivalence) for a finite number n of atoms by counting the possible t-
closed sets of interpretations. The resulting amount happens to be considerably
smaller than 23n

, which corresponds, for instance, to the number of possible
theories we can form in Lukasiewicz logic.

3.1 Logic programs

A logic program is a conjunction of clauses (also called rules) of the form:

a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm → c1 ∨ · · · ∨ ch ∨ ¬d1 ∨ · · · ∨ ¬dk (7)

with n,m, h, k ≥ 0 and all subindexed letters representing atoms. As before,
empty disjunctions stand for ⊥ while empty conjunctions stand for >. The empty
rule would therefore correspond to > → ⊥ or simply ⊥. We will use letters r,
r′, . . . to denote rules. We will sometimes abbreviate a rule r like (7) using the
expression:

B+
r ∧ ¬B−r → Hd+

r ∨ ¬Hd−r
where B+

r (resp. B−r) denotes the sets of atoms occurring positively (resp. neg-
atively) in the antecedent or body of r, while Hd+

r (resp. Hd−r) denotes the sets
of atoms occurring positively (resp. negatively) in the consequent or head of r.

For sets of rules of form (7), equilibrium models and answer sets coincide, [3].
Two rules r, r′ are said to be strongly equivalent, in symbols r ≡s r

′, if for any
set Π of rules, Π ∪ {r} and Π ∪ {r′} have the same equilibrium models; strong
equivalence for sets of rules is defined analogously. Rules (and sets of rules)
are strongly equivalent iff they are logically equivalent in HT, i.e. they have
the same HT-models, [3]. Hence, strongly equivalent rules can be interchanged
without loss in any context, and deduction in HT provides a key instrument for
replacing rules by equivalent, simpler ones.

As happened with non-fundamental clauses in classical logic, some rules may
contain irrelevant or redundant information. To avoid this, we define:

Definition 1 (fundamental rule). A rule r is said to be fundamental when
all pairwise intersections of sets Hd+

r ,Hd−r , B
+
r , B

−
r are empty, with the possible

exception of Hd+
r ∩Hd−r .

Lemma 2. For any rule r:
i) If one of the intersections B+

r ∩B−r , B+
r ∩Hd+

r and B−r ∩Hd−r is not empty,
then r is a tautology.

ii) Otherwise, r is strongly equivalent to the fundamental rule:

r′ : B+
r ∧ ¬B−r → (Hd+

r \B−r) ∨ ¬(Hd−r \B+
r).

The proof follows from (1)-(4). Lemma 2 plus the main result in [7] implies

Theorem 1. Fundamental rules constitute a normal form for the logic of HT.

4 Generation of prime implicates

As can be imagined, our goal of obtaining minimal programs will depend in a
crucial way on how we define the relation simpler than between two programs, or
more specifically, between two rules. To this aim, we can either rely on a syntactic
or on a semantic definition. For classical logic, Proposition 1 shows that both
choices are interchangeable: we can either use the inclusion of literals among
fundamental clauses C ⊆ D (a syntactic criterion) or just use entailment C |= D
instead. In the case of HT, however, we will see later that this correspondence is
not preserved in a direct way. For this reason, we maintain two different concepts
of smaller rule in HT: entailment, written r |= r′ with its usual meaning; and
subsumption, written r ⊆ r′ and defined below.

Definition 2 (subsumption). A rule r subsumes another rule r′, written r ⊆
r′, when Hd+

r ⊆ Hd+
r′ , Hd−r ⊆ Hd−r′ , B+

r ⊆ B+
r′ and B−r ⊆ B−r′ .

Rule subsumption r ⊆ r′ captures the idea that r results from removing
some literals in r′. It follows that the empty rule ⊥ subsumes all rules. As usual,
we handle the strict versions of subsumption, written r ⊂ r′ and meaning both
r ⊆ r′ and r 6= r′, and of entailment, written r |< r′ and meaning that r |= r′ but
r′ 6|= r. From (5),(6) we conclude that subsumption is stronger than entailment:

Theorem 2. For any pair of rules r, r′, if r ⊆ r′ then r |= r′.

However, in contrast to Proposition 1 for classical logic, in HT the converse
direction does not hold. As a counterexample:

Example 2. Given rules r : p→ q and r′ : p∧¬q → ⊥ we have r |= r′ but r 6⊆ r′.

In the rest of this section we will focus on syntactic subsumption, providing
later (Section 6) a variation that uses semantic entailment instead.

Definition 3 (Syntactically simpler program). We say that program Π is
syntactically simpler than program Π ′, written Π � Π ′, if there exists some
Γ ⊆ Π ′ such that Π results from replacing each rule r′ ∈ Γ by some r, r ⊆ r′.

In other words, we might remove some rules from Π ′ and, from the remain-
ing rules, we might remove some literals at any position. Note that Π ⊆ Π ′

implies Π � Π ′ but the converse implication does not hold, and that, of course,
syntactically simpler does not generally entail any kind of semantic relation.

Theorem 3. Let Π be a �-minimal logic program among those strongly equiv-
alent to some theory Γ . Then Π consists of fundamental rules.

Definition 4 (implicate/prime implicate). A fundamental rule r is an im-
plicate of a theory Γ iff Γ |= r. Moreover, r is said to be prime iff it is not
strictly subsumed by another implicate of Γ .

To sum up, we face again the same setting as in classical logic: to find a
�-minimal program Π equivalent to some theory Γ means to obtain a set of
prime implicates that cover all countermodels of Γ . Therefore, it is crucial that
we are able to characterise the countermodels of fundamental rules, as we did
with Proposition 2 in the classical case. Given a fundamental rule r, we define
the set of HT-interpretations CMs(r) def={

〈H,T 〉
∣∣ B+

r ⊆ H, B−r ∩ T = ∅, Hd+
r ∩H = ∅, Hd−r ⊆ T

}
Theorem 4. Given a fundamental rule r and an HT-interpretation M : M 6|= r
iff M ∈ CMs(r)t.

Theorem 4 and the fact that CMs(r) is never empty leads to:

Observation 1 Fundamental rules always have countermodels.

Given two fundamental rules r, r′ we say that r covers r′ when CMs(r′) ⊆
CMs(r). Notice that this definition of covering is stronger than entailment: if
CMs(r′) ⊆ CMs(r) then the same still holds for CMs(r′)t ⊆ CMs(r)t and
from Theorem 4 we conclude r |= r′. On the other hand, it is very easy to see
that covering is a weaker condition than subsumption:

Proposition 3. If r ⊆ r′ then CMs(r′) ⊆ CMs(r).

As with classical clauses, the countermodels in CMs(r) can also be compactly
described by a mapping of the set of atoms into a set of labels (which contains
more elements now). To do so, note first that the definition of CMs(r) can
be directly rephrased in terms of three-valued interpretations as follows: M ∈
CMs(r) iff the following conditions hold for any atom p: (i) p ∈ B+

r ⇒M(p) = 2;
(ii) p ∈ B−r ⇒ M(p) = 0; (iii) p ∈ Hd+

r ⇒ M(p) 6= 2; and (iv) p ∈ Hd−r ⇒
M(p) 6= 0. As r is a fundamental rule, the last two conditions are not mutually
exclusive. Thus, when p ∈ Hd+

r ∩Hd−r we would just have M(p) = 1.

Definition 5 (Rule labelling). Given a fundamental rule r, we define its la-
belling −→r as a set containing, for each atom p ∈ At, a pair:

(p, 2) if p ∈ B+
r

(p, 0) if p ∈ B−r
(p, 1) if p ∈ Hd+

r ∩Hd−r

(p, 2̄) if p ∈ Hd+
r \Hd−r

(p, 0̄) if p ∈ Hd−r \Hd+
r

(p, -) if p does not occur in r

Note that (p, 2̄) stands for M(p) 6= 2 whereas (p, 0̄) stands for M(p) 6= 0. We will
sometimes write −→r (p) = v when (p, v) ∈ −→r and we also use the abbreviation
−→r |6=p to stand for {(q, v) ∈ −→r | q 6= p}. As an example of labelling, given
the signature At = {a, b, c, d, e, p, q}, the fundamental clause r : a ∧ b ∧ ¬d →
e ∨ p ∨ ¬p ∨ ¬q would correspond to −→r = 22-02̄10̄. In fact, there actually exists
a one-to-one correspondence between a fundamental rule and its labelling, i.e.,
we can get back the rule r from −→r . Thus, the set of countermodels CMs(r), or
its corresponding labelling −→r , can be used to univocally represent the original
rule r. It is important to remember, however, that CMs(r) is not the set of
countermodels of r – by Theorem 4, the latter actually corresponds to CMs(r)t.

A single countermodel M = 〈H,T 〉 can also be seen as a labelling that assigns
a label in {0, 1, 2} to each atom in the signature. Using the above definitions,
the rule4 rM corresponding to M would be: B+

rM
= H, B−rM

= At \ T and
Hd+

rM
= Hd−rM

= T \H. It is easy to see that rules derived from countermodels
are �-maximal – in fact, there is no way to construct any fundamental rule
strictly subsumed by rM . These implicates will constitute the starting set S0

of the algorithm, which will generate new implicates that always subsume at
least one of those previously obtained. The proposed algorithm (Generation of
Prime Implicates, GPI) is shown in Table (a) of Figure 4. The algorithm applies
three basic matching steps to implicates whose labels just differ in one atom p.
Note that the possible matches would be much more than three, but only three
cases i), ii) and iii) yield any effect. To understand the purpose behind these
three operations, consider the form of the corresponding involved fundamental
rules. Using the correspondence between labelling and rule we obtain Table (b)
in Figure 4.

Proposition 4. Let α, β and p be arbitrary propositional formulas. For the three
cases i), ii), iii) in Table (b) Figure 4, the equivalence r′′ ↔ r∧r′ is an HT-valid
formula.

Table (b) in Figure 4 also explains the way in which the algorithm assigns
the non-prime marks. For instance, in cases i) and ii) only r is subsumed by the
new generated rule r′′ and so, GPI leaves r′ without being marked in the current
step i+ 1. However, in case iii) the obtained rule r′′ subsumes not only r and r′

but also α ∧ ¬p → β and α ∧ p → β which were left previously unmarked, and
must therefore be marked now too.

To prove termination and correctness of the algorithm, we will provide a
pair of useful definitions. Given a label v ∈ {0, 1, 2, 2̄, 0̄, -} we define its weight,
w(v), as a value in {0, 1, 2} specified as follows: w(0) = w(1) = w(2) = 0,
w(2̄) = w(0̄) = 1 and w(-) = 2. Intuitively, w(v) points out the number of
matches like i), ii) and iii) in the algorithm required to obtain label v. The
weight of a fundamental rule r, w(r), is defined as the sum of the weights w(v)
of all labels in −→r , that is, w(r) def= Σp∈At w(−→r (p)). To put an example, given
−→r = 22-02̄10̄, w(r) = 0 + 0 + 2 + 0 + 1 + 0 + 1 = 4. Clearly, there exists a
4 In fact, constructing a rule per each countermodel was one of the techniques used

in [7] to show that any arbitrary theory is equivalent to a set of rules.

S0 := {−→rM | M 6|= Γ};
i := 0;
while Si 6= ∅ do
Si+1 := ∅;
for each −→r ,−→r ′ ∈ Si such that −→r 6= −→r ′ and −→r | 6=p = −→r ′| 6=p for some p do

case i): (p, 1) ∈ −→r and (p, 0) ∈ −→r ′ then
Add −→r ′′ : −→r | 6=p ∪ { (p, 2̄) } to Si+1;
Mark −→r as non-prime;

case ii): (p, 1) ∈ −→r and (p, 2) ∈ −→r ′ then
Add −→r ′′ : −→r | 6=p ∪ { (p, 0̄) } to Si+1;
Mark −→r as non-prime;

case iii): (p, 2̄) ∈ −→r and (p, 0̄) ∈ −→r ′ then
Add −→r ′′ : −→r | 6=p ∪ { (p, -) } to Si+1;
Mark −→r ,−→r ′, −→r |6=p ∪ {(p, 0)} and −→r | 6=p ∪ {(p, 2)} as non-prime;

end case
end for each
i := i+ 1;

end while
(a) Pseudocode.

case i) case ii) case iii)

r : α → β ∨ p ∨ ¬p
r′ : α ∧ ¬p → β
r′′ : α → β ∨ p

r : α → β ∨ p ∨ ¬p
r′ : α ∧ p → β
r′′ : α → β ∨ ¬p

r : α → β ∨ p
r′ : α → β ∨ ¬p
r′′ : α → β

(b) Rule form of generated implicates.

Fig. 2. Algorithm for generation of prime-implicates (GPI).

maximum value for a rule weight which corresponds to assigning label ‘-’ to all
atoms, i.e., 2 · |At|.

Lemma 3. Let IMPi(Γ) denote the set of implicates of Γ of weight i. Then,
in the algorithm GPI, Si = IMPi(Γ).

Theorem 5. Algorithm GPI stops after a finite number of steps i = n and⋃
i=0...n Si is the set of implicates of Γ .

Theorem 6. Let Γ be some arbitrary theory. The set of unmarked rules obtained
by GPI is the set of prime implicates of Γ .

5 Examples

To illustrate algorithm GPI, we begin considering its application to translate the
theory Γ = {(¬p → q) → p} into a strongly equivalent minimal logic program.
The set of countermodels is represented by the labels at the first column of the

table below, assuming alphabetical ordering for atoms in {p, q}. For instance,
labelling 10 stands for M(p) = 1 and M(q) = 0, that is, M = 〈∅, {p}〉 whereas
02 stands for M ′(p) = 0 and M ′(q) = 2, i.e., M ′ = 〈{q}, {q}〉. The remaining
columns show all matches that take place when forming each remaining Si. The
marks ‘*’ show those implicates that result marked at each match.

S0 S1 S2

10
02
12
01
11

10, ∗11 7−→ 12̄
02, ∗12 7−→ 2̄2
02, ∗01 7−→ 00̄
12, ∗11 7−→ 10̄
01, ∗11 7−→ 2̄1

∗12̄, ∗10̄ 7−→ 1- (mark ∗ 10, ∗12 too)
2̄2, ∗2̄1 7−→ 2̄0̄
00̄, ∗10̄ 7−→ 2̄0̄

Notice that implicate 01 in S0 is not marked until we form -1 in S2. Observe
as well that implicate 0̄2̄ is obtained in two different ways at that same step.
Since no match can be formed at S2 the algorithm stops at that point. If we
carefully observe the previous table, the final unmarked labellings −→r (i.e., prime
implicates r) are shown below:

−→r r CMs(r) CMs(r)t

02 ¬p ∧ q → ⊥ 02 02, 01
2̄2 q → p 02, 12 02, 12, 01
00̄ ¬p→ ¬q 02, 01 02, 01
1- p ∨ ¬p 10, 11, 12 10, 11, 12
2̄0̄ p ∨ ¬q 11, 12, 01, 02 11, 12, 01, 02

Finally, to obtain a minimal program we must select now a minimal set of
implicates that covers all the countermodels of Γ . To this aim, any method from
minimisation of boolean functions (like for instance, Petrick’s method [19]) is
still applicable here, as we just have a “coverage” problem and do not depend
any more on the underlying logic. Without entering into details, the application
of Petrick’s method, for instance, would proceed to the construction of a chart:

01 2̄1 00̄ 1- 2̄0̄
10 ×
02 × × × ×
12 × × ×
01 × × × ×
11 × ×

Implicate 1- will be essential, as it is the only one covering countermodel 10.
If we remove it plus the countermodels it covers we obtain the smaller chart:

02 2̄2 00̄ 2̄0̄
02 × × × ×
01 × × × ×

that just points out that any of the remaining implicates can be used to form a
minimal program equivalent to Γ . So, we get the final four �-minimal programs:

Π1 = {p ∨ ¬p, ¬p ∧ ¬q → ⊥}
Π2 = {p ∨ ¬p, q → p}

Π3 = {p ∨ ¬p, ¬p→ ¬q}
Π4 = {p ∨ ¬p, ¬q ∨ p}

This example can be used to compare to transformations in [9] (for reducing
arbitrary theories to logic programs) that applied on Γ yield program Π2 plus
the additional rule {p∨¬p∨¬q} trivially subsumed by p∨¬p in Π2. Nevertheless,
not all examples are so trivial. For instance, the theory {(¬p→ q)→ ¬(p→ r)}
from Example 1 in [9] yielded in that case a translation consisting of the six rules
{(q∧¬p→ ⊥), (q → ¬r), (¬p→ ¬p), (¬p∨¬r), (¬p→ ¬p∨¬q), (¬p∨¬q∨¬r)}
that can be trivially reduced (after removing tautologies and subsumed rules)
to {(q ∧ ¬p→ ⊥), (q → ¬r), (¬p ∨ ¬r)} but which is not a minimal program. In
fact, the GPI algorithm obtains (among others) the strongly equivalent minimal
program {(q ∧ ¬p → ⊥), (¬p ∨ ¬r)}. Note that another important advantage is
that the GPI method obtains all the possible minimal programs when several
choices exist.

As an example of the use of GPI on logic programs, consider the case where we
must combine two pieces of program from different knowledge sources. If we take,
for instance Π = {(¬r ∧ q → p), (¬p → r ∨ s)} and Π ′ = {(r → p), (¬r → q)},
these two programs are minimal when analysed independently, whereas none of
the rules in Π ∪Π ′ is subsumed by another in that set. After applying GPI to
Π∪Π ′ however, we obtain that the unique minimal strongly equivalent program
is just {(¬r → p), (r → p), (¬r → q)}.

6 Entailment

Looking at the first example in the previous section, and particularly at the
first implicates chart, it may be surprising to find that, although all of them are
prime, some implicates entail others. The reason for this was explained before:
contrarily to the classical case, (our definition of) syntactically simpler does not
mean entailment in HT. Note, for instance, how all implicates excepting 1- are
entailed by 2̄0̄. We claim, however, that our criterion is still reasonable, as there
is no clear reason why ¬p∨q should be syntactically simpler than p∧¬q → ⊥ or
p → q. On the other hand, it seems that most imaginable criteria for syntactic
simplicity should be probably stronger than our � relation. In this section we
consider an alternative semantic definition of prime implicate that relies on the
concept of entailment.

Definition 6 (s-prime implicate). An implicate r of a theory Γ is said to be
semantically prime (s-prime for short) if there is no implicate r′ of Γ such that
r′ |< r.

The only s-prime implicates in the example would be now 1- and 2̄0̄. The in-
tuition behind this variant is that, rather than focusing on syntactic simplicity,
we are interested now in collecting a minimal set of rules that are as strong as

possible, but considering rule by rule (remember that the program as a whole
has to be strongly equivalent to the original theory). Since subsumption implies
entailment, finding the s-prime implicates could be done as a postprocessing to
the GPI algorithm seen before (we would just remove some prime implicates that
are not s-prime). Another, more efficient alternative would be a suitable modifi-
cation of the algorithm to disregard entailed implicates from the very beginning.
For space reasons, we do not enter into the details of this modification. What is
perhaps more important is that in any of these two alternatives for computing
s-prime implicates we can use the following simple syntactic characterisations of
entailment and equivalence of rules.

Theorem 7. For every rule r, and every fundamental rule r′, r |= r′ iff the
following conditions hold:

1. B−r ⊆ B−r′

2. Hd−r ⊆ Hd−r′ ∪B+
r′

3. B+
r ⊆ B+

r′ ∪Hd−r′

4. Hd+
r ⊆ Hd+

r′ ∪B−r′

5. Either B+
r ∩Hd−r′ = ∅ or Hd+

r ∩Hd+
r′ = ∅.

For instance, it is easy to see that rules r and r′ in Example 2 satisfy the
above conditions. Theorem 7 leads to a characterisation of equivalence between
fundamental rules.

Corollary 1. If r and r′ are fundamental rules, then: r ≡s r
′ iff the following

conditions hold:

1. B−r = B−r′

2. Hd+
r = Hd+

r′

3. Hd−r ∪B+
r = Hd−r′ ∪B+

r′

4. If Hd+
r = Hd+

r′ 6= ∅, then B+
r = B+

r′ and Hd−r = Hd−r′

So we can actually classify fundamental rules into two categories: if their pos-
itive head is not empty Hd+

r 6= ∅, then there is no other equivalent fundamental
rule. On the other hand, if Hd+

r = ∅, then r can be called a constraint, since it
is strongly equivalent to B+

r ∧Hd−r ∧¬B−r → ⊥ but also to any rule that results
from removing atoms from the constraint’s positive body B+

r ∪Hd−r and adding
them negated in the head (this is called shifting in [20]). For instance:
p ∧ q ∧ ¬r → ⊥ ≡s q ∧ ¬r → ¬p ≡s p ∧ ¬r → ¬q ≡s ¬r → ¬p ∨ ¬q

7 Discussion and related work

We provided a method for generating a minimal logic program strongly equiv-
alent to some arbitrary propositional theory in equilibrium logic. We actually
considered two alternatives: a syntactic one, exclusively treating programs with
a smaller syntax in the sense of rule and literal occurrences; and a semantic one,
in the sense of programs that make use of rules that are as deductively strong
as possible.

Some results in the paper were known before or were previously given for
more restrictive cases. For instance, Lemma 2 (in presence of Observation 1)
provides a necessary and sufficient condition for tautological rules. This becomes
a confirmation using HT logic of Theorem 4.4 in [21]. On the other hand, our
Theorem 7 is a generalisation of Theorem 6 in [13] for programs with negation
in the head. Finally, the shifting operation we derived from Corollary 1 was
introduced before in [20] (see Corollary 4.8 there) – in fact, we have been further
able to show that it preserves strong equivalence.

As commented in the introduction, we outline two main potential applications
for our method: as a help for theoretical research and as a tool for simplifying
ground logic programs. In the first case, the method may become a valuable
support when exploring a particular group or pattern of expressions. Consider
for instance the translation into logic programs of other constructions (say ag-
gregates, classes of complex expressions in arbitrary theories, high level action
languages, etc) or even think about an hypothetical learning algorithm that must
explore a family of rules to cover input examples. In all these cases, we may be
reasonably interested in finding the smallest strongly equivalent representation
of the set of rules handled. To put an example, the translation of a nested im-
plication (p → q) → r into the logic program {(q → r), (¬p → r), (p ∨ ¬q ∨ r)}
found in [7] and of crucial importance in that paper, can be now shown, using
our algorithm, to be the most compact (strongly equivalent) possible one.

Regarding the application of our method as a tool for simplifying ground
logic programs, we may use the basic methodology proposed in [22] to clarify
the situation. Three basic types of simplifications are identified, depending on
whether the result is: (i) smaller in size (less atoms or rules, rules with less
literals, etc); (ii) belonging to a simpler class (Horn clauses, normal programs,
disjunctive programs, etc); and (iii) more efficient for a particular algorithm or
solver. Apart from this classification, they also distinguish between online (i.e.,
embedded in the algorithm for computing answer sets) and offline simplifications.
Our orientation in this paper has been completely focused on (offline) simpli-
fications of type (i). This has a practical interest when we deal with program
modules to be (re-)used in several different contexts, or for instance, with rules
describing a transition in a planning scenario, as this piece of program is then
replicated many times depending on the plan length. Adapting the algorithm to
simplifications of type (ii) is left for future work: we can force the generation of
a particular class of programs (for instance, by just disregarding implicates not
belonging to that class), or use the method to show that this generation is not
possible. Another topic for future study is the analysis of complexity.

References

1. Pearce, D.: Equilibrium logic. Ann Math Artif Intell 47 (2006) 3–41
2. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming.

In Kowalski, R.A., Bowen, K., eds.: Proc. of the Fifth International Conference
on Logic Programming, ICLP’88 (Seattle, WA, USA), Cambridge, Massachusetts,
The MIT Press (1988) 1070–1080

3. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2(4) (2001) 526–541

4. Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Proc. of the 9th Intl. Conf. on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’07). (2007) to appear.

5. Ferraris, P.: Answer sets for propositional theories. In: Proc. of the 8th Intl.
Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR’05). (2005)
119–131

6. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proc.
of the Intl. Joint Conf. on Artificial Intelligence (IJCAI’07). (2007)

7. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic
programs. Theory and Practice of Logic Programming (2007) to appear.

8. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In: Proc. of the 9th European Conf. on Artificial
Intelligence (JELIA’04). (2004)

9. Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilib-
rium logic to logic programs. In Bento, C., Cardoso, A., Dias, G., eds.: Progress in
Artificial Intelligence, Proc. of the 12th Portuguese Conf. on Artificial Intelligence,
EPIA’05, Covilhã, Portugal, December 5-8, 2005. Volume 3808 of Lecture Notes
in Computer Science., Springer (2005) 4–17

10. Osorio, M., Navarro, J.A., Arrazola, J.: Equivalence in answer set programming.
In Pettorossi, A., ed.: Proc. LOPSTR-01, Springer LNCS 2372 (2001) 57–75

11. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under
uniform and strong equivalence. In: Proc. of LPNMR’04. (2004) 87–99

12. Pearce, D.: Simplifying logic programs under answer set semantics. In: Proc. of
the Intl. Conf. on Logic Programming (ICLP’04). (2004) 210–224

13. Lin, F., Chen, Y.: Discovering classes of strongly equivalent logic programs. In:
Proc. of the Intl. Joint Conf. on Artificial Intelligence (IJCAI’05). (2005) 516–521

14. Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-
ground answer-set programming. In: Proc. of KR’06, AAAI (2006) 340–350

15. Fink, M., Pichler, R., Tompits, H., Woltran, S.: Complexity of rule redundancy
in non-ground answer-set programming over finite domains. In: LPNMR2007,
Springer (2007)

16. Quine, W.V.O.: The problem of simplifying truth functions. American Mathemat-
ical Monthly 59 (1952) 521–531

17. McCluskey, E.J.: Minimization of boolean functions. Bell System Technical Journal
35 (1956) 1417–1444

18. Cabalar, P., Pearce, D., Valverde, A.: Minimal logic programs (extended re-
port) (2007) Technical report available at http://www.dc.fi.udc.es/~cabalar/

minlp-ext.pdf.
19. Petrick, S.R.: A direct termination of the irredundant forms of a boolean function

from the set of prime implicants. Technical Report AFCRC-TR-56-110, Air Force
Cambridge Res. Center, Cambridge, MA, USA (1956)

20. Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Program-
ming 35(1) (1998) 39–78

21. Inoue, K., Sakama, C.: Equivalence of logic programs under updates. Lecture
Notes in Artificial Intelligence, Proceedings of the 9th European Conference on
Logics in Artificial Intelligence (JELIA 2004) 3229 (2004) 174–186

22. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Formal methods for comparing and
optimizing nonmonotonic logic programs. (last updated 2007) Research project
web page http://www.kr.tuwien.ac.at/research/eq.html.

http://www.dc.fi.udc.es/~cabalar/minlp-ext.pdf
http://www.dc.fi.udc.es/~cabalar/minlp-ext.pdf
http://www.kr.tuwien.ac.at/research/eq.html

	Minimal logic programs
	Pedro Cabalar, David Pearce and Agustín Valverde

