Agile development

Pedro Cabalar

Departamento de Computacion
Facultad de Informatica
University of Corunna, SPAIN

Agile Development
* Main bibliographic source:

Agile & Iterative Development — A Manager’s
Guide, Craig Larman, Addison-Wesley, 2004.

Manufacturing vs Development

Compare these 2 building tasks:
1. Building mobile phones on an assembly line
 Unanmbiguous specifications

 Reliable estimation of tasks
and scheduling

2. Building a custom house

* |[nitially, the owners are not exactly
sure of what they want

 They may clarify their mind as they
see the design, the costs, time, etc.

Manufacturing vs Development

We can: first complete specifications and Difficult to create unchanging specs from

then build the beginning

Cost and effort can be reliably estimated Estimations are only possible after some
at the beginning empirical data increasingly available

We can identify, define and schedule all We need adaptative steps driven by build-
the activities (PERT, Gantt, etc) feedback cycles

Unpredictable change is rare and Creative adaptation to change is the norm

unexpected

Software development

e Software construction mostly fits in the case
of new product development

* However, SW development methodolody was

originally focused on a mass manufacturing
problem...

Classical waterfall methods

Iterative & Evolutionary

* |terative development: the overall lifecycle is
composed of several iterations in sequence.

feedback BRI
— some
requirements

bulld 10 feedback
some —

requirements requirements

DN

.........
DN

L
i,
S

Release to
customers

lterations

* Each iteration generates an iteration release:

— release = stable, integrated and tested system,
collecting all the SW across the teams

— Most releases are internal. The final iteration release
is the complete product released externally

— Recommended duration: 1-6 weeks per iteration

* Incremental development: in each iteration the
system is tuned, but it also grows with new

features

Iterative planning

Iterative planning: what to do in the next
iteration?

Risk-driven: riskiest features first

Client-driven: the client decides the most
valuable feature to build next

Advantage: the client steers the project using
the latest insight, not just an initial speculation

Iterative planning

What to do if we cannot meet the end date for an
iteration? Three solutions:

1. Slip the end date
2. Work more hours
3. Reduce the scope

1. NO. Timeboxing: the end date cannot be changed!
2. NO. Respect: do not add pressure due to bad planning

3. YES! Reduce the scope: lower priority features moved
to the wish list

Evolutionary requirements

* Embrace change but not chaos: changes occur
from iteration to iteration

* A point of stability is needed:
during an iteration, no changes from external

stakeholders

* Requirements workshop at each iteration:
used to expand or refine requirements.

Evolutionary requirements

* Requirement analysis is evolutionary, but not
unbounded. Usually, 90% of requirements are
obtained in the first 3 or 4 iterations. Example:

“ Requirements
90% 90% “ Software

50%

o)
:ﬁz% 5%

lteration 1 Ilteration 2 I[teration 3 lteration 4 lteration 5

Evolutionary requirements

* Evolutionary # “no early requirements”

* First iterations encourage clarifying things like:
— “top ten” high level requirements

— Architectural influential factors (load, usability,
internationalization, ...)

Bad moment
for estimations

Adaptative planning

e Initial phase has high uncertainty. Difficult to make a
good planning or cost estimation.

\ Defer expectation for good estimates until a few
iterations (10-20% of the project)

The “cone” of uncertainty

4 x ~~—
2 X

X/2
x/4 —

T

/
|

Ilterl Iter2 Iter3 lterd lter5 lter6

x = Effort/cost or schedule final value

Adaptative planning

* Sometimes contracts are split into two phases

4 x \
2 X

T

X

X/2
X/4 —

Ilterl lter2 It’er3 Ite{4 Ilter5 lter6

i
Phase 2:

(Price fixed during bidding)

phasé 1: Bidding for
Fixed time, phase 2
fixed price

10% of SW but

Delivery

* Delivery =is an iteration release put in
production (marketplace)

* Promote and schedule incremental deliveries,
with :
Example: plan deliveries each 6 months

* Promote evolutionary deliveries: use
from users of installed products.

Iterative & Evolutionary methods

e Evo (Evolutionary project management)
(1960s)
— |terations of 1-2 weeks
— Evolutionary delivery at each iteration
— Adaptative client/value-driven planning
— Numeric measures for progress and quality

Iterative & Evolutionary methods

* UP (Unified Process) /RUP (Rational UP)
(mid 1990s)

— Short timeboxed iterations

— Elaboration phase: early iterations fix the high-risk &
high-value elements that are core for architecture

— Construction phase iterations build the remainder

— We can use up to 50 artifacts or workproducts (vision,
use-case model, risk list, etc) classified by disciplines
(requirements, design, project management,
implementation, etc).

Iterative & Evolutionary methods

* They were conceived in the 1990’s. Some well-
known examples are:
— Dynamic Systems Devel. Method, DSDM (1994)
— Scrum (1995)
— Crystal Clear (1996)
— Extreme Programming, XP (1996)
— Feature Driven Development, FDD (1997)

Classification of methods

Strict waterfall (sequential)
A

Cycles

Few docs, Ceremon Many docs,
few steps formal steps
Scrum

————————————————————————————

—— o o O e D S o = = - e

Many short iterations (5 days)

Classification of methods

e Cockburn scale used to show adequacy of methods
with respect to criticality and staff

Criticality Number of people
(defects cause loss of ...) 1-6 <20 <40 <100
Life
(L) L6 L20 | L40 | L100
Fesential E E2 E40 | E100
Money (E) 6 0

Discretionary

Money (D) D6 D20 | D40 | D100

Comfort
(€) Cé C20 | C40 | C100

Classification of methods

* An example: method measuring for an L100 project
has nothing to do with a C6 project.

Criticality Number of people
(defects cause loss of ...) 1-6 <20 <40 <100
Life
(L) L6 L20 | L40 | L100
Fesential E E2 E40 | E100
Money (E) 6 0

Discretionary

Money (D) D6 D20 | D40 | D100

Comfort
(€) C6 C20 | C40 | C100

Agile methods

Agile methods

* They share
— Short timeboxed iterations

: agility, rapid and flexible response to change
— Adaptative, evolutionary refinement of plans

* Although conceived in the 1990s, they receive the
name of agile methods” in 2001. A group of 17

developers meet at the Rocky Mountains, Utah and
publish the

Agile Manifesto

* |t contains the following 12 principles ...

The Agile Manifesto

1. Customer satisfaction = highest priority

5~ Keypoint: early and continuous delivery of
valuable SW

2. Welcome changing requirements
even in late development

5~ Greater customer’s competitive advantage

3. Deliver working SW frequently
= Weeks better than months!

The Agile Manifesto

4. Business people <--> developers
daily cooperation
5. Build projects around motivated individuals

-~ Give them environment and support,
then trust them to get the job done

6. The best form of communication is
face-to-face conversation

>~ Documentation is relegated to a 2nd level

The Agile Manifesto

7. The primary measure of progress is
working software

8. Promote sustainable development

>~ Be able to maintain a constant pace
(like running a marathon)

9. Continuous attention to technical excellence
and good design

The Agile Manifesto

10. Simplicity — the art of maximizing the
amount of work not done — is essential

11. The best architectures, requirements and
designs emerge from self-organizing teams

12. At regular intervals, the team readjusts and
tunes to become more effective

Agile Practices

over

People is the most important ingredient of
success

A strong player”’ need not be an ace
programmer, but an average one that works well

with others
First, build a good team, then let them configure
their environment and tools

Agile Practices

over

— Documenting software is essential, but too much
Is worse than too little

— Too much docs = effort to sync with the code, or
they become big lies that lead to confusion

— A document needs to be short and salient:
Short = <30 pages, salient = overall design and
highest-level structures

Agile Practices

over

A closed contract is an early source of failure

Requirements, schedule, costs usually become
obsolote before the project is completed

Involve customer feedback on a regular, frequent
basis

The best contracts govern the way in which
customers and developers will work together

Agile Practices

over

— SW projects cannot be planned for far future:

changing environment, requirements, estimations, ...

— Plans degrade with time: PERT, Gantt diagrams
change not only in durations but also in structure

— Solution: make flexible plans, detailed for next 2
weeks, rough for the next 3 months, and crude
beyond that

