
A Revised Concept of Safety for
General Answer Set Programs

Pedro Cabalar1, David Pearce2∗, and Agustı́n Valverde3?

1 Universidade da Coruña
cabalar@udc.es

2 Universidad Politécnica de Madrid, Spain
david.pearce@upm.es

3 Universidad de Málaga, Málaga, Spain
a valverde@ctima.uma.es

Abstract. To ensure a close relation between the answer sets of a program and
those of its ground version, some answer set solvers deal with variables by requir-
ing a safety condition on program rules. If we go beyond the syntax of disjunctive
programs, for instance by allowing rules with nested expressions, or perhaps even
arbitrary first-order formulas, new definitions of safety are required. In this pa-
per we consider a new concept of safety for formulas in quantified equilibrium
logic where answer sets can be defined for arbitrary first-order formulas. The new
concept captures and generalises two recently proposed safety definitions: that of
Lee, Lifschitz and Palla (2008) as well as that of Bria, Faber and Leone (2008).
We study the main metalogical properties of safe formulas.

1 Introduction

In answer set programming (ASP) more and more tools are being created to enable
a fuller use of first-order languages and logic. Recent developments include efforts to
extend the syntax of programs as well as to deal more directly with variables in a full,
first-order context. In several cases, assumptions such as standard names (SNA) are
being relaxed and issues involving programming in open domains are being addressed.

A stable model semantics for first-order structures and languages was defined in the
framework of equilibrium logic in [17–19]. As a logical basis the non-classical logic
of quantified here-and-there, QHT, is used (see also [15]). By expanding the language
to include new predicates, this logic can be embedded in classical first-order logic,
[20], and this permits an alternative but equivalent formulation of the concept of stable
model for first-order formulas, expressed in terms of classical, second-order logic [7].
The latter definition of answer set has been further studied in [11, 12] where the basis of
a first-order programming language, RASPL-1, is described. An alternative approach
to a first-order ASP language is developed in [8].

Several implementations of ASP deal with variables by requiring a safety condition
on program rules. In the language of disjunctive LPs, this condition is usually expressed

? Partially supported by the MEC (now MICINN) projects TIN2006-15455-(C01,C02,C03) and
CSD2007-00022, and the Junta de Andalucia project P6-FQM-02049.

by saying that a rule is safe if any variable in the rule also appears in its positive body
– this condition will be referred here as DLP safety. Programs are safe if all their rules
are safe. The safety of a program ensures that its answer sets coincide with the answer
sets of its ground version and thus allows ASP systems to be based on computations at
the level of propositional logic which may include for example the use of SAT-solvers.

What if we go beyond the syntax of disjunctive programs? Adding negation in the
heads of program rules will not require a change in the definition of safety. But for
more far reaching language extensions, such as allowing rules with nested expressions,
or perhaps even arbitrary first-order formulas, new definitions of safety are required.
Again the desideratum is that safe programs should be in a certain sense reducible to
their ground versions, whether or not these can be compiled into an existing ASP-solver.

Recently, there have been two new extensions of the notion of safety to accommo-
date different syntactic extensions of the ASP language in the first-order case. In [2],
Bria, Faber and Leone introduce an extension to a restricted variant of the language
of programs with nested expressions (or nested programs, for short) [16]. The rules
are called normal form nested or NFN rules. The safety of such rules which will be
referred here as BFL-safety is designed to guarantee domain independence and per-
mit their efficient translation into the language of disjunctive programs. In this manner,
NFN programs can be compiled into the standard DLV system. A second example is the
definition of safety introduced by Lee, Lifschitz and Palla in [12] (we will call it here
LLP-safety) defined essentially for arbitrary first-order formulas in such a way that the
stable model of such a formula can be obtained by considering its ground version. It is
also shown that the stable models of safe formulas form a (first-order) definable class.
Here the motivation is not so much to compile safe programs into existing ASP lan-
guages, but rather to find tractable, first-order extensions of the customary languages.4

On the face of it, the approach followed in [12] is much more general than that of
[2] and so we might expect that the safety of general formulas from [12] embraces also
the safe NFN rules of [2]. But this is not the case: safe NFN rules need not be safe
formulas in the sense of [12]. In fact, there are simple examples of formulas that would
normally be regarded as safe that fail to be so under the [12] definition. Consider the
following example.

p← q(X) ∨ r (1)

This rule belongs to the syntactic class of programs with nested expressions as intro-
duced in [16], although (1) contains a variable, something not considered in that work.
Still, this rule is strongly equivalent to the conjunction of rules

p← q(X) ; p← r

and both are DLP safe (note that this is now a normal logic program) and so, they
are BFL-safe and LLP-safe as well. Therefore, it is reasonable to consider (1) as safe.
According to [12], however, for (1) to be safe, X must occur in some implication G→
H such that X belongs to what are called the restricted variables of G. In this case, the
only option for G is the rule body q(X) ∨ r whose set of restricted variables is empty,

4 Open answer set programming studies decidable language extensions via guarded fragments
rather than safety conditions,[8].

implying that the rule is not safe. [2] also uses a similar concept of restricted variable
but only imposes restrictions on variables occurring in the head of the rule or within the
scope of negation; so according to this account, (1) is safe.

In this paper we propose a new concept of safety that, while defined for arbitrary
first order formulas, is strictly weaker than LLP-safety, while it captures BFL-safety
when restricted to the same syntactic class of NFN-programs.

Desiderata for safety For our purposes there are three key desiderata associated with
safety that we should keep distinct. The first property is very simple and does not refer to
grounding. It says merely that a stable model should not contain unnamed individuals.
This condition is formally expressed by Theorem 1 below and is fulfilled by formu-
las that we call semi-safe. Secondly we have the property usually most associated with
safety. This is called domain independence and it does refer to grounding. It says that
grounding a program with respect to any superset of the program’s constants will not
change the class of stable models. This is satisfied by formulas that we call safe and
is expressed by Proposition 4 and Theorem 3. The third property, also satisfied by safe
formulas, is expressed in Theorem 4: it says that the class of stable models should be
first-order definable. This may be relevant for establishing properties such as interpo-
lation and for computational purposes, being exploited for instance by the method of
loop formulas.5

Let us consider some inherent limitations of a safety definition. Arbitrary theories
are, in general, not domain independent. Even simple normal rules like, for instance:

p← not q(X) (2)

are not domain independent. To see why, take (2) plus the fact q(1). If we ground this
program on the domain {1} we get the stable model {q(1)}, but if we use the extended
domain {1, 2}, the only stable model becomes now {q(1), p}. Unfortunately, directly
checking domain independence of an arbitrary formula does not seem a trivial task. It
seems much more practical to find a (computationally) simple syntactic condition, like
safety, that suffices to guarantee domain independence. However, due to its syntactic
nature, a condition of this kind will just be sufficient but, most probably, not necessary.
For instance, while as we saw above, (2) cannot be considered safe under any definition,
if we consider the conjunction of (2) with the (variable-free) constraint:

⊥ ← q(1) (3)

the resulting program is domain independent. The reason is that (2) is strongly equiva-
lent to the formula (∃x ¬q(x))→ p whereas (3) is equivalent to ¬q(1) that, in its turn,
implies (∃x ¬q(x)) in QHT. This example shows that checking domain independence
may require considering semantic interrelations of the formula or program as a whole.
On the other hand, the fact that safety is sensitive to redundancies or that the safety
of a formula may vary under a strongly equivalent transformation is unavoidable. For

5 Of course there are other definable classes of stable models, such as those determined by
formulas with a finite complete set of loops [13].

instance, the program consisting of (2) and the fact p is clearly domain independent, as
in the presence of p, (2) becomes redundant and can be removed.

As regards our methodology, it is important to note that in order to handle explicit
quantifiers and possible relaxations of the SNA it is indispensable to use a genuine first-
order (or higher-order) semantics. Our approach here will be to analyse safety from the
standpoint of (quantified) equilibrium logic in which a first-order definition of stable or
equilibrium model can be given in the logic QHT. One specific aim is to generalise
the safety concept from [12] so that rules such as (1), and indeed all the safe rules from
[2], can be correctly categorised as safe. At least as regards simplicity and intuitiveness,
we feel that our approach has some advantages over the methodology of [12] that uses
a mixture of QHT and classical second-order logic.6

2 Review of Quantified Equilibrium Logic and Answer Sets

In this paper we restrict attention to function-free languages with a single negation
symbol, ‘¬’, working with a quantified version of the logic here-and-there. In other
respects we follow the treatment of [19]. We consider first-order languages L = 〈C,P 〉
built over a set of constant symbols, C, and a set of predicate symbols, P . The sets
of L-formulas, L-sentences and atomic L-sentences are defined in the usual way. We
work here mainly with sentences. If D is a non-empty set, we denote by At(D,P) the
set of ground atomic sentences of the language 〈D,P 〉. By an L-interpretation I over
a set D we mean a subset of At(D,P). A classical L-structure can be regarded as a
tupleM = 〈(D,σ), I〉 where I is an L-interpretation over D and σ : C ∪ D → D is
a mapping, called the assignment, such that σ(d) = d for all d ∈ D. If D = C and
σ = id,M is an Herbrand structure.

A here-and-there L-structure with static domains, or QHT(L)-structure, is a tuple
M = 〈(D,σ), Ih, It〉 where 〈(D,σ), Ih〉 and 〈(D,σ), It〉 are classical L-structures
such that Ih ⊆ It. We can think of a here-and-there structureM as similar to a first-
order classical model, but having two parts, or components, h and t, that correspond to
two different points or “worlds”, ‘here’ and ‘there’, in the sense of Kripke semantics
for intuitionistic logic [6], where the worlds are ordered by h ≤ t. At each world
w ∈ {h, t} one verifies a set of atoms Iw in the expanded language for the domain D.
We call the model static, since, in contrast to, say, intuitionistic logic, the same domain
serves each of the worlds. Since h ≤ t, whatever is verified at h remains true at t. The
satisfaction relation forM is defined so as to reflect the two different components, so
we writeM, w |= ϕ to denote that ϕ is true inM with respect to the w component.
The recursive definition of the satisfaction relation forces us to consider formulas from
〈C ∪ D,P 〉. Evidently we should require that an atomic sentence is true at w just in
case it belongs to the w-interpretation. Formally, if p(t1, . . . , tn) ∈ At(C ∪D,P) and
w ∈ {h, t} then

M, w |= p(t1, . . . , tn) iff p(σ(t1), . . . , σ(tn)) ∈ Iw.
M, w |= t = s iff σ(t) = σ(s)

6 For reasons of space, in the sequel some proofs have been shortened or omitted. For a more
detailed version, see http://www.ia.urjc.es/˜dpearce.

Then |= is extended recursively as follows, conforming to the usual Kripke semantics
for intuitionistic logic given our assumptions about the two worlds h and t and the
single domain D, see eg. [6]. We shall assume that L contains the constants > and ⊥
and regard ¬ϕ as an abbreviation for ϕ→ ⊥.

– M, w |= >, M, w 6|= ⊥
– M, w |= ϕ ∧ ψ iffM, w |= ϕ andM, w |= ψ.
– M, w |= ϕ ∨ ψ iffM, w |= ϕ orM, w |= ψ.
– M, t |= ϕ→ ψ iffM, t 6|= ϕ orM, t |= ψ.
– M, h |= ϕ→ ψ iffM, t |= ϕ→ ψ andM, h 6|= ϕ orM, h |= ψ.
– M, t |= ∀xϕ(x) iffM, t |= ϕ(d) for all d ∈ D.
– M, h |= ∀xϕ(x) iffM, t |= ∀xϕ(x) andM, h |= ϕ(d) for all d ∈ D.
– M, w |= ∃xϕ(x) iffM, w |= ϕ(d) for some d ∈ D.

Truth of a sentence in a model is defined as follows:M |= ϕ iffM, w |= ϕ for each
w ∈ {h, t}. In a modelM we also use the symbols H and T , possibly with subscripts,
to denote the interpretations Ih and It respectively; so, an L-structure may be written in
the form 〈U,H, T 〉, where U = (D,σ). A structure 〈U,H, T 〉 is called total if H = T ,
whence it is equivalent to a classical structure. We shall also make use of an equivalent
semantics based on many-valued logic; the reader is referred to [18].

The resulting logic is called Quantified Here-and-There Logic with static domains
and decidable equality, and denoted in [15] by SQHT=, where a complete axiomai-
sation can be found. In terms of satisfiability and validity this logic is equivalent to
the logic previously introduced in [18]. To simplify notation we drop the labels for
static domains and equality and refer to this logic simply as quantified here-and-there,
QHT. In the context of logic programs, the following often play a role. Let σ|C denote
the restriction of the assignment σ to constants in C. In the case of both classical and
QHT models, we say that the parameter names assumption (PNA) applies in case σ|C
is surjective, i.e., there are no unnamed individuals in D; the unique names assump-
tion (UNA) applies in case σ|C is injective; in case both the PNA and UNA apply, the
standard names assumption (SNA) applies, i.e. σ|C is a bijection. We will speak about
PNA-, UNA-, or SNA-models, respectively, depending on σ.

As in the propositional case, quantified equilibrium logic, or QEL, is based on a
suitable notion of minimal model.

Definition 1. Let ϕ be an L-sentence. An equilibrium model of ϕ is a total modelM =
〈(D,σ), T, T 〉 of ϕ such that there is no model of ϕ of the form 〈(D,σ), H, T 〉 where
H is a proper subset of T .

2.1 relation to answer sets

We assume the reader is familiar with the usual definitions of answer set based on
Herbrand models and ground programs, eg. [1]. Two variations of this semantics, the
open [8] and generalised open answer set [9] semantics, consider non-ground programs
and open domains, thereby relaxing the PNA.

For the present version of QEL the correspondence to answer sets can be sum-
marised as follows (see [18, 19, 3]). If ϕ is a universal sentence in L = 〈C,P 〉 (see §3

below), a total QHT model 〈U, T, T 〉 of ϕ is an equilibrium model of ϕ iff 〈T, T 〉 is a
propositional equilibrium model of the grounding of ϕ with respect to the universe U .

By the usual convention, when Π is a logic program with variables we consider the
models of its universal closure expressed as a set of logical formulas. It follows that ifΠ
is a logic program (of any form), a total QHT model 〈U, T, T 〉 of Π is an equilibrium
model of Π iff it is a generalised open answer set of Π in the sense of [9]. If we assume
all models are UNA-models, we obtain the version of QEL found in [18]. There, the
following relation of QEL to (ordinary) answer sets for logic programs with variables
was established. If Π is a logic program, a total UNA-QHT model 〈U, T, T 〉 of Π is
an equilibrium model of Π iff it is an open answer set of Π .

[7] provides a new definition of stable model for arbitrary first-order formulas,
defining the property of being a stable model syntactically via a second-order condition.
However [7] also shows that the new notion of stable model is equivalent to that of
equilibrium model defined here. In a sequel to this paper, [11] applies the new definition
and makes the following refinements. The stable models of a formula are defined as
in [7] while the answer sets of a formula are those Herbrand models of the formula
that are stable in the sense of [7]. Using this new terminology, it follows that in general
stable models and equilibrium models coincide, while answer sets are equivalent to
SNA-QHT models that are equilibrium models.

3 Safety

We work with the same concept of restricted variable as used in [11, 12]. To every
quantifier-free formula ϕ the set RV(ϕ) of its restricted variables is defined as follows:

– For atomic ϕ, if ϕ is an equality between two variables then RV(ϕ) = ∅; other-
wise, RV(ϕ) is the set of all variables occurring in ϕ;

– RV(⊥) = ∅;
– RV(ϕ1 ∧ ϕ2) = RV(ϕ1) ∪ RV(ϕ2);
– RV(ϕ1 ∨ ϕ2) = RV(ϕ1) ∩ RV(ϕ2);
– RV(ϕ1 → ϕ2) = ∅.

A sentence is said to be in prenex form if it has the following shape, for some n ≥ 0:

Q1x1 . . . Qnxnψ (4)

where Qi is ∀ or ∃ and ψ is quantifier-free. A sentence is said to be universal if it is in
prenex form and all quantifiers are universal. A universal theory is a set of universal sen-
tences. For QHT, normal forms such as prenex and Skolem forms were studied in [18].
In particular it is shown there that in quantified here-and-there logic every sentence is
logically equivalent to a sentence in prenex form. A similar observation regarding first-
order formulas under the new stable model semantics of [7] was made in [14]. Thus
from a logical point of view there is no loss of generality in defining safety for prenex
formulas.

3.1 Semi-safety

A variable assignment ξ in a universe (D,σ) is a mapping from the set of variables to
D. If ϕ ∈ L has free-variables, ϕξ is the closed formula obtained by replacing every
free variable x by ξ(x). On the other hand, in the following, if T ⊂ At(D,P), we
denote by T |C the subset of T whose atoms contain terms only from σ(C).

Lemma 1. Let ϕ be a quantifier-free formula and ξ a variable assignment in a universe
(D,σ). If 〈(D,σ), T |C , T 〉 |= ϕξ, then ξ(x) ∈ σ(C) for all x ∈ RV(ϕ).

As in [12], we define a concept of semi-safety of a prenex form sentence ϕ in terms
of the semi-safety of all its variable occurrences. Formally, this is done by defining
an operator NSS that collects the variables that have non-semi-safe occurrences in a
formula ϕ.

Definition 2 (NSS and semi-safety).

1. If ϕ is an atom, NSS(ϕ) is the set of variables in ϕ.
2. NSS(ϕ1 ∧ ϕ2) = NSS(ϕ1) ∪NSS(ϕ2)
3. NSS(ϕ1 ∨ ϕ2) = NSS(ϕ1) ∪NSS(ϕ2)
4. NSS(ϕ1 → ϕ2) = NSS(ϕ2) r RV(ϕ1).

A sentence ϕ is said to be semi-safe if NSS(ϕ) = ∅. ut

In other words, a variable x is semi-safe in ϕ if every occurrence is inside some
subformula α → β such that, either x is restricted in α or x is semi-safe in β. This
condition of semi-safety is a relaxation of that of [12], where the implication α → β
should always satisfy that x is restricted in α. As a result, (1) is semi-safe, but it is not
considered so under the definition in [12]. Similarly, our definition implies, for instance,
that any occurrence of a variable x in a negated subformula, ¬α(x), will be semi-safe –
it corresponds to an implication α(x) → ⊥ with no variables in the consequent. Other
examples of semi-safe formulas are, for instance:

¬p(x)→ (q(x)→ r(x)) (5)
p(x) ∨ q → ¬r(x) (6)

Note how in (6), x is not restricted in p(x) ∨ q but the consequent ¬r(x) is semi-safe
and thus the formula itself. On the contrary, the following formulas are not semi-safe:

p(x) ∨ q → r(x) (7)
¬¬p(x) ∧ ¬r(x)→ q(x) (8)

Lemma 2. Let ϕ be a quantifier-free formula and ξ a variable assignment in (D,σ) s.t.
ξ(x) ∈ σ(C) for all x ∈ NSS(ϕ). If 〈(D,σ), T, T 〉 |= ϕξ, then 〈(D,σ), T |C , T 〉 |= ϕξ.

Proof. By induction over ψ = ϕξ. If ψ is atomic the result is trivial and the induction
step is also trivial for conjunctive and disjunctive formulas. So, let us assume that ϕ =

ϕ1 → ϕ2 where, by the induction hypothesis, ϕ2 is such that, if 〈(D,σ), T, T 〉 |= ϕξ2
and ξ(x) ∈ σ(C) for all x ∈ NSS(ϕ2), then 〈(D,σ), T |C , T 〉 |= ϕξ2. Assume

〈(D,σ), T, T 〉 |= ϕξ1 → ϕξ2 (9)

and ξ(x) ∈ σ(C) for all x ∈ NSS(ϕ1 → ϕ2). We must prove that

〈(D,σ), T |C , T 〉 |= ϕξ1 → ϕξ2. (10)

First, suppose that 〈(D,σ), T |C , T 〉 6|= ϕξ1. If 〈(D,σ), T |C , T 〉 |= ¬ϕξ1 then clearly
〈(D,σ), T |C , T 〉 |= ϕξ1 → ϕξ2 and we are done. Otherwise, 〈(D,σ), T |C , T 〉 |= ¬¬ϕξ1.
Then, by (9) 〈(D,σ), T |C , T 〉, t |= ϕξ1 → ϕξ2, and since 〈(D,σ), T |C , T 〉, h 6|= ϕξ1, (10)
follows. Suppose therefore that 〈(D,σ), T |C , T 〉 |= ϕξ1, then 〈(D,σ), T, T 〉 |= ϕξ1 and
thus

〈(D,σ), T, T 〉 |= ϕξ2 (11)

On the other hand, if 〈(D,σ), T |C , T 〉 |= ϕξ1, by Lemma 1, ξ(x) ∈ σ(C) for all x ∈
RV(ϕ1) and by hypothesis, ξ(x) ∈ σ(C) for all x ∈ NSS(ϕ1 → ϕ2); in particular, for
NSS(ϕ1 → ϕ2) ∪ RV(ϕ1) ⊇ NSS(ϕ2) we have:

ξ(x) ∈ σ(C) for all x ∈ NSS(ϕ2) (12)

By the ind. hyp., (11) and (12), we conclude that 〈(D,σ), T |C , T 〉 |= ϕξ2. �

This lemma allows us to conclude the main property of semi-safe formulas: their equi-
librium models only refer to objects from the language.

Proposition 1. If ϕ is semi-safe, and 〈(D,σ), T, T 〉 |= ϕ, then 〈(D,σ), T |C , T 〉 |= ϕ.

Proof. (sketch) Assume the formula is in prenex form and proceed by induction over
the length of the prefix. �

Theorem 1. If ϕ is semi-safe, and 〈(D,σ), T, T 〉 is an equilibrium model of ϕ, then
T |C = T .

3.2 safe formulas

The concept of safety relies on semi-safety plus an additional condition on variable
occurrences that can be defined in terms of Kleene’s three-valued logic [10]. Given
a three-valued interpretation ν : At → {0, 1/2, 1}, we extend it to evaluate arbitrary
formulas ν(ϕ) as follows:

ν(ϕ ∧ ψ) = min(ν(ϕ), ν(ψ)) ν(⊥) = 0
ν(ϕ ∨ ψ) = max(ν(ϕ), ν(ψ)) ν(ϕ→ ψ) = max(1− ν(ϕ), ν(ψ))

from which we can derive ν(¬ϕ) = ν(ϕ→ ⊥) = 1− ν(ϕ) and ν(>) = ν(¬⊥) = 1.

Definition 3 (νx operator). Given any quantifier-free formula ϕ and any variable x,
we define the three-valued interpretation so that for any atom α, νx(α) = 0 if x occurs
in α and νx(α) = 1/2 otherwise.

Intuitively, νx(ϕ) fixes all atoms containing the variable x to 0 (falsity) leaving
all the rest undefined and then evaluates ϕ using Kleene’s three-valued operators, that
is nothing else but exploiting the defined values 1 (true) and 0 (false) as much as
possible. For instance, νx(p(x) → q(x)) would informally correspond to νx(0 →
0) = max(1 − 0, 0) = 1 whereas νx(p(x) ∨ r(y) → q(x)) = νx(0 ∨ 1/2 → 0) =
max(1−max(0, 1/2), 0) = 1/2.

For the following definition, we need to recall the following terminology: a subex-
pression of a formula is said to be positive in it if the number of implications that contain
that subexpression in the antecedent is even, and negative if it is odd.

Definition 4 (Weakly-restricted variable). An occurrence of a variable x in Qx ϕ is
weakly-restricted if it occurs in a subformula ψ of ϕ such that:

– Q = ∀, ψ is positive and νx(ψ) = 1
– Q = ∀, ψ is negative and νx(ψ) = 0
– Q = ∃, ψ is positive and νx(ψ) = 0
– Q = ∃, ψ is negative and νx(ψ) = 1

In all cases, we further say that ψ makes the ocurrence weakly restricted in ϕ.

Definition 5. A semi-safe sentence is said to be safe if all its positive occurrences of
universally quantified variables, and all its negative occurrences of existentially quan-
tified variables are weakly restricted.

For instance, the formula ϕ = ∀x(¬q(x) → (r ∨ ¬p(x))) is safe: the occurrence of
x in p(x) is negative, whereas the occurrence in q(x) is inside a positive subformula,
ϕ itself, for which x is weakly-restricted, since νx(ϕ) = ¬0 → (1/2 ∨ ¬0) = 1. The
occurrence of x in ¬q(x) is not restricted and as a consequence the formula is not LLP-
safe. The other aspect where Definition 5 is more general than LLP-safety results from
the fact that to be safe x can occur negatively in ϕ given Qi = ∀ or positively given
Qi = ∃. Another example of a safe formula is ∀x((¬¬p(x) ∧ q(x))→ r).

Lemma 3. Let ϕ(x) a prenex formula that has no free variables other than x. Let
〈(D,σ), H, T 〉 be a model such that T ⊂ At(σ(C), P). Then:

1. If ∀xϕ(x) is safe: 〈(D,σ), H, T 〉 |= ∀xϕ(x) iff 〈(D,σ), H, T 〉 |=
∧
c∈C

ϕ(c).

2. If ∃xϕ(x) is safe: 〈(D,σ), H, T 〉 |= ∃xϕ(x) iff 〈(D,σ), H, T 〉 |=
∨
c∈C

ϕ(c).

Proof. (sketch) The proof makes use of the monotonic properties of the many-valued
assignments with respect to the positive and negative ocurrences of subformulas. �

4 Grounding

Let (D,σ) be a domain andD′ ⊆ D a finite subset; the grounding overD′ of a sentence
ϕ, denoted by GrD′(ϕ), is defined recursively: the operator does not modify ground
formulas, it propagates through propositional connectives and:

GrD′(∀xϕ(x)) =
∧

d∈D′
GrD′ϕ(d) GrD′(∃xϕ(x)) =

∨
d∈D′

GrD′ϕ(d)

The following property of grounding holds (cf [18] for a version for universal theories.)

Proposition 2. 〈(D,σ), H, T 〉 |= ϕ if and only if 〈(D,σ), H, T 〉 |= GrD(ϕ)

In particular, if we work with PNA-models (D = σ(C)), we can ground using the
initial constants, but we need the first-order semantics because with the mapping σ two
constants may denote the same element of the domain; then we would obtain:

〈(D,σ), H, T 〉 |= ϕ iff 〈(D,σ), H, T 〉 |= GrC(ϕ) (13)

Lemma 4. If T ⊂ At(σ(C), P) and there exists a ∈ D \ σ(C) then,

1. 〈(D,σ), H, T 〉 |= ∀xϕ(x) if and only if 〈(D,σ), H, T 〉 |=
∧
d∈σ(C)∪{a} ϕ(d)

2. 〈(D,σ), H, T 〉 |= ∃xϕ(x) if and only if 〈(D,σ), H, T 〉 |=
∨
d∈σ(C)∪{a} ϕ(d)

Proof. (sketch) If T ⊂ At(σ(C), P), then the role of any object outside of σ(C) is the
same. So, we can choose just one element to represent all of them. �

Proposition 3. If T ⊂ At(σ(C), P) and a ∈ D \ σ(C), then 〈(D,σ), H, T 〉 |= ϕ if
and only if 〈(D,σ), H, T 〉 |= GrC∪{a}(ϕ).

Theorem 2. Let ϕ be a safe prenex formula. Let 〈(D,σ), H, T 〉 be a model such that
T ⊂ At(σ(C), P). Then:

〈(D,σ), H, T 〉 |= ϕ if and only if 〈(D,σ), H, T 〉 |= GrC(ϕ)

Proof. By induction on the length of the prefix. �

We can now show as promised the property that safe formulas satisfy domain inde-
pendence. The following is immediate from Theorems 1 and 2 and the definition of
equilibrium model.

Proposition 4. Let ϕ be a safe prenex formula, then: 〈(D,σ), T, T 〉 is an equilibrium
model of ϕ if and only if it is an equilibrium model of GrC(ϕ).

Here is an alternative formulation using language expansions.

Theorem 3. Let ϕ be a safe prenex formula. Suppose we expand the language L by
considering a set of constants C ′ ⊃ C. A total QHT-model 〈(D,σ), T, T 〉 is an equi-
librium model of GrC′(ϕ) if an only if it is an equilibrium model of GrC(ϕ).

The concept of domain independence from [2] is obtained as a special case if we assume
that the unique name assumption applies.

5 Definability

An important property of safe formulas is that they form a definable class in first-order
logic.7 Let ϕ be a ground sentence and (α1, . . . , αn) the sequence of atoms in ϕ. If β =
(β1, . . . , βn) is another sequence of ground atoms, the formula ϕ[β] is built recursively:

7 Shown for LLP-safety in [12]. An alternative approach to exhibiting definable classes of stable
models, using loop formulas, can be found in [13].

– αi[β] = βi
– ⊥[β] = ⊥
– (ψ1 ∧ ψ2)[β] = ψ1[β] ∧ ψ2[β]
– (ψ1 ∨ ψ2)[β] = ψ1[β] ∨ ψ2[β]
– (ψ1 → ψ2)[β] = (ψ1[β]→ ψ2[β]) ∧ (ϕ→ ψ)
– (¬ψ)[β] = ¬ψ[β] ∧ ¬ψ

Lemma 5. (i) Let ϕ be a ground sentence and α = (α1, . . . , αn) the sequence of atoms
in ϕ. Let u be a sequence (u1, . . . , un) such that, for every i, either ui = ⊥ or ui = αi
and there is some i such that ui = ⊥. (ii) Then 〈(D,σ), T, T 〉 is an equilibrium model
of ϕ if and only if T is a classical model of ϕ ∧ ¬

∨
u∈U

ϕ[u].

Satisfaction in classical logic can be encoded by satisfaction by total models in here-
and-there logic [20]; so we can characterise the classical models of the formula in the
previous lemma by the total models of a formula in QHT, as follows:

Corollary 1. Given statement (i) of Lemma 5, 〈(D,σ), T, T 〉 is an equilibrium model
of ϕ if and only if it is a QHT-model of∧

1≤i≤n

(¬¬αi → αi) ∧ ϕ[¬¬α] ∧ ¬
∨
u∈U

ϕ[¬¬u]

As a consequence of this and Theorem 2 we obtain:

Theorem 4. For every safe sentence ϕ, there exists a ground formula ψ in the same
language such that 〈(D,σ), T, T 〉 is an equilibrium model of ϕ if and only if it is a
QHT-model of ψ.

6 Discussion and relation to other concepts of safety

As remarked in the introduction, one of our aims is to generalise the safety concept
of [11, 12] and at the same time capture logic programs that are safe according to [2].
Although for reasons of space we cannot present here the full definition of LLP-safety
from [12], we explained after Definition 5 the main features of our concept that gener-
alise that of [12] (see also the examples discussed below). To verify the second objective
we need to consider the class of logic programs treated by Bria, Faber and Leone in [2].
These programs are called normal form nested, or NFN for short. They comprise rules
of a special form; in logical notation they are formulas that have the shape:∧

1≤i≤m

∆i →
∨
≤i≤n

Γj (14)

where each ∆i is a disjunction of literals and each Γj is a conjunction of atoms. A ∆i

is called a basic disjunction and is said to be positive if it contains only positive literals
or atoms. In a rule r of form (14) the antecedent is called the body and the consequent
the head of the rule. According to [2] r is safe if each variable in its head literals and its
negative body literals is safe, where a variable x is said to be safe in r if if there exists

a positive basic disjunction ∆i in the body of r such that x is a variable of α for every
atom α ∈ ∆i. It is easy to check that the BFL-safe variables in r are weakly restricted
in r, therefore:

Proposition 5. All rules of an NFN program that are safe according to [2] are safe
formulas in the sense of Definition 5.

Let us consider some examples showing that the safety concept introduced in Defini-
tion 5 is quite general and, in many cases, is better behaved with respect to strongly
equivalent transformations than other definitions presented before. There are more ex-
amples where our definition detects safe sentences that are not LLP-safe. Eg, while

¬¬p(x)→ q (15)

is LLP-safe, once we add ¬r(x) to the body

¬¬p(x) ∧ ¬r(x)→ q (16)

it becomes an LLP-unsafe sentence, whereas it still preserves safety under the current
definition. Notice that the new x occurs negatively in the body but it is “made safe” by
¬¬p(x) and the fact that x does not occur in the head. In fact, if the head becomes q(x)
like in (8), the formula is not domain independent and so is not LLP-safe nor safe under
our definition (in fact, as we saw, it is not even semi-safe).

The idea of modifying the definition of semi-safe formulas to check, as in [2], that
a variable is restricted only if occurs in the head, can also be applied to existentially
quantified formulas. For instance, this formula

∃x (¬¬(p(x) ∨ q)) (17)

should be safe. It is strongly equivalent to ¬∃x p(x)→ q and this can be easily captured
by introducing an auxiliary predicate in a safe way as follows:

aux1 ← p(X)
q ← ¬aux1

In fact, (17) is safe. However, it is not even semi-safe according to the definition in [11]:
there is no implication containing x restricted in the antecedent.

7 Conclusion

We have presented a new concept of safety for general first-order formulas under stable
model semantics and hence for very general kinds of answer set programs. As a logical
formalism we have used quantified equilibrium logic based on the non-classical logic
of quantified here-and-there, QHT, in which equilibrium or stable models can be eas-
ily defined as minimal models and their logical properties readily studied. We showed
that the new concept of safety extends and generalises recent definitions of safety from
[12] and [2]. Unlike in [2], in our approach we do not have to make the unique name

assumption. We showed that safe formulas satisfy three main properties or criteria of
adequacy: their stable models do not contain unnamed individuals, they satisfy the con-
dition of domain independence, and they form a first-order definable class of structures.

A topic of ongoing work concerns program transformations. In a sequel to this paper
[5] we have begun to study classes of formulas whose safety is preserved under strong-
equivalence preserving program transformations (in particular from [4]). This work may
help to guide future improvements in the definition of a general safety concept, both
from theoretical and from computational standpoints.

References
1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. CUP,

Cambridge (2002)
2. Bria, A., Faber, W. and Leone, N. Normal Form Nested Programs. S. Hölldobler et al (eds),

JELIA 2008, Springer LNAI 5293, pp. 76–88, 2008.
3. de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: Quantified Equilibrium Logic and Hybrid

Rules. In: Marchiori, M. et al (eds), RR2007, LNCS 4524, pp. 58-72, Springer, 2007
4. Cabalar, P., Pearce, D., Valverde, A.: Reducing Propositional Theories in Equilibrium Logic

to Logic Programs. In: Bento, C. et al (eds) EPIA 05, LNAI 3808, pp. 4-17 Springer, 2005.
5. Cabalar, P., Pearce, D., Valverde, A.: Safety Preserving Transformations for General Answer

Set Programs In: Logic-Based program Synthesis and Transformation. Proc. LOPSTR 2009.
6. van Dalen, D. Logic and Structure. Springer, 2004.
7. Ferraris, P., Lee, J., Lifschitz, V.: A New Perspective on Stable Models. In: Veloso, M. (ed)

20th International Joint Conference on Artificial Intelligence, IJCAI 2007, pp. 372-379.
8. Heymans, S., van Nieuwenborgh, D., Vermeir, D.: Open Answer Set Programming with

Guarded Programs. ACM Trans. Comp. Logic 9, Article 26 (2008)
9. Heymans, S., Predoiu, L., Feier, C., de Bruijn, J., van Nieuwenborgh, D.: G-hybrid Knowl-

edge Bases. In: ALPSWS 2006, CEUR Workshop Proceedings, vol 196 (2006)
10. Kleene, S. C., On Notation for Ordinal Numbers. The J. of Symbolic Logic 3(4), 1938.
11. Lee, J., Lifschitz, V., Palla, R.: A Reductive Semantics for Counting and Choice in Answer

Set Programming. In: Proceedings AAAI 2008, pp. 472-479.
12. Lee, J., Lifschitz, V. and Palla, R.: Safe formulas in the general theory of stable models.

Preliminary report in Proc. ICLP-08, Springer, LNCS 5366, pp. 672-6, 2008; longer version
by personal communication (June 2008).

13. Lee, J. and Meng, V.: On Loop Formulas with Variables. Proc. of AAAI-08, AAAI. 2008.
14. Lee, J. Palla, R. Yet Another Proof of the Strong Equivalence between Propositional Theories

and Logic Programs. In: CENT 2007, volume 265 of CEUR Workshop Proceedings, Tempe,
AZ, May 2007. CEUR-WS.org.

15. Lifschitz, V., Pearce, D.and Valverde, A. A Characterization of Strong Equivalence for Logic
Programs with Variables. In Proc. of LPNMR 2007, Springer LNAI 4483, pp. 188-200.

16. Lifschitz, V., Tang, L. and Turner, H. Nested Expressions in Logic Programs. Annals of
Mathematics and Artificial Intelligence, 25(3-4): 369-389, 1999.

17. Pearce, D. and Valverde, A. Towards a first order equilibrium logic for nonmonotonic rea-
soning. In Proc. of JELIA 2004, Springer LNAI 3229, pp. 147-160.

18. Pearce, D. and Valverde, A. A First-Order Nonmonotonic Extension of Constructive Logic.
Studia Logica 80:321-346, 2005.

19. Pearce, D. and Valverde, A. Quantified Equilibrium Logic. Tech. report, Univ. Rey Juan Car-
los, 2006. http://www.matap.uma.es/investigacion/tr/ma06_02.pdf.

20. Pearce, D. and Valverde, A. Quantified Equilibrium Logic and Foundations for Answer Set
Programs. Proc. ICLP 08, Springer, LNCS, 2008.

