
A Purely Model-Theoretic Semantics for
Disjunctive Logic Programs with Negation ?

Pedro Cabalar1, David Pearce2, Panos Rondogiannis3, and William W. Wadge4

1 Department of Computer Science
Corunna University, Spain

cabalar@udc.es
2 Department of Informatics, Statistics and Telematics

Universidad Rey Juan Carlos, Madrid, Spain
davidandrew.pearce@urjc.es

3 Department of Informatics & Telecommunications
University of Athens, Athens, Greece

prondo@di.uoa.gr
4 Department of Computer Science

University of Victoria, Victoria, Canada
wwadge@cs.uvic.ca

Abstract. We present a purely model-theoretic semantics for disjunc-
tive logic programs with negation, building on the infinite-valued ap-
proach recently introduced for normal logic programs [9]. In particular,
we show that every disjunctive logic program with negation has a non-
empty set of minimal infinite-valued models. Moreover, we show that
the infinite-valued semantics can be equivalently defined using Kripke
models, allowing us to prove some properties of the new semantics more
concisely. In particular, for programs without negation, the new approach
collapses to the usual minimal model semantics, and when restricted to
normal logic programs, it collapses to the well-founded semantics. Lastly,
we show that every (propositional) program has a finite set of minimal
infinite-valued models which can be identified by restricting attention to
a finite subset of the truth values of the underlying logic.

1 Introduction

The semantics of disjunctive logic programs with negation has been the subject
of a number of recent research works [8, 2, 3, 11, 12, 4]. A comparative study of
all these approaches easily leads to the conclusion that at present there is no
consensus on what is the “right approach” to the semantics of disjunctive logic
programs with negation. In other words, the quest for an intuitive and broadly
acceptable semantic approach appears at present to be unfulfilled. Motivated by
this state of affairs, we introduce in this paper a novel, purely model-theoretic
semantics for disjunctive programs, which generalizes both the well-founded se-
mantics of normal logic programs as well as the minimal model semantics of
(negationless) disjunctive programs. An important characteristic of the new ap-
proach is that it is purely logical: the meaning of a program is characterized
solely by examining its models (actually, its infinite-valued models, see below).
? Partially supported by the the CICyT project TIC-2003-9001-C02, and by the Greek

General Secretariat for Research and Technology and the Spanish MEC under a joint
project of Scientific and Technological collaboration between Greece and Spain

Having a purely logical semantics allows one to reason about programs using
properties of the logic under consideration.

The present work builds on the infinite-valued approach that was recently
introduced for normal logic programs [9]. In [9] a new infinite-valued logic is
introduced and it is demonstrated that every normal logic program has a unique
minimum model under this new logic; moreover, it is shown that when this model
is collapsed to three-valued logic, it coincides with the well-founded semantics.
It is therefore natural to ask: “can the infinite-valued approach be lifted to the
class of disjunctive logic programs with negation giving in this way a respectable
new semantics for this class of programs?”.

In this paper we reply affirmatively to this question. In particular, we argue
that the semantics of a disjunctive logic program with negation can be captured
by the program’s set of minimal infinite-valued models which, as we demonstrate,
is always non-empty. Moreover, we show that the infinite-valued semantics can
be equivalently defined using Kripke models. This alternative characterization
allows us to prove properties of the new semantics more concisely. In particular,
we prove that when restricted to programs without negation, the new approach
collapses to the usual minimal model semantics, and when restricted to normal
logic programs, it collapses to the well-founded semantics. Finally, we demon-
strate that every program has a finite set of minimal infinite-valued models;
actually, these models can be identified by restricting attention to a finite subset
of the truth values of the underlying logic. We conclude with a comparison of the
proposed approach with some other proposals for assigning semantics to disjunc-
tive logic programs with negation that are related to well-founded semantics.

2 The Infinite-Valued Semantics

In this section we define the infinite-valued semantics for disjunctive logic pro-
grams with negation. Our presentation extends the one given in [9] for normal
logic programs. We study the class of disjunctive logic programs:

Definition 1. A disjunctive logic program is a finite set of clauses of the form:

p1 ∨ · · · ∨ pn ← q1, . . . , qk,∼r1, . . . ,∼rm (1)

where n ≥ 1 and k, m ≥ 0.

Note that in this paper we consider only finite programs; the results can be lifted
to the more general first-order case (with a corresponding notational overhead).

The basic idea behind the infinite-valued approach is that in order to have a
purely model theoretic semantics for negation-as-failure, one should consider a
richer logical framework than classical logic. Informally, we extend the domain of
truth values and use these extra values to distinguish between ordinary negation
and negation-as-failure. Consider for example the following (normal) program:

p← r ← ∼p s← ∼q

Under the negation-as-failure approach both p and s receive the value True.
We would argue, however, that in some sense p is “truer” than s. Namely, p
is true because there is a rule which says so, whereas s is true only because
we are never obliged to make q true. In a sense, s is true only by default. Our
truth domain adds a “default” truth value T1 just below the “real” truth T0,

and a weaker false value F1 just above (“not as false as”) the real false F0. We
can then understand negation-as-failure as combining ordinary negation with
a weakening. Thus ∼ F0 = T1 and ∼ T0 = F1. Since negations can effectively
be iterated, our domain requires a whole sequence . . . , T3, T2, T1 of weaker and
weaker truth values below T0 but above a neutral value 0; and a mirror image
sequence F1, F2, F3, . . . above F0 and below 0. In fact, in [9] a Tα and a Fα are
introduced for all countable ordinals α; since in this paper we deal with finite
propositional programs, we will not need this generality here.

In [9] it is demonstrated that, over this extended domain, every normal logic
program with negation has a unique minimum model; and that in this model, if
we collapse all the Tα and Fα to True and False respectively, we get the three-
valued well-founded model [10]. Considering the above example program, its
minimum infinite-valued model is {(p, T0), (q, F0), (r, F1), (s, T1)}, and therefore
its well-founded model is {(p, T), (q, F), (r, F), (s, T)}. In this paper we extend
the results of [9] by demonstrating that every disjunctive logic program has a
(non-empty) set of minimal infinite-valued models.

The above discussion can now be formalized as follows. We first need to define
an infinite-valued logic whose truth domain consists of the following values:

F0 < F1 < F2 · · · < 0 < · · · < T2 < T1 < T0

Intuitively, F0 and T0 are the classical False and True values and 0 is the unde-
fined value. The values below 0 are ordered like the natural numbers. The values
above 0 have exactly the reverse order. In the following we denote by V the set
consisting of the above truth values. A notion that will prove useful in the sequel
is that of the order of a given truth value:

Definition 2. The order of a truth value is defined as follows: order(Tn) = n,
order(Fn) = n and order(0) = +∞.

Let Q be a set of propositional symbols out of which our programs are con-
structed. Interpretations are then defined as follows:

Definition 3. An infinite-valued interpretation is a function from the set Q of
propositional symbols to the set V of truth values.

In the rest of the paper, the term “interpretation” will mean an infinite-valued
one (unless otherwise stated). As a special case of interpretation, we will use ∅
to denote the interpretation that assigns the F0 value to all members of Q.

Definition 4. The meaning of a formula with respect to an interpretation I can
be defined as follows:

I(∼A) =

Tn+1 if I(A) = Fn

Fn+1 if I(A) = Tn

0 if I(A) = 0

I(A ∧B) = min{I(A), I(B)}
I(A ∨B) = max{I(A), I(B)}

I(A← B) =
{

T0 if I(A) ≥ I(B)
I(A) if I(A) < I(B)

The notion of satisfiability of a clause can now be defined:

Definition 5. Let Π be a program and I an interpretation. Then, I satisfies a
clause p1∨· · ·∨pk ← l1, . . . , ln of Π if I(p1∨· · ·∨pk) ≥ I(l1∧· · ·∧ln). Moreover,
I is a model of Π if I satisfies all clauses of Π.

We denote by L∞ the infinite-valued logic induced by infinite-valued models.
Given an interpretation of a program, we adopt specific notations for the set of
atoms of the program that are assigned a specific truth value and for the subset
of the interpretation that corresponds to a particular order:

Definition 6. Let Π be a program, I an interpretation and v ∈ V . Then I ‖ v =
{p ∈ Q | I(p) = v}. Moreover, if n < ω, then I]n = {(p, v) ∈ I | order(v) = n}.
The following relations on interpretations will be used later in the paper:

Definition 7. Let I and J be interpretations and n < ω. We write I =n J , if
for all k ≤ n, I ‖ Tk = J ‖ Tk and I ‖ Fk = J ‖ Fk.

Definition 8. Let I and J be interpretations and n < ω. We write I @n J , if
for all k < n, I =k J and either I ‖ Tn ⊂ J ‖ Tn and I ‖ Fn ⊇ J ‖ Fn, or
I ‖ Tn ⊆ J ‖ Tn and I ‖ Fn ⊃ J ‖ Fn. We write I vn J if I =n J or I @n J .

Definition 9. Let I and J be interpretations. We write I @∞ J , if there exists
n < ω (that depends on I and J) such that I @n J . We write I v∞ J if either
I = J or I @∞ J .

In comparing two interpretations I and J we consider first only those vari-
ables assigned “standard” truth values (T0 or F0) by at least one of the two
interpretations. If I assigns T0 to a particular variable and J does not, or J
assigns F0 to a particular variable and I does not, then we can rule out I v∞ J .
Conversely, if J assigns T0 to a particular variable and I does not, or I assigns
F0 to a particular variable and J does not, then we can rule out J v∞ I. If both
these conditions apply, we can immediately conclude that I and J are incom-
parable. If exactly one of these conditions holds, we can conclude that I v∞ J
or J v∞ I, as appropriate. However, if neither apply, then I and J are equal
in terms of standard truth values; they both assign T0 to each of one group
of variables and F0 to each of another. In this case we must now examine the
variables assigned F1 or T1. If this examination proves inconclusive, we move on
to T2 and F2, and so on. Thus v∞ gives the standard truth values the highest
priority, T1 and F1 the next priority, T2 and F2 the next, and so on.

It is easy to see that the relation v∞ on the set of interpretations is a partial
order (i.e., it is reflexive, transitive and antisymmetric). On the other hand, for
every n < ω, the relation vn is a preorder (i.e., reflexive and transitive).

From the above discussion it should be now clear that the infinite-valued
semantics of a disjunctive logic program with negation is captured by the set of
v∞-minimal infinite-valued models of the program. In Section 4 we’ll see that
this set is always non-empty. These ideas are illustrated by the following example:

Example 1. Consider the program:

b ∨ l ← ∼p l ∨ p←

We examine the minimal models of this program. Obviously, in every mini-
mal model either l or p must have the value T0 (this is due to the second
clause). Assume first that l is T0; then this immediately gives the minimal model
{(l, T0), (p, F0), (b, F0)}. Assume on the other hand that p is T0; this implies that
∼p is F1, and therefore either b or l must be F1 (or greater). Therefore, we also
have the minimal models {(l, F0), (p, T0), (b, F1)} and {(l, F1), (p, T0), (b, F0)}.

We denote by Lmin
∞ the non-monotonic logic induced byv∞-minimal L∞ models.

3 Kripke semantics

We present an alternative but equivalent representation of the infinite-valued
semantics in terms of Kripke models. This representation is useful in several
respects. First, as a heuristic device it may help in visualising and proving prop-
erties about the semantics (Section 5). Second, it may help to relate the semantics
to other approaches based on possible-worlds frames, such as equilibrium and
partial equilibrium logic ([6, 4]). Third, it may provide a basis in the future when
searching for axiomatic systems capturing the underlying logic L∞.

Definition 10 (Centered linear frame). A centered linear frame is a Kripke
frame 〈W,≤〉 with a set of worlds W consisting of two distinguished elements
w∞, w′

∞ plus two ω-sequences w0, w1, . . . and w′
0, w

′
1, . . . and a linear ordering

‘≤’ satisfying, wi ≤ wi+1, wi ≤ w∞, w′
i+1 ≤ w′

i, w′
∞ ≤ w′

i and w∞ ≤ w′
∞ for

any i < ω.

From Definition 10 it follows that wi ≤ w′
j for any i, j. Furthermore, we can

depict both infinite chains w0, w1, . . . and . . . , w′
1, w

′
0 respectively bounded by

w∞ and w′
∞ in the middle as follows:

w0 ≤ w1 ≤ · · · ≤ w∞ ≤ w′
∞ ≤ · · · ≤ w′

1 ≤ w′
0.

Given any world w 6∈ {w′
∞, w′

0} we define next(w) as the immediate successor of
w in the chain, that is, next(wi) = wi+1, next(w∞) = w′

∞ and next(w′
i+1) = w′

i.

Definition 11 (Centered linear model). A centered linear model is a Kripke
model 〈W,≤, σ〉 where 〈W,≤〉 is a centered linear frame and σ : Q×W −→ {0, 1}
is a valuation such that σ(p, w) = 1, w ≤ u⇒ σ(p, u) = 1 and σ(p, w0) = 0 and
σ(p, w′

0) = 1 for all atoms p.

Given a Kripke model, we let Wi,W
′
i stand for the sets of atoms that are true at

the respective worlds wi, w
′
i, for i = 0, 1, . . . ,∞. From Definition 11 we conclude:

∅ = W0 ⊆W1 ⊆ · · · ⊆W∞ ⊆W ′
∞ ⊆ · · · ⊆W ′

1 ⊆W ′
0 = Q (2)

where in particular ⋃
i

Wi ⊆W∞ and W ′
∞ ⊆

⋂
i

W ′
i .

An interesting way of describing a centered linear model M is using the se-
quence M = (W0,W1, . . . ,W∞) where each Wi is a three-valued interpretation
Wi = (Wi,W

′
i) so that atoms in Wi, W ′

i \Wi and Q \W ′
i are respectively seen

as true, undefined and false up to order i. We may define the standard “less
or equal truth” relation � between pairs so that Wi � Wj iff Wi ⊆ Wj and
W ′

i ⊆W ′
j . This allows rephrasing (2) as a simple chain W0 �W1 � · · · �W∞

with W0 = 〈∅, Q〉 assigning false to all atoms. Interpretation W∞ contains
the maximum truth in the chain and is important for comparisons with well-
founded semantics (Proposition 4 in Section 5). A three-valued interpretation
like W = (W,W) is said to be complete (no undefined atoms). We say that
M = (W0,W1, . . . ,W∞) is i-complete for some i ∈ {1, 2, . . . ,∞} when Wi is
complete. Note that this means that ∀j (j ≥ i⇒Wj = Wi) and W∞ = Wi.

Definition 12 (Routley frame). A Routley frame is a triple 〈W,≤, ∗〉 where
〈W,≤〉 is a Kripke frame and ∗ : W →W is such that x ≤ y if y∗ ≤ x∗.

Definition 13 (Zigzag model). A zigzag model is a tuple 〈W,≤, ∗, σ〉 where
〈W,≤, σ〉 is a centered linear Kripke model and 〈W,≤, ∗〉 is a Routley frame with
∗ defined as: (wi)∗ = w′

i and (w′
i)
∗ = wi for i = 0 and i =∞; (w′

j+1)
∗ = wj and

(wj+1)∗ = w′
j for all j < ω.

The structure below shows the effect of ∗ in solid lines, and the linear acces-
sibility relation ≤ in dotted lines:

w0

		

// w1

}}||
||

||
// w2

}}||
||

||
// . . . //

}}||
||

||
|

w∞

�� 		
w′

0

GG

w′
1

aaBBBBBB
oo w′

2

aaBBBBBB
oo . . .

aaBBBBBBB
oo w′

∞
oo

GG

The name of “zigzag” comes from the path followed by successive applications of
the ∗-function. Given a zigzag model M = 〈W,≤, ∗, σ〉, valuation σ is extended to
an arbitrary formula ϕ by means of the usual conditions for positive connectives
in intuitionistic logic, and for negation by the following condition: σ(∼ϕ, w) =
1 iff σ(ϕ, w∗) = 0.

Proposition 1. For any zigzag model 〈W,≤, ∗, σ〉 and any formula ϕ,
σ(ϕ, w) = 1 and w ≤ u⇒ σ(ϕ, u) = 1.

We say that M is a model of a theory Γ , written M |= Γ , if σ(ϕ, w1) = 1 for
all ϕ ∈ Γ (note that satisfaction is in world w1 and not w0).

Definition 14 (Induced valuation). Given a zigzag model M = 〈W,≤, ∗, σ〉
we define its induced valuation function M̂ that assigns a value M̂(ϕ) ∈ V to
any formula ϕ as follows:

M̂(ϕ) def=

Ti iff wi 6|= ϕ and wi+1 |= ϕ
Fi iff w′

i+1 6|= ϕ and w′
i |= ϕ

0 iff w∞ 6|= ϕ and w′
∞ |= ϕ

This definition applied to atoms implies M̂ ‖ Ti = Wi+1 \Wi, M̂ ‖ Fi = W ′
i \

W ′
i+1 and M̂ ‖ 0 = W ′

∞\W∞. Notice that this assignment is well constructed due
to condition (2). Truth constants T and F can be incorporated as special atoms
satisfying M̂(T) = T0 and M̂(F) = F0, that is, T ∈W1 \W0 and F ∈W ′

0 \W ′
1.

Proposition 2. Let M = (W0,W1, . . . ,W∞) be a zigzag model. Then the
three-valued interpretation W∞ corresponds to collapsing all M̂(p) = Ti to true,
all M̂(p) = Fi to false and M̂(p) = 0 to undefined.

It is not difficult to see that for any infinite-valued interpretation I we can
always build a zigzag model M whose induced valuation coincides with I on all
atoms – the next theorem asserts that it also coincides for any arbitrary formula.

Theorem 1. Let I be an infinite-valued interpretation and M a zigzag model
such that M̂(p) = I(p) for all atom p. Then I(ϕ) = M̂(ϕ) for any formula ϕ.

Proof. We begin defining the last world last(ϕ) in the chain at which formula
ϕ does not hold so that last(ϕ) = wi when M̂(ϕ) = Ti, last(ϕ) = w′

i+1 when
M̂(ϕ) = Fi and last(ϕ) = w∞ when M̂(ϕ) = 0. Note that last(ϕ) 6∈ {w′

∞, w′
0}

and so next(last(ϕ)) (the first world at which ϕ holds) is always defined.

Lemma 1. M̂(α) ≥ M̂(β) iff last(α) ≤ last(β).

Thus, last(α) = last(β) implies M̂(α) = M̂(β). We proceed now by structural
induction.

1. For the base case, if ϕ is an atom p, M̂(p) = I(p) by construction.
2. If ϕ = α∧β, the last world at which ϕ does not hold is max(last(α), last(β)).

By Lemma 1 we conclude M̂(α ∧ β)=min(M̂(α), M̂(β)). If ϕ = α ∨ β the
proof is analogous.

3. If ϕ = α→ β, we have two cases: first, if M̂(α) ≤ M̂(β) then, by Lemma 1,
last(α) ≥ last(β) and this means that any world wk satisfies wk 6|= α or wk |=
β, excepting w0. In other words, last(α→ β) = w0 and so M̂(α→ β) = T0.
Otherwise, when M̂(α) > M̂(β), by Lemma 1 we get last(α) < last(β).
Then, the last world wk where wk |= α but wk 6|= β is last(β), and thus
α→ β is also false until last(β). As a result, M̂(α→ β) = M̂(β).

4. If ϕ =∼ α. Assume M̂(α) = Ti, that is, wi 6|= α and wi+1 |= α. As wi =
(w′

i+1)
∗ and wi+1 = (w′

i+2)
∗ we get w′

i+1 |=∼α and w′
i+2 6|=∼α. But then,

from Definition 14, we get M̂(α) = Fi+1. Analogously, when M̂(α) = Fi we
have w′

i+1 6|= α and w′
i |= α that, since w′

i+1 = (wi+2)∗ and w′
i = (wi+1)∗, we

get wi+1 6|=∼α and wi+2 |=∼α and so M̂(α) = Ti+1. Finally, when M̂(α) = 0
we have w∞ 6|= α and w′

∞ |= α, but as w∞ = (w′
∞)∗ and w′

∞ = (w∞)∗, we
obtain w′

∞ |=∼α and w∞ 6|=∼α that means M̂(∼α) = 0. �

We can now alternatively define Lmin
∞ in terms of minimal Kripke models.

Let M1 = (W0,W1, . . . ,W∞) and M2 = (U0,U1, . . . ,U∞) be a pair of zigzag
models. We say that M1 E M2 iff either M1 = M2 or ∃i

(
∀j (j ≤ i ⇒ Wj =

Uj) ∧Wi ≺ Ui

)
.

Proposition 3. M1 E M2 iff M̂1 v∞ M̂2.

Therefore, we have two alternative but equivalent definitions of the semantics
of disjunctive logic programs with negation. In the rest of the paper, the two
approaches will be used interchangeably.

4 Existence of Minimal Models

In this section we demonstrate that every disjunctive program has at least one
minimal infinite-valued model. The proof is based on the dual of Zorn’s Lemma5:

Lemma 2 (The dual of Zorn’s Lemma). Every non-empty partially ordered
set in which each downward chain has a lower bound, contains a minimal ele-
ment.
5 Notice that the proof given in this section can be extended to apply to infinite

propositional programs (and therefore also to the case of first-order programs).

First, notice that the set of models of a disjunctive logic program is non-
empty, because the interpretation which assigns to every propositional atom the
value T0 is always a model. Second, notice that the set of models of a program
is partially ordered by the v∞ relation. It suffices to show that every (possibly
transfinite) downwards chain of models under v∞, has a lower bound which is
also a model of the program.

Therefore, consider a chainM of infinite-valued models of a disjunctive pro-
gram Π: M0 w∞ M1 w∞ M2 w∞ · · · w∞ Mα w∞ · · · . We describe at an
intuitive level the construction of a lower bound M of this chain. We first start
with all models that belong toM and we “intersect” them at their zero’th level
of truth values. This gives us a (partial) interpretation that will serve as the
zero’th level of the lower bound M . We now consider only those elements of the
chainM whose zero’th order part agrees with the partial interpretation we have
just constructed. We repeat the above process with this new set of models and
with the order one values. In the limit of this process, certain atoms may have
not received a value; we assign to them the value 0. We now formalize the above
construction:

Definition 15. Let S be a set of infinite-valued interpretations of a given pro-
gram and n ∈ ω. Then, we define

∧n
S = {(p, Tn) | ∀M ∈ S, M(p) = Tn}

and
∨n

S = {(p, Fn) | ∃M ∈ S, M(p) = Fn}. Moreover, we define
⊙n

S =
(
∧n

S)
⋃

(
∨n

S).

Let Π be a program and let M be a downward chain of models of Π. We can
now define the following sequence of sets of models of Π:

S0 =M
Sn+1 = {M ∈ Sn |M]n =

⊙n
Sn}

We now have the following lemma:

Lemma 3. For every n < ω, Sn 6= ∅.

Proof. We demonstrate by induction on n that Sn is a non-empty chain identical
to M the only difference being that an initial part of M may be missing from
Sn. The base case is obvious. Assume the statement holds for n ie., that Sn is
a nonempty downward chain of the form Mα w∞ Mα+1 w∞ Mα+2 w∞ · · · .
For the induction step observe that since Mα ‖ Tn ⊇ Mα+1 ‖ Tn ⊇ · · · and
Mα ‖ Fn ⊆ Mα+1 ‖ Fn ⊆ · · · , after an initial segment of this chain, all the
members of the chain agree on their level n components. Therefore, Sn+1 forms
a non-empty chain. This establishes the desired result. �

Example 2. Consider the program just consisting of rule: s ∨ p←∼s

Moreover, consider the following models of the above program:
Mn = {(s, Tn), (p, F0)}. Clearly, M0 w∞ M1 w∞ M2 w∞ · · · . Then, it is not
hard to see that S0 = {M0,M1,M2,M3, . . .}, S1 = {M1,M2,M3, . . .}, and so
on.

We can now demonstrate the main theorem of this section which actually
states that for every downward chain of models of a given disjunctive program,
there exists a lower bound:

Theorem 2. Let Π be a program and let M be a downwards chain of models
of Π. Then M has a lower bound which is a model of Π.

Proof. Consider models N0 ∈ S1, N1 ∈ S2, . . . , Nk ∈ Sk+1, . . . , k < ω. We
construct an interpretation M as follows:

M(p) =
{

(
⋃

k<ω(Nk]k))(p) if this is defined
0 otherwise

We claim that M is a model of the program. Assume it is not. Consider then a
clause p1 ∨ · · · ∨ pm ← B such that M(p1 ∨ · · · ∨ pm) < M(B). There are three
cases:

– M(p1 ∨ · · · ∨ pm) = Fk, k < ω. But then, Nk(p1 ∨ · · · ∨ pm) = Fk and since
Nk is a model of Π, we have Nk(B) ≤ Fk. But this implies that M(B) ≤ Fk,
and therefore M(p1 ∨ · · · ∨ pm) ≥M(B) (contradiction).

– M(p1∨· · ·∨pm) = Tk, k < ω. Then, Nk(p1∨· · ·∨pm) = Tk and since Nk is a
model of Π, we have Nk(B) ≤ Tk. But this easily implies that M(B) ≤ Tk,
and therefore M(p1 ∨ · · · ∨ pm) ≥M(B) (contradiction).

– M(p1∨· · ·∨pm) = 0. But then, for every k < ω, we have Nk(p1∨· · ·∨pm) <
Tk. Now, since Nk is a model of Π for every k, it is Nk(B) < Tk. But
this then implies that M(B) ≤ 0, and therefore M(p1 ∨ · · · ∨ pm) ≥ M(B)
(contradiction).

Moreover, it is straightforward to see that, by construction, M is a lower bound
for all the members of the chain. �

The above discussion leads to the following theorem:

Theorem 3. Every disjunctive logic program with negation has a non-empty set
of minimal infinite-valued models.

Proof. Immediate from the dual of Zorn’s Lemma and Theorem 2. �

Example 3. Consider again the program:

s ∨ p←∼s

together with the models:

Mn = {(s, Tn), (p, F0)}

Applying the above construction to the chain M0 w∞ M1 w∞ M2 w∞ · · · , we
get the lower bound M = {(s, 0), (p, F0)} of the chain.

Actually, it is not hard to see that the above program has two minimal
models, namely {(p, T1), (s, F0)} and {(p, F0), (s, 0)}.

Example 4. Consider the program:

p ∨ q ∨ r ←
p ← ∼q
q ← ∼r
r ← ∼p

By inspection, this program has the three minimal models {(p, T0), (q, T2), (r, F1)},
{(p, F1), (q, T0), (r, T2)} and {(p, T2), (q, F1), (r, T0)}.

5 Properties of the Minimal Model Semantics

We turn to properties of the minimal infinite-valued semantics. First we see that
new approach extends the well-founded semantics of normal logic programs:

Proposition 4. A normal logic program Π has a E-minimum model M =
(W0,W1, . . . ,W∞) where W∞ is the well-founded model of Π.

Proof. [9] shows that every normal logic program has a minimum infinite-valued
model (Theorem 7.4) which when collapsed to three-valued logic coincides with
the well-founded model (Theorem 7.6). From these two results and Proposition 2,
the result above follows immediately. �

In other words, when we restrict the syntax to that of normal logic programs, the
infinite-valued approach provides the well-founded model of the program, apart
from additional information. In the case of the v∞-least model characterisation,
the well-founded model is obtained by collapsing all the Ti and Fi values in the
model into T and F respectively. In the case of the corresponding E-least zigzag
model, the well-founded model is directly obtained by just keeping the W∞ pair
and ignoring all the rest. In fact, when we later compare the infinite-valued ap-
proach to other disjunctive well-founded semantics, we will also restrict the study
to pair W∞ so that we just handle a three-valued interpretation. A different and
interesting open topic is the possible utility of the rest of information contained
in the infinite-valued minimal models, which captures somehow the ordering or
level in which we make default assumptions to compute the final result.

As we are now going to see, the approach we propose is compatible with
the minimal model semantics for (negation-less) disjunctive logic programs. A
positive disjunctive logic program is a set of clauses like (1) where m = 0 (i.e.,
they have no negated literals). Given a classical model X we can define a corre-
sponding 1-complete zigzag model MX so that W1 = (X, X). This implies all
Wj = W ′

j = X except W0 = ∅ and W ′
0 = Q that are fixed. An i-complete model

assigns to any atom a value of order smaller than i – when i = 1 the value can
just be T0 or F0. The following pair of lemmas can be easily proved.

Lemma 4. For a positive disjunctive program Π, X |= Π in classical logic iff
MX |= Π.

Lemma 5. Any E-minimal model of a positive disjunctive program Π is 1-
complete.

Theorem 4. Let Π be a positive disjunctive logic program. Then: (i) if X is
a minimal classical model of Π then MX is a E-minimal model of Π; (ii) if
M = (W0,W1, . . . ,W∞) is a E-minimal model of Π, then M is 1-complete,
and W1 is a minimal classical model of Π.

Proof. (i) If X is a minimal classical model, by Lemma 4, MX |= Π. Assume
we have some E-minimal model of Π strictly smaller than MX – by Lemma 5,
such a model is 1-complete, call it MY , and since it is strictly smaller than MX ,
Y ⊂ X. By Lemma 4, Y |= Π, and this contradicts minimality of classical model
X. For (ii), Lemma 5 directly implies that M is 1-complete, i.e., W1 = (W1,W1).
By Lemma 4, W1 |= Π. Assume there exists a smaller classical model Y ⊂ W1.
By Lemma 4, MY |= Π. Since MY is E-smaller than MX we get a contradiction.
�

6 Identifying the Minimal Models

In this section we demonstrate that every disjunctive logic program has a finite
set of minimal infinite-valued models. This result is not immediately obvious
since the underlying logic has an infinite number of truth values. The key idea
behind the proof is that if |S| is the number of propositional symbols of a pro-
gram, then it suffices to consider as possible candidates for minimality the models
of the program that use truth values with order at most |S| − 1. The following
definition will be needed in the proof of the theorem:

Definition 16. Let Π be a program and let M be an infinite-valued model of
Π. We will say that M contains a gap at order δ ∈ ω if:

– For every n < δ, there exists an atom p in Π with order(M(p)) = n.
– There does not exist an atom p in Π with order(M(p)) = δ.
– There exists an atom p of Π such that δ < order(M(p)) <∞.

The proof of the following theorem demonstrates that minimal models cannot
contain gaps. This easily implies that in our search for minimal models we need
only inspect a finite number of models.

Theorem 5. Let Π be a program, S be the set of propositional symbols that
appear in P and let M be a minimal infinite-valued model of Π. Then, for every
propositional symbol p ∈ S, M(p) ∈ {0, F0, T0, . . . , F|S|−1, T|S|−1}.

Proof. It suffices to demonstrate that if a model of Π contains a gap then it can
not be minimal. The theorem then follows by the fact that if a program does
not contain a gap then its propositional symbols will necessarily get values from
the set {0, F0, T0, . . . , F|S|−1, T|S|−1}.

Assume for the sake of contradiction that M is a minimal model of Π that
contains a gap at order δ ∈ ω. We establish a contradiction by constructing a
model M∗ of Π such that M∗ @ M . Let m > δ be the least natural number
such M]m 6= ∅. We distinguish the following two cases:
Case 1: There exists some p such that (M]m)(p) = Tm. We define the following
interpretation:

M∗(p) =
{

Tm+1, if M(p) = Tm

M(p), otherwise

Obviously, M∗ @ M . Let p1 ∨ · · · ∨ pn ← B be a clause in Π. By a simple case
analysis on the possible values of M∗(p1 ∨ · · · ∨ pn), we get that M∗ satisfies the
given clause and therefore the whole program. Consequently, M is not a minimal
model of Π (contradiction).
Case 2: There does not exist any p such that (M]m)(p) = Tm. We define the
following interpretation:

M∗(p) =

Tn−1, if M(p) = Tn and n > δ
Fn−1, if M(p) = Fn and n > δ
M(p), otherwise

Obviously, M∗ @ M . Let p1 ∨ · · · ∨ pn ← B be a clause in Π. By a simple case
analysis on the possible values of M∗(p1 ∨ · · · ∨ pn), we get that M∗ satisfies the
given clause and therefore the whole program. Consequently, M is not a minimal
model of Π (contradiction). Therefore, if a model of Π contains a gap, it cannot
be a minimal one. �

7 Related Approaches

In this section we mention some examples that are useful for comparing the
infinite-valued approach Lmin

∞ with other existing approaches to the semantics
of disjunctive logic programs with negation, in particular, STATIC (of [8]), D-
WFS (of [2, 3]), WFDS (of [11]), WFSd of [1] and with PEL (of [4]). We observe
in particular that Lmin

∞ differs from all these semantics.
Example 1 was presented in [11], where it was reasoned that b should be

false, while STATIC and D-WFS just fail to derive any information. In fact, the
three semantics WFDS, PEL and Lmin

∞ allow one to derive the falsity of b.
Consider now the following example borrowed from [1]: {(a∨b←∼b), (b←∼

b)}. For this example, Lmin
∞ yields the minimal model {(a, F0), (b, 0)}. PEL agrees

that a should be false and b undefined. However, WFDS makes both atoms
undefined.

An interesting observation is that, as in PEL, the unfolding transformation
rule (see eg [3]) does not preserve equivalence in Lmin

∞ . Unfolding atom b on pro-
gram Π1 = {(a∨b), (a←∼a), (c← a∧b)} leads to program Π2 = {(a∨b), (a←∼
a), (c∨a← a)}. Both programs have the minimal model {(a, T0), (b, F0), (c, F0)}
but Π1 has a second minimal model {(a, 0), (b, T0), (c, 0)} while the second mini-
mal model of Π2 is {(a, 0), (b, T0), (c, F0)} (in fact, PEL agrees with these results
too). It follows that Lmin

∞ differs from WFSd ([1]).
Another similarity between PEL and the Lmin

∞ semantics is that applying the
S-Implication (S-IMP) transformation rule from WFDS [12] does not generally
yield a strongly equivalent program. For instance, the result of applying S-IMP
on program Π3 = {(b ∨ c ← a), (b ← a∧ ∼ c)} deletes the second rule Π4 =
{(b∨c← a)}. However, if we add Π5 = {(c←∼a), (a←∼a)} to both programs,
we obtain that Π3 ∪ Π5 and Π4 ∪ Π5 have different Lmin

∞ models: both have
unique minimal models, but the former makes all atoms undefined, while the
latter makes b false and the rest undefined.

Partial equilibrium logic (PEL) ([4]) is a general nonmonotonic framework
that extends the partial stable model semantics of [7]. In some respects it appears
to be conceptually close to the semantics of Lmin

∞ . In particular, it also provides
a purely declarative, model-theoretic semantics and is even based on Routley
frames. However, the most important difference has to do with the existence of
Lmin
∞ model for disjunctive programs, something not guaranteed by PEL. This

is illustrated by Example 4, which has no PEL models whereas, as we saw be-
fore, it has three Lmin

∞ models. Another difference is that in the Lmin
∞ approach

the intended models are reached via one minimization process. In PEL one first
defines partial stable or partial equilibrium models through a minimization pro-
cess, while a second minimality condition captures those models that are said to
be well-founded.

8 Conclusions

We have introduced a new purely model-theoretic semantics for disjunctive logic
programs with negation and showed that every such program has at least one
minimal infinite-valued model. The new semantics generalizes both the minimal
model semantics of positive disjunctive logic programs as well as the well-founded
semantics of normal logic programs. Future work includes the study of efficient
proof procedures for the new semantics and possible applications of the new

approach. An interesting open question is the possible application of the addi-
tional information provided by the infinite-valued approach not present in other
variants of well-founded semantics which return three-valued answers. This ex-
tra information is related to the level or ordering in which default assumptions
are made to compute the final result, and can be of valuable help for debugging
an unexpected outcome, pointing out unobserved dependences or even capturing
priorities as different truth levels. We also plan to investigate the underlying logic
L∞ of this approach in more detail. Another interesting topic for future research
is the generalization of the recently introduced game semantics of negation [5]
to the case of disjunctive logic programs.

References

1. J. Alcantara, C.V. Damasio and L.M. Pereira. A Well-Founded Semantics with
Disjunction. In Proceedings of the International Conference on Logic Programming
(ICLP’05), LNCS 3668, pages 341–355, 2005.

2. S. Brass and J. Dix. Characterizations of the (disjunctive) Stable Semantics by
Partial Evaluation. Journal of Logic Programming, 32(3):207–228, 1997.

3. S. Brass and J. Dix. Characterizations of the Disjunctive Well-founded Seman-
tics: Confluent Calculi and Iterated GCWA. Journal of Automated Reasoning,
20(1):143–165, 1998.

4. P. Cabalar, S. Odintsov, D. Pearce, and A. Valverde. Analysing and Extend-
ing Well-Founded and Partial Stable Semantics using Partial Equilibrium Logic.
In Proceedings of the International Conference on Logic Programming (ICLP’06),
LNCS 4079, pages 346–360, Seattle, USA, August 2006.

5. Ch. Galanaki, P. Rondogiannis and W.W. Wadge. An Infinite-Game Semantics
for Well-Founded Negation. Annals of Pure and Applied Logic, 2007 (to appear).

6. D. Pearce. Equilibrium Logic. Ann. Math & Artificial Int., 47 (2006), 3-41.
7. Przymusinski, T. Well-founded and stationary models of logic programs. Annals

of Mathematics and Artificial Intelligence 12:141–187, 1994.
8. T. Przymusinski. Static Semantics of Logic Programs. Annals of Mathematics and

Artificial Intelligence, 14(2-4):323–357, 1995.
9. P. Rondogiannis and W.W. Wadge. Minimum Model Semantics for Logic Programs

with Negation-as-Failure. ACM Transactions on Computational Logic, 6(2):441–
467, 2005.

10. A. van Gelder, K. A. Ross, and J. S. Schlipf. The Well-Founded Semantics for
General Logic Programs. Journal of the ACM, 38(3):620–650, 1991.

11. K. Wang. Argumentation-based Abduction in Disjunctive Logic Programming.
Journal of Logic Programming, 45(1-3):105–141, 2000.

12. K. Wang and L. Zhou. Comparisons and Computation of Well-Founded Seman-
tics for Disjunctive Logic Programs. ACM Transactions on Computational Logic,
6(2):295–327, 2005.

