Propositional Satisfiability

Pedro Cabalar
Dept. Computer Science
University of Corunna, SPAIN

March 15, 2023

(1) Models of a formula

(2) Satisfiability

Models of a formula

- We can define $M(\Gamma)=$ the set of models of a theory (or formula) Γ. Example: $M(a \vee b)=\{\{a, b\},\{a\},\{b\}\}$

Models of a formula

- We can define $M(\Gamma)=$ the set of models of a theory (or formula) Γ. Example: $M(a \vee b)=\{\{a, b\},\{a\},\{b\}\}$
- The models of a formula can be inspected by structural induction:

$$
\begin{aligned}
M(\alpha \vee \beta) & =M(\alpha) \cup M(\beta) \\
M(\alpha \wedge \beta) & =M(\alpha) \cap M(\beta) \\
M(\neg \alpha) & =2^{\Sigma} \backslash M(\alpha)
\end{aligned}
$$

Models of a formula

- We can define $M(\Gamma)=$ the set of models of a theory (or formula) Γ. Example: $M(a \vee b)=\{\{a, b\},\{a\},\{b\}\}$
- The models of a formula can be inspected by structural induction:

$$
\begin{aligned}
M(\alpha \vee \beta) & =M(\alpha) \cup M(\beta) \\
M(\alpha \wedge \beta) & =M(\alpha) \cap M(\beta) \\
M(\neg \alpha) & =2^{\Sigma} \backslash M(\alpha)
\end{aligned}
$$

- Two formulas α, β are equivalent if $M(\alpha)=M(\beta)$ (same models)

Models of a formula

- From a set S of interpretations: can we get a formula α s.t. $M(\alpha)=S$?

Models of a formula

- From a set S of interpretations: can we get a formula α s.t. $M(\alpha)=S$?
- Example: find α to cover $M(\alpha)=\{\{a, c\},\{b, c\},\{a, b, c\}\}$

Models of a formula

- From a set S of interpretations: can we get a formula α s.t. $M(\alpha)=S$?
- Example: find α to cover $M(\alpha)=\{\{a, c\},\{b, c\},\{a, b, c\}\}$
- Does this formula α always exist?

Models of a formula

- From a set S of interpretations: can we get a formula α s.t. $M(\alpha)=S$?
- Example: find α to cover $M(\alpha)=\{\{a, c\},\{b, c\},\{a, b, c\}\}$
- Does this formula α always exist?
- We will see a method (minterms) to obtain a minimal representation

Models of a formula

- Def. relation $\Gamma \models \alpha$ is called logical consequence or entailment and defined as $M(\Gamma) \subseteq M(\alpha)$.

Models of a formula

- Def. relation $\Gamma \models \alpha$ is called logical consequence or entailment and defined as $M(\Gamma) \subseteq M(\alpha)$. Example $\{$ happy, (rain $\rightarrow \neg$ happy $)\} \models \neg$ rain

Models of a formula

- Def. relation $\Gamma \models \alpha$ is called logical consequence or entailment and defined as $M(\Gamma) \subseteq M(\alpha)$. Example $\{$ happy, (rain $\rightarrow \neg$ happy $)\} \models \neg$ rain
- If $M(\alpha)=\emptyset$ (no models!), α is inconsistent or unsatisfiable

Models of a formula

- Def. relation $\Gamma \models \alpha$ is called logical consequence or entailment and defined as $M(\Gamma) \subseteq M(\alpha)$. Example $\{$ happy, $($ rain $\rightarrow \neg$ happy $)\} \models \neg$ rain
- If $M(\alpha)=\emptyset$ (no models!), α is inconsistent or unsatisfiable Examples: rain $\wedge \neg$ rain, \perp, \ldots

Models of a formula

- Def. relation $\Gamma \models \alpha$ is called logical consequence or entailment and defined as $M(\Gamma) \subseteq M(\alpha)$. Example $\{$ happy,$($ rain $\rightarrow \neg$ happy $)\} \models \neg$ rain
- If $M(\alpha)=\emptyset$ (no models!), α is inconsistent or unsatisfiable Examples: rain $\wedge \neg$ rain, \perp, \ldots
- If $M(\alpha)=2^{\Sigma}$ (all interpretations are models), α, is valid or a tautology.

Models of a formula

- Def. relation $\Gamma \models \alpha$ is called logical consequence or entailment and defined as $M(\Gamma) \subseteq M(\alpha)$. Example $\{$ happy, (rain $\rightarrow \neg$ happy $)\} \models \neg$ rain
- If $M(\alpha)=\emptyset$ (no models!), α is inconsistent or unsatisfiable Examples: rain $\wedge \neg$ rain, \perp, \ldots
- If $M(\alpha)=2^{\Sigma}$ (all interpretations are models), α, is valid or a tautology. Examples: rain $\vee \neg$ rain, $T, b \wedge c \wedge d \rightarrow(d \rightarrow b), \ldots$

Models of a formula

- Def. relation $\Gamma \models \alpha$ is called logical consequence or entailment and defined as $M(\Gamma) \subseteq M(\alpha)$. Example $\{$ happy, (rain $\rightarrow \neg$ happy $)\} \models \neg$ rain
- If $M(\alpha)=\emptyset$ (no models!), α is inconsistent or unsatisfiable Examples: rain $\wedge \neg$ rain, \perp, \ldots
- If $M(\alpha)=2^{\Sigma}$ (all interpretations are models), α, is valid or a tautology. Examples: rain $\vee \neg$ rain, $T, b \wedge c \wedge d \rightarrow(d \rightarrow b), \ldots$
- We write $\models \alpha$ to mean that α is a tautology

Models of a formula

- Def. relation $\Gamma \models \alpha$ is called logical consequence or entailment and defined as $M(\Gamma) \subseteq M(\alpha)$. Example $\{$ happy, (rain $\rightarrow \neg$ happy $)\} \models \neg$ rain
- If $M(\alpha)=\emptyset$ (no models!), α is inconsistent or unsatisfiable Examples: rain $\wedge \neg$ rain, \perp, \ldots
- If $M(\alpha)=2^{\Sigma}$ (all interpretations are models), α, is valid or a tautology. Examples: rain $\vee \neg$ rain, $T, b \wedge c \wedge d \rightarrow(d \rightarrow b), \ldots$
- We write $\models \alpha$ to mean that α is a tautology Note: this is $\emptyset \models \alpha$, so we require $M(\emptyset)=2^{\Sigma}$

Models of a formula

- Def. relation $\Gamma \models \alpha$ is called logical consequence or entailment and defined as $M(\Gamma) \subseteq M(\alpha)$. Example $\{$ happy, (rain $\rightarrow \neg$ happy $)\} \models \neg$ rain
- If $M(\alpha)=\emptyset$ (no models!), α is inconsistent or unsatisfiable Examples: rain $\wedge \neg$ rain, \perp, \ldots
- If $M(\alpha)=2^{\Sigma}$ (all interpretations are models), α, is valid or a tautology. Examples: rain $\vee \neg$ rain, $T, b \wedge c \wedge d \rightarrow(d \rightarrow b), \ldots$
- We write $\models \alpha$ to mean that α is a tautology Note: this is $\emptyset \models \alpha$, so we require $M(\emptyset)=2^{\Sigma} \subseteq M(\alpha)$

Propositional Logic: Semantics

Theorem

$\vDash \alpha \rightarrow \beta$ is equivalent to $\alpha=\beta$.

Definition (Weaker/stronger formula)
When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

Propositional Logic: Semantics

Theorem

$\vDash \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.
Definition (Weaker/stronger formula)
When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?

Propositional Logic: Semantics

Theorem

$\vDash \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

p	$p \wedge q$
p	$p \vee \neg q$
$p \vee q$	$p \wedge q$
p	$(q \rightarrow p)$
$p \wedge \neg q$	$\neg p \wedge q$

Propositional Logic: Semantics

Theorem

$\vDash \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

p	$p \wedge q$
p	$p \vee \neg q$
$p \vee q$	$p \wedge q$
p	$(q \rightarrow p)$
$p \wedge \neg q$	$\neg p \wedge q$

Propositional Logic: Semantics

Theorem

$\vDash \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

p	\leftarrow	$p \wedge q$
p		$p \vee \neg q$
$p \vee q$		$p \wedge q$
p		$(q \rightarrow p)$
$p \wedge \neg q$	$\neg p \wedge q$	

Propositional Logic: Semantics

Theorem

$\vDash \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

p	\leftarrow	$p \wedge q$
p	\rightarrow	$p \vee \neg q$
$p \vee q$		$p \wedge q$
p		$(q \rightarrow p)$
$p \wedge \neg q$		$\neg p \wedge q$

Propositional Logic: Semantics

Theorem

$\vDash \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

p	\leftarrow	$p \wedge q$
p	\rightarrow	$p \vee \neg q$
$p \vee q$	\leftarrow	$p \wedge q$
p		$(q \rightarrow p)$
$p \wedge \neg q$		$\neg p \wedge q$

Propositional Logic: Semantics

Theorem

$\vDash \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

p	\leftarrow	$p \wedge q$
p	\rightarrow	$p \vee \neg q$
$p \vee q$	\leftarrow	$p \wedge q$
p	\rightarrow	$(q \rightarrow p)$
$p \wedge \neg q$		$\neg p \wedge q$

(1) Models of a formula

(2) Satisfiability

Satisfiability

Definition (SAT decision problem)

Decision problem $\operatorname{SAT}(\alpha) \in\{y e s$, no $\}$ checks whether a formula α has some model. That is: $\operatorname{SAT}(\alpha)=$ yes iff $M(\alpha) \neq \emptyset$.

- Time complexity: NP-complete problem.

Satisfiability

Definition (SAT decision problem)

Decision problem SAT $(\alpha) \in\{$ yes, no $\}$ checks whether a formula α has some model. That is: $\operatorname{SAT}(\alpha)=$ yes iff $M(\alpha) \neq \emptyset$.

- Time complexity: NP-complete problem. Furthermore, it was the first problem identified problem in this class, and crucial for proving that other problems belong to it.

Satisfiability

Definition (SAT decision problem)

Decision problem $\operatorname{SAT}(\alpha) \in\{y e s$, no $\}$ checks whether a formula α has some model. That is: SAT $(\alpha)=$ yes iff $M(\alpha) \neq \emptyset$.

- Time complexity: NP-complete problem. Furthermore, it was the first problem identified problem in this class, and crucial for proving that other problems belong to it.
- Nowadays, SAT is an outstanding state-of-the-art research area for search algorithms. There exist many efficient tools and commercial applications. See www.satlive.com

Satisfiability

Definition (SAT decision problem)

Decision problem SAT $(\alpha) \in\{$ yes, no $\}$ checks whether a formula α has some model. That is: $\operatorname{SAT}(\alpha)=$ yes iff $M(\alpha) \neq \emptyset$.

- Time complexity: NP-complete problem. Furthermore, it was the first problem identified problem in this class, and crucial for proving that other problems belong to it.
- Nowadays, SAT is an outstanding state-of-the-art research area for search algorithms. There exist many efficient tools and commercial applications. See www.satlive.com
- SAT keypoint: instead of designing an ad hoc search algorithm, encode the problem into propositional logic and use SAT as a backend.

Exercise

- Programming the satisfaction relation \vDash in Prolog:

```
:- op (210, yfx, &).
:- op (220, yfx, v).
:- op(1060, yfx, <->).
sat(_I, false) :- !, fail.
sat(_I, true) :- !.
sat(I, P) :- atom(P),!,member(P,I),!.
sat(I, -A) :- \+ sat(I, A).
sat(I, A & B) :- sat(I, A), sat(I, B).
sat(I, A v B) :- sat(I,A),! ; sat(I, B).
sat(I, A -> B) :- sat(I,-A v B).
sat(I, A <-> B) :- sat(I,(A -> B)&(B -> A)).
```


Exercise

- Testing whether a formula is a tautology:

```
tautology(S, F) :- \+ (subset(S,I), \+ sat(I,F)).
subset([],[]) :- !.
subset([X | Xs],S) :- subset(Xs,S).
subset([X | Xs],[X | S]) :- subset(Xs,S).
```


Conjunctive Normal Form

- The input for most SAT solvers is a formula α in conjunctive normal form.

Conjunctive Normal Form

- The input for most SAT solvers is a formula α in conjunctive normal form.
- This is a conjunction of clauses $=$ disjunctions of literals. Example: $\left(p_{1} \vee \neg p_{2}\right) \wedge\left(\neg p_{3} \vee p_{1} \vee p_{2}\right) \wedge \neg p_{1} \wedge\left(p_{2} \vee p_{4}\right)$

Conjunctive Normal Form

- The input for most SAT solvers is a formula α in conjunctive normal form.
- This is a conjunction of clauses $=$ disjunctions of literals. Example: $\left(p_{1} \vee \neg p_{2}\right) \wedge\left(\neg p_{3} \vee p_{1} \vee p_{2}\right) \wedge \neg p_{1} \wedge\left(p_{2} \vee p_{4}\right)$
- This is represented as a text file in DIMACS format. For instance, the formula above becomes

```
p cnf 34 3 variables, 4 clauses
1 -2 0 0 marks the end of a clause
-3}112% 
-1 0
2 4 0
```


Reduction to CNF

- Reduction to CNF: several methods can be used (for instance, semantic tableaux)

Reduction to CNF

- Reduction to CNF: several methods can be used (for instance, semantic tableaux)
- Reducing a formula α to CNF causes an exponential cost
- Distributivity blows up

$$
\left(p_{1} \wedge q_{1}\right) \vee\left(p_{2} \wedge q_{2}\right) \vee \cdots \vee\left(p_{n} \wedge q_{n}\right)
$$

2^{n} disjunctions depending on whether we take p or q for each i

Reducing $\varphi \longrightarrow \operatorname{CNF}(\varphi)$ in classical logic is NP-hard.

Reduction to CNF (with auxiliary atoms)

- [Tseytin 1968] proposed a polynomial reduction but. . .
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

Reduction to CNF (with auxiliary atoms)

- [Tseytin 1968] proposed a polynomial reduction but. . .
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

$$
\left(p_{1} \wedge q_{1}\right) \vee\left(p_{2} \wedge q_{2}\right) \vee \cdots \vee\left(p_{n} \wedge q_{n}\right)
$$

Reduction to CNF (with auxiliary atoms)

- [Tseytin 1968] proposed a polynomial reduction but. . .
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

$$
\underbrace{\left(p_{1} \wedge q_{1}\right)}_{a_{1}} \vee \underbrace{\left(p_{2} \wedge q_{2}\right)}_{a_{2}} \vee \cdots \vee \underbrace{\left(p_{n} \wedge q_{n}\right)}_{a_{n}}
$$

Reduction to CNF (with auxiliary atoms)

- [Tseytin 1968] proposed a polynomial reduction but. . .
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

$$
\begin{gathered}
a_{1} \vee a_{2} \vee \cdots \vee a_{n} \\
a_{i} \leftrightarrow p_{i} \wedge q_{i}
\end{gathered}
$$

Reduction to CNF (with auxiliary atoms)

- [Tseytin 1968] proposed a polynomial reduction but. . .
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

$$
\begin{aligned}
& a_{1} \vee a_{2} \vee \cdots \vee a_{n} \\
a_{i} \rightarrow p_{i} \wedge q_{i} & a_{i} \leftarrow p_{i} \wedge q_{i}
\end{aligned}
$$

Reduction to CNF (with auxiliary atoms)

- [Tseytin 1968] proposed a polynomial reduction but. . .
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

$$
\begin{aligned}
& \quad a_{1} \vee a_{2} \vee \cdots \vee a_{n} \\
& a_{i} \rightarrow p_{i}
\end{aligned} \quad a_{i} \rightarrow q_{i} \quad a_{i} \leftarrow p_{i} \wedge q_{i}
$$

Reduction to CNF (with auxiliary atoms)

- [Tseytin 1968] proposed a polynomial reduction but. . .
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

$$
\begin{array}{ll}
& a_{1} \vee a_{2} \vee \cdots \vee a_{n} \\
\neg a_{i} \vee p_{i} & \neg a_{i} \vee q_{i} \quad a_{i} \vee \neg p_{i} \vee \neg q_{i}
\end{array}
$$

$1+3 \cdot n$ clauses. We have n new atoms: we would hide in models

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin's technique

$$
\neg(p \vee(q \wedge r) \vee \neg(p \vee \neg r))
$$

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin's technique

$$
\neg(p \vee(\underbrace{q \wedge r}_{a_{1}}) \vee \neg(\underbrace{p \vee \neg r}_{a_{2}}))
$$

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin's technique

$$
\begin{gathered}
\neg(p \vee(\underbrace{q \wedge r}_{a_{1}}) \vee \neg(\underbrace{p \vee \neg r}_{a_{2}})) \\
a_{1} \leftrightarrow q \wedge r \\
a_{2} \leftrightarrow p \vee \neg r
\end{gathered}
$$

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin's technique

$$
\begin{gathered}
\neg\left(p \vee a_{1} \vee \neg a_{2}\right) \\
a_{1} \leftrightarrow q \wedge r \\
a_{2} \leftrightarrow p \vee \neg r
\end{gathered}
$$

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin's technique

$$
\begin{array}{rl}
& \neg p \wedge \neg a_{1} \wedge a_{2} \\
a_{1} \rightarrow q \wedge r & q \wedge r \rightarrow a_{1} \\
a_{2} \rightarrow p \wedge \neg r & p \wedge \neg r \rightarrow a_{2}
\end{array}
$$

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin's technique

$$
\begin{array}{cc}
& \neg p \wedge \neg a_{1} \wedge a_{2} \\
a_{1} \rightarrow q & a_{1} \rightarrow r
\end{array} \quad q \wedge r \rightarrow a_{1},
$$

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin's technique

$$
\begin{array}{ccc}
& \neg p \quad \neg a_{1} & a_{2} \\
\neg a_{1} \vee q & \neg a_{1} \vee r & \neg q \vee \neg r \vee a_{1} \\
\neg a_{2} \vee p & \neg a_{2} \vee \neg r & \neg p \vee \neg r \vee a_{2}
\end{array}
$$

SAT solvers

Basic Methods: (we will see them in detail later)

- DPLL (Davis-Putnam-Logemann-Loveland)
- Backtracking algorithm: picks some atom p and tries two branches: one with $p=$ true, one with $p=$ false.

SAT solvers

Basic Methods: (we will see them in detail later)

- DPLL (Davis-Putnam-Logemann-Loveland)
- Backtracking algorithm: picks some atom p and tries two branches: one with $p=$ true, one with $p=$ false.
- Once a new assignment is made, it is exploited as much as possible (unit propagation)

SAT solvers

Basic Methods: (we will see them in detail later)

- DPLL (Davis-Putnam-Logemann-Loveland)
- Backtracking algorithm: picks some atom p and tries two branches: one with $p=t r u e$, one with $p=$ false.
- Once a new assignment is made, it is exploited as much as possible (unit propagation)
- Keypoint: good heuristics to choose the most convenient atom p

SAT solvers

Basic Methods: (we will see them in detail later)

- DPLL (Davis-Putnam-Logemann-Loveland)
- Backtracking algorithm: picks some atom p and tries two branches: one with $p=$ true, one with $p=$ false.
- Once a new assignment is made, it is exploited as much as possible (unit propagation)
- Keypoint: good heuristics to choose the most convenient atom p
- CDCL (Conflict-Driven Conflict Learning)
- Maintains an implication graph (each node is a literal, each arrow an implication)
- When an inconsistent assignment is reached, it extracts from the graph a new clause (reflecting the conflict)
- back jump: it backtracks several steps backwards to the first-assigned variable involved in the conflict

