
Propositional Satisfiability

Pedro Cabalar

Dept. Computer Science
University of Corunna, SPAIN

March 15, 2023

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 1 / 23

1 Models of a formula

2 Satisfiability

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 2 / 23

Models of a formula

We can define M(Γ) = the set of models of a theory (or formula) Γ.
Example: M(a ∨ b) = {{a,b}, {a}, {b}}

The models of a formula can be inspected by structural induction:

M(α ∨ β) = M(α) ∪M(β)

M(α ∧ β) = M(α) ∩M(β)

M(¬α) = 2Σ \M(α)

Two formulas α, β are equivalent if M(α) = M(β) (same models)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 3 / 23

Models of a formula

We can define M(Γ) = the set of models of a theory (or formula) Γ.
Example: M(a ∨ b) = {{a,b}, {a}, {b}}

The models of a formula can be inspected by structural induction:

M(α ∨ β) = M(α) ∪M(β)

M(α ∧ β) = M(α) ∩M(β)

M(¬α) = 2Σ \M(α)

Two formulas α, β are equivalent if M(α) = M(β) (same models)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 3 / 23

Models of a formula

We can define M(Γ) = the set of models of a theory (or formula) Γ.
Example: M(a ∨ b) = {{a,b}, {a}, {b}}

The models of a formula can be inspected by structural induction:

M(α ∨ β) = M(α) ∪M(β)

M(α ∧ β) = M(α) ∩M(β)

M(¬α) = 2Σ \M(α)

Two formulas α, β are equivalent if M(α) = M(β) (same models)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 3 / 23

Models of a formula

From a set S of interpretations: can we get a formula α s.t.
M(α) = S ?

Example: find α to cover M(α) = {{a, c}, {b, c}, {a,b, c}}
Does this formula α always exist?
We will see a method (minterms) to obtain a minimal
representation

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 4 / 23

Models of a formula

From a set S of interpretations: can we get a formula α s.t.
M(α) = S ?
Example: find α to cover M(α) = {{a, c}, {b, c}, {a,b, c}}

Does this formula α always exist?
We will see a method (minterms) to obtain a minimal
representation

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 4 / 23

Models of a formula

From a set S of interpretations: can we get a formula α s.t.
M(α) = S ?
Example: find α to cover M(α) = {{a, c}, {b, c}, {a,b, c}}
Does this formula α always exist?

We will see a method (minterms) to obtain a minimal
representation

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 4 / 23

Models of a formula

From a set S of interpretations: can we get a formula α s.t.
M(α) = S ?
Example: find α to cover M(α) = {{a, c}, {b, c}, {a,b, c}}
Does this formula α always exist?
We will see a method (minterms) to obtain a minimal
representation

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 4 / 23

Models of a formula

Def. relation Γ |= α is called logical consequence or entailment
and defined as M(Γ) ⊆ M(α).

Example {happy , (rain→ ¬happy)} |= ¬rain

If M(α) = ∅ (no models!), α is inconsistent or unsatisfiable
Examples: rain ∧ ¬rain, ⊥, . . .

If M(α) = 2Σ (all interpretations are models), α, is valid or a
tautology. Examples: rain ∨ ¬rain, >, b ∧ c ∧ d → (d → b), . . .

We write |= α to mean that α is a tautology
Note: this is ∅ |= α, so we require M(∅) = 2Σ ⊆ M(α)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 5 / 23

Models of a formula

Def. relation Γ |= α is called logical consequence or entailment
and defined as M(Γ) ⊆ M(α).
Example {happy , (rain→ ¬happy)} |= ¬rain

If M(α) = ∅ (no models!), α is inconsistent or unsatisfiable
Examples: rain ∧ ¬rain, ⊥, . . .

If M(α) = 2Σ (all interpretations are models), α, is valid or a
tautology. Examples: rain ∨ ¬rain, >, b ∧ c ∧ d → (d → b), . . .

We write |= α to mean that α is a tautology
Note: this is ∅ |= α, so we require M(∅) = 2Σ ⊆ M(α)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 5 / 23

Models of a formula

Def. relation Γ |= α is called logical consequence or entailment
and defined as M(Γ) ⊆ M(α).
Example {happy , (rain→ ¬happy)} |= ¬rain

If M(α) = ∅ (no models!), α is inconsistent or unsatisfiable

Examples: rain ∧ ¬rain, ⊥, . . .

If M(α) = 2Σ (all interpretations are models), α, is valid or a
tautology. Examples: rain ∨ ¬rain, >, b ∧ c ∧ d → (d → b), . . .

We write |= α to mean that α is a tautology
Note: this is ∅ |= α, so we require M(∅) = 2Σ ⊆ M(α)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 5 / 23

Models of a formula

Def. relation Γ |= α is called logical consequence or entailment
and defined as M(Γ) ⊆ M(α).
Example {happy , (rain→ ¬happy)} |= ¬rain

If M(α) = ∅ (no models!), α is inconsistent or unsatisfiable
Examples: rain ∧ ¬rain, ⊥, . . .

If M(α) = 2Σ (all interpretations are models), α, is valid or a
tautology. Examples: rain ∨ ¬rain, >, b ∧ c ∧ d → (d → b), . . .

We write |= α to mean that α is a tautology
Note: this is ∅ |= α, so we require M(∅) = 2Σ ⊆ M(α)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 5 / 23

Models of a formula

Def. relation Γ |= α is called logical consequence or entailment
and defined as M(Γ) ⊆ M(α).
Example {happy , (rain→ ¬happy)} |= ¬rain

If M(α) = ∅ (no models!), α is inconsistent or unsatisfiable
Examples: rain ∧ ¬rain, ⊥, . . .

If M(α) = 2Σ (all interpretations are models), α, is valid or a
tautology.

Examples: rain ∨ ¬rain, >, b ∧ c ∧ d → (d → b), . . .

We write |= α to mean that α is a tautology
Note: this is ∅ |= α, so we require M(∅) = 2Σ ⊆ M(α)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 5 / 23

Models of a formula

Def. relation Γ |= α is called logical consequence or entailment
and defined as M(Γ) ⊆ M(α).
Example {happy , (rain→ ¬happy)} |= ¬rain

If M(α) = ∅ (no models!), α is inconsistent or unsatisfiable
Examples: rain ∧ ¬rain, ⊥, . . .

If M(α) = 2Σ (all interpretations are models), α, is valid or a
tautology. Examples: rain ∨ ¬rain, >, b ∧ c ∧ d → (d → b), . . .

We write |= α to mean that α is a tautology
Note: this is ∅ |= α, so we require M(∅) = 2Σ ⊆ M(α)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 5 / 23

Models of a formula

Def. relation Γ |= α is called logical consequence or entailment
and defined as M(Γ) ⊆ M(α).
Example {happy , (rain→ ¬happy)} |= ¬rain

If M(α) = ∅ (no models!), α is inconsistent or unsatisfiable
Examples: rain ∧ ¬rain, ⊥, . . .

If M(α) = 2Σ (all interpretations are models), α, is valid or a
tautology. Examples: rain ∨ ¬rain, >, b ∧ c ∧ d → (d → b), . . .

We write |= α to mean that α is a tautology

Note: this is ∅ |= α, so we require M(∅) = 2Σ ⊆ M(α)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 5 / 23

Models of a formula

Def. relation Γ |= α is called logical consequence or entailment
and defined as M(Γ) ⊆ M(α).
Example {happy , (rain→ ¬happy)} |= ¬rain

If M(α) = ∅ (no models!), α is inconsistent or unsatisfiable
Examples: rain ∧ ¬rain, ⊥, . . .

If M(α) = 2Σ (all interpretations are models), α, is valid or a
tautology. Examples: rain ∨ ¬rain, >, b ∧ c ∧ d → (d → b), . . .

We write |= α to mean that α is a tautology
Note: this is ∅ |= α, so we require M(∅) = 2Σ

⊆ M(α)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 5 / 23

Models of a formula

Def. relation Γ |= α is called logical consequence or entailment
and defined as M(Γ) ⊆ M(α).
Example {happy , (rain→ ¬happy)} |= ¬rain

If M(α) = ∅ (no models!), α is inconsistent or unsatisfiable
Examples: rain ∧ ¬rain, ⊥, . . .

If M(α) = 2Σ (all interpretations are models), α, is valid or a
tautology. Examples: rain ∨ ¬rain, >, b ∧ c ∧ d → (d → b), . . .

We write |= α to mean that α is a tautology
Note: this is ∅ |= α, so we require M(∅) = 2Σ ⊆ M(α)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 5 / 23

Propositional Logic: Semantics

Theorem
|= α→ β is equivalent to α |= β.

Definition (Weaker/stronger formula)
When |= α→ β, or just M(α) ⊆ M(β), we say that
α is stronger than β (or β is weaker α).

Which are the strongest and weakest possible formulae?
Examples: for each pair, which is the strongest?

p p ∧ q
p p ∨ ¬q

p ∨ q p ∧ q
p (q → p)

p ∧ ¬q ¬p ∧ q

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 6 / 23

Propositional Logic: Semantics

Theorem
|= α→ β is equivalent to α |= β.

Definition (Weaker/stronger formula)
When |= α→ β, or just M(α) ⊆ M(β), we say that
α is stronger than β (or β is weaker α).

Which are the strongest and weakest possible formulae?

Examples: for each pair, which is the strongest?
p p ∧ q
p p ∨ ¬q

p ∨ q p ∧ q
p (q → p)

p ∧ ¬q ¬p ∧ q

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 6 / 23

Propositional Logic: Semantics

Theorem
|= α→ β is equivalent to α |= β.

Definition (Weaker/stronger formula)
When |= α→ β, or just M(α) ⊆ M(β), we say that
α is stronger than β (or β is weaker α).

Which are the strongest and weakest possible formulae?
Examples: for each pair, which is the strongest?

p p ∧ q
p p ∨ ¬q

p ∨ q p ∧ q
p (q → p)

p ∧ ¬q ¬p ∧ q

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 6 / 23

Propositional Logic: Semantics

Theorem
|= α→ β is equivalent to α |= β.

Definition (Weaker/stronger formula)
When |= α→ β, or just M(α) ⊆ M(β), we say that
α is stronger than β (or β is weaker α).

Which are the strongest and weakest possible formulae?
Examples: for each pair, which is the strongest?

p p ∧ q
p p ∨ ¬q

p ∨ q p ∧ q
p (q → p)

p ∧ ¬q ¬p ∧ q

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 6 / 23

Propositional Logic: Semantics

Theorem
|= α→ β is equivalent to α |= β.

Definition (Weaker/stronger formula)
When |= α→ β, or just M(α) ⊆ M(β), we say that
α is stronger than β (or β is weaker α).

Which are the strongest and weakest possible formulae?
Examples: for each pair, which is the strongest?

p ← p ∧ q
p p ∨ ¬q

p ∨ q p ∧ q
p (q → p)

p ∧ ¬q ¬p ∧ q

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 6 / 23

Propositional Logic: Semantics

Theorem
|= α→ β is equivalent to α |= β.

Definition (Weaker/stronger formula)
When |= α→ β, or just M(α) ⊆ M(β), we say that
α is stronger than β (or β is weaker α).

Which are the strongest and weakest possible formulae?
Examples: for each pair, which is the strongest?

p ← p ∧ q
p → p ∨ ¬q

p ∨ q p ∧ q
p (q → p)

p ∧ ¬q ¬p ∧ q

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 6 / 23

Propositional Logic: Semantics

Theorem
|= α→ β is equivalent to α |= β.

Definition (Weaker/stronger formula)
When |= α→ β, or just M(α) ⊆ M(β), we say that
α is stronger than β (or β is weaker α).

Which are the strongest and weakest possible formulae?
Examples: for each pair, which is the strongest?

p ← p ∧ q
p → p ∨ ¬q

p ∨ q ← p ∧ q
p (q → p)

p ∧ ¬q ¬p ∧ q

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 6 / 23

Propositional Logic: Semantics

Theorem
|= α→ β is equivalent to α |= β.

Definition (Weaker/stronger formula)
When |= α→ β, or just M(α) ⊆ M(β), we say that
α is stronger than β (or β is weaker α).

Which are the strongest and weakest possible formulae?
Examples: for each pair, which is the strongest?

p ← p ∧ q
p → p ∨ ¬q

p ∨ q ← p ∧ q
p → (q → p)

p ∧ ¬q ¬p ∧ q

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 6 / 23

1 Models of a formula

2 Satisfiability

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 7 / 23

Satisfiability

Definition (SAT decision problem)
Decision problem SAT (α) ∈ {yes,no} checks whether a formula α has
some model. That is: SAT (α) = yes iff M(α) 6= ∅.

Time complexity: NP-complete problem.

Furthermore, it was the
first problem identified problem in this class, and crucial for
proving that other problems belong to it.

Nowadays, SAT is an outstanding state-of-the-art research area
for search algorithms. There exist many efficient tools and
commercial applications. See www.satlive.com

SAT keypoint: instead of designing an ad hoc search algorithm,
encode the problem into propositional logic and use SAT as a
backend.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 8 / 23

www.satlive.com

Satisfiability

Definition (SAT decision problem)
Decision problem SAT (α) ∈ {yes,no} checks whether a formula α has
some model. That is: SAT (α) = yes iff M(α) 6= ∅.

Time complexity: NP-complete problem. Furthermore, it was the
first problem identified problem in this class, and crucial for
proving that other problems belong to it.

Nowadays, SAT is an outstanding state-of-the-art research area
for search algorithms. There exist many efficient tools and
commercial applications. See www.satlive.com

SAT keypoint: instead of designing an ad hoc search algorithm,
encode the problem into propositional logic and use SAT as a
backend.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 8 / 23

www.satlive.com

Satisfiability

Definition (SAT decision problem)
Decision problem SAT (α) ∈ {yes,no} checks whether a formula α has
some model. That is: SAT (α) = yes iff M(α) 6= ∅.

Time complexity: NP-complete problem. Furthermore, it was the
first problem identified problem in this class, and crucial for
proving that other problems belong to it.

Nowadays, SAT is an outstanding state-of-the-art research area
for search algorithms. There exist many efficient tools and
commercial applications. See www.satlive.com

SAT keypoint: instead of designing an ad hoc search algorithm,
encode the problem into propositional logic and use SAT as a
backend.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 8 / 23

www.satlive.com

Satisfiability

Definition (SAT decision problem)
Decision problem SAT (α) ∈ {yes,no} checks whether a formula α has
some model. That is: SAT (α) = yes iff M(α) 6= ∅.

Time complexity: NP-complete problem. Furthermore, it was the
first problem identified problem in this class, and crucial for
proving that other problems belong to it.

Nowadays, SAT is an outstanding state-of-the-art research area
for search algorithms. There exist many efficient tools and
commercial applications. See www.satlive.com

SAT keypoint: instead of designing an ad hoc search algorithm,
encode the problem into propositional logic and use SAT as a
backend.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 8 / 23

www.satlive.com

Exercise

Programming the satisfaction relation |= in Prolog:
:- op(210, yfx, &).
:- op(220, yfx, v).
:- op(1060, yfx, <->).
sat(_I, false) :- !, fail.
sat(_I, true) :- !.
sat(I, P) :- atom(P),!,member(P,I),!.
sat(I, -A) :- \+ sat(I, A).
sat(I, A & B) :- sat(I, A), sat(I, B).
sat(I, A v B) :- sat(I,A),! ; sat(I, B).
sat(I, A -> B) :- sat(I,-A v B).
sat(I, A <-> B) :- sat(I,(A -> B)&(B -> A)).

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 9 / 23

Exercise

Testing whether a formula is a tautology:
tautology(S, F) :- \+ (subset(S,I), \+ sat(I,F)).

subset([],[]) :- !.
subset([X | Xs],S) :- subset(Xs,S).
subset([X | Xs],[X | S]) :- subset(Xs,S).

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 10 / 23

Conjunctive Normal Form

The input for most SAT solvers is a formula α in conjunctive
normal form.

This is a conjunction of clauses = disjunctions of literals. Example:
(p1 ∨ ¬p2) ∧ (¬p3 ∨ p1 ∨ p2) ∧ ¬p1 ∧ (p2 ∨ p4)

This is represented as a text file in DIMACS format. For instance,
the formula above becomes

p cnf 3 4 3 variables, 4 clauses
1 -2 0 0 marks the end of a clause
-3 1 2 0
-1 0
2 4 0

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 11 / 23

Conjunctive Normal Form

The input for most SAT solvers is a formula α in conjunctive
normal form.

This is a conjunction of clauses = disjunctions of literals. Example:
(p1 ∨ ¬p2) ∧ (¬p3 ∨ p1 ∨ p2) ∧ ¬p1 ∧ (p2 ∨ p4)

This is represented as a text file in DIMACS format. For instance,
the formula above becomes

p cnf 3 4 3 variables, 4 clauses
1 -2 0 0 marks the end of a clause
-3 1 2 0
-1 0
2 4 0

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 11 / 23

Conjunctive Normal Form

The input for most SAT solvers is a formula α in conjunctive
normal form.

This is a conjunction of clauses = disjunctions of literals. Example:
(p1 ∨ ¬p2) ∧ (¬p3 ∨ p1 ∨ p2) ∧ ¬p1 ∧ (p2 ∨ p4)

This is represented as a text file in DIMACS format. For instance,
the formula above becomes

p cnf 3 4 3 variables, 4 clauses
1 -2 0 0 marks the end of a clause
-3 1 2 0
-1 0
2 4 0

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 11 / 23

Reduction to CNF

Reduction to CNF: several methods can be used (for instance,
semantic tableaux)

Reducing a formula α to CNF causes an exponential cost

Distributivity blows up

(p1 ∧ q1) ∨ (p2 ∧ q2) ∨ · · · ∨ (pn ∧ qn)

2n disjunctions depending on whether we take p or q for each i

Theorem
Reducing ϕ −→ CNF (ϕ) in classical logic is NP-hard.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 12 / 23

Reduction to CNF

Reduction to CNF: several methods can be used (for instance,
semantic tableaux)

Reducing a formula α to CNF causes an exponential cost

Distributivity blows up

(p1 ∧ q1) ∨ (p2 ∧ q2) ∨ · · · ∨ (pn ∧ qn)

2n disjunctions depending on whether we take p or q for each i

Theorem
Reducing ϕ −→ CNF (ϕ) in classical logic is NP-hard.

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 12 / 23

Reduction to CNF (with auxiliary atoms)

[Tseytin 1968] proposed a polynomial reduction but. . .

Key idea: introduce auxiliary variables per each non-atomic
subformula, then add equivalences to fix their truth

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 13 / 23

Reduction to CNF (with auxiliary atoms)

[Tseytin 1968] proposed a polynomial reduction but. . .

Key idea: introduce auxiliary variables per each non-atomic
subformula, then add equivalences to fix their truth

(p1 ∧ q1) ∨ (p2 ∧ q2) ∨ · · · ∨ (pn ∧ qn)

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 13 / 23

Reduction to CNF (with auxiliary atoms)

[Tseytin 1968] proposed a polynomial reduction but. . .

Key idea: introduce auxiliary variables per each non-atomic
subformula, then add equivalences to fix their truth

(p1 ∧ q1)︸ ︷︷ ︸
a1

∨ (p2 ∧ q2)︸ ︷︷ ︸
a2

∨ · · · ∨ (pn ∧ qn)︸ ︷︷ ︸
an

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 13 / 23

Reduction to CNF (with auxiliary atoms)

[Tseytin 1968] proposed a polynomial reduction but. . .

Key idea: introduce auxiliary variables per each non-atomic
subformula, then add equivalences to fix their truth

a1 ∨ a2 ∨ · · · ∨ an
ai ↔ pi ∧ qi

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 13 / 23

Reduction to CNF (with auxiliary atoms)

[Tseytin 1968] proposed a polynomial reduction but. . .

Key idea: introduce auxiliary variables per each non-atomic
subformula, then add equivalences to fix their truth

a1 ∨ a2 ∨ · · · ∨ an
ai → pi ∧ qi ai ← pi ∧ qi

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 13 / 23

Reduction to CNF (with auxiliary atoms)

[Tseytin 1968] proposed a polynomial reduction but. . .

Key idea: introduce auxiliary variables per each non-atomic
subformula, then add equivalences to fix their truth

a1 ∨ a2 ∨ · · · ∨ an
ai → pi ai → qi ai ← pi ∧ qi

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 13 / 23

Reduction to CNF (with auxiliary atoms)

[Tseytin 1968] proposed a polynomial reduction but. . .

Key idea: introduce auxiliary variables per each non-atomic
subformula, then add equivalences to fix their truth

a1 ∨ a2 ∨ · · · ∨ an
¬ai ∨ pi ¬ai ∨ qi ai ∨ ¬pi ∨ ¬qi

1 + 3 · n clauses. We have n new atoms: we would hide in models

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 13 / 23

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin’s technique

¬(p ∨ (q ∧ r) ∨ ¬(p ∨ ¬r))

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 14 / 23

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin’s technique

¬(p ∨ (q ∧ r︸ ︷︷ ︸
a1

) ∨ ¬(p ∨ ¬r︸ ︷︷ ︸
a2

))

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 14 / 23

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin’s technique

¬(p ∨ (q ∧ r︸ ︷︷ ︸
a1

) ∨ ¬(p ∨ ¬r︸ ︷︷ ︸
a2

))

a1 ↔ q ∧ r
a2 ↔ p ∨ ¬r

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 14 / 23

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin’s technique

¬(p ∨ a1 ∨ ¬a2)
a1 ↔ q ∧ r

a2 ↔ p ∨ ¬r

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 14 / 23

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin’s technique

¬p ∧ ¬a1 ∧ a2
a1 → q ∧ r q ∧ r → a1

a2 → p ∧ ¬r p ∧ ¬r → a2

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 14 / 23

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin’s technique

¬p ∧ ¬a1 ∧ a2
a1 → q a1 → r q ∧ r → a1

a2 → p a2 → ¬r p ∧ ¬r → a2

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 14 / 23

Reduction to CNF (with auxiliary atoms)

Example: reduce the formula below to CNF using Tseytin’s technique

¬p ¬a1 a2
¬a1 ∨ q ¬a1 ∨ r ¬q ∨ ¬r ∨ a1
¬a2 ∨ p ¬a2 ∨ ¬r ¬p ∨ ¬r ∨ a2

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 14 / 23

SAT solvers

Basic Methods: (we will see them in detail later)
DPLL (Davis-Putnam-Logemann-Loveland)

I Backtracking algorithm: picks some atom p and tries two branches:
one with p = true, one with p = false.

I Once a new assignment is made, it is exploited as much as
possible (unit propagation)

I Keypoint: good heuristics to choose the most convenient atom p

CDCL (Conflict-Driven Conflict Learning)
I Maintains an implication graph (each node is a literal, each arrow

an implication)
I When an inconsistent assignment is reached, it extracts from the

graph a new clause (reflecting the conflict)
I back jump: it backtracks several steps backwards to the

first-assigned variable involved in the conflict

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 15 / 23

SAT solvers

Basic Methods: (we will see them in detail later)
DPLL (Davis-Putnam-Logemann-Loveland)

I Backtracking algorithm: picks some atom p and tries two branches:
one with p = true, one with p = false.

I Once a new assignment is made, it is exploited as much as
possible (unit propagation)

I Keypoint: good heuristics to choose the most convenient atom p

CDCL (Conflict-Driven Conflict Learning)
I Maintains an implication graph (each node is a literal, each arrow

an implication)
I When an inconsistent assignment is reached, it extracts from the

graph a new clause (reflecting the conflict)
I back jump: it backtracks several steps backwards to the

first-assigned variable involved in the conflict

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 15 / 23

SAT solvers

Basic Methods: (we will see them in detail later)
DPLL (Davis-Putnam-Logemann-Loveland)

I Backtracking algorithm: picks some atom p and tries two branches:
one with p = true, one with p = false.

I Once a new assignment is made, it is exploited as much as
possible (unit propagation)

I Keypoint: good heuristics to choose the most convenient atom p

CDCL (Conflict-Driven Conflict Learning)
I Maintains an implication graph (each node is a literal, each arrow

an implication)
I When an inconsistent assignment is reached, it extracts from the

graph a new clause (reflecting the conflict)
I back jump: it backtracks several steps backwards to the

first-assigned variable involved in the conflict

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 15 / 23

SAT solvers

Basic Methods: (we will see them in detail later)
DPLL (Davis-Putnam-Logemann-Loveland)

I Backtracking algorithm: picks some atom p and tries two branches:
one with p = true, one with p = false.

I Once a new assignment is made, it is exploited as much as
possible (unit propagation)

I Keypoint: good heuristics to choose the most convenient atom p

CDCL (Conflict-Driven Conflict Learning)
I Maintains an implication graph (each node is a literal, each arrow

an implication)
I When an inconsistent assignment is reached, it extracts from the

graph a new clause (reflecting the conflict)
I back jump: it backtracks several steps backwards to the

first-assigned variable involved in the conflict

P. Cabalar (Dept. Computer Science University of Corunna, SPAIN)Satisfiability March 15, 2023 15 / 23

	Models of a formula
	Satisfiability

