Propositional Satisfiability

Pedro Cabalar

Dept. Computer Science University of Corunna, SPAIN

March 15, 2023

P.	Ca	bal	lar
•••	ou	ou	a

A .

P.	Са	ba	lar	
•••	υa	va	a	

2

-

・ロト ・日下 ・ ヨト ・

We can define M(Γ) = the set of models of a theory (or formula) Γ.
 Example: M(a ∨ b) = {{a, b}, {a}, {b}}

- We can define M(Γ) = the set of models of a theory (or formula) Γ.
 Example: M(a ∨ b) = {{a,b}, {a}, {b}}
- The models of a formula can be inspected by structural induction:

$$M(\alpha \lor \beta) = M(\alpha) \cup M(\beta)$$

$$M(\alpha \land \beta) = M(\alpha) \cap M(\beta)$$

$$M(\neg \alpha) = 2^{\Sigma} \setminus M(\alpha)$$

- We can define M(Γ) = the set of models of a theory (or formula) Γ.
 Example: M(a ∨ b) = {{a,b}, {a}, {b}}
- The models of a formula can be inspected by structural induction:

$$M(\alpha \lor \beta) = M(\alpha) \cup M(\beta)$$

$$M(\alpha \land \beta) = M(\alpha) \cap M(\beta)$$

$$M(\neg \alpha) = 2^{\Sigma} \setminus M(\alpha)$$

• Two formulas α , β are equivalent if $M(\alpha) = M(\beta)$ (same models)

• From a set *S* of interpretations: can we get a formula α s.t. $M(\alpha) = S$?

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- From a set S of interpretations: can we get a formula α s.t.
 M(α) = S ?
- Example: find α to cover $M(\alpha) = \{\{a, c\}, \{b, c\}, \{a, b, c\}\}$

- From a set S of interpretations: can we get a formula α s.t.
 M(α) = S ?
- Example: find α to cover $M(\alpha) = \{\{a, c\}, \{b, c\}, \{a, b, c\}\}$
- Does this formula α always exist?

- From a set *S* of interpretations: can we get a formula α s.t. $M(\alpha) = S$?
- Example: find α to cover $M(\alpha) = \{\{a, c\}, \{b, c\}, \{a, b, c\}\}$
- Does this formula α always exist?
- We will see a method (*minterms*) to obtain a minimal representation

 Def. relation Γ ⊨ α is called logical consequence or entailment and defined as M(Γ) ⊆ M(α).

• • • • • • • • • • •

 Def. relation Γ ⊨ α is called logical consequence or entailment and defined as M(Γ) ⊆ M(α).
 Example {happy, (rain → ¬happy)} ⊨ ¬rain

- Def. relation Γ ⊨ α is called logical consequence or entailment and defined as M(Γ) ⊆ M(α).
 Example {happy, (rain → ¬happy)} ⊨ ¬rain
- If $M(\alpha) = \emptyset$ (no models!), α is inconsistent or unsatisfiable

- Def. relation Γ ⊨ α is called logical consequence or entailment and defined as M(Γ) ⊆ M(α).
 Example {happy, (rain → ¬happy)} ⊨ ¬rain
- If M(α) = Ø (no models!), α is inconsistent or unsatisfiable Examples: rain ∧ ¬rain, ⊥, ...

- Def. relation Γ ⊨ α is called logical consequence or entailment and defined as M(Γ) ⊆ M(α).
 Example {happy, (rain → ¬happy)} ⊨ ¬rain
- If M(α) = Ø (no models!), α is inconsistent or unsatisfiable Examples: rain ∧ ¬rain, ⊥, ...
- If M(α) = 2^Σ (all interpretations are models), α, is valid or a tautology.

- Def. relation Γ ⊨ α is called logical consequence or entailment and defined as M(Γ) ⊆ M(α).
 Example {happy, (rain → ¬happy)} ⊨ ¬rain
- If M(α) = Ø (no models!), α is inconsistent or unsatisfiable Examples: rain ∧ ¬rain, ⊥, ...
- If M(α) = 2^Σ (all interpretations are models), α, is valid or a tautology. Examples: rain ∨ ¬rain, ⊤, b ∧ c ∧ d → (d → b), ...

- Def. relation Γ ⊨ α is called logical consequence or entailment and defined as M(Γ) ⊆ M(α).
 Example {happy, (rain → ¬happy)} ⊨ ¬rain
- If M(α) = Ø (no models!), α is inconsistent or unsatisfiable Examples: rain ∧ ¬rain, ⊥, ...
- If M(α) = 2^Σ (all interpretations are models), α, is valid or a tautology. Examples: rain ∨ ¬rain, ⊤, b ∧ c ∧ d → (d → b), ...
- We write $\models \alpha$ to mean that α is a tautology

- Def. relation Γ ⊨ α is called logical consequence or entailment and defined as M(Γ) ⊆ M(α).
 Example {happy, (rain → ¬happy)} ⊨ ¬rain
- If M(α) = Ø (no models!), α is inconsistent or unsatisfiable Examples: rain ∧ ¬rain, ⊥, ...
- If M(α) = 2^Σ (all interpretations are models), α, is valid or a tautology. Examples: rain ∨ ¬rain, ⊤, b ∧ c ∧ d → (d → b), ...
- We write ⊨ α to mean that α is a tautology Note: this is Ø ⊨ α, so we require M(Ø) = 2^Σ

- Def. relation Γ ⊨ α is called logical consequence or entailment and defined as M(Γ) ⊆ M(α).
 Example {happy, (rain → ¬happy)} ⊨ ¬rain
- If M(α) = Ø (no models!), α is inconsistent or unsatisfiable Examples: rain ∧ ¬rain, ⊥, ...
- If M(α) = 2^Σ (all interpretations are models), α, is valid or a tautology. Examples: rain ∨ ¬rain, ⊤, b ∧ c ∧ d → (d → b), ...
- We write ⊨ α to mean that α is a tautology Note: this is Ø ⊨ α, so we require M(Ø) = 2^Σ ⊆ M(α)

Theorem

 $\models \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

< ロ > < 同 > < 回 > < 回 >

Theorem

 $\models \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

Which are the strongest and weakest possible formulae?

Theorem

 $\models \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

 $egin{array}{cccc} p & p \wedge q \ p & p \lor
eg q \ p \lor q & p \land q \ p & (q
ightarrow p) \ p \land
eg q &
eg p \land q \ p \land q \ eg q
ightarrow q \ eg
ightarrow q \$

Theorem

 $\models \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

 $egin{array}{cccc} p & p \wedge q \ p & p \lor
eg q \ p \lor q & p \land q \ p & (q
ightarrow p) \ p \land
eg q &
eg p \land q \ p \land q \ eg q
ightarrow q \ eg
ightarrow q \$

Theorem

 $\models \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

 $egin{array}{cccc} p &\leftarrow p\wedge q \ p & p ee \neg q \ p ee q & p \land q \ p \lor q & p \land q \ p & (q
ightarrow p) \ p \land \neg q & \neg p \land q \end{array}$

Theorem

 $\models \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

$$egin{array}{cccc} p & \leftarrow & p \wedge q \ p & \rightarrow & p \lor
eg q \ p \lor q & p \wedge q \ p & (q
ightarrow p) \ p \land
eg q &
eg p \land q &
eg p \land q \ p \land q \ p \land q \end{array}$$

Theorem

 $\models \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

$$egin{array}{cccccccc} p \wedge q &
ightarrow p \langle q &$$

Theorem

 $\models \alpha \rightarrow \beta$ is equivalent to $\alpha \models \beta$.

Definition (Weaker/stronger formula)

When $\models \alpha \rightarrow \beta$, or just $M(\alpha) \subseteq M(\beta)$, we say that α is stronger than β (or β is weaker α).

- Which are the strongest and weakest possible formulae?
- Examples: for each pair, which is the strongest?

$$egin{array}{ccccc} p & & & & & & p \wedge q \ p & & & & & p \vee \neg q \ p & & & & p \wedge q \ p & & & & & p \wedge q \ p & & & & & p \wedge q \ p & & & & & p \wedge q \ p & & & & & & p \wedge q \end{array}$$

P.	Ca	ba	lar

2

÷

A B A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Definition (SAT decision problem)

Decision problem $SAT(\alpha) \in \{yes, no\}$ checks whether a formula α has some model. That is: $SAT(\alpha) = yes$ iff $M(\alpha) \neq \emptyset$.

• Time complexity: NP-complete problem.

Definition (SAT decision problem)

Decision problem $SAT(\alpha) \in \{yes, no\}$ checks whether a formula α has some model. That is: $SAT(\alpha) = yes$ iff $M(\alpha) \neq \emptyset$.

• Time complexity: NP-complete problem. Furthermore, it was the first problem identified problem in this class, and crucial for proving that other problems belong to it.

Definition (SAT decision problem)

Decision problem $SAT(\alpha) \in \{yes, no\}$ checks whether a formula α has some model. That is: $SAT(\alpha) = yes$ iff $M(\alpha) \neq \emptyset$.

- Time complexity: NP-complete problem. Furthermore, it was the first problem identified problem in this class, and crucial for proving that other problems belong to it.
- Nowadays, SAT is an outstanding state-of-the-art research area for search algorithms. There exist many efficient tools and commercial applications. See www.satlive.com

Definition (SAT decision problem)

Decision problem $SAT(\alpha) \in \{yes, no\}$ checks whether a formula α has some model. That is: $SAT(\alpha) = yes$ iff $M(\alpha) \neq \emptyset$.

- Time complexity: NP-complete problem. Furthermore, it was the first problem identified problem in this class, and crucial for proving that other problems belong to it.
- Nowadays, SAT is an outstanding state-of-the-art research area for search algorithms. There exist many efficient tools and commercial applications. See www.satlive.com
- SAT keypoint: instead of designing an *ad hoc* search algorithm, encode the problem into propositional logic and use SAT as a backend.

< ロ > < 同 > < 回 > < 回 >

Exercise

• Programming the satisfaction relation \models in Prolog:

```
:- op(210, yfx, &).
:- op(220, yfx, v).
:- op(1060, yfx, <->).
sat( I, false) :- !, fail.
sat( I, true) :- !.
sat(I, P) :- atom(P), !, member(P, I), !.
sat(I, -A) :- \setminus+ sat(I, A).
sat(I, A \& B) := sat(I, A), sat(I, B).
sat(I, A \vee B) :- sat(I, A), !; sat(I, B).
sat(I, A \rightarrow B) :- sat(I, -A \vee B).
sat(I, A <-> B) :- sat(I, (A -> B) \& (B -> A)).
```

• Testing whether a formula is a tautology:

tautology(S, F) :- + (subset(S,I), + sat(I,F)).

subset([],[]) :- !.
subset([X | Xs],S) :- subset(Xs,S).
subset([X | Xs],[X | S]) :- subset(Xs,S).

Conjunctive Normal Form

 The input for most SAT solvers is a formula α in conjunctive normal form.

3 > 4 3

Conjunctive Normal Form

- The input for most SAT solvers is a formula α in conjunctive normal form.
- This is a conjunction of clauses = disjunctions of literals. Example: $(p_1 \lor \neg p_2) \land (\neg p_3 \lor p_1 \lor p_2) \land \neg p_1 \land (p_2 \lor p_4)$

Conjunctive Normal Form

- The input for most SAT solvers is a formula *α* in conjunctive normal form.
- This is a conjunction of clauses = disjunctions of literals. Example: $(p_1 \lor \neg p_2) \land (\neg p_3 \lor p_1 \lor p_2) \land \neg p_1 \land (p_2 \lor p_4)$
- This is represented as a text file in DIMACS format. For instance, the formula above becomes

p cnf 3 4	3 variables, 4 clauses
1 -2 0	0 marks the end of a clause
-3 1 2 0	
-1 0	
2 4 0	

P.	Ca	ba	lar
----	----	----	-----

B N A B N

Reduction to CNF

 Reduction to CNF: several methods can be used (for instance, semantic tableaux)

3 > 4 3

Reduction to CNF

- Reduction to CNF: several methods can be used (for instance, semantic tableaux)
- Reducing a formula α to CNF causes an exponential cost
- Distributivity blows up

$$(p_1 \wedge q_1) \vee (p_2 \wedge q_2) \vee \cdots \vee (p_n \wedge q_n)$$

 2^n disjunctions depending on whether we take p or q for each i

Theorem

Reducing $\varphi \longrightarrow CNF(\varphi)$ in classical logic is NP-hard.

Ca		

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- [Tseytin 1968] proposed a polynomial reduction but...
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

- [Tseytin 1968] proposed a polynomial reduction but...
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

 $(p_1 \wedge q_1) \vee (p_2 \wedge q_2) \vee \cdots \vee (p_n \wedge q_n)$

- [Tseytin 1968] proposed a polynomial reduction but...
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

$$\underbrace{(p_1 \land q_1)}_{a_1} \lor \underbrace{(p_2 \land q_2)}_{a_2} \lor \cdots \lor \underbrace{(p_n \land q_n)}_{a_n}$$

	<u></u>		
Ρ.	Ca	Da	ar

- [Tseytin 1968] proposed a polynomial reduction but...
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

 $a_1 \lor a_2 \lor \cdots \lor a_n$ $a_i \leftrightarrow p_i \land q_i$

P.	Cabalar	

- [Tseytin 1968] proposed a polynomial reduction but...
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

 $a_1 \lor a_2 \lor \cdots \lor a_n$ $a_i
ightarrow p_i \land q_i$ $a_i \leftarrow p_i \land q_i$

P. Cabala	ar
-----------	----

- [Tseytin 1968] proposed a polynomial reduction but...
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

$$a_1 \lor a_2 \lor \cdots \lor a_n \ a_i
ightarrow p_i \quad a_i
ightarrow q_i \quad a_i \leftarrow p_i \land q_i$$

- [Tseytin 1968] proposed a polynomial reduction but...
- Key idea: introduce auxiliary variables per each non-atomic subformula, then add equivalences to fix their truth

$$\neg a_i \lor p_i \quad \neg a_i \lor q_i \quad a_i \lor \neg p_i \lor \neg q_i$$

 $1 + 3 \cdot n$ clauses. We have *n* new atoms: we would hide in models

Example: reduce the formula below to CNF using Tseytin's technique

 $\neg(p \lor (q \land r) \lor \neg(p \lor \neg r))$

B + 4 B +

Example: reduce the formula below to CNF using Tseytin's technique

$$\neg (p \lor (\underbrace{q \land r}_{a_1}) \lor \neg (\underbrace{p \lor \neg r}_{a_2}))$$

< ロ > < 同 > < 回 > < 回 >

$$\neg (p \lor (\underbrace{q \land r}_{a_1}) \lor \neg (\underbrace{p \lor \neg r}_{a_2}))$$
$$\underbrace{a_1 \leftrightarrow q \land r}_{a_2 \leftrightarrow p \lor \neg r}$$

P. Cabala	ar
-----------	----

∃ ► < ∃</p>

 $egin{aligned}
end{aligned} &\neg (p \lor a_1 \lor \neg a_2) \\
&a_1 \leftrightarrow q \land r \\
&a_2 \leftrightarrow p \lor \neg r
\end{aligned}$

P. Cabalar	
------------	--

B + 4 B +

$$\begin{array}{c} \neg p \land \neg a_1 \land a_2 \\ a_1 \rightarrow q \land r \qquad q \land r \rightarrow a_1 \\ a_2 \rightarrow p \land \neg r \qquad p \land \neg r \rightarrow a_2 \end{array}$$

$$\begin{array}{ccc} \neg p \land \neg a_1 \land a_2 \\ a_1 \rightarrow q & a_1 \rightarrow r & q \land r \rightarrow a_1 \\ a_2 \rightarrow p & a_2 \rightarrow \neg r & p \land \neg r \rightarrow a_2 \end{array}$$

$$\neg p \quad \neg a_1 \quad a_2$$

$$\neg a_1 \lor q \quad \neg a_1 \lor r \quad \neg q \lor \neg r \lor a_1$$

$$\neg a_2 \lor p \quad \neg a_2 \lor \neg r \quad \neg p \lor \neg r \lor a_2$$

Basic Methods: (we will see them in detail later)

- DPLL (Davis-Putnam-Logemann-Loveland)
 - Backtracking algorithm: picks some atom p and tries two branches: one with p = true, one with p = false.

Basic Methods: (we will see them in detail later)

- DPLL (Davis-Putnam-Logemann-Loveland)
 - Backtracking algorithm: picks some atom p and tries two branches: one with p = true, one with p = false.
 - Once a new assignment is made, it is exploited as much as possible (unit propagation)

< ロ > < 同 > < 回 > < 回 >

Basic Methods: (we will see them in detail later)

- DPLL (Davis-Putnam-Logemann-Loveland)
 - Backtracking algorithm: picks some atom p and tries two branches: one with p = true, one with p = false.
 - Once a new assignment is made, it is exploited as much as possible (unit propagation)
 - Keypoint: good heuristics to choose the most convenient atom p

- A TE N - A TE N

Basic Methods: (we will see them in detail later)

- DPLL (Davis-Putnam-Logemann-Loveland)
 - Backtracking algorithm: picks some atom p and tries two branches: one with p = true, one with p = false.
 - Once a new assignment is made, it is exploited as much as possible (unit propagation)
 - Keypoint: good heuristics to choose the most convenient atom p
- CDCL (Conflict-Driven Conflict Learning)
 - Maintains an implication graph (each node is a literal, each arrow an implication)
 - When an inconsistent assignment is reached, it extracts from the graph a new clause (reflecting the conflict)
 - back jump: it backtracks several steps backwards to the first-assigned variable involved in the conflict