Logic.
 Computational Complexity

Pedro Cabalar

Dept. Computer Science
University of Corunna, SPAIN

March 15, 2023
(9) Computational Complexity

Turing Machine

Turing machine (TM)

- $\mathrm{TM}=$ (theoretical) device that operates on an infinite tape with cells containing symbols in a finite alphabet (including blank ' 0 ')

Turing Machine

Turing machine (TM)

- TM = (theoretical) device that operates on an infinite tape with cells containing symbols in a finite alphabet (including blank ' 0 ')
- The TM has a current state S_{i} among a finite set of states (including 'Halt'), and a head pointing to "current" cell in the tape.

Turing Machine

Turing machine (TM)

- TM = (theoretical) device that operates on an infinite tape with cells containing symbols in a finite alphabet (including blank ' 0 ')
- The TM has a current state S_{i} among a finite set of states (including 'Halt'), and a head pointing to "current" cell in the tape.
- Its transition function describes jumps from state to next state.

Transition function

- Example: with scanned symbol 0 and state q_{4}, write 1, move Left and go to state q_{2}. That is:

$$
t\left(0, q_{4}\right)=\left(1, L e f t, q_{2}\right)
$$

Transition function

- Example: with scanned symbol 0 and state q_{4}, write 1, move Left and go to state q_{2}. That is:

$$
t\left(0, q_{4}\right)=\left(1, \text { Left, } q_{2}\right)
$$

Decision problems

Definition (Decision problem)

A decision problem consists in providing a given tape input and asking the TM for a final output symbol answering Yes or No.

- Example: SAT = given (an encoding of) a propositional formula, answer yes if the formula has at least one model

Decision problems

Definition (Decision problem)

A decision problem consists in providing a given tape input and asking the TM for a final output symbol answering Yes or No.

- Example: SAT = given (an encoding of) a propositional formula, answer yes if the formula has at least one model
- Example: HALTING = given another TM M plus its input tape T, answer yes if M, T stops

Decision problems

Definition (Decision problem)

A decision problem consists in providing a given tape input and asking the TM for a final output symbol answering Yes or No.

- Example: SAT = given (an encoding of) a propositional formula, answer yes if the formula has at least one model
- Example: HALTING = given another TM M plus its input tape T, answer yes if M, T stops
- If X is a decision problem, then its complement \bar{X} is the one where the Turing Machine answers the opposite.

Decision problems

Definition (Decision problem)

A decision problem consists in providing a given tape input and asking the TM for a final output symbol answering Yes or No.

- Example: SAT = given (an encoding of) a propositional formula, answer yes if the formula has at least one model
- Example: HALTING = given another TM M plus its input tape T, answer yes if M, T stops
- If X is a decision problem, then its complement \bar{X} is the one where the Turing Machine answers the opposite.
- Example: $\overline{S A T}=$ UNSAT answers no if the formula has a model.

Decision problems

- A decision problem is decidable if the TM stops (answering Yes or No) in a finite number of steps.

Decision problems

- A decision problem is decidable if the TM stops (answering Yes or No) in a finite number of steps.
- Examples: SAT is decidable. HALTING is undecidable.

Decision problems

- A decision problem is decidable if the TM stops (answering Yes or No) in a finite number of steps.
- Examples: SAT is decidable. HALTING is undecidable.
- A decision problem is in complexity class \mathbf{P} iff the number of steps carried out by the TM is polynomial on the size n of the input.

Non-deterministic TM

- Now, a non-deterministic Turing Machine (NDTM) is such that the transition function is replaced by a transition relation.

Non-deterministic TM

- Now, a non-deterministic Turing Machine (NDTM) is such that the transition function is replaced by a transition relation.
- We may have different possibilities for the next step.

Non-deterministic TM

- Now, a non-deterministic Turing Machine (NDTM) is such that the transition function is replaced by a transition relation.
- We may have different possibilities for the next step.
- Example: $t\left(0, q_{4}, 1\right.$, Left, $\left.q_{2}\right), t\left(0, q_{4}, 0\right.$, Right, $\left.q_{3}\right)$

Non-deterministic TM

- Keypoint: an NDTM provides an affirmative answer to a decision problem when at least one of the executions for the same input answers Yes.

Non-deterministic TM

- Keypoint: an NDTM provides an affirmative answer to a decision problem when at least one of the executions for the same input answers Yes.
- A decision problem is in class NP iff the number of steps carried out by the NDTM is polynomial on the size n of the input.

Non-deterministic TM

- Keypoint: an NDTM provides an affirmative answer to a decision problem when at least one of the executions for the same input answers Yes.
- A decision problem is in class NP iff the number of steps carried out by the NDTM is polynomial on the size n of the input.
- For SAT, we can build an NDTM that performs two steps:
(1) For each atom, generate 1 or 0 nondeterministically. This provides an arbitrary interpretation in linear time.

Non-deterministic TM

- Keypoint: an NDTM provides an affirmative answer to a decision problem when at least one of the executions for the same input answers Yes.
- A decision problem is in class NP iff the number of steps carried out by the NDTM is polynomial on the size n of the input.
- For SAT, we can build an NDTM that performs two steps:
(1) For each atom, generate 1 or 0 nondeterministically. This provides an arbitrary interpretation in linear time.
(2) Test whether the current interpretation is a model or not. Complexity: ALOGTIME $\subseteq P$

Non-deterministic TM

- Keypoint: an NDTM provides an affirmative answer to a decision problem when at least one of the executions for the same input answers Yes.
- A decision problem is in class NP iff the number of steps carried out by the NDTM is polynomial on the size n of the input.
- For SAT, we can build an NDTM that performs two steps:
(1) For each atom, generate 1 or 0 nondeterministically. This provides an arbitrary interpretation in linear time.
(2) Test whether the current interpretation is a model or not. Complexity: ALOGTIME $\subseteq P$

The sequence of these two steps takes polynomial time.

\mathbf{P} vs $\mathbf{N P}$

- Any TM is a particular type of NDTM, so $\mathbf{P} \subseteq$ NP trivially,

\mathbf{P} vs $\mathbf{N P}$

- Any TM is a particular type of NDTM, so $\mathbf{P} \subseteq$ NP trivially, but ...

$$
\mathbf{P} \stackrel{?}{=} \mathbf{N P}
$$

\mathbf{P} vs $\mathbf{N P}$

- Any TM is a particular type of NDTM, so $\mathbf{P} \subseteq$ NP trivially, but ...

$$
\mathbf{P} \stackrel{?}{=} \mathbf{N P}
$$

- Unsolved problem: most accepted conjecture $\mathbf{P} \subset \mathbf{N P}$, but remains unproved.

\mathbf{P} vs $\mathbf{N P}$

- Any TM is a particular type of NDTM, so $\mathbf{P} \subseteq$ NP trivially, but ...

$$
\mathbf{P} \stackrel{?}{=} \mathbf{N P}
$$

- Unsolved problem: most accepted conjecture $\mathbf{P} \subset \mathbf{N P}$, but remains unproved.

It is one of the 7 Millenium Prize Problems
http://www.claymath.org/millennium-problems

* DEAD OR AIITZ *

The Clay Mathematics Institute designated $\$ 1$ million prize for its solution!

Completeness

- A problem X is C-complete, for some complexity class C , iff any problem Y in C is reducible to X in polynomial-time.

Completeness

- A problem X is C-complete, for some complexity class C , iff any problem Y in C is reducible to X in polynomial-time.
- A complete problem is a representative of the class. Example: if an NP-complete problem happened to be in P then $\mathrm{P}=\mathrm{NP}$.

Completeness

- A problem X is C-complete, for some complexity class C , iff any problem Y in C is reducible to X in polynomial-time.
- A complete problem is a representative of the class. Example: if an NP-complete problem happened to be in P then $P=N P$.
- SAT was the first problem to be identified as NP-complete (Cook's theorem, 1971).

Completeness

- A problem X is C-complete, for some complexity class C , iff any problem Y in C is reducible to X in polynomial-time.
- A complete problem is a representative of the class. Example: if an NP-complete problem happened to be in P then $P=N P$.
- SAT was the first problem to be identified as NP-complete (Cook's theorem, 1971).
- SAT is commonly used nowadays for showing that a problem X is at least as complex as NP. To this aim, just encode SAT into X.

Completeness

- A problem X is C-complete, for some complexity class C, iff any problem Y in C is reducible to X in polynomial-time.
- A complete problem is a representative of the class. Example: if an NP-complete problem happened to be in P then $P=N P$.
- SAT was the first problem to be identified as NP-complete (Cook's theorem, 1971).
- SAT is commonly used nowadays for showing that a problem X is at least as complex as NP. To this aim, just encode SAT into X.
- The Complexity Zoo https://complexityzoo.uwaterloo.ca/Complexity_Zoo

Complementary class

- If C is a complexity class, then $c o-C$ is the complementary class. That is $X \in C O-C$ iff $\bar{X} \in C$.

Complementary class

- If C is a complexity class, then $c o-C$ is the complementary class. That is $X \in C O-C$ iff $\bar{X} \in C$.
- co-NP = problems in which a NDTM answers no in a polynomial time

Complementary class

- If C is a complexity class, then co- C is the complementary class. That is $X \in C O-C$ iff $\bar{X} \in C$.
- co-NP = problems in which a NDTM answers no in a polynomial time
- In general, co-NP \neq NP (the intersection is non-empty)

Complementary class

- If C is a complexity class, then $c o-C$ is the complementary class. That is $X \in C O-C$ iff $\bar{X} \in C$.
- co-NP = problems in which a NDTM answers no in a polynomial time
- In general, co-NP \neq NP (the intersection is non-empty)
- UNSAT is in co-NP.

Complementary class

- If C is a complexity class, then $c o-C$ is the complementary class. That is $X \in C O-C$ iff $\bar{X} \in C$.
- co-NP = problems in which a NDTM answers no in a polynomial time
- In general, co-NP \neq NP (the intersection is non-empty)
- UNSAT is in co-NP. This implies that VAL (deciding whether α is valid) is also co-NP.

Exercise: Turing machine in Prolog

- We use tape ($L s, S, R s$) to represent the current symbol S, the left fragment of the tape Ls (reversed) and the right one Rs.

```
compute(Q, T, T) :- final(Q), !.
```

compute (Q0, tape(Ls0,S,Rs0), T):-
showmachine (Q0,Ls0, S, Rs0),
t(Q0,S, Q1,S1,Action),
move (Action,tape(Ls0,S1,Rs0), T1),
compute (Q1,T1,T).
move(l,tape([], $S, R s), ~ t a p e([], 0,[S \mid R s]))$.
move(l,tape([L|Ls],S,Rs), tape(Ls,L, [S|Rs])).
move(r,tape(Ls,S,[]), tape([S|Ls],0,[])).
move(r,tape(Ls,S,[R|Rs]), tape([S|Ls],R,Rs)).

