Logic. Computational Complexity

Pedro Cabalar

Dept. Computer Science University of Corunna, SPAIN

April 8, 2025

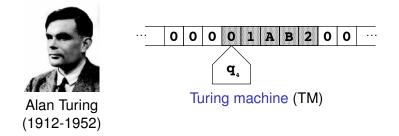
P. Cab	alar
--------	------

Complexity

April 8, 2025

P. Cabalar	Complexity	April 8, 2025	2/12

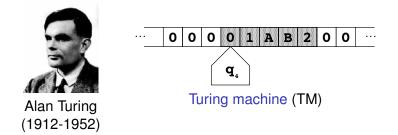
Turing Machine



 TM = (theoretical) device that operates on an infinite tape with cells containing symbols in a finite alphabet (including blank '0')

< A >

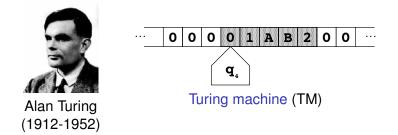
Turing Machine



- TM = (theoretical) device that operates on an infinite tape with cells containing symbols in a finite alphabet (including blank '0')
- The TM has a current state *S_i* among a finite set of states (including '*Halt*'), and a head pointing to "current" cell in the tape.

2 Cabalar	Complexity	April 8, 2025	3/12
	4	D > < 웹 > < 필 > < 필 >	E Sac

Turing Machine



- TM = (theoretical) device that operates on an infinite tape with cells containing symbols in a finite alphabet (including blank '0')
- The TM has a current state *S_i* among a finite set of states (including '*Halt*'), and a head pointing to "current" cell in the tape.

A D N A B N A B N A B N

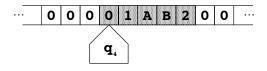
3/12

• Its transition function describes jumps from state to next state.

P. Cabalar	Complexity	April 8, 2025

Transition function

• Example: with scanned symbol 0 and state q₄, write 1, move *Left* and go to state q₂. That is:

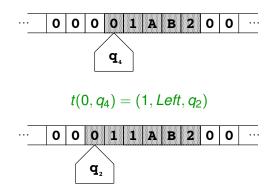


 $t(0, q_4) = (1, Left, q_2)$

P. Cabalar	Complexity	April 8, 2025	4/12

Transition function

• Example: with scanned symbol 0 and state q₄, write 1, move *Left* and go to state q₂. That is:



	4	日本本國本本語本本語本語	1
P. Cabalar	Complexity	April 8, 2025	4/12

A decision problem consists in providing a given tape input and asking the TM for a final output symbol answering *Yes* or *No*.

• Example: *SAT* = given (an encoding of) a propositional formula, answer *yes* if the formula has at least one model

			= 940
P. Cabalar	Complexity	April 8, 2025	5/12

A decision problem consists in providing a given tape input and asking the TM for a final output symbol answering *Yes* or *No*.

- Example: *SAT* = given (an encoding of) a propositional formula, answer *yes* if the formula has at least one model
- Example: *HALTING* = given another TM *M* plus its input tape *T*, answer *yes* if *M*, *T* stops

A decision problem consists in providing a given tape input and asking the TM for a final output symbol answering *Yes* or *No*.

- Example: *SAT* = given (an encoding of) a propositional formula, answer *yes* if the formula has at least one model
- Example: *HALTING* = given another TM *M* plus its input tape *T*, answer *yes* if *M*, *T* stops
- If X is a decision problem, then its complement X is the one where the Turing Machine answers the opposite.

A decision problem consists in providing a given tape input and asking the TM for a final output symbol answering *Yes* or *No*.

- Example: *SAT* = given (an encoding of) a propositional formula, answer *yes* if the formula has at least one model
- Example: *HALTING* = given another TM *M* plus its input tape *T*, answer *yes* if *M*, *T* stops
- If X is a decision problem, then its complement X is the one where the Turing Machine answers the opposite.
- Example: $\overline{SAT} = UNSAT$ answers *no* if the formula has a model.

Ca	

< 日 > < 同 > < 回 > < 回 > < □ > <

• A decision problem is decidable if the TM stops (answering *Yes* or *No*) in a finite number of steps.

4 E 5

- A decision problem is decidable if the TM stops (answering *Yes* or *No*) in a finite number of steps.
- Examples: SAT is decidable. HALTING is undecidable.

- A decision problem is decidable if the TM stops (answering *Yes* or *No*) in a finite number of steps.
- Examples: *SAT* is decidable. *HALTING* is undecidable.
- A decision problem is in complexity class **P** iff the number of steps carried out by the TM is polynomial on the size *n* of the input.

• Now, a non-deterministic Turing Machine (NDTM) is such that the transition function is replaced by a transition relation.

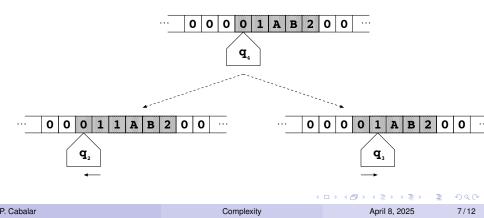
P. Cabalar	Complexity		April 8, 2	2025	7/12

(日)

- Now, a non-deterministic Turing Machine (NDTM) is such that the transition function is replaced by a transition relation.
- We may have different possibilities for the next step.

			E DAG
P. Cabalar	Complexity	April 8, 2025	7/12

- Now, a non-deterministic Turing Machine (NDTM) is such that the transition function is replaced by a transition relation.
- We may have different possibilities for the next step.
- Example: *t*(0, *q*₄, 1, *Left*, *q*₂), *t*(0, *q*₄, 0, *Right*, *q*₃)



• Keypoint: an NDTM provides an affirmative answer to a decision problem when at least one of the executions for the same input answers *Yes*.

- Keypoint: an NDTM provides an affirmative answer to a decision problem when at least one of the executions for the same input answers *Yes*.
- A decision problem is in class **NP** iff the number of steps carried out by the NDTM is polynomial on the size *n* of the input.

	4	이 이 문 이 이 문 이	- 2	500
P. Cabalar	Complexity	April 8, 2025		8/12

- Keypoint: an NDTM provides an affirmative answer to a decision problem when at least one of the executions for the same input answers *Yes*.
- A decision problem is in class **NP** iff the number of steps carried out by the NDTM is polynomial on the size *n* of the input.
- For *SAT*, we can build an NDTM that performs two steps:
 - For each atom, generate 1 or 0 nondeterministically. This provides an arbitrary interpretation in linear time.

P.	Ca	bal	lar
•••	ou	ou	iui

EN 4 EN

- Keypoint: an NDTM provides an affirmative answer to a decision problem when at least one of the executions for the same input answers *Yes*.
- A decision problem is in class **NP** iff the number of steps carried out by the NDTM is polynomial on the size *n* of the input.
- For SAT, we can build an NDTM that performs two steps:
 - For each atom, generate 1 or 0 nondeterministically. This provides an arbitrary interpretation in linear time.
 - ② Test whether the current interpretation is a model or not. Complexity: ALOGTIME ⊆ P

8/12

- Keypoint: an NDTM provides an affirmative answer to a decision problem when at least one of the executions for the same input answers *Yes*.
- A decision problem is in class **NP** iff the number of steps carried out by the NDTM is polynomial on the size *n* of the input.
- For SAT, we can build an NDTM that performs two steps:
 - For each atom, generate 1 or 0 nondeterministically. This provides an arbitrary interpretation in linear time.
 - ② Test whether the current interpretation is a model or not. Complexity: ALOGTIME ⊆ P

The sequence of these two steps takes polynomial time.

• Any TM is a particular type of NDTM, so $\mathbf{P} \subseteq \mathbf{NP}$ trivially,

		1 2 1 1 2 1	-	*)4(*
P. Cabalar	Complexity	April 8, 2025		9/12

• Any TM is a particular type of NDTM, so $\mathbf{P} \subseteq \mathbf{NP}$ trivially, but . . .

$$\mathbf{P} \stackrel{?}{=} \mathbf{NP}$$

P. Cabalar	Complexity	April 8, 2025	9/12

(日)

• Any TM is a particular type of NDTM, so $\textbf{P} \subseteq \textbf{NP}$ trivially, but \ldots

 Unsolved problem: most accepted conjecture P ⊂ NP, but remains unproved.

			-
P. Cabalar	Complexity	April 8, 2025	9/12

イロト イポト イラト イラト

• Any TM is a particular type of NDTM, so $\mathbf{P} \subseteq \mathbf{NP}$ trivially, but . . .

• Unsolved problem: most accepted conjecture P ⊂ NP, but remains unproved.

It is one of the 7 Millenium Prize Problems

http://www.claymath.org/millennium-problems

The Clay Mathematics Institute designated \$1 million prize for its solution!

Completeness

• A problem X is C-complete, for some complexity class C, iff any problem Y in C is reducible to X in polynomial-time.

B N A B N

Completeness

- A problem X is C-complete, for some complexity class C, iff any problem Y in C is reducible to X in polynomial-time.
- A complete problem is a representative of the class. Example: if an NP-complete problem happened to be in P then P = NP.

- A problem X is C-complete, for some complexity class C, iff any problem Y in C is reducible to X in polynomial-time.
- A complete problem is a representative of the class. Example: if an NP-complete problem happened to be in P then P = NP.
- *SAT* was the first problem to be identified as **NP**-complete (Cook's theorem, 1971).

P. Cabalar	Complexity	April 8, 2025	10/12

- A problem X is C-complete, for some complexity class C, iff any problem Y in C is reducible to X in polynomial-time.
- A complete problem is a representative of the class. Example: if an NP-complete problem happened to be in P then P = NP.
- *SAT* was the first problem to be identified as **NP**-complete (Cook's theorem, 1971).
- *SAT* is commonly used nowadays for showing that a problem *X* is at least as complex as **NP**. To this aim, just encode *SAT* into *X*.

イロト イポト イラト イラト

- A problem X is C-complete, for some complexity class C, iff any problem Y in C is reducible to X in polynomial-time.
- A complete problem is a representative of the class. Example: if an NP-complete problem happened to be in P then P = NP.
- *SAT* was the first problem to be identified as **NP**-complete (Cook's theorem, 1971).
- *SAT* is commonly used nowadays for showing that a problem *X* is at least as complex as **NP**. To this aim, just encode *SAT* into *X*.
- The Complexity Zoo https://complexityzoo.uwaterloo.ca/Complexity_Zoo

P. Cabalar	Complexity	April	8, 2025	10/12

A D > A B > A B > A B >

Complementary class

 If C is a complexity class, then co − C is the complementary class. That is X ∈ co − C iff X ∈ C.

A B A A B A

- If C is a complexity class, then co − C is the complementary class. That is X ∈ co − C iff X ∈ C.
- co-NP = problems in which a NDTM answers no in a polynomial time

- If C is a complexity class, then co − C is the complementary class. That is X ∈ co − C iff X ∈ C.
- co-NP = problems in which a NDTM answers *no* in a polynomial time
- In general, $co-NP \neq NP$ (the intersection is non-empty)

- If C is a complexity class, then co − C is the complementary class. That is X ∈ co − C iff X ∈ C.
- co-NP = problems in which a NDTM answers no in a polynomial time
- In general, $co-NP \neq NP$ (the intersection is non-empty)
- UNSAT is in co-NP.

BAR 4 BA

- If *C* is a complexity class, then co C is the complementary class. That is $X \in co - C$ iff $\overline{X} \in C$.
- co-NP = problems in which a NDTM answers no in a polynomial time
- In general, $co-NP \neq NP$ (the intersection is non-empty)
- UNSAT is in co-NP. This implies that VAL (deciding whether α is valid) is also co-NP.

イロト イヨト イヨト イヨト

Exercise: Turing machine in Prolog

• We use tape (Ls, S, Rs) to represent the current symbol S, the left fragment of the tape Ls (reversed) and the right one Rs.

```
compute(Q, T, T) := final(Q), !.
```

```
compute(Q0, tape(Ls0,S,Rs0), T):-
  showmachine (Q0, Ls0, S, Rs0),
  t(Q0,S, Q1,S1,Action),
  move (Action, tape (Ls0, S1, Rs0), T1),
  compute(Q1,T1,T).
```

```
move(l,tape([], S,Rs), tape([],0,[S|Rs])).
move(l,tape([L|Ls],S,Rs), tape(Ls,L,[S|Rs])).
```

```
move(r,tape(Ls,S,[]), tape([S|Ls],0,[])).
move(r, tape(Ls, S, [R|Rs]), tape([S|Ls], R, Rs)).
```

12/12