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Abstract

Temporal Equilibrium Logic (TEL) is a non-monotonic tem-
poral logic that extends Answer Set Programming (ASP) by
introducing modal operators as those considered in Linear-
time Temporal Logic (LTL). TEL allows proving temporal
properties of ASP-like scenarios under the hypothesis of in-
finite time while keeping decidability. Formally, it extends
Equilibrium Logic (the best-known logical formalisation of
ASP) and, as the latter, it selects some models of a mono-
tonic basis: the logic of Temporal Here-and-There (THT).
In this paper we solve a problem that remained unanswered
for the last six years: we prove that equivalence in the logic
of THT is not only a sufficient, but also a necessary condi-
tion for strong equivalence of two TEL theories. This result
has both theoretical and practical consequences. First, it rein-
forces the need of THT as a suitable monotonic basis for TEL.
Second, it has allowed constructing a tool, ABSTEM, that can
be used to check different types of equivalence between two
arbitrary temporal theories. More importantly, when the the-
ories are not THT-equivalent, the system provides a context
theory that makes them behave differently, together with a
Büchi automaton showing the temporal stable models that
arise from that difference.

Introduction
Originally motivated by representational problems in action
theories, the relation between Temporal and Non-Monotonic
Reasoning (NMR) has historically played a central role in
Knowledge Representation. Classical action languages such
as Situation Calculus (McCarthy and Hayes 1969) or Event
Calculus (Kowalski and Sergot 1986) have combined some
NMR technique, usually predicate circumscription (Mc-
Carthy 1980), with a first-order formalisation of time us-
ing temporal predicates and objects (situations or events,
respectively). Another way of dealing with temporal rea-
soning in NMR approaches has been using modal tempo-
ral logic, a combination perhaps less popular, but not unfre-
quent in the literature (Castilho, Gasquet, and Herzig 1999;
Giordano, Martelli, and Schwind 2000; Baral and Zhao
2007). But probably, the simplest treatment of time we find
in action theories is the use of an integer index to denote
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situations, as done for instance in the family of action lan-
guages (Gelfond and Lifschitz 1998). Focused on transi-
tion systems, these languages came from a method proposed
in (Gelfond and Lifschitz 1993) for reasoning about actions
using logic programs under the stable model semantics (Gel-
fond and Lifschitz 1988).

With the consolidation of Answer Set Programming
(ASP) (Niemelä 1999; Marek and Truszczyński 1999) as a
successful paradigm for practical knowledge representation,
many examples and benchmarks formalising dynamic sce-
narios became available. ASP inherited the treatment of time
from (Gelfond and Lifschitz 1998) action languages but fur-
ther restricted all reasoning tasks to finite narratives, some-
thing required for grounding time-related variables. As a
piece of example, consider an extremely simple ASP pro-
gram where a fluent p represents that a switch is on and q
represents that it is off. Moreover, suppose we have freedom
to add p arbitrarily at any moment and that that either p or q
holds initially. A typical ASP representation of this problem
could look like this:

p(0) ∨ q(0) (1)
p(I+1) ← p(I), not q(I+1), sit(I) (2)
q(I+1) ← q(I), not p(I+1), sit(I) (3)

p(I) ∨ not p(I) ← sit(I) (4)
where (1) describes the initial state, (2) and (3) are the inertia
rules for p and q, and (4) acts as a choice rule1 allowing the
introduction of p at any situation. Predicate sit would have
some finite domain 0 . . . n for some constant n ≥ 0. This
approach is suitable, for instance, for solving planning prob-
lems incrementally (Gebser, Sabuncu, and Schaub 2011),
using an iterative deepening strategy similar to SAT-based
planning (Kautz and Selman 1992). In this way, to generate
a plan for reaching a state in which we reach p ∧ ¬q, we
would include two constraints for the last situation:

⊥ ← not p(n) (5)
⊥ ← q(n) (6)

and go increasing n until a solution is found. However, this
strategy falls short for many temporal reasoning problems

1Generally speaking, a disjunction of the form ϕ∨not ϕ in ASP
is not a tautology. When included in a rule head it is usually written
as { ϕ } and acts as a non-deterministic choice possibly allowing
the derivation of ϕ.



that involve dealing with infinite time such as proving the
non-existence of a plan or checking the satisfaction of tem-
poral properties of a given dynamic system. For instance,
questions such as “is there a reachable state in which both p
and q are false?” or “can we show that whenever p is true it
will remain so forever?” can be answered by an analytical
inspection of our simple program, but cannot be solved in an
automated way.

To overcome these limitations, (Cabalar and Pérez 2007)
proposed a temporal extension of Equilibrium Logic (Pearce
1996), the best-known logical formalisation of ASP. This
extension, which received the name of Temporal Equilib-
rium Logic (TEL), is defined as follows. First, it extends
the monotonic basis of Equilibrium Logic, the intermediate
logic of Here-and-There (HT) (Heyting 1930), by introduc-
ing the full syntax of the well-known Linear-time Tempo-
ral Logic (LTL) (Kamp 1968; Pnueli 1977). The result of
this combination is called Temporal Here-and-There (THT).
Then, a selection criterion on THT models is imposed, ob-
taining non-monotonicity in this way. As a result, TEL con-
stitutes a full non-monotonic temporal logic that allows a
proper definition of temporal stable models for any arbitrary
theory in the syntax of LTL.

Following our example, the ASP program (1)-(4) would
be represented in TEL as:

p ∨ q (7)
�(p ∧ ¬© q →©p) (8)
�(q ∧ ¬© p→©q) (9)

�(p ∨ ¬p) (10)

where, as usual in LTL, ‘�’ stands for “always” and ‘©’
stands for “next.” Checking whether p and q can be eventu-
ally false would correspond to look for a plan satisfying the
constraint:

¬♦(¬p ∧ ¬q)→ ⊥ (11)

with ‘♦’ meaning “eventually.” Similarly, to test whether
p remains true after becoming true we would add the con-
straint:

�(p→ �p)→ ⊥ (12)

and check that, indeed, no temporal stable model exists.
In the past years, several interesting results about TEL

were obtained – see survey (Aguado et al. 2013). For in-
stance, a tool called STeLP (Cabalar and Diéguez 2011)
allowed computing the temporal stable models for a syn-
tactic subset of TEL, the so-called splittable temporal logic
programs, covering most dynamic scenarios in the ASP lit-
erature. A temporal program is splittable if it consists of
ASP rules possibly prefixed by � and whose literals may in-
clude a© operator but never introduce a dependence back-
wards in time (the rule consequent is never placed on the
past of any literal in the antecedent). In other words, a
splittable program would correspond to a transition system
with a Markov property (the resulting state only depends on
the previous state). As an example, rules (7)-(10) are all
splittable. STeLP further allowed arbitrary temporal con-
straints of the form ϕ→ ⊥ such as, for instance, (11), (12).

Non-splittable formulas not covered by the syntax of STeLP
could be, for instance:

¬p → ♦q (13)
�♦r → s (14)

where (13) would mean that if p cannot be proved now then
q becomes eventually true, whereas (14) points out that if r
is true infinitely often then s is true now.

Arbitrary theories have been studied in (Cabalar and
Demri 2011), where authors provide an algorithm (that had
not been implemented up to date), based on several transfor-
mations on Büchi automata (a variation of finite automata
that accept languages with infinite length words) to obtain
a final one which captures the temporal stable models of an
input theory.

Despite of all these advances, several important questions
about TEL remained unsolved. One of them has to do with
the property of strong equivalence in TEL. In NMR, the reg-
ular equivalence, understood as a mere coincidence of se-
lected models, is too weak to consider that one theory Γ1

can be safely replaced by a second one Γ2 since the addi-
tion of a context Γ may make them behave in a different
way due to non-monotonicity. Formally, we say that Γ1 and
Γ2 are strongly equivalent when, for any arbitrary theory Γ,
both Γ1 ∪ Γ and Γ2 ∪ Γ have the same selected models (in
this case, stable models). (Lifschitz, Pearce, and Valverde
2001) proved that checking equivalence in the logic of Here-
and-There is a necessary and sufficient condition for strong
equivalence in Equilibrium Logic, that is, Γ1 and Γ2 are
strongly equivalent iff Γ1 ≡HT Γ2. A pair of strong equiva-
lence checkers are, for instance, (Valverde 2004) and (Chen,
Lin, and Li 2005) respectively based on HT-tableaux and
the translation into SAT proposed in (Lin 2002). This re-
sult for propositional HT was further extended to arbitrary
first-order theories in (Lifschitz, Pearce, and Valverde 2007).
It must be noticed that one direction of this result, the suf-
ficient condition, is actually trivial. As HT is monotonic,
Γ1 ≡HT Γ2 implies Γ1 ∪ Γ ≡HT Γ2 ∪ Γ and so, their se-
lected models will also coincide. The real significant result
is the opposite direction, namely, that HT-equivalence is also
a necessary condition for strong equivalence, as it shows that
HT is strong enough as a monotonic basis for Equilibrium
Logic.

In the case of TEL, (Aguado et al. 2008) implemented
a prototype checker and used it on some examples exploit-
ing the trivial direction, i.e., that THT-equivalence is obvi-
ously a sufficient condition for strong equivalence in TEL.
However, during the past six years, the question whether
THT-equivalence was also necessary or not remained unan-
swered. This raised doubts on the adequacy of THT as a
basis for TEL and had also some practical negative con-
sequences. In particular, when two theories Γ1,Γ2 were
not THT-equivalent, the checker could not answer anything
about strong equivalence, while one would expect to be pro-
vided with a negative answer plus some context Γ that made
them behave differently.

In this paper we adapt a result from (Lifschitz, Pearce,
and Valverde 2007) to prove that indeed THT-equivalence
is a necessary condition for TEL strong equivalence and



use this proof, combined with previous theoretical results,
to construct a tool, ABSTEM2, that allows the formal study
of arbitrary temporal theories in different ways. First, it
implements the technique in (Cabalar and Demri 2011) to
compute the temporal stable models of an arbitrary theory
Γ, displaying them as a Büchi automaton. Second, given
two theories Γ1 and Γ2, it allows checking different types
of equivalence: LTL-equivalence, weak equivalence (coin-
cidence in temporal stable models) and THT-equivalence
which, as said before, corresponds to strong equivalence.
When a negative answer for strong equivalence is obtained,
the tool also suggests a context formula Γ that makes Γ1 and
Γ2 behave differently and shows either one or all temporal
stable models in the difference, again in the form of Büchi
automata.

The rest of the paper is organised as follows. In the
next section we recall the basic definitions of Temporal
Equilibrium Logic. After that, we overview the automata-
based techniques from (Cabalar and Demri 2011). The
next section contains the main theorem showing that THT-
equivalence is a necessary condition for strong equivalence
in TEL. This is followed by an explanation of the implemen-
tation together with a practical example. Finally, we include
some conclusions and future work.

Temporal Equilibrium Logic

We begin defining the (monotonic) logic of THT as follows.
The syntax is defined as in propositional LTL. A temporal
formula ϕ can be expressed following the grammar shown
below:

ϕ ::= ⊥ | p | α ∧ β | α ∨ β | α→ β | ©α | α U β | αR β

where p is an atom of some finite signature At, and α and β
are temporal formulas in their turn.

The formula α U β stands for “α until β” whereas αR β
is read as “α release β” and is the dual of “until.” De-
rived operators such as � (“always”) and ♦ (“at some future
time”) are defined as �ϕ def

= ⊥R ϕ and ♦ϕ
def
= > U ϕ. Other

usual propositional operators are defined as follows: ¬ϕ def
=

ϕ→ ⊥, > def
= ¬⊥ and ϕ↔ ψ

def
= (ϕ→ ψ) ∧ (ψ → ϕ).

Given a finite propositional signature At, an LTL-
interpretation T is an infinite sequence of sets of atoms,
T0, T1, . . . with Ti ⊆ At for all i ≥ 0. Given two LTL-
interpretations H,T we define H ≤ T as: Hi ⊆ Ti for
all i ≥ 0. A THT-interpretation M for At is a pair of
LTL-interpretations 〈H,T〉 satisfying H ≤ T. A THT-
interpretation is said to be total when H = T.

Definition 1 (Satisfaction) We define when an interpreta-
tion M = 〈H,T〉 satisfies a formula ϕ at a state i ≥ 0,

2http://kr.irlab.org/?q=abstem

written M, i |= ϕ, recursively as follows:

1.M, i |= p iff p ∈ Hi, with p an atom.
2. ∧,∨,⊥ as usual
3.M, i |= ϕ→ ψ iff for all x ∈ {H,T},

〈x,T〉, i 6|= ϕ or 〈x,T〉, i |= ψ.
4.M, i |=© ϕ iff M, i+1 |= ϕ
5.M, i |= ϕ U ψ iff ∃k ≥ i such that M, k |= ψ and

∀j ∈ {i, . . . , k-1},M, j |= ϕ.
6.M, i |= ϕR ψ iff ∀k ≥ i such that M, k 6|= ψ then

∃j ∈ {i, . . . , k-1},M, j |= ϕ. �

We say that 〈H,T〉 is a model of a theory Γ, written
〈H,T〉 |= Γ, iff 〈H,T〉, 0 |= α for all formulas α ∈ Γ.
It is easy to see that restricting the study to total interpreta-
tions, THT-satisfaction collapses to LTL-satisfaction, i.e.:

Proposition 1 (from (Aguado et al. 2013)) 〈T,T〉, i |= ϕ
in THT iff T, i |= ϕ in LTL.

The following property, called persistence, can be easily
proved by structural induction.
Proposition 2 (from (Aguado et al. 2013)) 〈H,T〉, i |= ϕ
implies 〈T,T〉, i |= ϕ.

An interpretation M is a temporal equilibrium model of a
theory Γ if it is a total model of Γ, that is, M = 〈T,T〉 |= Γ,
and there is no H < T such that 〈H,T〉 |= Γ. An LTL-
interpretation T is a temporal stable model (TS-model) of
a theory Γ iff 〈T,T〉 is a temporal equilibrium model of Γ.
By Proposition 1 it is easy to see that:

Observation 1 Any TS-model of a temporal theory Γ is also
an LTL-model of Γ. �

As happens in LTL, the set of TS-models of a theory Γ can
be captured by a Büchi automaton (Büchi 1962), a kind of
ω-automaton (that is, a finite automaton that accepts words
of infinite length). In this case, the alphabet of the automa-
ton would be the set of states (classical propositional inter-
pretations) and the acceptance condition is that a word (a
sequence of states) is accepted iff it corresponds to a run
of the automaton that visits some acceptance state an infi-
nite number of times. As an example, Figure 1 shows the
TS-models for the theory (7)-(10) which coincide with se-
quences of states of the forms {q}∗{p}ω or {q}ω . Notice
how p and q are never true simultaneously, whereas once p
becomes true, it remains true forever.

It is important to note that, as happens for regular finite
automata, Büchi automata are also closed under comple-
mentation, union, intersection and renaming operations, all
of them involved in the process of computing the temporal
equilibrium models of a temporal formula we recall next.

Computing Temporal Stable Models of
Arbitrary Theories

As explained before, the tool ABSTEM constitutes the first
implementation capable of computing TS-models for arbi-
trary temporal formulas, without syntactic restrictions. This
implementation is based on the method proposed in (Cabalar
and Demri 2011) used there as a formal tool to prove decid-
ability of THT and TEL plus some complexity results. The

http://kr.irlab.org/?q=abstem
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Figure 1: Temporal stable models of theory (7)-(10).

method obtains the TS-models of a formula ϕ by perform-
ing several operations on a pair of automata derived from ϕ.
The first automaton, denoted as Aϕ, accepts the total THT-
models 〈T,T〉 of ϕ. By Proposition 1 this simply amounts
to compute the LTL models T of ϕ using an automata con-
struction method for LTL like (Vardi and Wolper 1986). The
second automaton, denoted as Aϕ′′ , accepts the non-total
THT-models 〈H,T〉 of ϕ. The final set of TS-models is ob-
tained from the composition Aϕ ∩ h(Aϕ′′) where h(Aϕ′′)

filters out the H component of non-total models, h(Aϕ′′) is
the negation of h(Aϕ′′) and finally ∩ denotes the automata
product.

The computation of Aϕ′′ is done exploiting a translation
of THT into LTL first presented in (Aguado et al. 2008)
and directly extrapolating the translation of HT into classical
logic in (Pearce, Tompits, and Woltran 2001). This transla-
tion relies on extending the signature At with a new set of
atoms {p′ | p ∈ At} so that p′ represents the truth of p in H
while its non-primed version p is used for T. The translation
of ϕ, written ϕ∗, is recursively defined as follows:

• (⊥)∗
def
= ⊥

• (p)∗
def
= p′, for any atom p ∈ At

• (α→ β)∗
def
= (α→ β) ∧ (α∗ → β∗)

• (©α)∗
def
= ©α∗

• (α� β)∗
def
= α∗ � β∗, with � ∈ {∧,∨,U ,R}

To impose the restriction H ≤ T we further include the
axioms: ∧

p∈At

�(p′ → p) (Ax1)

(Aguado et al. 2008) proved that LTL-models of formula
ϕ∗∧(Ax1) are in one-to-one correspondence to THT-models
of ϕ. To obtain non-total THT-models, that is H < T, we
further strengthen the formula adding this axiom:∨

p∈At

♦(¬p′ ∧ p) (Ax2)

intuitively meaning that there is some p ∈ At for which,
eventually, p is true in T but not in H. Automaton Aϕ′′ is

built from the LTL formula ϕ′′ def= ϕ∗ ∧ (Ax1) ∧ (Ax2).

As the input alphabets ofAϕ andAϕ′′ are different, the in-
tersection of their languages would not be possible without
filtering the latter. Filtering Aϕ′′ consists in removing the
atoms p′ from its transitions and obtaining a new automa-
ton, h(Aϕ′′). This automaton captures the T-components of
non-total models; in this way, its complementary automaton
h(Aϕ′′) accepts the T sequences that do not form a non-total
model, but perhaps they are not models either. Thus, the fi-
nal product Aϕ ∩ h(A′′ϕ) captures those T such that 〈T,T〉
is a total model of ϕ and no non-total model 〈H,T〉 can be
formed.

As an example, let us take again the (non-splittable) for-
mula ϕ =(13). The translation ϕ∗ corresponds3 to:

(¬p→ ♦q) ∧ (¬p ∧ ¬p′ → ♦q′) (15)

and the intermediate automata Aϕ, Aϕ′′ , h(Aϕ′′), h(A′′ϕ)

and Aϕ ∩ h(A′′ϕ) are shown in Figures 2(a), 2(b), 2(c), 2(d)
and 2(e), respectively. The latter shows, indeed, the TS-
models of ϕ, where p is left false forever by default (there
is no evidence for p) and q becomes true at some punctual
future state, but only once due to truth minimality.
ABSTEM uses a modified version of the SPoT4 library

as a backend. This library provides an extensive API to
deal with several types of ω-automata allowing, for instance,
their complementation, intersection or even minimisation,
for allowing a more compact representation. It also provides
several methods for obtaining ω-automata from an LTL for-
mula.

Temporal Strong Equivalence
The second important feature of ABSTEM is the possibility
of checking strong equivalence for two arbitrary temporal
theories5 or formulas Γ1 and Γ2. This introduces, in fact,
a temporal dimension in the study of strong equivalence for
ASP, since it means showing that Γ1 and Γ2 have the same
behaviour not only under any hypothetical context, but also
for narratives with unlimited time. Of course, resorting to
temporal logic is not always necessary. For instance, when
we just deal with transition systems, a straightforward possi-
bility6 is to restrict the study to transitions between two con-
secutive states, say 0 and 1, using the non-temporal approach
to check strong equivalence (that is, HT-equivalence). How-
ever, when non-splittable formulas are involved, such as
(11)-(14), that technique is not possible any more. As an
example of the kind of difficulties we find when we move to
non-splittable theories, consider the theory Γ2:

�(p ∧ q → ©q) (16)
�(¬p ∧©p → ©© q) (17)

p → ⊥ (18)
�(p ∧ q → ⊥) (19)

3Remember that ¬p = (p→ ⊥).
4http://spot.lip6.fr/wiki/
5For simplicity, we assume finite theories and we indistinctly

represent them as the conjunction of their formulas.
6Suggested by Joohyung Lee during conference LPNMR’11.
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Figure 2: Intermediate automata generated in the example ϕ = ¬p→ ♦q.

where (17) is non-splittable, since it checks atoms at three
different situations. As the rule is preceded by �, if we
wanted to make a static analysis, we should take transitions
for states 0, 1, 2 but also for 1, 2, 3. This should be carefully
chosen by hand and, in any case, it is difficult to conclude,
for instance, that in the theory above, the first two formulas
(16) and (17) can be safely replaced by:

�(p→©q) (20)
as stated below.
Proposition 3 Theory Γ3 = (18)-(20) is strongly equivalent
to Γ2 =(16)-(19). �

In fact, if we check these two theories using ABSTEM it
just provides a positive answer and no further explanation
is required. The proof for Proposition 3 (see the Appendix)
relies on the fact that Γ2 and Γ3 are THT-equivalent and, as
we explained before, this is trivially a sufficient condition
for strong equivalence (see (Aguado et al. 2008)).

Theorem 1 (Sufficient condition) If two temporal formu-
las α and β are THT-equivalent then they are strongly equiv-
alent in TEL. �

Until now, however, we missed the other direction, namely,
that THT-equivalence is also a necessary condition for
strong equivalence. In the rest of this section, we prove
this result adapting the main proof in (Lifschitz, Pearce, and
Valverde 2007). Before introducing the main theorem we
will first introduce some auxiliary results that will be used
for the main proof and for implementation purposes. We
begin defining the following axiom:

γ0
def
=

∧
p∈At

�(p ∨ ¬p)

The effect of adding this axiom to a theory is restricting to
total models, as stated below:



Proposition 4 Let 〈H,T〉 be a THT interpretation for sig-
nature At. If 〈H,T〉 |= γ0 then H = T.

Corollary 1 For any formula α for signature At, the LTL-
models of α ∧ γ0 coincide with its TS-models. �

Lemma 1 Let α and β be two LTL-equivalent formulas and
let γ = (β → γ0). Then, the following conditions are equiv-
alent:

(i) There exists some H < T such that 〈H,T〉 6|= α→ β;
(ii) T is TS-model of β ∧ γ but not TS-model of α ∧ γ. �

Theorem 2 (Main theorem: necessary condition) If two
temporal formulas α and β are strongly equivalent in TEL
then they are THT-equivalent. �

Proof of Theorem 2. The proof follows (Lifschitz, Pearce,
and Valverde 2007) although, for implementation purposes,
it is more convenient here to prove the contraposition of the
result, that is: if α and β are not THT-equivalent then there
is some context formula γ for which α ∧ γ and β ∧ γ have
different TS-models.

Assume first that α and β have different total models, i.e.,
different LTL-models. Then, the LTL-models of α ∧ γ0 and
β ∧ γ0 also differ (because γ0 is an LTL tautology). But by
Corollary 1, LTL-models of these theories are exactly their
TS-models, which therefore, also differ.

Suppose now that α and β are LTL-equivalent but not
THT-equivalent. Then, there is some THT-countermodel
〈H,T〉 of either (α → β) or (β → α), and given LTL-
equivalence of α and β, the countermodel is non-total, H <
T. Without loss of generality, assume 〈H,T〉 6|= α → β.
By Lemma 1, taking the formula γ = (β → γ0), we get that
T is TS-model of β ∧ γ but not TS-model of α ∧ γ. �

Corollary 2 Let α and β be two LTL-equivalent formulas
and let γ = (β → γ0). Then, any TS-model of α ∧ γ is a
TS-model of β ∧ γ. �

Implementation and a practical example
The procedure for checking strong equivalence in ABSTEM
is shown in Algorithm 1. It takes two arbitrary propositional
temporal formulas α and β and returns either true, if they
are strongly equivalent, or a triple with a formula γ and two
automata A1, A2 otherwise. The meaning of this informa-
tion is that A1 captures TS-models of α ∧ γ that are not TS-
models of β ∧ γ and, analogously, A2 captures TS-models
of β ∧ γ that are not TS-models of α ∧ γ. The procedure
uses several auxiliary routines: ltl to Büchi(ϕ) uses a SPoT
function to obtain a Büchi automaton from an LTL-formula
ϕ; one path(A) returns a single path from an automaton A;
finally h(A) is the result of filtering out primed atoms from
automaton A (as we explained in Section 3). The first three
if’s in the algorithm check LTL-equivalence. These steps are
trivial, except that when option ‘compute one’ is selected
and the theories are not LTL-equivalent, only one path of
the first non-empty automaton is returned. As stated in the
proof of the main theorem, when LTL-equivalence fails, we
take γ0 as context formula.

If α and β are LTL-equivalent, the algorithm proceeds to
find all non-total H < T countermodels of α → β. These

Algorithm 1 StrongEquivalenceTest(α, β)

Require: Two propositional temporal formulas α, β.
If option ‘compute one’ is set, it returns just one TS-
model when a difference is found.

Ensure: If α and β are THT-equivalent, it returns true.
Otherwise, it returns a triple 〈γ,A1, A2〉 where γ is a for-
mula and A1, A2 are two automata such that:
A1 captures TS-models(α ∧ γ) \ TS-models(β ∧ γ)
A2 captures TS-models(β ∧ γ) \ TS-models(α ∧ γ).

A1 := ltl to Büchi(α ∧ ¬β)
if compute one and A1 6= ∅ then

return 〈γ0, one path(A1), ∅〉
end if
A2 := ltl to Büchi(β ∧ ¬α)
if compute one and A2 6= ∅ then

return 〈γ0, ∅, one path(A2)〉
end if
if A1 6= ∅ or A2 6= ∅ then

return 〈γ0, A1, A2〉
end if
A=ltl to Büchi(¬(α→ β)∗ ∧ (Ax1) ∧ (Ax2))
if A 6= ∅ then

A2 := h(A)
if compute one then

A2 := one path(A2)
end if
return 〈(β → γ0), ∅, A2〉

end if
A=ltl to Büchi(¬(β → α)∗ ∧ (Ax1) ∧ (Ax2))
if A 6= ∅ then

A1 := h(A)
if compute one then

A1 := one path(A1)
end if
return 〈(α→ γ0), A1, ∅〉

end if
return true

non-total countermodels are captured by an automatonA for
the formula ¬(α → β)∗ ∧ (Ax1) ∧ (Ax2) using the same
translation (·)∗ and axioms we saw in Section 3 for comput-
ing non-total THT-models. If the language of this automaton
is not empty, by Lemma 1, the T components of these non-
total countermodels are precisely the TS-models of β ∧ γ
that are not TS-models of α ∧ γ, for γ = (β → γ0). To
obtain those T components we compute A2 := h(A) that,
as explained in Section 3, filters out the auxiliary atoms rep-
resenting truth in H. The algorithm then returns 〈γ, ∅, A2〉
since, by Corollary 2, there are no TS-models of α ∧ γ that
are not TS-models of β∧γ. If, on the contrary, the language
ofA is empty, we proceed in the analogous way for the other
direction β → α. Finally, if in both cases we get an empty
automaton, then this means that any non-total interpretation
is a model of α↔ β something that, together with the LTL-
equivalence of α and β, means that the two formulas are
THT-equivalent, that is, strongly equivalent.



As an example of use, let us take our previous “switch”
example (7)-(10) and suppose we add a rule:

�(¬p→ q) (21)

trying to capture the idea that, when no information on p is
available, q becomes true. This new rule is actually a new
default for q that interacts with inertia rules (8),(9) destroy-
ing somehow their effect. Let β1 be this extended theory,
(7)-(10) plus (21). We can use ABSTEM to check the TS-
models of β1 (stored in file beta1.abs) as follows:

abstem -t -m -f beta1.abs

and we obtain the automaton in Figure 3(a) which corre-
sponds to arbitrary sequences formed with states {p} and
{q} – note the difference with respect to Figure 1 where p
remained true after becoming true. This set of TS-models
actually coincides with what one would expect from a for-
mula of the form �(p ∨ q) since, as happens in ASP, truth
minimality converts the disjunction into an exclusive or. Let
us call α1 = �(p ∨ q). We check whether α1 and β1 have
the same TS-models:

abstem -w -m -f alpha1.abs -f beta1.abs

and we obtain a positive answer. Furthermore, by a quick
inspection on β1 we can foresee that it is actually LTL-
equivalent to α1. First, in LTL (21) is equivalent to α1, and
(10) is just a tautology. The other three rules, (7)-(9) can be
rewritten in LTL as (p ∨ q) ∧ �((p ∨ q) → ©(p ∨ q)) and
this is equivalent to �(p ∨ q) too (it corresponds to the in-
duction schema for p ∨ q). We can use ABSTEM to confirm
LTL-equivalence as follows:

abstem -l -m -f alpha1.abs -f beta1.abs

and we obtain again a positive answer. However, α1 and β1
are not THT-equivalent and so, they are not strongly equiv-
alent. The strong equivalence checking in ABSTEM is done
as follows:

abstem -s -m -f alpha1.abs -f beta1.abs

and the answer displayed this time is negative, containing
this information:

Not strongly equivalent:
adding the context
( (p | q) & G(p | !p)
& G((p & !Xq)->Xp) & G((q & !Xp)->Xq)
& G(!p -> q))->

(G(p | !p) & G(q | !q))
File seq_differences_0: (p & q){(q)}w
TS-model of beta1.abs but not alpha1.abs

The context formula just corresponds to γ1 = β1 → γ0 in
ABSTEM syntax. The output already contains a path of states
{p, q}{q}ω that is a TS-model of β1 ∧ γ1 but not of α1 ∧ γ1.
The automaton in file seq differences 0 is shown in
Figure 3(b) and captures all the TS-models of β1 ∧ γ1 that
are not TS-models of α1 ∧ γ1. Note that this contains all
TS-models that differ since, by Corollary 2, TS-models of
α1 ∧ γ1 are also TS-models of β1 ∧ γ1.

S0start

{q}, {p}

(a) TS-models of
α1 and β1.

S0start

S1

S2

{q},{p}
{p, q}

{p}, {q}, {p, q}

{q},{p}

{p, q}

(b) TS-models of β1 ∧ γ1 not of α1 ∧ γ1.

Figure 3: Temporal stable models related to α1 and β1.

Conclusions
In this paper we have provided several results for equiv-
alence checking in Temporal Equilibrium Logic (TEL), a
non-monotonic modal logic that properly extends Answer
Set Programming for arbitrary theories in the syntax of
Linear-time Temporal Logic (LTL). As a first contribution,
we have solved an open question related to the characterisa-
tion of strong equivalence, a type of equivalence from non-
monotonic formalisms that asserts that two theories Γ1,Γ2

yield the same results even after the addition of any com-
mon context formula Γ. Adapting a result from (Lifschitz,
Pearce, and Valverde 2007) to the temporal case, we were
able to prove that equivalence in the monotonic basis of
TEL, the logic of Temporal Here-and-There (THT), is not
only a sufficient but also a necessary condition for strong
equivalence in TEL. This is important from the theoretical
perspective, since it consolidates the role of THT as a suit-
able monotonic basis for TEL. But it also has practical con-
sequences, since the proof for this result provides a way to
form a context theory Γ that shows how Γ1 and Γ2 can be
forced to behave in a different way.

The second main contribution of the paper is the imple-
mentation of a system, ABSTEM, for analysing TEL arbi-
trary theories in different ways. ABSTEM constitutes the
first implementation of the automata-based method pro-
posed in (Cabalar and Demri 2011) to compute the tem-
poral stable models (represented by a Büchi automaton) of
arbitrary theories in the syntax of propositional LTL. This
feature is further used when checking weak equivalence of
two theories, so that ABSTEM can either answer that their
temporal stable models coincide, or display temporal sta-
ble models for which they differ. Finally, using a transla-
tion from (Aguado et al. 2008), we have also implemented a
THT-equivalence checking. Thanks to our main proof, when
a negative answer is obtained, ABSTEM is able to suggest a
context formula Γ that causes a different behaviour. Further-
more, when this difference is found, the techniques for com-
puting temporal stable models are used this time to display
one or all models in the difference. Regarding efficiency and
scalability, this prototype works satisfactorily for small the-
ories like the ones presented in the paper. Future work will
incorporate a limited use of variables and grounding for arbi-
trary theories to make proofs for larger theories. Still, it must



be noticed that THT-satisfaction is PSPACE-complete (Ca-
balar and Demri 2011).

The main open topic for future work is the study of dif-
ferent syntactic forms for the context formula generated by
ABSTEM when strong equivalence fails. Right now, it is a
formula where implications and temporal operators can be
nested in an arbitrary way. This does not necessarily have
a straightforward translation as an ASP rule using tempo-
ral variables. For instance, an interesting question would
be which is the temporal analogous to the so-called uniform
equivalence (Eiter et al. 2004), that is, strong equivalence
when the context theory is a set of atoms.
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Appendix. Proofs
Proof of Theorem 1. The proof is straightforward. If α and
β are satisfied by the same THT-interpretations then α ∧ γ
and β ∧ γ (for every formula γ) are also satisfied by the
same THT-interpretations; But then, selecting among them
the temporal equilibrium models yields the same effect on
both. �

Proof of Proposition 3. Using Theorem 1, we will show
that Γ2 and Γ3 are THT-equivalent. We begin recalling a
pair of LTL theorems that are also valid in THT:

�(α ∧ β) ↔ �α ∧�β (22)
�α ↔ α ∧�(α→©α) (23)

©(α→ β) ↔ (©α→©β) (24)

We will also use the HT-valid equivalences that allow
unnesting implications:

α→ (β → γ) ↔ α ∧ β → γ (25)
(α→ β)→ γ ↔ (¬α→ γ) ∧ (β → γ)

∧(α ∨ ¬β ∨ γ) (26)

(23) is the induction schema: applied to (20) we get

�(p→©q)
↔ (p→©q) ∧�((p→©q)→©(p→©q))

By (24) we get:

↔ (p→©q) ∧�((p→©q)→ (©p→©© q))

We unfold the nested implications using (25) and (26) and
use (22) to distribute � on conjunction afterwards, obtain-
ing:

↔ (p→©q) ∧�(¬p ∧©p→©© q)

∧�(©q ∧©p→©© q)

∧�(©p→ p ∨ ¬© q ∨©© q) (27)

So we concluded that (20) is equivalent to (27). Now, from
(19) it is easy to see that �(p → ¬q) and in particular,
�(©p → ¬© q) something that implies the last conjunct
of (27). On the other hand, as ¬p follows from (18), we
conclude that the following implications also hold:

p→©q q ∧ p→©q

so that we can also remove the first conjunct in (27) whereas
the third one can be replaced by �(q∧p→©q). To sum up,
when constraints (18) and (19) are present, (27) is eventually
equivalent to:

�(¬p ∧©p→©© q) ∧�(q ∧ p→©q)

which is the conjunction of (16) and (17). �

Proof of Proposition 4. We have to prove that ∀i ∈ N,
Hi = Ti. SinceHi ⊆ Ti from H ≤ T, we just need to prove
Ti ⊆ Hi. Take some p ∈ Ti. Obviously, 〈H,T〉, i 6|= ¬p.
But from 〈H,T〉 |= �(p ∨ ¬p) we conclude 〈H,T〉, i |=
p ∨ ¬p and so 〈H,T〉, i |= p that is p ∈ Hi. �

Proof of Corollary 1. By Observation 1, any TS-model of
α ∧ γ0 is an LTL-model too. For the other direction, by
Proposition 4, any THT-model of α ∧ γ0 is a total model.
Since α ∧ γ0 has no non-total models, any model 〈T,T〉 is
a temporal equilibrium model and so T is a TS-model. �

Proof of Lemma 1. For (i) ⇒ (ii), suppose (i) holds. As
α and β are LTL-equivalent, 〈H,T〉 6|= α → β amounts
to 〈H,T〉 |= α and 〈H,T〉 6|= β. Then, it is easy to
see that 〈H,T〉 |= α ∧ γ because 〈H,T〉 6|= β which
is the antecedent of γ. From Proposition 2 (persistence)
〈T,T〉 |= α ∧ γ and since α and β have the same total
models, 〈T,T〉 |= β ∧ γ that is, T |= β ∧ γ in LTL. But
now, as β∧ (β → γ0) is LTL-equivalent to β∧γ0, by Corol-
lary 1, the LTL models of this formula are its TS-models.
In particular T is a TS-model of β ∧ γ. But T cannot be
TS-model of α∧γ because we had that 〈H,T〉 was a model
and H < T.

For (ii)⇒ (i), suppose (ii) is true. Then, by Observation 1,
T is LTL-model of β∧γ, and thus, it is LTL-model of α∧γ
too, since α and β are LTL-equivalent. But as T is not TS-
model of α ∧ γ, this means there exists some H < T such
that 〈H,T〉 |= α∧γ and so 〈H,T〉 |= α. On the other hand,
〈H,T〉 6|= β because, otherwise, it would satify β ∧ γ and,
as 〈H,T〉 is non-total, T could not be TS-model of β ∧ γ.
As a result, 〈H,T〉 6|= α→ β. �

Proof of Corollary 2. Suppose T is a TS-model of α ∧ γ.
By Observation 1, T is an LTL model of α ∧ γ too, and
so, it is an LTL model of β ∧ γ, because α and β are LTL-
equivalent. But, as discussed in the proof of Theorem 2, any
LTL-model of β ∧ γ is also a TS-model of that theory. �
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