
C
R

E
D

I
T

 T
K

review articles

DECEMBER 2011 | VOL. 54 | NO. 12 | COMMUNICATIONS OF THE ACM 93

DOI:10.1145/2043174.2043195

The motivation and key concepts behind
answer set programming—a promising
approach to declarative problem solving.

BY GERHARD BREWKA, THOMAS EITER,
AND MIROSŁAW TRUSZCZYŃSKI

Answer Set
Programming
at a Glance

CAN SOLVING HARD computational problems be
made easy? If we restrict the scope of the question to
computational problems that can be stated in terms of
constraints over binary domains, and if we understand
“easy” as “using a simple and intuitive modeling
language that comes with software for processing
programs in the language,” then the answer is Yes!
Answer Set Programming (ASP, for short) fits the bill.

While already well represented at research
conferences and workshops, ASP has been around for
barely more than a decade. Its origins, however, go
back a long time; it is an outcome of years of research
in knowledge representation, logic programming, and
constraint satisfaction—areas that sought and studied
declarative languages to model domain knowledge,
as well as general-purpose computational tools for
processing programs and theories that represent
problem specifications in these languages. ASP
borrows from each of these areas, all the time aiming I

L
L

U
S

T
R

A
T

I
O

N
 B

Y
 G

W
E

N
 V

A
N

H
E

E

94 COMMUNICATIONS OF THE ACM | DECEMBER 2011 | VOL. 54 | NO. 12

review articles

to maintain a balance between ex-
pressivity, ease of use, and computa-
tional effectiveness. To give just a few
examples, emerging applications in
molecular biology, decision support
systems for space shuttle controllers,
and team building at Gioia Tauro Sea-
port (see sidebar here) bear witness to
its potential.

Programs and Answer Sets
We start our ASP discussion with the
propositional setting. The building
blocks for programs are atoms, literals,
and rules. Atoms are elementary propo-
sitions (factual statements) that may
be true or false; literals are atoms a and
their negations not a. Rules are expres-
sions of the form

a ! b1, . . . , bm, not c1, . . . , not cn (1)

where a and all bi’s and cj’s are atoms.
Intuitively, a rule (1) is a justification to
“establish” or “derive” that a (the so-
called head) is true, if all literals to the
right of !"(the so-called body) are true
in the following sense: a non-negated
literal bi is true if it has a derivation, a
negated one, not cj, is true if the atom
cj does not have one. For instance, the
rule

light_on ! power_on, not broken

informally means we can assert that
the light is on, if we established the
power is on and there is no reason to
think the lamp is broken. Rules may
have no body. For instance, we may
have a rule:

power_on ! .

Such rules are called facts, as the head
is unconditionally true, and the arrow
! is typically omitted.

Programs are finite collections of
rules. They are thought of as “justifi-
cations” for sets of atoms that contain
precisely those atoms that can be es-
tablished. It is important to point out
that not is not a standard negation
operator. Rather, it is meant to stand
for a modality “non-derivable.” Look-
ing at the small program with the
two rules mentioned here, power_on
should be derived (as it is given as a
fact), while intuitively broken should
not (the program, which describes

what we know, has no rule to derive
broken). This in turn allows us to de-
rive light_on.

Formalizing these intuitions posed
a challenge to the knowledge repre-
sentation and logic programming
communities for years. Eventually,
answer sets provided a solution that
gained acceptance.

Answer sets. To trace the key points
of answer sets, we consider two further
examples. Let P1 be the program con-
sisting of the following rules:

high_salary ! employed, educated
educated ! high_salary
employed ! motivated
motivated.

We can regard motivated as estab-
lished as it is the head of a rule that
has no preconditions. Consequently,
the third rule allows us to derive em-
ployed. Can we obtain anything else?
To get high_salary we need to have
established educated and, similarly,
to get educated we need to have estab-
lished high_salary. This “vicious cycle”
of dependencies cannot be broken as
there is no other rule with high_salary
or educated in the head. Hence, nei-
ther high_salary nor educated can be
derived given the information in the
program. We conclude the set {mo-
tivated, employed} is the only one the
program “justifies.”

This bottom-up process can be ex-
tended to an arbitrary program without
the not operator. In the general case,
however, once negation is allowed the
situation gets more complicated. For
instance, let P2 consist of two rules:

open ! not closed
closed ! not open.

In the first example it was clear how
to start and how to proceed. It is not
so here. The reason is we do not know
which atoms cannot be derived, there-
fore, we cannot verify the conditions
for applying any of the rules.

A way out of the problem is to start
by assuming which atoms will not be
derived. For instance, let us assume
that closed will not be derived. Then,
the first rule can be used and we can es-
tablish open. Since open is established,
the second rule cannot be used and
closed indeed will not be established,
verifying our assumption. Thus, the
set {open} is justified by the program
in the following sense. Assuming that
atoms not contained in the set cannot
be derived, and using program rules
(under our intuitive understanding of
how they work), we can derive in the
bottom-up fashion precisely those at-
oms that are in the set. Interestingly
and importantly, {open} is not the only
set justified by the program P2. Anoth-
er one is {closed}: if we assume that

The seaport of Gioia Tauro, Reggio Calabria, Italy, is the largest transshipment terminal
on the Mediterranean coast. A crucial management task for a port of this size is to build
teams of employees to handle incoming ships. This is difficult and time consuming, as
one must ensure that teams have appropriate skills, the workload is divided fairly, and
legal workload regulations are met. Until recently this task was performed manually,
which took several hours per day.

In cooperation with Exeura Srl, a University of Calabria (UNICAL) spin-off, and ICO
BLG, an Italian logistics company, Nicola Leone’s group at UNICAL has developed
an ASP-based system for team building based on the DLV solver.38 Rules describe the
requirements that should be fulfilled regarding: necessary skills of team members;
availability of employees; fairness of workload distribution; and distribution of “heavy"
or “risky" tasks. Since in practice not all requirements can be satisfied, the system has an
implicit conflict handling strategy that gives higher priority to more important criteria.

The system, which has been adopted by ICO BLG for work-force management, can
generate shift plans for 130 employees within a few minutes. In addition, the plan
quality turned out to be considerably better and overtime was decreased by 20%.

Key factors for the success of ASP in this application were its high expressiveness
and the possibility to evolve an executable specification in close interaction with
domain experts on site who, although not computer experts, could help getting it right
in short time.

ASP-based Team Building
at Gioia Tauro Seaport

review articles

DECEMBER 2011 | VOL. 54 | NO. 12 | COMMUNICATIONS OF THE ACM 95

open cannot be derived, we can use
the second rule to derive closed. Hav-
ing derived closed, we have that open
cannot be derived, confirming the as-
sumption we made.

Our examples suggest the case of
programs that contain no rules with
not in the body is easier. We do not
need to make any assumptions about
what cannot be derived, as no rule has
negated atoms in its body. Instead, we
proceed in an iterative fashion collect-
ing atoms that can be established, in
each step using atoms derived already
to establish new ones. When no more
atoms can be derived, the process ter-
minates. The unique set of atoms de-
rived in this way is justified by the pro-
gram, and we call it the answer set of
the program.

The concept of an answer set for
negation-free programs (also called
Horn programs) is a springboard to
the general definition. The intuitions
we discussed earlier in the context of
the program P2 are crucial. We start
with a set M of atoms (in our example,
with {open}) and make an assumption
that no atom outside M can be derived.
Given this assumption, rules that con-
tain a negated atom not a, where a is
in M, become unusable (as the non-
derivability of a is not assumed; in our
example, closed ! not open is unus-
able). These rules are “blocked” by M
and can be disregarded. Therefore,
we remove them from the program. In
every other rule, if an atom is negat-
ed, it must have been assumed non-
derivable, otherwise, the rule would
have been removed. According to our

reading of the rules the correspond-
ing literal can be eliminated from the
body without affecting the usability of
the rule. Once this is done, we are left
with a negation-free program, called
the reduct of the program with respect
to M. If the set of atoms we can derive
from that program or, in other words,
the answer set of that program, coin-
cides with M, all non-derivability as-
sumptions we made based on M are
confirmed, and all atoms in M can be
derived. Thus, M is justified by P. We
call each such set M an answer set of P.
The definitions of the reduct and an
answer set are due to Gelfond and Lif-
schitz.20 Originally, they used the term
stable model and introduced the term
answer set later for a generalization of
the concept to a broader class of pro-
grams that feature strong negation and
disjunction, which we will discuss.
The new term eventually took over.

There is some similarity between
rules and propositional logic implica-
tions. Indeed, the rule (1) looks like the
implication

(b1 # . . . # bm # ¬ c1 # . . . # ¬ cn) $ a (2)

written in a “reversed” fashion. Each
answer set of a program is a model of
the program viewed as a set of implica-
tions (models are truth value assign-
ments to atoms such that each implica-
tion evaluates to true). However, not all
models are answer sets as not all mod-
els satisfy the foundedness requirement
that atoms be derivable in the sense
described here.

It should be noted that ASP has solid
logic foundations, and is closely linked
to nonmonotonic reasoning. In fact,
programs under answer set seman-
tics can be seen as a fragment of Re-
iter’s Default Logic and as theories in
nonmonotonic modal logics, includ-
ing Moore’s Autoepistemic Logic and
nonmonotonic KD45.31 David Pearce
showed that the answer set semantics
can be elegantly captured by a non-
monotonic variant of the logic of here
and there,35 a logic located between in-
tuitionistic and classical logic.

Close connection to nonmonoton-
ic logics provides ASP with the power
to model default negation and, more
generally, to deal with incomplete in-
formation. We illustrate that by con-
tinuing our light_on example. The rule

The answer set
semantics of
programs is the
foundation of
ASP. But equally
important is the
understanding of
how programs
encode search
problems and
their instances.

 key insights
 Answer set programming is an emerging

approach to modeling and solving search
and optimization problems. It combines
an expressive representation language,
a model-based problem specification
methodology, and efficient solving tools.

 The answer set programming language
allows domain and problem-specific
knowledge, including incomplete
knowledge, defaults, and preferences,
to be represented in an intuitive and
natural way.

 Because of its strong declarative
aspect, the language of answer set
programming supports rapid prototyping
and development of software for solving
search and optimization problems, and
facilitates modifications and refinements
leading to better performance.

96 COMMUNICATIONS OF THE ACM | DECEMBER 2011 | VOL. 54 | NO. 12

review articles

broken ! lightning, not lightning_rod

specifies that the lamp breaks when
a lightning strikes, unless a lightning
rod was installed. With this rule ap-
pended to the program here, we still
derive light_on, as we cannot derive
broken. However, things change if we
further add the fact lightning. As light-
ning_rod cannot be derived, we can
establish broken, and so light_on can
no longer be derived. Thus, answer set
programs behave nonmonotonically—
conclusions may have to be retracted
when more rules or facts are added
to the theory. Further, if we add one
more fact lightning_rod, the situation
changes again; we can no longer de-
rive broken, and thus light_on will be
derived. What this shows is that ASP
provides convenient ways for handling
exceptions and nested exceptions.

Shorthands and further connec-
tives. A common and important type of
rules has its head atom occur negated
in the body:

a ! B, not a.

If such a rule, let us denote it by r, is
added to a program P that has no oc-
currences of a, then r works as a con-
straint. Namely, a set M of atoms is
an answer set of the program P %{r}
if and only if M is an answer set of the
program P and does not satisfy (as in
propositional logic) the conjunction of
literals B. In other words, adding r to P
simply eliminates those answer sets of
P that satisfy B. As atom a is auxiliary
and thus irrelevant (we do not allow
it in P), a common way to write a con-
straint is as a “headless” rule

! B

which conveys the intuition of a con-
straint: satisfying B results in a contra-
diction.

It is also quite common that pro-
grams contain pairs of rules

a ! B, not ā
ā ! B, not a,

where neither a nor ā appear as the
head of any other rule in the program,
and B is a conjunction of literals. This
happens, in particular, when the pro-
grammer wants to refer in the program

both to an atom a and to its (standard)
negation. To represent the latter, the
programmer introduces a new atom ā
and includes in the program the two
rules here. Intuitively, the role of these
rules is to select, in case B is satisfied,
exactly one of a and ā; this is precisely
what they do under the answer set se-
mantics. Pairs of such rules are often
written in a shorthand notation as a
single choice rule

{a} ! B.

Strong negation, denoted with the stan-
dard negation symbol ¬, allows us to
distinguish between having no justifi-
cation for an atom a, expressed by not
a, and having one for the negation of
a, expressed by ¬a. In program rules,
¬ can only appear in front of atoms.
Gelfond and Lifschitz showed that
the definition of answer sets extends
to programs of this form almost liter-
ally.21 Every program P with strong ne-
gation can be reduced to an ordinary
program P̄: we simply have to replace
each literal ¬a in P by a new atom ā. It
can be shown that a consistent set of
literals S is a (generalized) answer set
of P if and only if the set S̄ obtained
from S by the same modification is an
answer set of P̄. Thus, strong negation
is only a modeling convenience. How-
ever, it makes formulating defaults as
in Reiter’s Default Logic easier. For ex-
ample, a rule

closedt+1 ! closedt, not ¬ closedt+1

might be interpreted as saying that by
default, the valve remains closed at
time t+1 if it was closed at time t (that

is, unless there are specific reasons for
it not to be). Such default rules, which
embody the law of inertia, allow for an
elegant solution of the frame problem
that arises when one reasons about
actions and their effects, for instance
when modeling and solving planning
problems.1

Modeling considerations also moti-
vated allowing disjunctions in the heads
of rules. Disjunctive rules

a1& . . . & ak ! b1, . . . , bm, not c1, . . . , not cn

often make representations more in-
tuitive, for example, in a rule like

open & closed ! valve.

To eliminate the possibility for a valve
to be both, a form of minimality is
needed. It is reflected in the answer
sets of a disjunctive program.21 The
definition uses the same process as
before to “reduce” the program with
respect to a candidate atom set M and
yields the reduct that is free of (de-
fault) negation. However, the reduct
may have disjunctions in the heads
of its rules and thus, in general, there
might be multiple minimal sets of at-
oms that satisfy all rules (and some
are guaranteed to exist). The idea now
is to check whether M is one of these
minimal sets of the reduct. If this is
the case, then M is an answer set. Im-
portantly, unlike strong negation ¬,
disjunction in the rule heads does in-
crease the problem-solving capacity of
programs, as witnessed by results on
complexity and expressive power (see
the accompanying sidebar “Complex-
ity of ASP”).

To decide whether a given program has some answer set is NP-complete,29 thus
as complex as the classical propositional satisfiability problem (SAT); in the
presence of disjunctive rules, the problem is NPNP-complete11 (NPNP are the problems
decidable in NP with an oracle for NP problems); roughly speaking, this means NP-
completeness even if calls to a subroutine for SAT are for free.9,22 Predicate programs
have exponentially higher complexity (intuitively, this is because the reduction by
grounding causes an exponential blow up in general). Regarding search problems, ASP
can express all NP-search problems, that is, those solvable using a nondeterministic
Turing machine in polynomial time, in such a way that the answer sets encode the
solutions. In fact, each such problem (for example, finding some Hamiltonian cycle)
is expressible by a fixed predicate program to which logical facts encoding a given
problem instance (for example, a graph) are added. Again, additional constructs like
disjunctive rules may increase the expressivity.

Complexity of ASP

review articles

DECEMBER 2011 | VOL. 54 | NO. 12 | COMMUNICATIONS OF THE ACM 97

Predicate programs. The proposi-
tional case is crucial for the definition
of answer set semantics. But it is the
predicate version of the formalism that
facilitates modeling and makes ASP an
effective problem-solving technique.
The language has relation (or predicate)
symbols, constant symbols and vari-
ables, as well as the logical connectives
we discussed earlier, but no function
symbols (we will discuss this restric-
tion later). A rule is an expression of
the form

A ! B1, . . . , Bm, not C1, . . . , not Cn (3)

where A, Bi, and Ci are atomic formulas
in the language. Rules are regarded as
being implicitly universally quantified.
The concepts of the head and body of
the rule are defined as before and we
interpret a rule (3) similarly as before,
too. That is, we understand it as a de-
vice that, under some conditions, al-
lows us to derive its head.

More formally, the semantics of
a predicate program P is defined in
terms of its ground version grnd(P).
The program grnd(P) consists of all
ground instantiations of rules in P with
respect to constants that appear in P.
In case P contains no constants (a situ-
ation that does not occur in practice),
one is selected arbitrarily and used to
produce grnd(P). The program grnd(P)
can be regarded as a propositional one
over all ground atoms in the language,

and the answer sets of P are defined to
be those of grnd(P).

The ASP Paradigm
ASP is an approach to solving search
problems. The answer set semantics
of programs is the foundation of ASP.
But equally important is the under-
standing of how programs encode
search problems and their instances.
Niemelä32 and Marek and Truszczyn-
ski30 first formulated explicitly the
basic principles of the ASP approach,
Lifschitz26 was the one to propose the
term. In our discussion we rely on a
rather intuitive understanding of a
search problem. Namely, we assume
that a search problem ∏ consists of a
set of instances, D∏, with each instance
I assigned a finite set S∏(I) of solu-

tions. The set S∏(I) may be empty, that
is, problem ∏ may have no solution
for instance I.

To solve a search problem ∏, a pro-
gram P∏ is designed that captures the
problem specifications so that when
extended with facts D(I), representing
an instance I of the problem, the an-
swer sets of P∏ % D∏(I) describe all solu-
tions of problem ∏ for the instance I.
The upshot of this design is that solv-
ing the problem is reduced in a uni-
form way (the program P∏ is fixed and
only the data component changes) to
the task of finding answer sets.

We now illustrate how ASP works
by analyzing the problem of finding a
Hamiltonian cycle in a directed graph.
The choice is not arbitrary: this is an
important combinatorial problem,
arising in several practical situations
(for example, as an essential com-
ponent of the well-known Traveling
Salesperson problem). While simple
to state, it is still complex enough to
allow us to emphasize all key aspects
of ASP. In the problem, we are given a
directed graph G = (V,E), where V is the
set of vertices and E the set of (directed)
edges of G. The goal is to find a Hamil-
tonian cycle in G, that is, a set of edges
that induce in G a directed cycle going
through each vertex exactly once.

We will use two relation symbols to
represent graphs: vtx and edge. Let us
consider the graph G shown in the ac-
companying figure.

We represent the graph G as the set
of ground atoms

Dhc (G) = {vtx (a), vtx (b), vtx (c), vtx (d)} %
{edge(a, b), edge(b, c),
edge(c, d), edge(d, a), edge(b, d)}.

Next, we need to capture the speci-
fication of the problem. A key part is
the definition of a Hamiltonian cycle.
According to our description, it must
be a subset of the edges of the graph. To
describe this subset formally, we use
a relation symbol in and expressions
in(a, b) that informally read: the edge
(a, b) is selected for a Hamiltonian cy-
cle. To indicate that any edge (X, Y) can
be “selected” to be in a Hamiltonian
cycle, we use the choice rule:

(HC1) {in (X, Y)} ! edge (X, Y).

Next, we stipulate that no two selected

Table 1. ASP grounders.

LPARSE www.tcs.hut.fi/Software/smodels/

DLV www.dbai.tuwien.ac.at/proj/dlv/ or www.dlvsystem.com/

GRINGO potassco.sourceforge.net/#gringo/

Table 2. Some ASP systems.

ASSAT assat.cs.ust.hk/

CLASP 1 potassco.sourceforge.net/#clasp/

CMODELS www.cs.utexas.edu/users/tag/cmodels/

DLV 2 www.dbai.tuwien.ac.at/proj/dlv/ or www.dlvsystem.com/

GNT www.tcs.hut.fi/Software/gnt/

SMODELS www.tcs.hut.fi/Software/smodels/

XASP xsb.sourceforge.net/, distributed with XSB
1 + CLASPD, CLINGO, CLINGCON, among others; http://potassco.sourceforge.net/
2 + DLVHEX, DLVDB, DLT, DLV-COMPLEX, ONTO-DLV, and others.

A graph for the Hamiltonian cycle problem.

a

d

b

c

98 COMMUNICATIONS OF THE ACM | DECEMBER 2011 | VOL. 54 | NO. 12

review articles

edges start or end in the same vertex.
To this end, we use two constraint
rules:

(HC2) ! in (V 2, V 1), in (V 3, V 1), V 2 ≠ V 3
(HC3) ! in (V 1, V 2), in (V 1, V 3), V 2 ≠ V 3.

We stress the use of the relation sym-
bol ≠ here. In the predicate version of
ASP, we assume the set of constants
includes integers, and the set of rela-
tion symbols includes symbols such
as =, ≠, ≤, <, ≥, and >, as well as symbols
for (bounded) arithmetic operations
such as +. To be consistent with stan-
dard notation, we use the infix nota-
tion and write X ≤ Y instead of ≤ (X, Y).
Similarly, we write X + Y = Z instead of
+(X, Y, Z). All these symbols are always
interpreted in the standard way.

To be a Hamiltonian cycle, the set
of edges in(x, y) must determine a sin-
gle cycle. To enforce this condition,
we need a concept of one vertex being
reachable from another. To this end,
we use an auxiliary relation symbol
rchble and the following rules:

(HC4) rchble(V, V)
(HC5) rchble(V 1, V 3) ! in(V 1, V 2),
 rchble(V 2, V 3).

The rules (HC4) and (HC5) define the
transitive closure of the relation in;a that
is, all pairs of vertices (x, y) such that y
can be reached from x by following zero
or more edges that are “in.” Clearly,
the selected edges form a Hamiltonian
cycle if and only if every pair of vertices
is in the transitive closure. This condi-
tion is captured by the following con-
straint rule:

(HC6) ! vtx (V 1), vtx (V 2),
 not rchble(V 1, V 2).

Let Phc be the program consisting of the
rules (HC1) - (HC6). One can show that
a set of edges H is a Hamiltonian cycle
in a graph G if and only if H = {(x, y) |
in(x, y) ' M} for some answer set M of
Phc %"Dhc(G).

Finding a Hamiltonian cycle of an
arbitrary input G is an NP-hard prob-
lem, and under a suitable notion com-
plete for all NP-search problems. In
fact, complexity theory (see the sidebar

a It is well-known that this is not expressible in
first-order logic.

“Complexity of ASP”) tells us that each
NP-search problem ∏ is expressible by
a program P∏ as noted earlier.

Processing Answer Set Programs
Current tools for computing with an-
swer set programs support several
basic reasoning tasks, which include
computing a single answer set (or de-
termining that none exist), computing
a given number of answer sets, and
computing all of them. Most tools also
support deciding whether an atom
is true in every (resp. some) answer
set, known as cautious (resp. brave)
reasoning. These modalities are im-
portant for reasoning applications;
for example, when we want to know
whether a fact is true in every (resp.
some) possible evolution of a system
executing a sequence of actions of
bounded length.

ASP processing typically works in
two stages. First, the predicate program
is replaced with an equivalent propo-
sitional program by so-called variable
replacement or grounding. Second, that
program is processed by a proposi-
tional ASP solver. Most implemented
ASP processing systems make a clear
distinction between the two stages and
offer separate tools for each, others in-
tegrate them.

Grounding. The naive approach to
grounding is to replace a program P
with grnd(P); but generally this is not

efficient. Consider the rule p(X) !
p(X1), . . . , p(Xn) and assume it needs to
be grounded for two constants a and
b. Then, the naive grounding will pro-
duce 2n+1 ground instances, as we can
choose for X and each Xi either a or b.
However, in this case, the full ground-
ing amounts to just two propositional
rules p(a) ! p(b) and p(b) ! p(a), as
repeated literals in the bodies of rules
and tautological rules, where the head
atom occurs non-negated in the body,
can be eliminated without affecting
the answer sets. Intelligent grounding
techniques incorporate such equiva-
lences and many further optimiza-
tions. They aim to produce, given a
predicate program P, a possibly small
propositional program, not necessari-
ly a subset of grnd(P), that is equivalent
to P, that is, has the same answer sets.
Current grounders exploit techniques
such as partial evaluation, rewriting,
and a great deal of database technol-
ogy to make grounding efficient. We
refer to Table 1 for information on the
three grounders most broadly used
in ASP. Their input formats serve as
de facto specifications of three most
popular ASP dialects. They are quite
close to each other. Nevertheless, the
need for standardization is recognized
by the ASP community. Extensions to
the GRINGO grounder are an impor-
tant step in this direction, making its
input language much closer to that of

New high-throughput methods have led to a dramatic increase of measurable data in
modern molecular biology, and a number of corresponding knowledge repositories
are available on the Web. However, both the data and the available biological networks
are highly incomplete and error-prone, and inconsistencies are the rule rather than
the exception.

In a joint project by Potsdam University, INRIA, and Institut Cochin, led by Torsten
Schaub, an approach for repairing biological networks based on ASP has been
developed.19 It builds on a range of available repair actions inspired by biological use
cases. Examples are modifications of the role of a node in a biological influence graph
(for example, from inhibitor to activator), additions of missing links between nodes, or
modifications of experimental data in cases where it is plausible to assume errors in the
measurements.

The program rules encode biological knowledge about the repair actions needed
and possible in a particular situation. A possible repair is then achieved by minimizing,
according to a variety of strategies, the set of applied repair actions. The system uses not
more than 20 rules to encode five types of repair actions with different targets.

ASP for Repairing
Large-Scale Biological
Networks

review articles

DECEMBER 2011 | VOL. 54 | NO. 12 | COMMUNICATIONS OF THE ACM 99

the DLV grounder.
Propositional solving. Table 2 pro-

vides pointers to several current ASP
solvers. All of them more or less di-
rectly exploit methods developed in
the field of satisfiability solving. Some
ASP solver algorithms, often referred
to as native (to ASP), follow the gen-
eral backtracking search pattern of
SAT solvers but append SAT-based
propagation techniques with ones
implied by an additional foundedness
condition that models must satisfy to
be answer sets.25 It means every atom
that is true in a model must be de-
rived (in a certain precise sense) by a
rule in the program. The search back-
tracks when either a contradiction is
derived, or a complete and consistent
assignment is found but some atoms
that are true lack a derivation (are not
founded). In each case, the need to
backtrack indicates that some deci-
sions made in the search earlier are
incompatible with any answer set of
the program and must be changed.
This group of algorithms embodies a
perspective on answer sets best cap-
tured by a catchphrase

(propositional) ASP = SAT + foundedness.

The answer set search outlined ear-
lier can be improved by sophisticated
search heuristics and techniques like
backjumping and clause learning de-
veloped in the field of SAT solvers. The
current ASP solvers take full advan-
tage of these techniques. The native
ASP solver CLASP, dressed as a SAT
solver, won two tracks of the 2009 SAT
solver competition.

Other successful ASP solver algo-
rithms are based on reductions of
answer set solving to satisfiability
testing. They modify the formula cor-
responding to a program so that its
models are exactly (or up to trivial
projections) the answer sets of the
program. One approach is to produce
the so-called program completion.
It reflects the idea that the program
provides all conditions under which
atoms are true; that is, it is a defini-
tion of the atoms in its rule heads.
Accordingly, the completion is the
formula containing for each atom a
an equivalence saying that a holds
if and only if the disjunction of the
bodies of all rules with a in the head

holds. The completion captures some
aspects of the foundedness condition,
but not all. To capture it entirely, the
completion must be extended by loop
formulas, that exclude self-supporting
derivations.28 Loosely speaking, this
approach could be cast as

ASP = completion + loop formulas.

Once the completion and loop formu-
las are built, an off-the-shelf SAT solver
is used to find models of the resulting
theory and so, answer sets of the origi-
nal program. In the worst case, there
can be exponentially many loop for-
mulas, which complexity theory tells
is somehow unavoidable. Therefore,
some ASP solvers based on this idea,
for example, ASSAT, add loop formulas
incrementally and test whether models
are already answer sets, while others,
such as CMODELS2, similarly employ
special techniques to select promising
loop formulas to add and to “forget”
them later.

Other reductions of ASP computa-
tion to SAT solving use auxiliary atoms
for level rankings to represent founded
derivation by keeping track of succes-
sive rule applications. Following this
direction, translations of ASP to SAT
modulo difference logic have been pro-
posed that exploit fast solvers for theo-
ries in that formalism.33

ASP Extensions
Motivated by the needs of applications,
several extensions of the basic ASP par-
adigm have been proposed.

Constraints and aggregates. Con-
straints on sets of atoms are particu-

larly common. For instance, one often
needs to say that exactly one out of a
given set of atoms is true. In the well-
known n-queens problem, we must
place n queens on the n × n chessboard
so that no two queens attack each
other. Here one of the constraints is
that exactly one queen is in each row.
Even though this can be naturally en-
coded in the basic ASP language, the
grounding will result in a large num-
ber of rules. ASP input languages thus
provide constructs for constraints on
sets of atoms that ASP solvers handle
suitably. Basically, there are two ap-
proaches.

The first approach, which originat-
ed with LPARSE, uses the concept of a
cardinality atom. In the propositional
case, it has the form

l {a1, . . . , an} k

and reads: at least l and at most k atoms
in the set {a1, . . . , an} are true (if l or k
are missing, it implies no restriction
from the respective side). In the predi-
cate language, one can be even more
concise and write expressions such as

L {a(X) : p(X, Y)} K,

where L, K, X, and Y are variables. The
expression captures a condition that
given a value for Y, for at least L and
at most K of the values of X such that
p(X, Y) holds, a(X) is true. To ensure the
grounding process is well defined, syn-
tactic conditions on variables are used.

Let us denote by q(X, Y) that some
queen is in row X and column Y. We
can state the uniqueness constraint on

ANTON,4 developed at University of Bath in cooperation with University of Glamorgan,
is an automatic system for the composition of Renaissance-style music. It represents
musical knowledge in the form of about 500 ASP rules. The rules describe the
progression of a melody, both at the local level (the choice of the next note) and at
the global level (the overall structure), the harmony that arises from the relationship
between the melodic line and the supporting instruments, and also the rhythm, such as
the intervals between notes, of a piece.

Given some initial information, for example, fixed notes or number of parts,
the program generates answer sets representing musical pieces that satisfy the
composition rules. With minor modifications, the system can also be used to detect
violations of composition rules in given pieces of music.

ANTON—An ASP-based
Music Composition System

100 COMMUNICATIONS OF THE ACM | DECEMBER 2011 | VOL. 54 | NO. 12

review articles

queens in each row concisely by the fol-
lowing two constraint rules:

! 2 {q(X, Y) : col(Y)}, row(X)
! {q(X, Y) : col(Y)} 0, row(X).

The first rule states that for no row X
there are distinct Y and Y' such that
q(X, Y) and q(X, Y') are true (no row
contains two or more queens). The
second rule states that for no row X,
it holds that all atoms q(X, Y) are false
(there is no row without queens).
There is a more general version of
cardinality constraints, weight con-
straints, where each atom is associat-
ed with a weight and the bounds con-
strain the sum of the weights of atoms
that have some property.

The second approach to modeling
constraints on sets of atoms follows
the idea of aggregates familiar from
SQL in databases.16 Those implement-
ed in ASP languages include count,
sum, maximum, and minimum and fol-
low closely the database syntax. In the
DLV input language, the unique-queen
constraint is expressible by

! 1 ! = #count{Y : q(X, Y)}, row(X).

The input language of GRINGO also
recognizes aggregates such as count
and sum but specifies bounds as in
cardinality constraints; this points to
the need for standardization of ASP
input languages.

Preferences. A basic assumption of
the ASP paradigm is that problems are
modeled in a way such that answer sets
represent their solutions. However, it
is impossible to further distinguish
between better and poorer solutions.
One way to address this problem is to
introduce preferences. Simple forms
of preferences can be expressed using
#minimize and #maximize statements
that are supported by several of the
existing ASP solvers. They allow us to
associate weights with specific liter-
als. The generated answer sets then
are those for which the sum of the
weights of satisfied literals is minimal/
maximal. The DLV system provides so-
called “weak constraints,” which carry
a weight of importance; they should be
satisfied if possible, but their violation
does not “kill” answer sets. The an-
swer sets of a program P plus a set W
of weak constraints are those answer

sets of P that minimize the sum of the
weights of violated weak constraints.
Other, non-numerical approaches use
an external partial preference order on
rules or special syntactic constructs in
the rules; for example, Brewka et al.6
In each case the available preference
information induces a corresponding
ordering on answer sets, and the best
ones are chosen.

Modularity and external data ac-
cess. Modularity is an important no-
tion in software development. In the
context of ASP it is only beginning to
receive the attention it deserves but
already several key concepts and ideas
have been developed.10,23 Modulariza-
tion is a way to structure and ease
the program development process.
Modular ASP programs consist of
modules that are combined through
suitable interfaces. This way parts of
a program can be developed and veri-
fied independently, and they can be
more easily reused. A related issue is
to integrate external sources into ASP
programs. In a rule one would often
like to access a database, an ontol-
ogy or some other source of informa-
tion. To serve this, HEXprograms13
provide a universal interface for arbi-
trary sources of external computation
through the notion of external atom,
which is akin to a remote procedure
call but facilitates proper recursion.

Applications
The ASP paradigm is rather new but it
has already led to many successful ap-
plications. We briefly discuss a few ex-
amples in different categories. Further
examples can be found in the team-
building sidebar noted earlier as well
as the ones entitled “ASP for Repairing
Large-Scale Biological Networks” and
“ANTON—An ASP-based Music Com-
position System.”

Applications in science and hu-
manities. An illustrative example is
phylogenetic systematics—the study
of evolutionary relations between
species based on their shared traits.15
These relations can form a tree
(called a “phylogeny”) where leaves
represent the species, internal ver-
tices their ancestors, and edges the
genetic relationships between them.
The computational task is to con-
struct phylogenies, and researchers
demonstrated the applicability and

effectiveness of ASP-based methods
for these tasks by analysis of natural
languages and parasite-host systems
species of oak trees.

Industrial applications. An early,
almost prototypical industrial applica-
tion for ASP is product configuration.39
The general idea is to have rules in a
program that generate the space of
all combinations of product compo-
nents. Constraint rules then filter out
configurations that are impossible,
either due to some given, fixed restric-
tions on how components can be com-
bined, or due to a violation of specific
user requirements. Another early ap-
plication is a decision support system
for the space shuttle.34 During normal
shuttle operations, astronauts follow
pre-scripted plans. However, in case
of failure different courses of action
are needed to ensure safety of the crew
and completion of the mission. As ex-
ponentially many failures are possible,
pre-planning for all exceptional cir-
cumstances is unfeasible, and decision
support is needed. Based on failure in-
formation, the ASP system suggests a
course of action.

Data management. INFOMIXb is a
project on advanced information inte-
gration. The main task is to provide a
uniform interface to pre-existing data
sources, where an information integra-
tion system frees the user from finding
and accessing relevant data sources,
and from cleaning and combining data
in them. Here, in particular, proper
handling of incomplete and inconsis-
tent data is challenging. The INFOMIX
prototype showed that ASP provides
effective technology to deal with ad-
vanced information integration tasks.
ASP also proved to be a valuable host
for realizing query engines in the con-
text of the Web. In fact, one of the first
SPARQL reasoning engines for query-
ing RDF data sources has been realized
via an ASP encoding.37

Artificial intelligence. Given the
fact that ASP has roots in knowledge
representation and nonmonotonic
reasoning, its usage for problem solv-
ing in artificial intelligence (AI) has
been investigated early on. Classic
AI problems including planning, di-
agnosis, and agent decision making
have been reduced to ASP, resulting

b www.mat.unical.it/infomix/

review articles

DECEMBER 2011 | VOL. 54 | NO. 12 | COMMUNICATIONS OF THE ACM 101

in effective realizations (several are
available, for example, as DLV fron-
tends). As it turned out, thanks to its
features—high expressiveness, non-
determinism via multiple answer sets,
and high declarativity—ASP is a valu-
able host language for domain-specif-
ic AI formalisms, allowing for quick
experimental prototyping. A recent
example of this is repair of Web-ser-
vice workflows,18 where these features
were fruitfully exploited.

Relation to Other Formalisms
ASP is just one of many ways to solve
search problems by means of logic
reasoning procedures. We briefly com-
ment on three formalisms for declara-
tive problem solving that are both re-
lated and relevant to ASP.

ASP and SAT solving. The key idea
of ASP—to encode the solutions of
a search problem in the models of a
logical theory for declarative problem
solving—had been exploited before. In
a landmark paper, Kautz and Selman24
showed that encoding a planning
problem as a theory in propositional
logic, with plans represented by mod-
els, and using SAT solvers to find mod-
els and so plans, could outperform
specialized planners. Applications of
similar nature led to a boom in SAT
solver technology.

While both SAT solving and core
ASP apply in principle to the same
problems, there are differences. First,
ASP supports variables that range
over finite domains and enable uni-
form and compact representation of
problems independently of data. In
the Hamiltonian cycle example, we
have a single, fixed program that works
uniformly with all input graphs. ASP
grounders produce instances for ASP
solvers based on the program and the
input graph. Having problem specifi-
cations separate from data facilitates
debugging and testing, supports op-
timization and developing reusable
problem modules, all topics currently
under research. There is no such sepa-
ration of problem specification and
data in SAT, where the two are hard-
wired into programs that generate
satisfiability instances to be solved.
This makes development of software
engineering techniques for SAT dif-
ficult. Second, any problem that can
be modeled in SAT can be modeled

equally well in ASP. But there are prob-
lems—typically involving concepts
defined inductively such as reachabil-
ity in graphs—that are easy to cast in
ASP, but representing them appropri-
ately for SAT solving results in larger
instances that slow down solving. In
a similar vein, the language of ASP of-
fers constructs such as “minimized”
disjunction, aggregates and priori-
ties that are useful in practical appli-
cations, are easy to use, and are sup-
ported by most current ASP solvers.
These constructs require specialized
ad hoc treatment when modeling for
SAT solving. For some of them concise
representations are not even possible.

ASP and Prolog. Prolog is the most
widely known logic programming lan-
guage. For some time, however, the
interest in Prolog has been declining,
in part because expectations of ambi-
tious endeavors like the Fifth Genera-
tion Project could not be met. Is ASP,
which is sometimes called Answer Set
Prolog, a better Prolog? The two are
similar in syntax and there are seman-
tic connections, too. For a large class
of programs, if Prolog returns “yes”
(respectively “no”) to a ground query,
then the query belongs (respectively,
does not belong) to the unique an-
swer set of the program. But in spite
of these similarities, ASP and Prolog
are actually quite different. Prolog
was designed as a general purpose,
Turing-complete programming lan-
guage. It uses function symbols for
nested terms to build potentially in-
finite data structures, and recursion
for unbounded computation; solu-
tions are computed by query answer-
ing, which amounts to proof search.
In contrast, ASP was not conceived
for such generality and works over a
finite domain of “flat” data (though
work on function symbols in ASP is
under way); solutions are encoded in
answer sets; that is, in models, and
thus model-finding, not proof-find-
ing, methods matter.

To be an effective Prolog program-
mer one needs to understand how to
use terms as data structures, not quite
intuitive, and not part of any standard
CS curriculum, and to understand
Prolog’s evaluation strategy, SLD reso-
lution with unification, which is ar-
guably quite difficult to master with
no adequate logic background. To

Thanks to its
features--high
expressiveness,
nondeterminism
via multiple answer
sets, and high
declarativity--
ASP is a valuable
host language for
domain-specific
AI formalisms,
allowing for quick
experimental
prototyping.

102 COMMUNICATIONS OF THE ACM | DECEMBER 2011 | VOL. 54 | NO. 12

review articles

complicate matters more, the order
of rules in a Prolog program and of
subgoals (literals) in rule bodies mat-
ters. Changing it may turn a working
program useless. These features give
a programmer control over the execu-
tion of search and make Prolog a pro-
gramming language, a formalism in
which one can implement algorithms.
In this sense, Prolog misses true de-
clarativity. ASP, on the other hand,
offers ways to model specifications
yet does not allow the programmer
to control the search. Consequently,
while less expressive, ASP is “more de-
clarative:” it is intuitive, requires less
background in logic, and its seman-
tics is robust to changes in the order of
literals in rules and rules in programs.
Still, to solve practical application
problems in ASP efficiently some ex-
perience is required. Typically, there
are alternative ways to model a prob-
lem as an answer set program, and
the resulting programs may perform
quite differently. One of the more ob-
vious and in the same time more im-
portant considerations for designing
efficient answer set programs is that
the size of the ground program be pos-
sibly small.

ASP and constraint programming.
Constraint programming is concerned
with modeling and solving problems,
where solutions are assignments of
values from finite domains to decision
variables. These assignments are sub-
ject to constraints given in the prob-
lem statement.

For instance, we can specify the n-
queens problem as follows: assign to
each of n decision variables x1, . . . , xn,
a value from 1, . . . , n so that xi ≠ xj ,
for i ≠ j, and |xi − xj | ≠ |i − j|. To solve
a problem like this in constraint pro-
gramming, one describes it in some
high-level modeling language, such as
ESSENCE or ZINC, and then maps the
description into a set of constraints
in some low-level format or, in other
words, into a constraint satisfaction
problem (CSP), which is then solved.
The similarities with ASP—modeling
in a high-level language and compil-
ing to a low-level representation—are
evident. But there are differences.

High-level languages including
those mentioned here closely follow
mathematical notation and, in par-
ticular, support using sets, relations,

functions and partitions as possible
values of decision variables; mod-
eling requires some mathematical
sophistication. Mapping the high-
level specification of a problem into
constraints that will lend themselves
well to processing also requires cer-
tain mathematical background, and
expertise in constraint modeling and
solving. On the other hand, the lan-
guage of ASP and its extensions were
developed with knowledge represen-
tation applications in mind and their
constructs were designed to capture
patterns of natural language state-
ments, definitions, and default ne-
gation. The language is simple and
intuitive to use. In addition, once a
problem is modeled in ASP all subse-
quent steps are performed automati-
cally. A grounder compiles a program
into its propositional form and a
solver computes solutions. There are
also differences at the solving stage.
For constraint programming this step
consists of solving a CSP over an arbi-
trary but finite value domain. For ASP,
all domains are binary (the variables
are propositional atoms). This restric-
tion opens a way to highly efficient
implementations, as witnessed by the
recent impressive advances in SAT
solving technology.

Ongoing Developments
ASP processing tools are under con-
tinuous development and already
achieved levels that make them effec-
tive in large-scale practical applica-
tions. Efforts to increase efficiency by
new grounding technology and solv-
ing methods, but also non-ground
evaluation are under way. To a large
degree the advances are the result of a
communitywide effort to build bench-
marks, collect hard test problems and
instances, and organize regular ASP
system competitions.

However, the situation is quite dif-
ferent as concerns basic software de-
velopment support in ASP. Although
the first integrated development en-
vironment ASPIDEc was recently an-
nounced, much remains to be done.
One of the areas in need of progress
is program debugging. Even if devel-
oping answer set programs benefits
from the declarative nature of ASP,

c www.mat.unical.it/~ricca/aspide/

discovering errors is difficult. There
is some research in this direction al-
ready,5,7 but the ideas proposed need
to be explored further. Methodologies
for development and optimization are
also important issues. Much progress
was made in understanding the the-
ory behind modularity of answer set
programs. We discussed some of that
research earlier. Here we mention re-
search on strong equivalence27 or, to
put it informally, equivalence for re-
placement within larger systems, and
further notions of equivalence.40 El-
egant technical results are now avail-
able, but their impact on practical de-
velopments remains open.

Function symbols often make mod-
eling easier and the resulting encod-
ings more readable and concise.
Thus, not allowing them in ASP (ex-
cept in built-ins for arithmetic) was
perceived as a limitation. But allow-
ing uninterpreted function symbols
renders most of the ASP program pro-
cessing techniques useless, as ground
programs typically become infinite. A
middle ground can be found, though.
It requires imposing restrictions on
how function symbols can occur in
programs. Some globally constrain
atom dependency in the grounded
program,3,8 while others locally con-
strain the rule syntax.14 The LPARSE
grounder was the first to offer (albeit
limited) support of function symbols,
while GRINGO and the DLV system
(latest release) include some of the
more recent advances. Recent re-
search indicates that ASP can provide
a full first-order language for non-
monotonic reasoning, with the no-
tion of an answer set extended to this
setting.17,36 Computational support
and further research will be required,
however, to make this available for
practical applications.

Integration of SAT solving with
constraint solving techniques known
as Satisfiability Modulo Theories has
proved successful for SAT. The ASP
community has recently taken up
this idea, with CLINGCON (see Ta-
ble 2) being a very promising system
combining ASP with specialized con-
straint solvers.

Quantitative methods turned out to
be extremely effective in knowledge
representation applications in which
uncertainty cannot be avoided. ASP as

review articles

DECEMBER 2011 | VOL. 54 | NO. 12 | COMMUNICATIONS OF THE ACM 103

it exists now is not designed for such
applications. This is a drawback and
so there are already research efforts to
enhance ASP with means to combine
probabilities and utilities with quali-
tative representations of uncertainty.2
This research direction has not yet ma-
tured, though, and it is too early to say
how successful such integration will
turn out to be.

Conclusion
The aim of this article was to provide
the reader with a basic understand-
ing of the main motivation, the most
important concepts, and the relevant
techniques underlying ASP, a rather
new yet highly promising declarative
problem-solving paradigm.

We covered answer set semantics,
both for propositional and predicate
programs, discussed the ASP para-
digm, and related it to some other
problem-solving approaches. More-
over, we presented algorithms and
solvers, several extensions of the basic
approach, and some illustrative ap-
plications. This article should not be
viewed as a complete overview of the
field. It is meant as an appetizer. For
a more complete picture we recom-
mend Eiter et al.12 or Baral.1

Acknowledgments
The authors are grateful to the review-
ers for comments that helped improve
the presentation of the material. Brew-
ka’s work was supported by the DFG
grant Br1817/3; Eiter’s work was sup-
ported by the Austrian Science Fund
(FWF) grants P20840 and P20841, Vi-
enna Science and Technology Fund
(WWTF) ICT08-020, and the European
Commission grant ICT FP7 231875.
Truszczyński’s work was supported by
NSF grant IIS-0913459.

References
1. Baral, C. Knowledge Representation, Reasoning and

Declarative Problem Solving. Cambridge University
Press, 2003.

2. Baral, C., Gelfond, M. and Rushton, J.N. Probabilistic
reasoning with answer sets. Theory and Practice of
Logic Programming 9, 1 (2009), 57–144.

3. Baselice, S., Bonatti, P.A. and Criscuolo, G. On finitely
recursive programs. Theory and Practice of Logic
Programming 9, 2 (2009), 213–238.

4. Boenn, G., Brain, M., Vos, M.D. and Fitch, J. Automatic
music composition using answer set programming.
Theory and Practice of Logic Programming 11, 2-3
(2011), 397–427.

5. Brain, M. and Vos, M.D. Debugging logic programs
under the answer set semantics. In Proc. 3rd
International Workshop on Answer Set Programming,
CEUR Workshop Proceedings 142, 2005. M. De Vos and
A. Provetti, Eds.

6. Brewka, G., Niemelä, I. and Truszczyński, M. Answer
set optimization. In Proc. 18th International Joint
Conference on Artificial Intelligence. G. Gottlob and
T.Walsh, Eds. Morgan Kaufmann, 2003, 867–872.

7. Brummayer, R. and Järvisalo, M. Testing and
debugging techniques for answer set solver
development. Theory and Practice of Logic
Programming 10, 4-6 (2010) 741–758.

8. Calimeri, F., Cozza, S., Ianni, G. and Leone,
N. Computable functions in ASP: Theory and
implementation. In Proc. 24th International
Conference on Logic Programming, LNCS 5366. M.
Garcia de La Banda and E. Pontelli, Eds. Springer,
2008, 407–424.

9. Dantsin, E., Eiter, T., Gottlob, G. and Voronkov,
A. Complexity and expressive power of logic
programming. ACM Computing Surveys 33, 3 (2001),
374–425.

10. Dao-Tran, M., Eiter, T., Fink, M. and Krennwallner, T.
Modular nonmonotonic logic programming revisited.
In Proc. 25th International Conference on Logic
Programming, LNCS 5649. P. M. Hill and D.S. Warren,
Eds. Springer, 2009, 145–159.

11. Eiter, T. and Gottlob, G. On the computational cost of
disjunctive logic programming: Propositional case.
Annals of Mathematics and Artificial Intelligence 15,
3/4 (1995), 289–323.

12. Eiter, T., Ianni, G., and Krennwallner, T. Answer
set programming: A primer. Reasoning Web, LNCS
5689. S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez,
S. Handschuh, M.-C. Rousset, and R. A. Schmidt, Eds.
Springer, 2009, 40–110.

13. Eiter, T., Ianni, G., Schindlauer, R. and Tompits, H. A
uniform integration of higher-order reasoning and
external evaluations in answer-set programming. In
Proc. 19th International Joint Conference on Artificial
Intelligence. L. P. Kaelbling and A. Saffiotti, Eds. 2005,
90–96.

14. Eiter, T. and Simkus, M. FDNC: Decidable
nonmonotonic disjunctive logic programs with function
symbols. ACM Trans. Computational Logic 11, 2
(2010).

15. Erdem, E. Applications of answer set programming
in phylogenetic systematics. Logic Programming,
Knowledge Representation, and Nonmonotonic
Reasoning: Essays Dedicated to Michael Gelfond on
the Occasion of His 65th Birthday, LNCS 6565. M.
Balduccini and T. C. Son, Eds. Springer, 2011, 415–431.

16. Faber, W., Pfeifer, G., Leone, N., Dell’Armi, T. and Ielpa,
G. Design and implementation of aggregate functions
in the DLV system. Theory and Practice of Logic
Programming 8, 5-6 (2008), 545–580.

17. Ferraris, P., Lee, J. and Lifschitz, V. Stable models and
circumscription. Artificial Intelligence 175, 1 (2011),
236–263.

18. Friedrich, G., Fugini, M., Mussi, E., Pernici, B. and Tagni,
G. Exception handling for repair in service-based
processes. IEEE Trans. on Software Engineering 36, 2
(2010) 198–215.

19. Gebser, M., Guziolowski, C., Ivanchev, M., Schaub, T.,
Siegel, A., Thiele, S. and Veber, P. Repair and prediction
(under inconsistency) in large biological networks with
answer set programming. In Proc. 12th International
Conference on Principles of Knowledge Representation
and Reasoning. F. Lin, U. Sattler, and M. Truszczynski,
Eds., 2010, 497–507.

20. Gelfond, M. and Lifschitz, V. The stable model
semantics for logic programming. Logic Programming:
The 5th International Conference and Symposium.
R.A. Kowalski and K. Bowen, Eds. MIT Press,
Cambridge, MA, 1988, 1070–1080,

21. Gelfond M. and Lifschitz, V. Classical negation in logic
programs and disjunctive databases. New Generation
Computing 9 (1991), 365–385.

22. Greco, S., Molinaro, C., Trubitsyna, I. and Zumpano,
E. NP datalog: A logic language for expressing search
and optimization problems. Theory and Practice of
Logic Programming 10, 2 (2010), 125–166.

23. Janhunen, T., Oikarinen, E., Tompits, H. and Woltran,
S. Modularity aspects of disjunctive stable models.
Journal of Artificial Intelligence Research 35 (2009),
813–857.

24. Kautz, H.A. and Selman, B. Planning as satisfiability.
In Proc. 10th European Conference on Artificial
Intelligence. B. Neumann, Ed. 1992, 359–363.

25. Leone, N., Rullo, P. and Scarcello, F. Disjunctive stable
models: Unfounded sets, fixpoint semantics and
computation. Information and Computation 135, 2
(June 1997), 69–112.

26. Lifschitz, V. Answer set programming and plan
generation. Artificial Intelligence 138 (2002), 39–54.

27. Lifschitz, V., Pearce, D. and Valverde, A. Strongly
equivalent logic programs. ACM Trans. Computational
Logic 2, 4 (2001), 526–541.

28. Lin, F. and Zhao, Y. ASSAT: Computing answer sets
of a logic program by SAT solvers. In Proc˙18th
National Conference on Artificial Intelligence and 14th
Conference on Innovative Applications of Artificial
Intelligence, 2002, 112–117.

29. Marek , V.W. and Truszczyński, M. Autoepistemic logic.
J. ACM 38, 3 (1991) 588–619.

30. Marek , V.W. and Truszczyński, M. Stable models and
an alternative logic programming paradigm. The Logic
Programming Paradigm—A 25-Year Perspective.
K. Apt, K.V. V.W. Marek, M.W. Truszczyński and D.S.
Warren, Eds. Springer, 1999, 375–398.

31. Marek , V.W. and Truszczyński, M. Nonmonotonic
Logics – Context-Dependent Reasoning. Springer,
1993.

32. Niemelä, I. Logic programming with stable model
semantics as constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence 25,
3–4 (1999), 241–273.

33. Niemelä, I. Stable models and difference logic. Annals
of Mathematics and Artificial Intelligence 53, 1 (2008),
313–329.

34. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R.
and Barry, M. A Prolog decision support system for the
space shuttle. In Proc. 1st International Workshop on
Answer Set Programming. A. Provetti and T. C. Son,
Eds, 2001.

35. Pearce, D. Equilibrium logic. Annals of Mathematics
and Artificial Intelligence 47, 1-2 (2006), 3–41.

36. Pearce, D. and Valverde, A. Towards a first order
equilibrium logic for nonmonotonic reasoning. In
Proc. 9th European Conference on Logics in Artificial
Intelligence, LNCS 3229. Springer, 2004, 147–160.

37. Polleres, A. From SPARQL to rules (and back). In Proc.
16th International Conference on World Wide Web.
C.L. Williamson, M.E. Zurko, P.F. Patel-Schneider, and
P.J. Shenoy, Eds. ACM, 2007, 787–796.

38. Ricca, F., Grasso, G., Alviano, M., Manna, M. Lio, V.
Liritano, S. and Leone, N. Team-building with answer
set programming in the Gioia-Tauro seaport. Theory
and Practice of Logic Programming, 2011; doi:10.1017/
S147106841100007X.

39. Soininen, T. and Niemelä, I. Developing a declarative
rule language for applications in product configuration.
In Proc. 1st International Workshop on Practical
Aspects of Declarative Languages, LNCS 1551. G.
Gupta, Ed. Springer, 1999, 305–319.

40. Woltran, S. A common view on strong, uniform,
and other notions of equivalence in answer-
set programming. Theory and Practice of Logic
Programming 8, 2 (2008), 217–234.

Gerhard Brewka (brewka@informatik.uni-leipzig.de)
is a professor of computer science at University of
Leipzig's Informatics Institute, Leipzig, Germany.

Thomas Eiter (eiter@kr.tuwien.ac.at) is a professor of
computer science at Vienna Univ. of Technology’s Institute
of Information Systems, Vienna, Austria.

Mirosław Truszczyński (mirek@cs.uky.edu) is a
professor at University of Kentucky’s Department of
Computer Science, Lexington, KY.

© 2011 ACM 0001-0782/11/12 $10.00

View publication statsView publication stats

https://www.researchgate.net/publication/220421804

