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The motivation and key concepts behind 
answer set programming—a promising 
approach to declarative problem solving.

BY GERHARD BREWKA, THOMAS EITER,  
AND MIROSŁAW TRUSZCZYŃSKI

Answer Set 
Programming 
at a Glance

CAN SOLVING HARD  computational problems be 
made easy? If we restrict the scope of the question to 
computational problems that can be stated in terms of 
constraints over binary domains, and if we understand 
“easy” as “using a simple and intuitive modeling 
language that comes with software for processing 
programs in the language,” then the answer is Yes! 
Answer Set Programming (ASP, for short) fits the bill.

While already well represented at research 
conferences and workshops, ASP has been around for 
barely more than a decade. Its origins, however, go 
back a long time; it is an outcome of years of research 
in knowledge representation, logic programming, and 
constraint satisfaction—areas that sought and studied 
declarative languages to model domain knowledge, 
as well as general-purpose computational tools for 
processing programs and theories that represent 
problem specifications in these languages. ASP 
borrows from each of these areas, all the time aiming I
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to maintain a balance between ex-
pressivity, ease of use, and computa-
tional effectiveness. To give just a few 
examples, emerging applications in 
molecular biology, decision support 
systems for space shuttle controllers, 
and team building at Gioia Tauro Sea-
port (see sidebar here) bear witness to 
its potential.

Programs and Answer Sets
We start our ASP discussion with the 
propositional setting. The building 
blocks for programs are atoms, literals, 
and rules. Atoms are elementary propo-
sitions (factual statements) that may 
be true or false; literals are atoms a and 
their negations not a. Rules are expres-
sions of the form 

a ! b1, . . . , bm, not c1, . . . , not cn (1) 

where a and all bi’s and cj’s are atoms. 
Intuitively, a rule (1) is a justification to 
“establish” or “derive” that a (the so-
called head) is true, if all literals to the 
right of !"(the so-called body) are true 
in the following sense: a non-negated 
literal bi is true if it has a derivation, a 
negated one, not cj, is true if the atom 
cj does not have one. For instance, the 
rule

light_on !  power_on, not broken 

informally means we can assert that 
the light is on, if we established the 
power is on and there is no reason to 
think the lamp is broken. Rules may 
have no body. For instance, we may 
have a rule:

power_on ! .

Such rules are called facts, as the head 
is unconditionally true, and the arrow 
! is typically omitted.

Programs are finite collections of 
rules. They are thought of as “justifi-
cations” for sets of atoms that contain 
precisely those atoms that can be es-
tablished. It is important to point out 
that not is not a standard negation 
operator. Rather, it is meant to stand 
for a modality “non-derivable.” Look-
ing at the small program with the 
two rules mentioned here, power_on 
should be derived (as it is given as a 
fact), while intuitively broken should 
not (the program, which describes 

what we know, has no rule to derive 
broken). This in turn allows us to de-
rive light_on.

Formalizing these intuitions posed 
a challenge to the knowledge repre-
sentation and logic programming 
communities for years. Eventually, 
answer sets provided a solution that 
gained acceptance.

Answer sets. To trace the key points 
of answer sets, we consider two further 
examples. Let P1 be the program con-
sisting of the following rules:

high_salary ! employed, educated
educated ! high_salary
employed ! motivated
motivated.

We can regard motivated as estab-
lished as it is the head of a rule that 
has no preconditions. Consequently, 
the third rule allows us to derive em-
ployed. Can we obtain anything else? 
To get high_salary we need to have 
established educated and, similarly, 
to get educated we need to have estab-
lished high_salary. This “vicious cycle” 
of dependencies cannot be broken as 
there is no other rule with high_salary 
or educated in the head. Hence, nei-
ther high_salary nor educated can be 
derived given the information in the 
program. We conclude the set {mo-
tivated, employed} is the only one the 
program “justifies.”

This bottom-up process can be ex-
tended to an arbitrary program without 
the not operator. In the general case, 
however, once negation is allowed the 
situation gets more complicated. For 
instance, let P2 consist of two rules:

open ! not closed
closed ! not open.

In the first example it was clear how 
to start and how to proceed. It is not 
so here. The reason is we do not know 
which atoms cannot be derived, there-
fore, we cannot verify the conditions 
for applying any of the rules. 

A way out of the problem is to start 
by assuming which atoms will not be 
derived. For instance, let us assume 
that closed will not be derived. Then, 
the first rule can be used and we can es-
tablish open. Since open is established, 
the second rule cannot be used and 
closed indeed will not be established, 
verifying our assumption. Thus, the 
set {open} is justified by the program 
in the following sense. Assuming that 
atoms not contained in the set cannot 
be derived, and using program rules 
(under our intuitive understanding of 
how they work), we can derive in the 
bottom-up fashion precisely those at-
oms that are in the set. Interestingly 
and importantly, {open} is not the only 
set justified by the program P2. Anoth-
er one is {closed}: if we assume that 

The seaport of Gioia Tauro, Reggio Calabria, Italy, is the largest transshipment terminal 
on the Mediterranean coast. A crucial management task for a port of this size is to build 
teams of employees to handle incoming ships. This is difficult and time consuming, as 
one must ensure that teams have appropriate skills, the workload is divided fairly, and 
legal workload regulations are met. Until recently this task was performed manually, 
which took several hours per day.

In cooperation with Exeura Srl, a University of Calabria (UNICAL) spin-off, and ICO 
BLG, an Italian logistics company, Nicola Leone’s group at UNICAL has developed 
an ASP-based system for team building based on the DLV solver.38 Rules describe the 
requirements that should be fulfilled regarding: necessary skills of team members; 
availability of employees; fairness of workload distribution; and distribution of “heavy" 
or “risky" tasks. Since in practice not all requirements can be satisfied, the system has an 
implicit conflict handling strategy that gives higher priority to more important criteria.

The system, which has been adopted by ICO BLG for work-force management, can 
generate shift plans for 130 employees within a few minutes. In addition, the plan 
quality turned out to be considerably better and overtime was decreased by 20%.

Key factors for the success of ASP in this application were its high expressiveness  
and the possibility to evolve an executable specification in close interaction with  
domain experts on site who, although not computer experts, could help getting it right 
in short time.

ASP-based Team Building 
at Gioia Tauro Seaport
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open cannot be derived, we can use 
the second rule to derive closed. Hav-
ing derived closed, we have that open 
cannot be derived, confirming the as-
sumption we made.

Our examples suggest the case of 
programs that contain no rules with 
not in the body is easier. We do not 
need to make any assumptions about 
what cannot be derived, as no rule has 
negated atoms in its body. Instead, we 
proceed in an iterative fashion collect-
ing atoms that can be established, in 
each step using atoms derived already 
to establish new ones. When no more 
atoms can be derived, the process ter-
minates. The unique set of atoms de-
rived in this way is justified by the pro-
gram, and we call it the answer set of 
the program. 

The concept of an answer set for 
negation-free programs (also called 
Horn programs) is a springboard to 
the general definition. The intuitions 
we discussed earlier in the context of 
the program P2 are crucial. We start 
with a set M of atoms (in our example, 
with {open}) and make an assumption 
that no atom outside M can be derived. 
Given this assumption, rules that con-
tain a negated atom not a, where a is 
in M, become unusable (as the non-
derivability of a is not assumed; in our 
example, closed ! not open is unus-
able). These rules are “blocked” by M 
and can be disregarded. Therefore, 
we remove them from the program. In 
every other rule, if an atom is negat-
ed, it must have been assumed non-
derivable, otherwise, the rule would 
have been removed. According to our 

reading of the rules the correspond-
ing literal can be eliminated from the 
body without affecting the usability of 
the rule. Once this is done, we are left 
with a negation-free program, called 
the reduct of the program with respect 
to M. If the set of atoms we can derive 
from that program or, in other words, 
the answer set of that program, coin-
cides with M, all non-derivability as-
sumptions we made based on M are 
confirmed, and all atoms in M can be 
derived. Thus, M is justified by P. We 
call each such set M an answer set of P. 
The definitions of the reduct and an 
answer set are due to Gelfond and Lif-
schitz.20 Originally, they used the term 
stable model and introduced the term 
answer set later for a generalization of 
the concept to a broader class of pro-
grams that feature strong negation and 
disjunction, which we will discuss. 
The new term eventually took over. 

There is some similarity between 
rules and propositional logic implica-
tions. Indeed, the rule (1) looks like the 
implication

(b1 #  . . . #  bm #  ¬ c1 # . . . #  ¬ cn) $ a    (2)

written in a “reversed” fashion. Each 
answer set of a program is a model of 
the program viewed as a set of implica-
tions (models are truth value assign-
ments to atoms such that each implica-
tion evaluates to true). However, not all 
models are answer sets as not all mod-
els satisfy the foundedness requirement 
that atoms be derivable in the sense 
described here.

It should be noted that ASP has solid 
logic foundations, and is closely linked 
to nonmonotonic reasoning. In fact, 
programs under answer set seman-
tics can be seen as a fragment of Re-
iter’s Default Logic and as theories in 
nonmonotonic modal logics, includ-
ing Moore’s Autoepistemic Logic and 
nonmonotonic KD45.31 David Pearce 
showed that the answer set semantics 
can be elegantly captured by a non-
monotonic variant of the logic of here 
and there,35 a logic located between in-
tuitionistic and classical logic.

Close connection to nonmonoton-
ic logics provides ASP with the power 
to model default negation and, more 
generally, to deal with incomplete in-
formation. We illustrate that by con-
tinuing our light_on example. The rule

The answer set 
semantics of 
programs is the 
foundation of 
ASP. But equally 
important is the 
understanding of 
how programs 
encode search 
problems and  
their instances.

 key insights
  Answer set programming is an emerging 

approach to modeling and solving search 
and optimization problems. It combines 
an expressive representation language, 
a model-based problem specification 
methodology, and efficient solving tools. 

  The answer set programming language 
allows domain and problem-specific 
knowledge, including incomplete 
knowledge, defaults, and preferences, 
to be represented in an intuitive and 
natural way.

  Because of its strong declarative 
aspect, the language of answer set 
programming supports rapid prototyping 
and development of software for solving 
search and optimization problems, and 
facilitates modifications and refinements 
leading to better performance.
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broken ! lightning, not lightning_rod

specifies that the lamp breaks when 
a lightning strikes, unless a lightning 
rod was installed. With this rule ap-
pended to the program here, we still 
derive light_on, as we cannot derive 
broken. However, things change if we 
further add the fact lightning. As light-
ning_rod cannot be derived, we can 
establish broken, and so light_on can 
no longer be derived. Thus, answer set 
programs behave nonmonotonically—
conclusions may have to be retracted 
when more rules or facts are added 
to the theory. Further, if we add one 
more fact lightning_rod, the situation 
changes again; we can no longer de-
rive broken, and thus light_on will be 
derived. What this shows is that ASP 
provides convenient ways for handling 
exceptions and nested exceptions.

Shorthands and further connec-
tives. A common and important type of 
rules has its head atom occur negated 
in the body:

a ! B, not a.

If such a rule, let us denote it by r, is 
added to a program P that has no oc-
currences of a, then r works as a con-
straint. Namely, a set M of atoms is 
an answer set of the program P %{r} 
if and only if M is an answer set of the 
program P and does not satisfy (as in 
propositional logic) the conjunction of 
literals B. In other words, adding r to P 
simply eliminates those answer sets of 
P that satisfy B. As atom a is auxiliary 
and thus irrelevant (we do not allow 
it in P), a common way to write a con-
straint is as a “headless” rule

! B

which conveys the intuition of a con-
straint: satisfying B results in a contra-
diction.

It is also quite common that pro-
grams contain pairs of rules

a ! B, not ā 
ā ! B, not a,

where neither a nor ā appear as the 
head of any other rule in the program, 
and B is a conjunction of literals. This 
happens, in particular, when the pro-
grammer wants to refer in the program 

both to an atom a and to its (standard) 
negation. To represent the latter, the 
programmer introduces a new atom ā 
and includes in the program the two 
rules here. Intuitively, the role of these 
rules is to select, in case B is satisfied, 
exactly one of a and ā; this is precisely 
what they do under the answer set se-
mantics. Pairs of such rules are often 
written in a shorthand notation as a 
single choice rule

{a} ! B.

Strong negation, denoted with the stan-
dard negation symbol ¬, allows us to 
distinguish between having no justifi-
cation for an atom a, expressed by not 
a, and having one for the negation of 
a, expressed by ¬a. In program rules, 
¬ can only appear in front of atoms. 
Gelfond and Lifschitz showed that 
the definition of answer sets extends 
to programs of this form almost liter-
ally.21 Every program P with strong ne-
gation can be reduced to an ordinary 
program P̄: we simply have to replace 
each literal ¬a in P by a new atom ā. It 
can be shown that a consistent set of 
literals S is a (generalized) answer set 
of P if and only if the set S̄ obtained 
from S by the same modification is an 
answer set of P̄. Thus, strong negation 
is only a modeling convenience. How-
ever, it makes formulating defaults as 
in Reiter’s Default Logic easier. For ex-
ample, a rule

closedt+1 ! closedt, not ¬ closedt+1

might be interpreted as saying that by 
default, the valve remains closed at 
time t+1 if it was closed at time t (that 

is, unless there are specific reasons for 
it not to be). Such default rules, which 
embody the law of inertia, allow for an 
elegant solution of the frame problem 
that arises when one reasons about 
actions and their effects, for instance 
when modeling and solving planning 
problems.1

Modeling considerations also moti-
vated allowing disjunctions in the heads 
of rules. Disjunctive rules

a1& . . . & ak ! b1, . . . , bm, not c1, . . . , not cn

often make representations more in-
tuitive, for example, in a rule like

open & closed ! valve.

To eliminate the possibility for a valve 
to be both, a form of minimality is 
needed. It is reflected in the answer 
sets of a disjunctive program.21 The 
definition uses the same process as 
before to “reduce” the program with 
respect to a candidate atom set M and 
yields the reduct that is free of (de-
fault) negation. However, the reduct 
may have disjunctions in the heads 
of its rules and thus, in general, there 
might be multiple minimal sets of at-
oms that satisfy all rules (and some 
are guaranteed to exist). The idea now 
is to check whether M is one of these 
minimal sets of the reduct. If this is 
the case, then M is an answer set. Im-
portantly, unlike strong negation ¬, 
disjunction in the rule heads does in-
crease the problem-solving capacity of 
programs, as witnessed by results on 
complexity and expressive power (see 
the accompanying sidebar “Complex-
ity of ASP”).

To decide whether a given program has some answer set is NP-complete,29 thus 
as complex as the classical propositional satisfiability problem (SAT); in the 
presence of disjunctive rules, the problem is NPNP-complete11 (NPNP are the problems 
decidable in NP with an oracle for NP problems); roughly speaking, this means NP-
completeness even if calls to a subroutine for SAT are for free.9,22 Predicate programs 
have exponentially higher complexity (intuitively, this is because the reduction by 
grounding causes an exponential blow up in general). Regarding search problems, ASP 
can express all NP-search problems, that is, those solvable using a nondeterministic 
Turing machine in polynomial time, in such a way that the answer sets encode the 
solutions. In fact, each such problem (for example, finding some Hamiltonian cycle) 
is expressible by a fixed predicate program to which logical facts encoding a given 
problem instance (for example, a graph) are added. Again, additional constructs like 
disjunctive rules may increase the expressivity.

Complexity of ASP
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Predicate programs. The proposi-
tional case is crucial for the definition 
of answer set semantics. But it is the 
predicate version of the formalism that 
facilitates modeling and makes ASP an 
effective problem-solving technique. 
The language has relation (or predicate) 
symbols, constant symbols and vari-
ables, as well as the logical connectives 
we discussed earlier, but no function 
symbols (we will discuss this restric-
tion later). A rule is an expression of 
the form

A ! B1, . . . , Bm, not C1, . . . , not Cn           (3)

where A, Bi, and Ci are atomic formulas 
in the language. Rules are regarded as 
being implicitly universally quantified. 
The concepts of the head and body of 
the rule are defined as before and we 
interpret a rule (3) similarly as before, 
too. That is, we understand it as a de-
vice that, under some conditions, al-
lows us to derive its head.

More formally, the semantics of 
a predicate program P is defined in 
terms of its ground version grnd(P). 
The program grnd(P) consists of all 
ground instantiations of rules in P with 
respect to constants that appear in P. 
In case P contains no constants (a situ-
ation that does not occur in practice), 
one is selected arbitrarily and used to 
produce grnd(P). The program grnd(P) 
can be regarded as a propositional one 
over all ground atoms in the language, 

and the answer sets of P are defined to 
be those of grnd(P).

The ASP Paradigm
ASP is an approach to solving search 
problems. The answer set semantics 
of programs is the foundation of ASP. 
But equally important is the under-
standing of how programs encode 
search problems and their instances. 
Niemelä32 and Marek and Truszczyn-
ski30 first formulated explicitly the 
basic principles of the ASP approach, 
Lifschitz26 was the one to propose the 
term. In our discussion we rely on a 
rather intuitive understanding of a 
search problem. Namely, we assume 
that a search problem ∏ consists of a 
set of instances, D∏, with each instance 
I assigned a finite set S∏(I) of solu-

tions. The set S∏(I) may be empty, that 
is, problem ∏ may have no solution 
for instance I.

To solve a search problem ∏, a pro-
gram P∏ is designed that captures the 
problem specifications so that when 
extended with facts D(I), representing 
an instance I of the problem, the an-
swer sets of P∏ % D∏(I) describe all solu-
tions of problem ∏ for the instance I. 
The upshot of this design is that solv-
ing the problem is reduced in a uni-
form way (the program P∏ is fixed and 
only the data component changes) to 
the task of finding answer sets.

We now illustrate how ASP works 
by analyzing the problem of finding a 
Hamiltonian cycle in a directed graph. 
The choice is not arbitrary: this is an 
important combinatorial problem, 
arising in several practical situations 
(for example, as an essential com-
ponent of the well-known Traveling 
Salesperson problem). While simple 
to state, it is still complex enough to 
allow us to emphasize all key aspects 
of ASP. In the problem, we are given a 
directed graph G = (V,E), where V is the 
set of vertices and E the set of (directed) 
edges of G. The goal is to find a Hamil-
tonian cycle in G, that is, a set of edges 
that induce in G a directed cycle going 
through each vertex exactly once.

We will use two relation symbols to 
represent graphs: vtx and edge. Let us 
consider the graph G shown in the ac-
companying figure.

We represent the graph G as the set 
of ground atoms

Dhc (G) =    {vtx (a), vtx (b), vtx (c), vtx (d)} % 
{edge(a, b), edge(b, c),
edge(c, d), edge(d, a), edge(b, d)}.

Next, we need to capture the speci-
fication of the problem. A key part is 
the definition of a Hamiltonian cycle. 
According to our description, it must 
be a subset of the edges of the graph. To 
describe this subset formally, we use 
a relation symbol in and expressions 
in(a, b) that informally read: the edge 
(a, b) is selected for a Hamiltonian cy-
cle. To indicate that any edge (X, Y) can 
be “selected” to be in a Hamiltonian 
cycle, we use the choice rule:

(HC1) {in (X, Y)} ! edge (X, Y).

Next, we stipulate that no two selected 

Table 1. ASP grounders.

LPARSE www.tcs.hut.fi/Software/smodels/

DLV www.dbai.tuwien.ac.at/proj/dlv/ or www.dlvsystem.com/

GRINGO potassco.sourceforge.net/#gringo/

Table 2. Some ASP systems.

ASSAT assat.cs.ust.hk/

CLASP 1 potassco.sourceforge.net/#clasp/

CMODELS www.cs.utexas.edu/users/tag/cmodels/

DLV 2 www.dbai.tuwien.ac.at/proj/dlv/ or www.dlvsystem.com/

GNT www.tcs.hut.fi/Software/gnt/

SMODELS www.tcs.hut.fi/Software/smodels/

XASP xsb.sourceforge.net/, distributed with XSB
1 + CLASPD, CLINGO, CLINGCON, among others; http://potassco.sourceforge.net/
2 + DLVHEX, DLVDB, DLT, DLV-COMPLEX, ONTO-DLV, and others.

A graph for the Hamiltonian cycle problem.

a

d

b

c
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edges start or end in the same vertex. 
To this end, we use two constraint 
rules:

(HC2) ! in (V 2, V 1), in (V 3, V 1), V 2 ≠ V 3
(HC3) ! in (V 1, V 2), in (V 1, V 3), V 2 ≠ V 3.

We stress the use of the relation sym-
bol ≠ here. In the predicate version of 
ASP, we assume the set of constants 
includes integers, and the set of rela-
tion symbols includes symbols such 
as =, ≠, ≤, <, ≥, and >, as well as symbols 
for (bounded) arithmetic operations 
such as +. To be consistent with stan-
dard notation, we use the infix nota-
tion and write X ≤ Y instead of ≤ (X, Y ). 
Similarly, we write X + Y = Z instead of 
+(X, Y, Z). All these symbols are always 
interpreted in the standard way.

To be a Hamiltonian cycle, the set 
of edges in(x, y) must determine a sin-
gle cycle. To enforce this condition, 
we need a concept of one vertex being 
reachable from another. To this end, 
we use an auxiliary relation symbol 
rchble and the following rules:

(HC4) rchble(V, V)
(HC5) rchble(V 1, V 3) ! in(V 1, V 2),
                 rchble(V 2, V 3).

The rules (HC4) and (HC5) define the 
transitive closure of the relation in;a that 
is, all pairs of vertices (x, y) such that y 
can be reached from x by following zero 
or more edges that are “in.” Clearly, 
the selected edges form a Hamiltonian 
cycle if and only if every pair of vertices 
is in the transitive closure. This condi-
tion is captured by the following con-
straint rule:

(HC6) ! vtx (V 1), vtx (V 2), 
                not rchble(V 1, V 2).

Let Phc be the program consisting of the 
rules (HC1) - (HC6). One can show that 
a set of edges H is a Hamiltonian cycle 
in a graph G if and only if H = {(x, y) | 
in(x, y) ' M} for some answer set M of 
Phc %"Dhc(G).

Finding a Hamiltonian cycle of an 
arbitrary input G is an NP-hard prob-
lem, and under a suitable notion com-
plete for all NP-search problems. In 
fact, complexity theory (see the sidebar 

a It is well-known that this is not expressible in 
first-order logic.

“Complexity of ASP”) tells us that each 
NP-search problem ∏ is expressible by 
a program P∏ as noted earlier.

Processing Answer Set Programs
Current tools for computing with an-
swer set programs support several 
basic reasoning tasks, which include 
computing a single answer set (or de-
termining that none exist), computing 
a given number of answer sets, and 
computing all of them. Most tools also 
support deciding whether an atom 
is true in every (resp. some) answer 
set, known as cautious (resp. brave) 
reasoning. These modalities are im-
portant for reasoning applications; 
for example, when we want to know 
whether a fact is true in every (resp. 
some) possible evolution of a system 
executing a sequence of actions of 
bounded length.

ASP processing typically works in 
two stages. First, the predicate program 
is replaced with an equivalent propo-
sitional program by so-called variable 
replacement or grounding. Second, that 
program is processed by a proposi-
tional ASP solver. Most implemented 
ASP processing systems make a clear 
distinction between the two stages and 
offer separate tools for each, others in-
tegrate them.

Grounding. The naive approach to 
grounding is to replace a program P 
with grnd(P); but generally this is not 

efficient. Consider the rule p(X) ! 
p(X1), . . . , p(Xn) and assume it needs to 
be grounded for two constants a and 
b. Then, the naive grounding will pro-
duce 2n+1 ground instances, as we can 
choose for X and each Xi either a or b. 
However, in this case, the full ground-
ing amounts to just two propositional 
rules p(a) ! p(b) and p(b) ! p(a), as 
repeated literals in the bodies of rules 
and tautological rules, where the head 
atom occurs non-negated in the body, 
can be eliminated without affecting 
the answer sets. Intelligent grounding 
techniques incorporate such equiva-
lences and many further optimiza-
tions. They aim to produce, given a 
predicate program P, a possibly small 
propositional program, not necessari-
ly a subset of grnd(P), that is equivalent 
to P, that is, has the same answer sets. 
Current grounders exploit techniques 
such as partial evaluation, rewriting, 
and a great deal of database technol-
ogy to make grounding efficient. We 
refer to Table 1 for information on the 
three grounders most broadly used 
in ASP. Their input formats serve as 
de facto specifications of three most 
popular ASP dialects. They are quite 
close to each other. Nevertheless, the 
need for standardization is recognized 
by the ASP community. Extensions to 
the GRINGO grounder are an impor-
tant step in this direction, making its 
input language much closer to that of 

New high-throughput methods have led to a dramatic increase of measurable data in 
modern molecular biology, and a number of corresponding knowledge repositories 
are available on the Web. However, both the data and the available biological networks 
are highly incomplete and error-prone, and inconsistencies are the rule rather than 
the exception.

In a joint project by Potsdam University, INRIA, and Institut Cochin, led by Torsten 
Schaub, an approach for repairing biological networks based on ASP has been 
developed.19 It builds on a range of available repair actions inspired by biological use 
cases. Examples are modifications of the role of a node in a biological influence graph 
(for example, from inhibitor to activator), additions of missing links between nodes, or 
modifications of experimental data in cases where it is plausible to assume errors in the 
measurements.

The program rules encode biological knowledge about the repair actions needed 
and possible in a particular situation. A possible repair is then achieved by minimizing, 
according to a variety of strategies, the set of applied repair actions. The system uses not 
more than 20 rules to encode five types of repair actions with different targets.

ASP for Repairing  
Large-Scale Biological  
Networks
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the DLV grounder.
Propositional solving. Table 2 pro-

vides pointers to several current ASP 
solvers. All of them more or less di-
rectly exploit methods developed in 
the field of satisfiability solving. Some 
ASP solver algorithms, often referred 
to as native (to ASP), follow the gen-
eral backtracking search pattern of 
SAT solvers but append SAT-based 
propagation techniques with ones 
implied by an additional foundedness 
condition that models must satisfy to 
be answer sets.25 It means every atom 
that is true in a model must be de-
rived (in a certain precise sense) by a 
rule in the program. The search back-
tracks when either a contradiction is 
derived, or a complete and consistent 
assignment is found but some atoms 
that are true lack a derivation (are not 
founded). In each case, the need to 
backtrack indicates that some deci-
sions made in the search earlier are 
incompatible with any answer set of 
the program and must be changed. 
This group of algorithms embodies a 
perspective on answer sets best cap-
tured by a catchphrase

(propositional) ASP = SAT + foundedness.

The answer set search outlined ear-
lier can be improved by sophisticated 
search heuristics and techniques like 
backjumping and clause learning de-
veloped in the field of SAT solvers. The 
current ASP solvers take full advan-
tage of these techniques. The native 
ASP solver CLASP, dressed as a SAT 
solver, won two tracks of the 2009 SAT 
solver competition.

Other successful ASP solver algo-
rithms are based on reductions of 
answer set solving to satisfiability 
testing. They modify the formula cor-
responding to a program so that its 
models are exactly (or up to trivial 
projections) the answer sets of the 
program. One approach is to produce 
the so-called program completion. 
It reflects the idea that the program 
provides all conditions under which 
atoms are true; that is, it is a defini-
tion of the atoms in its rule heads. 
Accordingly, the completion is the 
formula containing for each atom a 
an equivalence saying that a holds 
if and only if the disjunction of the 
bodies of all rules with a in the head 

holds. The completion captures some 
aspects of the foundedness condition, 
but not all. To capture it entirely, the 
completion must be extended by loop 
formulas, that exclude self-supporting 
derivations.28 Loosely speaking, this 
approach could be cast as

ASP = completion + loop formulas.

Once the completion and loop formu-
las are built, an off-the-shelf SAT solver 
is used to find models of the resulting 
theory and so, answer sets of the origi-
nal program. In the worst case, there 
can be exponentially many loop for-
mulas, which complexity theory tells 
is somehow unavoidable. Therefore, 
some ASP solvers based on this idea, 
for example, ASSAT, add loop formulas 
incrementally and test whether models 
are already answer sets, while others, 
such as CMODELS2, similarly employ 
special techniques to select promising 
loop formulas to add and to “forget” 
them later.

Other reductions of ASP computa-
tion to SAT solving use auxiliary atoms 
for level rankings to represent founded 
derivation by keeping track of succes-
sive rule applications. Following this 
direction, translations of ASP to SAT 
modulo difference logic have been pro-
posed that exploit fast solvers for theo-
ries in that formalism.33

ASP Extensions
Motivated by the needs of applications, 
several extensions of the basic ASP par-
adigm have been proposed.

Constraints and aggregates. Con-
straints on sets of atoms are particu-

larly common. For instance, one often 
needs to say that exactly one out of a 
given set of atoms is true. In the well-
known n-queens problem, we must 
place n queens on the n × n chessboard 
so that no two queens attack each 
other. Here one of the constraints is 
that exactly one queen is in each row. 
Even though this can be naturally en-
coded in the basic ASP language, the 
grounding will result in a large num-
ber of rules. ASP input languages thus 
provide constructs for constraints on 
sets of atoms that ASP solvers handle 
suitably. Basically, there are two ap-
proaches.

The first approach, which originat-
ed with LPARSE, uses the concept of a 
cardinality atom. In the propositional 
case, it has the form 

l {a1, . . . , an} k

and reads: at least l and at most k atoms 
in the set {a1, . . . , an} are true (if l or k 
are missing, it implies no restriction 
from the respective side). In the predi-
cate language, one can be even more 
concise and write expressions such as

L {a(X) : p(X, Y)} K,

where L, K, X, and Y are variables. The 
expression captures a condition that 
given a value for Y, for at least L and 
at most K of the values of X such that 
p(X, Y) holds, a(X) is true. To ensure the 
grounding process is well defined, syn-
tactic conditions on variables are used.

Let us denote by q(X, Y) that some 
queen is in row X and column Y. We 
can state the uniqueness constraint on 

ANTON,4 developed at University of Bath in cooperation with University of Glamorgan, 
is an automatic system for the composition of Renaissance-style music. It represents 
musical knowledge in the form of about 500 ASP rules. The rules describe the 
progression of a melody, both at the local level (the choice of the next note) and at 
the global level (the overall structure), the harmony that arises from the relationship 
between the melodic line and the supporting instruments, and also the rhythm, such as 
the intervals between notes, of a piece.

Given some initial information, for example, fixed notes or number of parts, 
the program generates answer sets representing musical pieces that satisfy the 
composition rules. With minor modifications, the system can also be used to detect 
violations of composition rules in given pieces of music.

ANTON—An ASP-based  
Music Composition System
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queens in each row concisely by the fol-
lowing two constraint rules:

!  2 {q(X, Y) : col(Y)}, row(X)
! {q(X, Y) : col(Y)} 0, row(X).

The first rule states that for no row X 
there are distinct Y and Y' such that 
q(X, Y ) and q(X, Y') are true (no row 
contains two or more queens). The 
second rule states that for no row X, 
it holds that all atoms q(X, Y) are false 
(there is no row without queens). 
There is a more general version of 
cardinality constraints, weight con-
straints, where each atom is associat-
ed with a weight and the bounds con-
strain the sum of the weights of atoms 
that have some property.

The second approach to modeling 
constraints on sets of atoms follows 
the idea of aggregates familiar from 
SQL in databases.16 Those implement-
ed in ASP languages include count, 
sum, maximum, and minimum and fol-
low closely the database syntax. In the 
DLV input language, the unique-queen 
constraint is expressible by

! 1 ! = #count{Y : q(X, Y)}, row(X).

The input language of GRINGO also 
recognizes aggregates such as count 
and sum but specifies bounds as in 
cardinality constraints; this points to 
the need for standardization of ASP 
input languages.

Preferences. A basic assumption of 
the ASP paradigm is that problems are 
modeled in a way such that answer sets 
represent their solutions. However, it 
is impossible to further distinguish 
between better and poorer solutions. 
One way to address this problem is to 
introduce preferences. Simple forms 
of preferences can be expressed using 
#minimize and #maximize statements 
that are supported by several of the 
existing ASP solvers. They allow us to 
associate weights with specific liter-
als. The generated answer sets then 
are those for which the sum of the 
weights of satisfied literals is minimal/
maximal. The DLV system provides so-
called “weak constraints,” which carry 
a weight of importance; they should be 
satisfied if possible, but their violation 
does not “kill” answer sets. The an-
swer sets of a program P plus a set W 
of weak constraints are those answer 

sets of P that minimize the sum of the 
weights of violated weak constraints. 
Other, non-numerical approaches use 
an external partial preference order on 
rules or special syntactic constructs in 
the rules; for example, Brewka et al.6 
In each case the available preference 
information induces a corresponding 
ordering on answer sets, and the best 
ones are chosen.

Modularity and external data ac-
cess. Modularity is an important no-
tion in software development. In the 
context of ASP it is only beginning to 
receive the attention it deserves but 
already several key concepts and ideas 
have been developed.10,23 Modulariza-
tion is a way to structure and ease 
the program development process. 
Modular ASP programs consist of 
modules that are combined through 
suitable interfaces. This way parts of 
a program can be developed and veri-
fied independently, and they can be 
more easily reused. A related issue is 
to integrate external sources into ASP 
programs. In a rule one would often 
like to access a database, an ontol-
ogy or some other source of informa-
tion. To serve this, HEXprograms13 
provide a universal interface for arbi-
trary sources of external computation 
through the notion of external atom, 
which is akin to a remote procedure 
call but facilitates proper recursion.

Applications
The ASP paradigm is rather new but it 
has already led to many successful ap-
plications. We briefly discuss a few ex-
amples in different categories. Further 
examples can be found in the team-
building sidebar noted earlier as well 
as the ones entitled “ASP for Repairing 
Large-Scale Biological Networks” and 
“ANTON—An ASP-based Music Com-
position System.”

Applications in science and hu-
manities. An illustrative example is 
phylogenetic systematics—the study 
of evolutionary relations between 
species based on their shared traits.15 
These relations can form a tree 
(called a “phylogeny”) where leaves 
represent the species, internal ver-
tices their ancestors, and edges the 
genetic relationships between them. 
The computational task is to con-
struct phylogenies, and researchers 
demonstrated the applicability and 

effectiveness of ASP-based methods 
for these tasks by analysis of natural 
languages and parasite-host systems 
species of oak trees.

Industrial applications. An early, 
almost prototypical industrial applica-
tion for ASP is product configuration.39 
The general idea is to have rules in a 
program that generate the space of 
all combinations of product compo-
nents. Constraint rules then filter out 
configurations that are impossible, 
either due to some given, fixed restric-
tions on how components can be com-
bined, or due to a violation of specific 
user requirements. Another early ap-
plication is a decision support system 
for the space shuttle.34 During normal 
shuttle operations, astronauts follow 
pre-scripted plans. However, in case 
of failure different courses of action 
are needed to ensure safety of the crew 
and completion of the mission. As ex-
ponentially many failures are possible, 
pre-planning for all exceptional cir-
cumstances is unfeasible, and decision 
support is needed. Based on failure in-
formation, the ASP system suggests a 
course of action.

Data management. INFOMIXb is a 
project on advanced information inte-
gration. The main task is to provide a 
uniform interface to pre-existing data 
sources, where an information integra-
tion system frees the user from finding 
and accessing relevant data sources, 
and from cleaning and combining data 
in them. Here, in particular, proper 
handling of incomplete and inconsis-
tent data is challenging. The INFOMIX 
prototype showed that ASP provides 
effective technology to deal with ad-
vanced information integration tasks. 
ASP also proved to be a valuable host 
for realizing query engines in the con-
text of the Web. In fact, one of the first 
SPARQL reasoning engines for query-
ing RDF data sources has been realized 
via an ASP encoding.37

Artificial intelligence. Given the 
fact that ASP has roots in knowledge 
representation and nonmonotonic 
reasoning, its usage for problem solv-
ing in artificial intelligence (AI) has 
been investigated early on. Classic 
AI problems including planning, di-
agnosis, and agent decision making 
have been reduced to ASP, resulting 

b www.mat.unical.it/infomix/
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in effective realizations (several are 
available, for example, as DLV fron-
tends). As it turned out, thanks to its 
features—high expressiveness, non-
determinism via multiple answer sets, 
and high declarativity—ASP is a valu-
able host language for domain-specif-
ic AI formalisms, allowing for quick 
experimental prototyping. A recent 
example of this is repair of Web-ser-
vice workflows,18 where these features 
were fruitfully exploited.

Relation to Other Formalisms
ASP is just one of many ways to solve 
search problems by means of logic 
reasoning procedures. We briefly com-
ment on three formalisms for declara-
tive problem solving that are both re-
lated and relevant to ASP.

ASP and SAT solving. The key idea 
of ASP—to encode the solutions of 
a search problem in the models of a 
logical theory for declarative problem 
solving—had been exploited before. In 
a landmark paper, Kautz and Selman24 
showed that encoding a planning 
problem as a theory in propositional 
logic, with plans represented by mod-
els, and using SAT solvers to find mod-
els and so plans, could outperform 
specialized planners. Applications of 
similar nature led to a boom in SAT 
solver technology.

While both SAT solving and core 
ASP apply in principle to the same 
problems, there are differences. First, 
ASP supports variables that range 
over finite domains and enable uni-
form and compact representation of 
problems independently of data. In 
the Hamiltonian cycle example, we 
have a single, fixed program that works 
uniformly with all input graphs. ASP 
grounders produce instances for ASP 
solvers based on the program and the 
input graph. Having problem specifi-
cations separate from data facilitates 
debugging and testing, supports op-
timization and developing reusable 
problem modules, all topics currently 
under research. There is no such sepa-
ration of problem specification and 
data in SAT, where the two are hard-
wired into programs that generate 
satisfiability instances to be solved. 
This makes development of software 
engineering techniques for SAT dif-
ficult. Second, any problem that can 
be modeled in SAT can be modeled 

equally well in ASP. But there are prob-
lems—typically involving concepts 
defined inductively such as reachabil-
ity in graphs—that are easy to cast in 
ASP, but representing them appropri-
ately for SAT solving results in larger 
instances that slow down solving. In 
a similar vein, the language of ASP of-
fers constructs such as “minimized” 
disjunction, aggregates and priori-
ties that are useful in practical appli-
cations, are easy to use, and are sup-
ported by most current ASP solvers. 
These constructs require specialized 
ad hoc treatment when modeling for 
SAT solving. For some of them concise 
representations are not even possible.

ASP and Prolog. Prolog is the most 
widely known logic programming lan-
guage. For some time, however, the 
interest in Prolog has been declining, 
in part because expectations of ambi-
tious endeavors like the Fifth Genera-
tion Project could not be met. Is ASP, 
which is sometimes called Answer Set 
Prolog, a better Prolog? The two are 
similar in syntax and there are seman-
tic connections, too. For a large class 
of programs, if Prolog returns “yes” 
(respectively “no”) to a ground query, 
then the query belongs (respectively, 
does not belong) to the unique an-
swer set of the program. But in spite 
of these similarities, ASP and Prolog 
are actually quite different. Prolog 
was designed as a general purpose, 
Turing-complete programming lan-
guage. It uses function symbols for 
nested terms to build potentially in-
finite data structures, and recursion 
for unbounded computation; solu-
tions are computed by query answer-
ing, which amounts to proof search. 
In contrast, ASP was not conceived 
for such generality and works over a 
finite domain of “flat” data (though 
work on function symbols in ASP is 
under way); solutions are encoded in 
answer sets; that is, in models, and 
thus model-finding, not proof-find-
ing, methods matter.

To be an effective Prolog program-
mer one needs to understand how to 
use terms as data structures, not quite 
intuitive, and not part of any standard 
CS curriculum, and to understand 
Prolog’s evaluation strategy, SLD reso-
lution with unification, which is ar-
guably quite difficult to master with 
no adequate logic background. To 

Thanks to its 
features--high 
expressiveness, 
nondeterminism 
via multiple answer 
sets, and high 
declarativity--
ASP is a valuable 
host language for 
domain-specific 
AI formalisms, 
allowing for quick 
experimental 
prototyping.
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complicate matters more, the order 
of rules in a Prolog program and of 
subgoals (literals) in rule bodies mat-
ters. Changing it may turn a working 
program useless. These features give 
a programmer control over the execu-
tion of search and make Prolog a pro-
gramming language, a formalism in 
which one can implement algorithms. 
In this sense, Prolog misses true de-
clarativity. ASP, on the other hand, 
offers ways to model specifications 
yet does not allow the programmer 
to control the search. Consequently, 
while less expressive, ASP is “more de-
clarative:” it is intuitive, requires less 
background in logic, and its seman-
tics is robust to changes in the order of 
literals in rules and rules in programs. 
Still, to solve practical application 
problems in ASP efficiently some ex-
perience is required. Typically, there 
are alternative ways to model a prob-
lem as an answer set program, and 
the resulting programs may perform 
quite differently. One of the more ob-
vious and in the same time more im-
portant considerations for designing 
efficient answer set programs is that 
the size of the ground program be pos-
sibly small.

ASP and constraint programming. 
Constraint programming is concerned 
with modeling and solving problems, 
where solutions are assignments of 
values from finite domains to decision 
variables. These assignments are sub-
ject to constraints given in the prob-
lem statement. 

For instance, we can specify the n-
queens problem as follows: assign to 
each of n decision variables x1, . . . , xn, 
a value from 1, . . . , n so that xi ≠ xj , 
for i ≠ j, and |xi − xj | ≠ |i − j|. To solve 
a problem like this in constraint pro-
gramming, one describes it in some 
high-level modeling language, such as 
ESSENCE or ZINC, and then maps the 
description into a set of constraints 
in some low-level format or, in other 
words, into a constraint satisfaction 
problem (CSP), which is then solved. 
The similarities with ASP—modeling 
in a high-level language and compil-
ing to a low-level representation—are 
evident. But there are differences.

High-level languages including 
those mentioned here closely follow 
mathematical notation and, in par-
ticular, support using sets, relations, 

functions and partitions as possible 
values of decision variables; mod-
eling requires some mathematical 
sophistication. Mapping the high-
level specification of a problem into 
constraints that will lend themselves 
well to processing also requires cer-
tain mathematical background, and 
expertise in constraint modeling and 
solving. On the other hand, the lan-
guage of ASP and its extensions were 
developed with knowledge represen-
tation applications in mind and their 
constructs were designed to capture 
patterns of natural language state-
ments, definitions, and default ne-
gation. The language is simple and 
intuitive to use. In addition, once a 
problem is modeled in ASP all subse-
quent steps are performed automati-
cally. A grounder compiles a program 
into its propositional form and a 
solver computes solutions. There are 
also differences at the solving stage. 
For constraint programming this step 
consists of solving a CSP over an arbi-
trary but finite value domain. For ASP, 
all domains are binary (the variables 
are propositional atoms). This restric-
tion opens a way to highly efficient 
implementations, as witnessed by the 
recent impressive advances in SAT 
solving technology.

Ongoing Developments
ASP processing tools are under con-
tinuous development and already 
achieved levels that make them effec-
tive in large-scale practical applica-
tions. Efforts to increase efficiency by 
new grounding technology and solv-
ing methods, but also non-ground 
evaluation are under way. To a large 
degree the advances are the result of a 
communitywide effort to build bench-
marks, collect hard test problems and 
instances, and organize regular ASP 
system competitions.

However, the situation is quite dif-
ferent as concerns basic software de-
velopment support in ASP. Although 
the first integrated development en-
vironment ASPIDEc was recently an-
nounced, much remains to be done. 
One of the areas in need of progress 
is program debugging. Even if devel-
oping answer set programs benefits 
from the declarative nature of ASP, 

c www.mat.unical.it/~ricca/aspide/

discovering errors is difficult. There 
is some research in this direction al-
ready,5,7 but the ideas proposed need 
to be explored further. Methodologies 
for development and optimization are 
also important issues. Much progress 
was made in understanding the the-
ory behind modularity of answer set 
programs. We discussed some of that 
research earlier. Here we mention re-
search on strong equivalence27 or, to 
put it informally, equivalence for re-
placement within larger systems, and 
further notions of equivalence.40 El-
egant technical results are now avail-
able, but their impact on practical de-
velopments remains open.

Function symbols often make mod-
eling easier and the resulting encod-
ings more readable and concise. 
Thus, not allowing them in ASP (ex-
cept in built-ins for arithmetic) was 
perceived as a limitation. But allow-
ing uninterpreted function symbols 
renders most of the ASP program pro-
cessing techniques useless, as ground 
programs typically become infinite. A 
middle ground can be found, though. 
It requires imposing restrictions on 
how function symbols can occur in 
programs. Some globally constrain 
atom dependency in the grounded 
program,3,8 while others locally con-
strain the rule syntax.14 The LPARSE 
grounder was the first to offer (albeit 
limited) support of function symbols, 
while GRINGO and the DLV system 
(latest release) include some of the 
more recent advances. Recent re-
search indicates that ASP can provide 
a full first-order language for non-
monotonic reasoning, with the no-
tion of an answer set extended to this 
setting.17,36 Computational support 
and further research will be required, 
however, to make this available for 
practical applications.

Integration of SAT solving with 
constraint solving techniques known 
as Satisfiability Modulo Theories has 
proved successful for SAT. The ASP 
community has recently taken up 
this idea, with CLINGCON (see Ta-
ble 2) being a very promising system 
combining ASP with specialized con-
straint solvers.

Quantitative methods turned out to 
be extremely effective in knowledge 
representation applications in which 
uncertainty cannot be avoided. ASP as 
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it exists now is not designed for such 
applications. This is a drawback and 
so there are already research efforts to 
enhance ASP with means to combine 
probabilities and utilities with quali-
tative representations of uncertainty.2 
This research direction has not yet ma-
tured, though, and it is too early to say 
how successful such integration will 
turn out to be.

Conclusion
The aim of this article was to provide 
the reader with a basic understand-
ing of the main motivation, the most 
important concepts, and the relevant 
techniques underlying ASP, a rather 
new yet highly promising declarative 
problem-solving paradigm.

We covered answer set semantics, 
both for propositional and predicate 
programs, discussed the ASP para-
digm, and related it to some other 
problem-solving approaches. More-
over, we presented algorithms and 
solvers, several extensions of the basic 
approach, and some illustrative ap-
plications. This article should not be 
viewed as a complete overview of the 
field. It is meant as an appetizer. For 
a more complete picture we recom-
mend Eiter et al.12 or Baral.1
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Truszczyński’s work was supported by 
NSF grant IIS-0913459. 

References
1. Baral, C. Knowledge Representation, Reasoning and 

Declarative Problem Solving. Cambridge University 
Press, 2003.

2. Baral, C., Gelfond, M. and Rushton, J.N. Probabilistic 
reasoning with answer sets. Theory and Practice of 
Logic Programming 9, 1 (2009), 57–144.

3. Baselice, S., Bonatti, P.A. and Criscuolo, G. On finitely 
recursive programs. Theory and Practice of Logic 
Programming 9, 2 (2009), 213–238.

4. Boenn, G., Brain, M., Vos, M.D. and Fitch, J. Automatic 
music composition using answer set programming. 
Theory and Practice of Logic Programming 11, 2-3 
(2011), 397–427.

5. Brain, M. and Vos, M.D. Debugging logic programs 
under the answer set semantics. In Proc. 3rd 
International Workshop on Answer Set Programming, 
CEUR Workshop Proceedings 142, 2005. M. De Vos and 
A. Provetti, Eds.

6. Brewka, G., Niemelä, I. and Truszczyński, M. Answer 
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