
Answer set programming (ASP) is a knowledge represen-
tation and reasoning (KR) paradigm. It has rich high-
level representation languages that allow recursive def-

initions, aggregates, weight constraints, optimization
statements, default negation, and external atoms. With such
expressive languages, ASP can be used to declaratively repre-
sent knowledge (for example, mathematical models of prob-
lems, behaviour of dynamic systems, beliefs and actions of
agents) and solve combinatorial search problems (for exam-
ple, planning, diagnosis, phylogeny reconstruction) and
knowledge-intensive problems (for example, query answer-
ing, explanation generation). The idea is to represent a prob-
lem as a “program” whose models (called “answer sets” [Gel-
fond and Lifschitz 1988, 1991]) correspond to the solutions
of the problem. The answer sets for the given program can
then be computed by special software systems called answer
set solvers, such as DLV, Smodels, or clasp.

Due to the continuous improvement of ASP solvers and
the expressive representation languages of ASP, ASP has been
applied fruitfully to a wide range of areas in AI and in other

Articles

FALL 2016 53Copyright © 2016, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

Applications of
Answer Set Programming

Esra Erdem, Michael Gelfond, Nicola Leone

� Answer set programming (ASP) has
been applied fruitfully to a wide range
of areas in AI and in other fields, both
in academia and in industry, thanks to
the expressive representation languages
of ASP and the continuous improve-
ment of ASP solvers. We present some
of these ASP applications, in particular,
in knowledge representation and rea-
soning, robotics, bioinformatics, and
computational biology as well as some
industrial applications. We discuss the
challenges addressed by ASP in these
applications and emphasize the
strengths of ASP as a useful AI para-
digm.

fields. Areas of AI that include applications of ASP are
planning, probabilistic reasoning, data integration
and query answering, multiagent systems, natural
language processing and understanding, learning,
theory update/revision, preferences, diagnosis,
description logics, semantic web, multicontext sys-
tems, and argumentation. Other areas that include
applications of ASP are, for instance, computational
biology, systems biology, bioinformatics, automatic
music composition, assisted living, software engi-
neering, bounded model checking, and robotics.

ASP has also been used in industry, for instance, for
decision support systems (Nogueira et al. 2001) (used
by United Space Alliance), automated product con-
figuration (Tiihonen, Soininen, and Sulonen 2003)
(used by Variantum Oy), intelligent call routing
(Leone and Ricca 2015) (used by Italia Telecom) and
configuration and reconfiguration of railway safety
systems (Aschinger et al. 2011) (used by Siemens).

In this article, we will describe only some of these
ASP applications, in particular, in knowledge repre-
sentation and reasoning, robotics, bioinformatics, as
well as some industrial applications. For a wide vari-
ety of ASP applications and relevant references, we
refer the reader to the ASP applications table.1

ASP and Knowledge Representation
One of the main goals of AI is to better understand
how to build software components of agents capable
of reasoning and acting in a changing environment.
Most AI researchers agree that to exhibit such behav-
ior the agent should have a mathematical model of
its environment and its own capabilities and goals. A
logic-based approach to AI (McCarthy 1990) suggests
that this model should contain a knowledge base
(KB) — a collection of statements in some declarative
language with precisely defined syntax and seman-
tics. As a rule, such a KB should include common-
sense knowledge — information an ordinary person
is expected to know — as well as some specialized
knowledge pertinent to a particular set of activities
the agent is built to perform. Early proponents of log-
ic-based AI believed that such a KB could be built in
classical first-order logic (FOL) which, at the time,
was commonly used for formalization of mathemat-
ical reasoning. It was quickly discovered, however,
that this logic may not be a fully adequate tool for
representing nonmathematical (especially common-
sense) knowledge. The main problem was difficulty
with using FOL for defeasible (or nonmonotonic) rea-
soning. In precise terms, a consequence relation A ⊨

F between statements of a declarative language is
called monotonic if, for every A, B, and F, if A ⊨ F
then (A ⋀ B) ⊨ F. This property guarantees that, once
proven, a statement stays proven. If this condition is
not satisfied, that is, if addition of new information
can force a reasoner to withdraw its previous conclu-
sion, the consequence relation is called nonmonoto-

nic. Though not encountered in mathematics, non-
monotonicity seems to be a prevailing feature of
commonsense reasoning. It is especially relevant to
reasoning with so called defaults — statements of the
form “Normally (typically, as a rule) elements of class
C have property P.” We all learn rather early in life
that parents normally love their children, citizens are
normally required to pay taxes, and so forth. We also
learn, however, that these rules are not absolute and
allow various types of exceptions. It is natural to
assume that these and other defaults should be
included in a reasoner’s KB. Learning correct ways to
reason with defaults and their exceptions is necessary
for building an agent capable of using such a KB. One
of the best available solutions to this problem uses
the knowledge representation language CR-Prolog
(Balduccini and Gelfond 2003) — a simple extension
of the original ASP language of logic programs with
two types of negation and epistemic disjunction.

A program Π of CR-Prolog consists of a first-order
signature, a collection Πr of standard ASP rules of the
form

and a collection Πcr of consistency-restoring rules (or
simply cr-rules)2 of the form:

Here each li is a literal, that is, an atom p(t̄) or its
negation ¬p(t̄). The last statement says that t̄ does not
have property p. In contrast, default negation not has
an epistemic character — not l is often read as “it is
not believed that l is true.” Similarly, the connective
| (also denoted by or) is often called epistemic dis-
junction with l1 | l2 being read as “l1 is believed to be
true or l2 is believed to be true.” Intuitively, a regular
ASP rule Head ← Body says that if the body of the rule
is believed then the reasoner must believe its head. A
cr-rule says that if the body of the rule is believed,
then the reasoner may possibly believe its head; how-
ever, this possibility may be used only if Πr is incon-
sistent.

Informally, program Π can be viewed as a specifi-
cation for answer sets — sets of beliefs that could be
held by a rational reasoner associated with Π. Answer
sets are represented by collections of ground literals.
In forming such sets the reasoner must satisfy the
rules of Π together with a so-called rationality princi-
ple, which says that the reasoner associated with the
program shall believe nothing that he is not forced to
believe by the program’s rules. In the absence of cr-
rules this idea is captured by the standard answer set
semantics.

The definition of an answer set for an arbitrary CR-
Prolog program is as follows. For a collection R of cr-
rules, by α(R) we denote the collection of regular rules
obtained by replacing labeled arrows in cr-rules of R
by ←. A minimal (with respect to the preference rela-

l0 |… | lk lk+1,…,lm ,not lm+1,…,not ln

l0
+ lk+1,…,lm ,not lm+1,…,not ln.

Articles

54 AI MAGAZINE

Articles

FALL 2016 55

tion of the program) collection R of cr-rules of Π such
that Πr ⋃ α(R) is consistent (that is has an answer set)
is called an abductive support of Π. A set A is called
an answer set of Π if it is an answer set of the regular
ASP program Πr ⋃ α(R) for some abductive support R
of Π.

In the following, we assume that the rules that are
in sans-serif font are in the ASP Core language ASP-
Core-2,3 whereas the rules in math font (for example,
cr-rules) are in languages (for example, CR-Prolog)
that extend the ASP Core language in different ways.
The schematic variables (respectively, object con-
stants) in rules are denoted by strings whose first let-
ters are in uppercase (resp. in lowercase).

Example 1 [Representing Defaults]
A default “parents normally love their children” can
be represented by the following rule:

(1) loves(P,C) :-
parent(P,C), not -loves(P,C).

Consider a program P1 consisting of this rule and a
fact:

(2) parent(mary,john).

Since the answer set semantics of CR-Prolog incorpo-
rates the rationality principle and no rule of the pro-
gram forces the reasoner to believe that Mary does
not love John, the first rule allows it to conclude that
she does. Additional information,

(3) -loves(mary,john)

will not lead to a contradiction. The new statement
will render the first rule inapplicable and allow the
reasoner to withdraw its earlier conclusion. State-
ment (3) is an example of so-called direct exceptions
to defaults, that is, exceptions that directly contradict
the default conclusion. The situation is not always
that neat. Let us now consider a program P2 consist-
ing of statements (1) and (2) above, together with a
new rule:

(4) cares(P,C) :- loves(P,C) .

It is easy to see that P2 entails cares(mary, john). If,
however, we were to learn that Mary does not care for
John and expanded P2 by

(5) -cares(mary,john)

the new program, P3, would become inconsistent,
that is, will not have answer sets. In our everyday rea-
soning we do not seem to have difficulties in dealing
with such indirect exceptions to defaults. We would
avoid the contradiction by simply concluding that
Mary and John constitute an (indirect) exception to
default (1). So the fact (5) is the only conclusion that
can be derived from the program. To model this type
of reasoning, we should make it possible for our pro-
gram to recognize that the relationship between par-
ents and their children may be not that of love, but
still be able to use our default whenever possible. This
is done using a cr-rule.

Indirect exceptions to default (1) can be represent-
ed as follows:

The new program P4 consisting of regular rules (1),
(2), and (4) and cr-rule (6) entails that Mary cares
about John. A consistent answer set of the program
can be obtained from its regular rules only and cr-
rule (6) is not used. If, however, we expand P4 by
statement (5), regular rules of the program are not
sufficient to avoid the contradiction. Consistency
restoring rule (6) will be activated and the reasoner
will conclude that Mary does not love John.

The previous example is rather general and allows
for representation of different types of exceptions to
defaults. More information on this can be found in
Gelfond and Kahl (2014).

Reasoning about Effects of Actions
Gaining better understanding of basic principles and
mathematical models of default reasoning helped
researchers to move forward in solving a number of
other longstanding problems of AI and KR. In this
section we briefly describe an ASP-based solution of
one such problem — finding logical means for repre-
senting and reasoning about direct and indirect
effects of actions.

To act in a changing (dynamic) domain, a rational
agent should have a mathematical model of this
domain allowing it to predict such effects. Here we
limit ourselves to discrete dynamic domains repre-
sented by transition diagrams whose nodes corre-
spond to possible physical states of the domain and
whose arcs are labeled by actions.

A transition (σ1, a, σ2) indicates that the execution
of action a in state σ1 may cause the domain to move
to state σ2. Due to the size of the diagram, the prob-
lem of finding a concise specification for it is not triv-
ial and has been a subject of research for a compara-
tively long time. Its solution requires a good
understanding of the nature of causal effects of
actions in the presence of complex interrelations
between fluents — propositions whose truth value
may depend on the state of the domain.

An additional level of complexity is added by the
need to specify what is not changed by actions in a
concise, clear, and elaboration tolerant way. A semi-
nal paper (Hayes and McCarthy 1969) in which the
problem of finding such a specification (called the
frame problem) was discussed also suggested a direc-
tion in which its possible solution could be found.
The proposal was to reduce the solution of the frame
problem to the problem of finding a concise, accu-
rate, and elaboration tolerant representation of the
inertia axiom — a default that says that things nor-
mally stay as they are. The search for such a repre-
sentation substantially influenced AI research during
the next 30 years. An interesting account of the his-
tory of this research together with some possible
solutions can be found in (Shanahan 1997). We have
already discussed the ways of using ASP for repre-

¬loves(P,C) + parent(P,C).

senting defaults and their exceptions so it shall not
come as a surprise that ASP provides a good solution
to the frame problem. It also turned out that rules of
ASP languages can nicely capture causal relations
between fluents, which led to the development of a
powerful methodology for representing and reason-
ing about actions and their effects.

We illustrate this methodology by way of example
— representation of a simple hydraulic system of a
space shuttle. The example is taken from an actual
decision support software system (Nogueira et al.
2001) developed to help shuttle controllers to deal
with critical situations caused by multiple failures.

Example 2 [Effects of Actions]
Consider a hydraulic system viewed as a graph whose
nodes are labeled by tanks containing propellant, jets,
junctions of pipes, and so on. Arcs of the graph are
labeled by valves that can be opened or closed by a
collection of switches. The system is used to deliver
propellant from tanks to a proper combination of jets.

To axiomatize the knowledge pertinent to this
example, we describe the graph by a collection of
statements of the form connected(N1, V, N2) — valve
V labels the arc from N1 to N2, and controls(S, V) —
switch S controls valve V. Fluents pos(S, open) and
pos(S, closed) define positions of switch S. Fluents
pos(V, open) and pos(V, closed), defining the position
of a valve, and fluent pressurized(N), which holds
when node N is reached by propellant from some
tank, will be defined in terms of positions of switch-
es of the system.

The following axiom
(1) -h(pos(X,P1),I) :-

h(pos(X,P2),I), P1 != P2

guarantees that positions of switches and valves are
mutually exclusive, that is, cannot both be true at the
same time step. Here relation h(F, I), where h stands
for holds, is true if a fluent F holds (is true) at time-
step I of the system’s trajectory.

Now we concentrate on the representation of
action flip(S), which flips the switch S from position
open to position closed and vice versa. Note that this
action has comparatively complex effects including
the propagation of the delivery of propellent from
tanks to other nodes of the system. The effects will be
divided into direct and indirect.

The direct effect of flipping a switch S from closed
to open will be given by the following axiom

(2) h(pos(S,open),I+1) :-

occurs(flip(S),I), h(pos(S,closed),I)

where occurs(A, I) is true if action A occurs (hap-
pened, is executed) at I. The rule states that if action
flip(S) occurred at a time-step I, in which the fluent
pos(S, closed) was true, then at the next step, I + 1, the
fluent pos(S, open) would become true. A similar
axiom is needed for flipping a switch from the open
to closed position.

To represent indirect effects we simply need to

state the relations between fluents of the domain.
The next rule describes a relationship between fluents
representing positions of switches and valves.

(3) h(pos(V,P),I) :-
controls(S,V), h(pos(S,P),I).

The rule states that if a switch is placed in a particu-
lar position, then so is the valve controlled by this
switch.

The next rule describes the relationship between
the values of fluent pressurized(N) for neighboring
nodes.

(4) h(pressurized(N2),I) :-
connected(N1,V,N2),
h(pressurized(N1),I),
h(pos(V,open),I).

The rule says that if nodes N1 and N2 are connected
by open valve V and node N1 is pressurized then so is
node N2. We also assume that tanks are always pres-
surized and encode this as follows:

(5) h(pressurized(N),I) :- tank(N), step(I).

To complete the definition of this fluent we need
to state that no other nodes except those defined by
rules 4 and 5 are pressurized. This is done by the rule

(6) -h(pressurized(N),I) :- node(N), step(I),
not h(pressurized(N),I).

Suppose now that the system contains nodes n1, n2,
and n3 where n1 is a tank; n1 and n2 are connected by
valve v1; n2 and n3 are connected by valve v2; v1 and
v2 are controlled by switches s1 and s2, respectively.
Assume also that initially, the switches are closed.
One can see that at the initial step 0, node n1 is pres-
surized (axiom 5), and nodes n2 and n3 are not (axiom
6). To compute the effects of flipping switch s1 let us
expand the program by statement

occurs(flip(s1),0).

The direct effect of this action, determined by axiom
2, is h(pos(s1, open), 1). There are also indirect effects
that follow from axioms 3, 4, and 1: h(pos(v1, open),
1), h(pressurized(n2), 1), and ¬h(pos(v1, closed), 1). To
complete our formalization we need to add our solu-
tion to the frame problem, which will allow us to
conclude that flipping switch s1 does not change the
status of switch s2 and valve v2. As discussed earlier,
this can be done by simply axiomatizing the default
stating that normally the value of fluent pos(S, Val)
remains unchanged:

(7a) h(pos(S,Val),I+1) :-
switch(S), h(pos(S,Val),I),
not -h(pos(S,Val),I+1).

(7b) -h(pos(S,Val),I+1) :-
switch(S), -h(pos(S,Val),I),
not h(pos(S,Val),I+1).

This is, of course, a typical ASP representation of a
default that provides the solution to the frame prob-
lem. It guarantees that at step 1 switch s2 is still
closed. Since positions of v2 and the value of pressur-
ized(n3) are fully determined by positions of the
switches, nothing else is necessary — v2 will remain
closed and n3 depressurized.

Articles

56 AI MAGAZINE

The ability of ASP languages to represent defaults
and to express indirect effects of actions by a unidi-
rectional implication made it a good tool for repre-
senting knowledge about dynamic domains. Nowa-
days, however, such knowledge is more frequently
represented in so-called action languages (Gelfond
and Lifschitz 1998), which are more specialized,
higher-level languages designed for specifying state-
action-state transition diagrams. Consider, for exam-
ple, one such language, called AL (Gelfond and Kahl
2014). Axiom 2 from example 2 may be written in AL
as

flip(S) causes pos(S, open) if pos(S, closed)

which is a special case of a dynamic causal law of AL
— a statement of the form

A causes F if P.

The law says that execution of action A in a state that
satisfies property P causes fluent F to become true in
a resulting state. Axiom 4 from example 2 may be
written as

pressurized(N2) if pressurized(N1),
connected(N1, V, N2),
pos(V, open)

which is a special case of an action language AL state-
ment

F if P.

The statement guarantees that every state of the sys-
tem satisfying property P also satisfies F. The inertia
axioms 7a and 7b can be replaced by the simpler
statement

fluent(inertial, pos(S, Val))

which indicates that the fluent pos(S, Val) is subject to
the inertia axiom. Overall, use of action languages
leads to substantially simpler representations and
allows the system designer to avoid some ASP-related
details. ASP, however, continues to play an important
role in reasoning about actions.

First, answer set semantics of logic programs is
often used to define semantics of action languages.
Natural translations from action languages to logic
programs allow us to use the notion of answer set to
precisely define the effects of executing an action A
in a state σ. Rules 1–6 of example 2 can be viewed as
part of such translation from the description of our
domain in an action language. The translation will
also contain a more general version of axioms 7a and
7b:

h(F,I+1) :-
fluent(inertial,F), h(F,I), not -h(F,I+1)

-h(F,I+1) :-
fluent(inertial,F), -h(F,I), not h(F,I+1)

which provide a rather general solution of the frame
problem.

Second, translation from action languages to logic
programs enables us to reduce classical reasoning
tasks such as prediction, planning, and finding expla-
nations of unexpected events to computing answer

sets of logic programs. An interested reader may look
into Gelfond and Kahl (2014) for further details.

There are other interesting applications of ASP to
classical KR problems. These include its early use for
providing a declarative semantics to the negation as
failure construct of the Prolog programming lan-
guage (Gelfond and Lifschitz 1988) as well as com-
paratively recent work on combining subtle forms of
logical and probabilistic reasoning (Baral, Gelfond,
and Rushton 2009).

Applications of ASP to Robotics
ASP has been applied in various robotic applications,
such as assembly planning, mobile manipulation,
geometric rearrangement, multirobot path finding,
multirobot coordination, multirobot planning, plan
execution and monitoring, and human-robot inter-
action, to provide methods for high-level reasoning
(like planning, hypothetical reasoning, diagnostic
reasoning) and for declarative problem solving (like
team coordination, gridization of continuous space).

For instance, Erdem, Aker, and Patoglu (2012) use
ASP for planning of actions of multiple robots to col-
laboratively tidy up a house within a given time (fig-
ure 1). They illustrate applications of their ASP-based
planning, execution and monitoring approach with
dynamic simulations with PR2 robots.4

In another study Erdem et al. (2013) use ASP to
find an optimal global plan for multiple teams of
heterogeneous robots in a cognitive factory to man-
ufacture a given number of orders within a given
time (figure 2). They also use ASP for diagnosing plan
failures during monitoring of plan execution
(Erdem, Patoglu, and Saribatur 2015). They illustrate
applications of their ASP-based planning with
dynamic simulations and with an augmented reality
physical implementation that utilizes Kuka youBots
and Lego NXT robots controlled over Robot Operat-
ing System (ROS). They show applications of their
execution-monitoring algorithm, in particular, the
use of diagnostic reasoning for replanning and
repairs, with dynamic simulations using Kuka
youBots and a Nao humanoid robot.5

Havur et al. (2014) use ASP for geometric
rearrangement of multiple movable objects on a
cluttered surface, where objects can change locations
more than once by pick and/or push actions (figure
3). They use ASP for gridization of the continuous
plane for a discrete placement of the initial configu-
rations and the tentative final configurations of
objects on the cluttered surface, and for planning of
robots’ actions. The authors illustrate applications of
their method with the CoCoA service robot, which
features a holonomic mobile base and two 7 degrees
of freedom (DoF) arms with grippers.6

Zhang, Sridharan, and Wyatt (2015) use ASP to
describe objects and relations between them, and
utilize this knowledge to improve localization of tar-

Articles

FALL 2016 57

get objects in an indoor domain using (primarily)
visual data. Such a use of ASP has been illustrated by
a physical implementation with a wheeled robot
navigating in an office building.7

In these robotic applications, there are some
important challenges from the point of view of
robotic planning and diagnosis. The following dis-
cusses how ASP can handle them.

Hybrid Reasoning
One of the key challenges addressed in these robotic
applications is hybrid reasoning, which can be
understood as integrating high-level reasoning tasks,
such as planning, hypothetical reasoning, and diag-
nosis, with low-level external computations. These
external computations include, for instance, feasibil-

ity checks of robotic actions using probabilistic
motion-planning methods, as well as automatic
extraction of relevant commonsense knowledge from
the existing knowledge bases available on the web.
Such a variety of hybrid reasoning is possible in ASP,
thanks to “external atoms” (Eiter et al. 2006). These
atoms provide a general interface between high-level
reasoning and low-level external computations, in
the spirit of semantic attachments in theorem prov-
ing. More precisely, an external atom is an expression
of the form

&g [Y1, …, Yn](X1, …, Xm)

where Y1, …, Yn and X1, …, Xm are two lists of terms
(called input and output lists, respectively), and g is
an external predicate name. Intuitively, an external
atom provides a way for deciding the values of an

Articles

58 AI MAGAZINE

Figure 1. Multiple Robots Tidying Up a House.

output tuple with respect to the values of an input
tuple. External atoms allow us to embed results of
external computations into ASP programs. Therefore,
external atoms are usually implemented in a pro-
gramming language of the user’s choice.

Integrating High-Level Reasoning
with Low-Level Feasibility Checks
Consider, for instance, multiple robots rearranging
objects on a cluttered table (Havur et al. 2014). The
objects can only move when picked up and placed, or
pushed by robots, and the order of pick-and-place
and push operations for rearranging objects may
matter to obtain a feasible kinematic solution. There-
fore, motion planning (for example, finding a con-
tinuous trajectory from one configuration of the
robot to another configuration) and other low-level
feasibility checks alone are not sufficient to solve
them. However, manipulation of objects also requires
feasibility checks, such as whether the robot will be
able to move an object from one location to another
location without colliding with the other objects, or
whether the robot will be able to reach the object on
the table and grasp it without any collisions. There-
fore, task planning only (for example, finding a
sequence of robotic actions from an initial state to a
goal state) is not sufficient to solve the problem
either. These examples illustrate the necessity for a
hybrid approach to planning that integrates task
planning with feasibility checks.

Articles

FALL 2016 59

Figure 2. Multiple Robots Collaboratively Working in a Cognitive Factory.

Figure 3. A Mobile Service Robot
Rearranging Objects on a Cluttered Tabletop.

One of the preconditions of the action pickPlace(R,
O, C) of a robot R picking and placing an object O
onto location C is that the object O is graspable by
the end effector of the robot. This precondition can
be formalized in ASP as follows:
← occurs(pickPlace(R, O, C), I),

not &reachableGraspable[O, R]().

Here &reachableGraspable[O, R]() is an external atom;
it returns true if and only if the end effector of the
manipulator R can successfully reach and grasp the
given object O according to kinematics and force-clo-
sure calculations of OPENRAVE. Note that these cal-
culations are done in a continuous configuration
space using real numbers, and thus are not possible
in ASP.

One of the preconditions of the action push(R, O,
C) of a robot R pushing an object O to location C is
that the volume swept by the object O from its cur-
rent configuration toward another configuration in
C does not collide with other objects. This precondi-
tion can be described as follows:
← occurs(push(R, O, C), I),

not & pushPossible[location, O, I]().

Here &pushPossible is an external predicate as well: it
takes as input all locations of objects at time step I,
and checks whether the swept volume of the object
O collides with other objects using Open Dynamics
Engine (ODE).

Embedding Commonsense Knowledge
in High-Level Reasoning
Consider, for instance, the housekeeping domain
with multiple robots (Erdem, Aker, and Patoglu
2012). The commonsense knowledge about expected
locations Loc of objects Ep (for example, dish in
kitchen, bed in bedroom) can be extracted from the
existing commonsense knowledge base ConceptNet
(Liu and Singh 2004) by means of queries through its
Python API, and can be defined by external atoms of
the form &in_place[Ep, Loc](). Then, one can repre-
sent the expected locations of objects Ep in the house
by a new fluent of the form at_desired_location(Ep) as
follows:

h(at_desired_location(Ep), I) ←
h(at(Ep, Loc), I), &in_place[Ep, Loc]().

This rule formalizes that the object Ep is at its desired
location if it is at some “appropriate” position Loc in
the right room.

Another line of research that represents common-
sense knowledge for service robotics applications is
by Chen et al. (2010). In these applications, com-
monsense knowledge such as “a long-shape object B
whose center-of-mass is on the table, is initially in
balance if there is a can A on one end E1 of it and
another can B on the other end E2 of it” is formulat-
ed in ASP:

h(balance(B,A,C),0) :-
h(on(A,E_1),0), h(on(C,E_2),0),
endof(E_1,B), endof(E_2,B).

Optimizations in Planning and Diagnosis
There are various sorts of desired optimizations in
robotic applications. For instance, in planning, an
optimal plan can be understood as a plan with mini-
mum makespan or a plan with minimum total cost
of actions. In diagnostic reasoning, an optimal diag-
nosis can be understood as a hypothesis with a small-
est number of broken parts of robots. Such optimiza-
tions are possible in ASP, thanks to “optimization
statements.”

For instance, consider the cognitive factories
domain with multiple teams of heterogeneous robots
(Erdem et al. 2013; Erdem, Patoglu, and Saribatur
2015). The following expression

#minimize {C,R,I : h(cost(R,C),I),
robot(R), step(I)}

is used to minimize the sum of all costs C of robotic
actions performed in a local plan, where costs of
actions performed by robot R at every time step are
defined by fluents of the form cost(R, C).

The following statement minimizes the total num-
ber of the broken parts of robots while finding a diag-
nosis for a discrepancy:

#minimize {1,P,R: broken(R,P), comp(R,P)}

where atoms of the form comp(R, P) describe robots
and their parts, and atoms of the form broken(R, P)
describe that part P of the robot R is broken.

Complex Constraints in Replanning
During plan execution, discrepancies between the
observed state and the expected one may be detected
that are relevant for the rest of the plan. These dis-
crepancies may be due to an unexpected obstacle in
the environment, change of locations of objects, bro-
ken robots, or failures of some actions. Once the
cause of a discrepancy is detected, a new plan from
the current state can be computed. While replan-
ning, some guidance from earlier experiences and
causes of discrepancies might be helpful to compute
a better plan that does not fail due to the same rea-
sons. ASP allows us to include such a guidance, by
including constraints into the representation of the
planning problem description. These constraints
might express not only the new knowledge about the
environment, robots, and/or goals, but also what sort
of actions should not be executed under what condi-
tions and when. For instance, in the housekeeping
domain (Erdem, Aker, and Patoglu 2012), if some
robot’s plan fails because the robot cannot pick up an
object that turns out to be quite heavy, the robot
might want to delay asking for help as much as pos-
sible so that the other robots are not distracted. Such
a complex constraint (for example, heavy objects can
be picked with help only during the last three steps
of the plan) can be represented in the planning prob-
lem description using ASP.

Articles

60 AI MAGAZINE

Commonsense Knowledge and Exceptions
Consider, for instance, the housekeeping domain
with multiple robots (Erdem, Aker, and Patoglu
2012). Normally, the movable objects in an untidy
house are not at their desired locations. Such com-
monsense knowledge can be described by means of
defaults, as in the following rules:

-h(at_desired_location(Ep),I) :-
endpoint(Ep), step(I),
not h(at_desired_location(Ep),I).

In a similar way, the tidiness of a house is defined by
means of defaults:

-h(tidy,I) :- -h(at_desired_location(Ep),I)
h(tidy,I) :- not -h(tidy,I), step(I).

The second rule above expresses that the house is
normally tidy. The first rule above describes the
exceptions: when an object is not at its expected loca-
tion, the house is untidy.

Let us now consider diagnostic reasoning in cog-
nitive factories with multiple teams of heterogeneous
robots (Erdem, Patoglu, and Saribatur 2015). Nor-
mally, the robots and their parts run smoothly. How-
ever, there may be exceptions: some parts P of robots
R that are not broken currently (at time-step I) may
get broken at the next state (at any time-step I). This
commonsense knowledge can be represented by
means of defaults as well:

-h(broken(R,P),I) :- comp(R,P), step(I),
not h(broken(R,P),I)

h(broken(R,P),I+1) :- comp(R,P), step(I),
-h(broken(R,P),I),
not -h(broken(R,P),I+1).

Other examples of the use of ASP to represent
expected locations of objects, by means of defaults,
and to find diagnoses, by means of cr-rules, can be
found in Zhang et al. (2014).

Applications of ASP to
Computational Biology

and Bioinformatics
ASP has been applied in various computational biol-
ogy and bioinformatics applications, providing a
declarative problem-solving framework for combina-
torial search problems (for example, haplotype infer-
ence, consistency checking in biological networks,
phylogeny reconstruction) and providing a knowl-
edge representation and reasoning framework for
knowledge-intensive reasoning tasks (for example,
integrating, query answering and explanation gener-
ation over biomedical ontologies).

Tran and Baral (2009) introduce a method to mod-
el a biological signaling network as an action descrip-
tion in ASP to allow prediction, planning, and expla-
nation generation about the network. They illustrate
an application of their method to generate hypothe-
ses about the various possible influences of a tumor
suppressor gene on the p53 pathway. Gebser et al.

(2011) introduce a method to model biochemical
reactions and genetic regulations as influence graphs
in ASP, to detect and explain inconsistencies between
experimental profiles and influence graphs. With this
method, they compare the yeast regulatory network
with the genetic profile data of SNF2 knockouts, and
find the data to be inconsistent with the network.

Brooks et al. (2007) use ASP to solve the problem of
reconstructing phylogenies (that is, evolutionary
trees) for specified taxa, with a character-based cladis-
tics approach. They apply their method to infer phy-
logenies for Alcataenia species as well as Indo-Euro-
pean languages (figure 4) and Chinese dialects; these
phylogenies are found plausible by the experts. Based
on these phylogenies, phylogenetic networks are
reconstructed as well (Erdem, Lifschitz, and Ringe
2006).

In the NMSU-PhyloWS project (Le et al. 2012), ASP
is used to query the repository CDAOStore of phylo-
genies. These queries are used, for instance, to find
the trees that satisfy a given property (for example,
whose size is smaller than a specified constant, with
a specified ratio of internal nodes to external nodes),
to find the similarity of two trees with respect to a
distance measure (for example, the Robinson-Foulds
distance), to compute clades with specific properties
(for example, the minimum spanning clade for taxa
in a specified tree).

Erdem et al. (2011) and Erdem and Oztok (2015)
use ASP to answer complex queries over biomedical
ontologies and databases that consider the relevant
parts of these knowledge resources, and to generate
the shortest explanations to justify these answers.
They apply their methods to find answers and expla-
nations to some complex queries related to drug dis-
covery (for example, “What are the genes that are tar-
geted by the drug Epinephrine and that interact with
the gene DLG4?”, “What are the genes related to the
gene ADRB1 through a gene-gene relation chain of
length at most three?” and “What are the most sim-
ilar three genes that are targeted by the drug Epi-
nephrine?”) over the biomedical knowledge
resources PharmGKB, DrugBank, BioGRID, CTD,
SIDER, and Disease Ontology.

Dovier, Formisano, and Pontelli (2009) use ASP to
study a variation of the protein structure prediction
problem: the two-dimensional HP-protein structure
prediction problem. The goal is to find a folding in
the two-dimensional square lattice space that maxi-
mizes the number of hydropic-hydropic contacts
between given amino acids.

Erdem and Ture (2008) use ASP to solve the prob-
lem of haplotype inference by pure parsimony (HIPP)
and its variations. Identifying maternal and paternal
inheritance is essential for finding the set of genes
responsible for a particular disease. However, due to
technological limitations, we have access to geno-
type data (genetic makeup of an individual), and
determining haplotypes (genetic makeup of the par-

Articles

FALL 2016 61

ents) experimentally is a costly and time consuming
procedure. With these biological motivations, HIPP
asks for the minimal number of haplotypes that form
a given set of genotypes.

In these bioinformatics applications, one can iden-
tify some important challenges addressed by ASP;
these challenges illustrate also the strengths of ASP.

Declarative Problem Solving
The declarative representation formalism of ASP
allows us to easily include domain-specific informa-
tion and constraints in the program, and thus to pre-
vent the construction of implausible solutions. For
instance, including some temporal and geographical
constraints about Indo-European languages provided
by historical linguists (for example, “Albanian can-
not be a sister of IndoIranian or BaltoSlavic”) helps in
computing plausible phylogenies more efficiently.

Well-studied properties of programs in ASP allow
us to easily prove the correctness of the formulation
of the problem in ASP, as shown in Erdem, Lifschitz,
and Ringe (2006).

With a declarative representation of the problem
in ASP, one can perform various reasoning tasks, such
as ontological query answering and explanation gen-
eration (Le et al. 2012; Erdem et al. 2011; Erdem and
Oztok 2015), planning and diagnosis (Tran and Bar-
al 2009), consistency checking and explanation gen-
eration (Gebser et al. 2011), and repair and predic-
tion (Gebser et al. 2010).

Integration of Heterogeneous Knowledge
To answer complex queries over a variety of biomed-
ical ontologies (Erdem et al. 2011), ASP allows us to
extract relevant parts of them (thanks to external
atoms) and integrate them by rules. For instance, the
drug names can be extracted from a drug ontology,
by first extracting the relevant triples from the ontol-
ogy:

tripleD(X, Y, Z) ←
& rdf [“URIforDrugOntology”](X, Y, Z)

and then extracting drug names from the triples:
drugName(A) :-

tripleD(_,”drugproperties:name”,A).

Then, to answer queries like “What are the drugs that
treat the disease depression and that do not target the
gene ACYP1?” the extracted relevant knowledge can
be integrated by rules as follows:

whatDrugs(DRG) :- cond1(DRG), cond2(DRG)
cond1(DRG) :- drugDisease(DRG,”Depression”)
cond2(DRG) :- drugName(DRG),

not drug_gene(DRG,”ACYP1”).

Expressivity of Representation
ASP features rich, expressive formalisms (for example,
the support of recursive definitions and negation as
failure), and efficient solvers that support special syn-
tactic constructs (for example, aggregates and opti-
mization statements).

For instance, in Gebser et al. (2011), candidates for
minimal inconsistent components in an influence

Articles

62 AI MAGAZINE

Figure 4. The Most Plausible Phylogeny Reconstructed for Indo-European Languages.

Proto-
Indo-Iranian

Proto-
Balto-Slavic

Proto-Greco-
Armenian

Proto-
Germanic

Albanian

Proto-
Italo-Celtic

Proto-
Tocharian

Proto-
Anatolian

graph, where two distinct vertices are not reachable
from each other by a cycle, can be eliminated by the
following constraint:

:- active(U), active(V),
not cycle(U,V), U<V.

where the definition of a cycle requires recursion:
reach(U,V) :- edge(U,V)
reach(U,V) :- edge(U,W),

reach(W,V), vertex(V)
cycle(U,V) :- reach(U,V), reach(V,U), U!=V.

To answer queries like “What are the genes related
to the gene ADRB1 through a gene-gene relation
chain of length at most three?” the auxiliary concept
of reachability of a gene from another gene by means
of a chain of gene-gene interactions is required
(Erdem et al. 2011); this concept can be defined in
ASP recursively as follows:

geneReachable(X,1) :-
geneGene(X,Y), startGene(Y)

geneReachable(X,N+1) :-
geneGene(X,Z), geneReachable(Z,N),
max_chain_length(L), 0 < N, N < L.

Aggregates allow concise and easy-to understand
formulations of problems. According to Le et al.
(2012), we can identify phylogenies by the parsimo-
ny tree length, which is defined by the total number
of characters of its taxa, by the following rules:

parsimonyLength(T,L) :- tree(T),
L = #count {Char: belongsChar(_,Cell,Char),

belongsTU(_,Cell,TU),
representsTU(T,_,TU)}.

Negation as failure is useful to represent defaults
(as seen in the examples of robotics applications) and
the concept of unknown. For instance, we can define
that some drugs’ toxicity is unknown as follows
(Erdem et al. 2011):

unknownToxicityDrug(X) :- drugSynonym(R,X),
not drugToxic(R), not -drugToxic(R).

Industrial ASP Applications
As pointed out in the introduction, the availability of
efficient ASP solvers has recently enabled the imple-
mentation of many advanced ASP applications, not
only in academia but also in industry. In this section,
we briefly overview a number of real-world industri-
al applications of ASP. In particular, we will focus on
ASP applications to e-tourism, workforce manage-
ment, intelligent call routing, and e-medicine that
have been implemented by using the DLV system,
and applications to products and services configura-
tion and decision support systems that have been
implemented by using clasp and Smodels systems.

e-Tourism
ASP has been profitably applied in a couple of appli-
cations arising in the tourism industry. In the fol-
lowing, we overview an ASP-based application that
has been integrated into an e-tourism portal and
implements an intelligent advisor that selects the

most promising offers for customers of a travel
agency (Ricca et al. 2010). The goal is to devise a tool
that helps the employees of a travel agency in find-
ing the best possible travel solution in a short time.
It can be seen as a mediator system that finds the best
match between the offers of the tour operators and
the requests of the tourists. The system improves the
business of the travel agency by reducing the time
needed to single out and sell the touristic offers, and
increases the level of customer satisfaction by sug-
gesting the offers that best match the user profile. By
analyzing the touristic domain in cooperation with
the staff of a travel agency, a knowledge base has
been specified that models the key entities that
describe the process of organizing and selling a com-
plete holiday package. In this framework, ASP has
been first used as the intelligent engine of a seman-
tic-based information extractor (Manna, Scarcello,
and Leone 2011), which analyzes the text files
describing the touristic offers, extracts the relevant
information (for example, place, date, prize), and
classifies them in an ontology. But the main usage of
ASP in this application has been for developing sev-
eral search modules that simplify the task of selecting
the holiday packages that best fit the customer needs.
As an example, we report (a simplified version of) a
logic program that creates a selection of holiday
packages in figure 5.

Input predicate askFor(TripKind,Period) specifies
the kind of trip requested by the customer and the
period she or he wants to travel. Predicate touristi-
cOffer(Offer, Place) specifies, for each touristic offer
available at the travel agency, what place it refers
to. Predicates placeOffer(Place, TripKind) and badPeri-
od(Place, Period) are derived by other modules of the
knowledge base and define, respectively, the places
that are appropriate for a kind of trip, and the peri-
ods that should be avoided for a place (for example,
because of bad weather). The first two rules select,
respectively, possible places (that is, the ones that
offer the kind of holiday requested by the customer),

Articles

FALL 2016 63

Figure 5. A Program That Creates a Selection of Holiday Packages.

%detect possible and suggested places
possiblePlace(Place) :- askFor(TripKind,_),
 placeOffer(Place, TripKind).
suggestPlace(Place) :- possiblePlace(Place),
 askFor(_,Period),
 suggestedPeriod(Place, Period),
 not badPeriod(Place, Period).
%select packages to suggest to the user
suggestOffer(O) :- touristicOffer(O, Place),
 suggestPlace(Place).

and places to be suggested (because they offer the
required kind of holiday in the specified period). The
last rule selects, within the available holiday pack-
ages, the ones that offer a holiday that matches the
original input (possible offer). This is one of the sev-
eral reasoning modules that have been devised for
implementing the intelligent search and integrated
in the e-tourism portal (Ricca et al. 2010).

Workforce Management
An interesting ASP application has been developed in
the framework of the efficient management of
employees of the Gioia Tauro seaport — the largest
transhipment port of the Mediterranean sea. The
problem that this application has dealt with is a form
of work force management problem. It amounts to
computing a suitable allocation of the available per-
sonnel of the seaport such that cargo ships mooring
in the port are properly handled. To accomplish this
task, several constraints have to be satisfied. An
appropriate number of employees, providing several
different skills, is required, depending on the size and
load of the cargo ships. Moreover, the way an
employee is selected and the specific role she will
play in the team (each employee is able to cover sev-
eral roles according to her skills) are subject to many
conditions (for example, fair distribution of the
working load, turnover of heavy or dangerous roles,
employees’ contract rules, and so on). To cope with
this crucial problem ASP has been exploited for
developing a team builder. First of all, the input —
the employees and their skills — was modeled by the
predicate hasSkill(employee, skillName). The specifica-
tion of a shift for which a team needs to be allocated

was modeled by predicate shift(id, date, duration), the
skills necessary for a certain shift by neededSkill(shift,
skill), weekly statistics that specify, for each employ-
ee, the last allocation date per skill by predicate
wstat(employee, skill, lastTime), employees excluded
due to a management decision by excluded(shift,
employee), absent employees by predicate absent(day,
employee), and total amount of working hours in the
week per employee by predicate workedHours(employ-
ee,weekHours). A simplified version of the program
computing teams is shown in figure 6.4

The first rule is disjunctive. It generates the search
space by guessing the assignment of a number of
available employees to the shift in the appropriate
roles. Absent or excluded employees, together with
employees exceeding the maximum number of week-
ly working hours, are automatically discarded. Then,
inadmissible solutions are discarded by means of four
integrity constraints: the first constraint discards
assignments with a wrong number of employees for
some skill; the second one avoids that an employee
covers two roles in the same shift; the third imple-
ments the turnover of roles; and the fourth con-
straint guarantees a fair distribution of the workload.
Note that only the kernel part of the employed logic
program is reported here (in a simplified form), and
many other constraints were developed, tuned, and
tested.

The user interface allows for modifying manually
computed teams, and the system is able to verify
whether the manually modified team still satisfies the
constraints. In case of errors, causes are outlined and
suggestions for fixing a problem are proposed. for
example, if no team that satisfies all constraints can
be generated, then the system suggests that the user
relax some constraints. In this application, the pure
declarative nature of the language allowed for refin-
ing and tuning both problem specifications and ASP
programs while interacting with the stakeholders of
the seaport. The system, developed by a spin-off com-
pany of the University of Calabria called Exeura s.r.l,
has been used by the company ICO BLG, an auto-
mobile logistics firm in the seaport of Gioia Tauro.
Further details can be found in Ricca et al. (2012).

Intelligent Call Routing
Contact centers are used by many organizations to
provide remote assistance to a variety of services.
Their front ends are flooded by a huge number of
telephone calls every day. In this scenario the ability
to route customers automatically to the most appro-
priate service brings a two-fold advantage: improved
quality of service and reduction of costs.

The company Exeura developed a platform for cus-
tomer profiling for phone-call routing based on ASP
that is called zLog.5

The key idea is to classify customer profiles and try
to anticipate their actual needs for creating a person-
alized experience of customer care service. Call-cen-

Articles

64 AI MAGAZINE

Figure 6. A Program for Computing Teams.

assign(E,Sh,Sk) | nAssign(E,Sh,Sk) :-
 hasSkill(E,Sk), employee(E,_),
 shift(Sh,Day,Dur), not absent(Day,E),
 not excluded(Sh,E),
 neededSkill(Sh,Sk),
 workedHours(E,Wh), Wh+Dur<36.
:- shift(Sh,_,_),
 neededEmployee(Sh,Sk,EmpNum),
 #count{E: assign(E,Sh,Sk)}!=EmpNum.
:- assign(E,Sh,Sk1), assign(E,Sh,Sk2),
 Sk1!=Sk2.
:- wstats(E1,Sk,LastTime1),
 wstats(E2,Sk,LastTime2),
 LastTime1>LastTime2, assign(E1,Sh,Sk),
 not assign(E2,Sh,Sk).
:- workedHours(E1,Wh1), workedHours(E2,Wh2),
 threshold(Tr), Wh1+Tr<Wh2,
 assign(E1,Sh,Sk), not assign(E2,Sh,Sk).

ter operators can define customer categories, but it is
very likely that these employees may not have the
competence for defining categories with a tradition-
al programming language. Thus, the definition of
customer categories is carried out through a user-
friendly visual interface (see figure 7) that allows one
to specify and modify categories. Once a new catego-
ry has been defined, zLog automatically generates an
ASP program that provides its logical encoding and
that can be executed by DLV over the database to
populate the category. A category’s definition criteria
include customer behavioral aspects, such as recent
history of contacts (for example, telephone calls to
the contact center, messages sent to customer assis-
tance) or basic customer demographics (for example,
age, residence). The latter is useful, for instance, in
case of natural disasters, or type of contract. When a
customer calls the call center, she or he is automati-
cally assigned to a category (based on his or her pro-
file) and then routed to an appropriate human oper-
ator or automatic responder.

Telecom Italia employs the zLog platform in a pro-
duction system that handles its call centers. Every
day, more than 1 million telephone calls asking for
diagnostic services reach the call centers of Telecom
Italia. The needs are to optimize the operator assign-
ment process, in order to reduce the average call

response time, and to improve customer support
quality. The zLog platform can detect the customer
category in less than 100 milliseconds (starting from
her or his telephone number) and manage more than
400 calls per second. As a result, zLog enables huge
time savings for more than 1 million daily calls.

e-Medicine
Medical knowledge bases, resulting from the integra-
tion of several different databases, often present
errors and anomalies that severely limit their useful-
ness. ASP has been successfully employed in this con-
text. In particular, a multisource data-cleaning sys-
tem, based on ASP and called DLVCleaner, has been
realized, which detects and automatically corrects
both syntactic and semantic anomalies in medical
knowledge bases (Leone and Ricca 2015), based on
ontological domain descriptions and measures for
string similarities (Greco and Terracina 2013). DLV-
Cleaner automatically generates ASP programs that
are able to identify and possibly correct errors with-
in the medical data. DLVCleaner has been employed
to clean up the data stored in the tumor registries of
the Calabria region, integrating information from
several local health-care centers, including public
hospitals, private health-care centers, family doctors,
and others. The main input table consisted of

Articles

FALL 2016 65

Figure 7. A Visual Definition of Customer Categories in zLog.

1,000,000 tuples collecting records from 155 munic-
ipalities, whereas the dictionary stored about 15,000
tuples. DLVCleaner recognized that almost 50 per-
cent of input tuples were wrong. Moreover, 72 per-
cent of the wrong tuples were automatically correct-
ed by DLVCleaner, which for an additional 26
percent of the tuples suggested multiple corrections
to be evaluated by the user. Only 2 percent of input
tuples have been detected as wrong and not
repairable.

By using ASP in this application, a simplified and
flexible specification of the logic of the data-cleaning
task is obtained.

Configuration and Reconfiguration of
Products and Services
One of the first industrial applications of ASP (using
the ASP solver Smodels) was for product configura-
tion (Tiihonen, Soininen, and Sulonen 2003), used
by Variantum Oy. The most recent configuration and
reconfiguration applications have been carried out
by the group of Gerhard Friedrich at Alpen-Adria
Universität Klagenfurt, Austria, and deployed by
Siemens.

In particular, ASP has been applied (with the ASP
solver clasp) for the configuration of railway safety
systems in order to compute the connection struc-
ture between sensors, indicators, and communica-
tion units. The task of this part of a railway safety sys-
tem is to detect objects that entered but did not leave
a section, thus blocking a track. It turned out that
this configuration problem is NP-hard and is chal-
lenging for the state-of-the-art problem-solving
frameworks, that is, SAT, CSP, MIP, and ASP
(Aschinger et al. 2011). However, by applying ASP it
was possible to solve configuration problems that
could not be solved by specialized configuration
tools.

Besides configuration, the reconfiguration of prod-
ucts and services plays an important role in practice.
In many areas of configurable systems where the cus-
tomer requirements change, the configured system is
also subject to adaptations. ASP is applied to model
the possible changes of existing systems and to com-
pute reconfiguration solutions that optimize the
adaptation actions. for example, maximize the num-
ber of reused modules and minimize the costs of
additional equipment (Friedrich et al. 2011).

In addition to configuration tasks, ASP was applied
to diagnose and repair systems. Friedrich et al. (2010)
describe a system that computes repair plans for
faulty workflow instances employing ASP. Given the
workflow structure, a set of possible repair actions,
and a workflow instance where an exception was trig-
gered, a contingency plan is generated such that after
the execution of this plan a correct completion of the
workflow instances is achieved.

Decision Support Systems
ASP has been used by United Space Alliance to check
correctness of plans and find plans for the operation
of the reaction control system (RCS) of the space
shuttle (Nogueira et al. 2001) (as briefly discussed in
example 2). The RCS is the shuttle’s system mainly
for maneuvering the aircraft while it is in space. The
RCS is computer controlled during takeoff and land-
ing. While in orbit, however, astronauts have the pri-
mary control. During normal shuttle operations,
there are prescripted plans that tell the astronauts
what should be done to achieve certain goals. The sit-
uation changes when there are failures in the system.
The number of possible sets of failures is too large to
preplan for all of them. Meanwhile, RCS consists of
fuel and oxidizer tanks, valves, and other plumbing
to provide propellant to the maneuvering jets of the
shuttle, and it consists of electronic circuitry to con-
trol the valves in the fuel lines and to prepare the jets
to receive firing commands. The actions of flipping
switches have many ramifications on the states of
valves, and thus this application domain presents the
further challenges of the ramification problem.
Thanks to the expressivity of ASP in representing
dynamic systems and handling the ramification
problem (as explained in example 2), an intelligent
system has been implemented using ASP with the
ASP solver Smodels to verify and generate such pre-
plans.

Some Challenges Addressed
by ASP in Industrial Applications
To deal with industrial applications, ASP has to
address various software engineering challenges.
Thanks to its powerful and expressive framework,
using ASP-based software development provides
many advantages, such as flexibility, readability,
extensibility, and ease of maintenance. Indeed, the
possibility of modifying complex reasoning tasks by
simply editing a text file with the ASP rules, and test-
ing it on-site together with the customer, has been
often a great advantage of ASP-based development.
This aspect of ASP-based software development was a
success reason especially for the workforce-manage-
ment application, where the high complexity of the
requirements was a main obstacle, and the availabil-
ity of an executable specification language, like ASP,
allowed clarifying and formalizing the requirements
much more quickly together with the customer.

Realizing complex features of an application in
such a way also brings about advantages of lower
(implementation) costs, compared to traditional
imperative languages.

Another challenge in industrial applications is
computational efficiency. Fortunately, ASP solvers
implement optimization techniques to handle such
challenges. For instance, in the Intelligent call-rout-
ing application, an immediate response has to be giv-
en to queries over huge data sets. Thanks to the avail-

Articles

66 AI MAGAZINE

ability of the Magic Set optimization
technique (Alviano et al. 2012), DLV
can localize the computation to the
small fragment of the database that is
relevant for the specific query at hand;
using this optimization technique
leads to a tremendous speedup of the
computation.

Conclusion
We have discussed some applications of
ASP in knowledge representation and
reasoning, robotics, and bioinformatics
and computational biology as well as
some industrial applications. In these
applications, ASP addresses various
challenges. For instance, representation
of defaults to handle exceptions and
the commonsense law of inertia to be
able to reason about the effects of
actions are some of the important chal-
lenges in knowledge representation
and reasoning. Hybrid reasoning, rea-
soning about commonsense knowl-
edge and exceptions, optimizations
over plans or diagnoses are some of the
important challenges addressed by ASP
in robotic applications. Provability of
formulation of computational prob-
lems, expressing sophisticated concepts
that require recursion and/or aggre-
gates, and integration of heterogeneous
knowledge are some of the important
challenges addressed by ASP in bioin-
formatics and computational biology.
Similar challenges are also addressed in
industrial applications, such as data
cleaning, extraction of relevant knowl-
edge from large databases, and soft-
ware-engineering challenges. Thanks
to the expressive declarative languages
of ASP that support default negation,
aggregates, recursion, external atoms,
consistency restoring rules and opti-
mization statements, the presence of
theoretical results that help for analysis
of ASP formulations, and the sophisti-
cated methods (like Magic Sets) imple-
mented in the ASP solvers to improve
computational efficiency, these chal-
lenges can be addressed by ASP.

Acknowledgements
Thanks to Gerhard Brewka, Francesco
Calimeri, Wolfgang Faber, Martin Geb-
ser, Tomi Janhunen, Volkan Patoglu,
Simona Perri, Enrico Pontelli,
Francesco Ricca, Torsten Schaub, Tran

Son, and Mirek Truszczyński for their
comments on an earlier draft of this
article. The work of Esra Erdem is par-
tially supported by TUBITAK Grants
111E116 and 114E491 (Chist-Era
COACHES). The work of Nicola Leone
is partially supported by the Italian
Ministry of University and Research
under PON project Ba2Know (Business
Analytics to Know) Service Innovation
- LAB, No. PON03PE 00001 1.

Notes
1. Available at www.dropbox.com/s/
pe261e4qi6bcyyh/aspAppTable.pdf?dl=0.

2. The definition of a program also includes
the fourth component — a preference rela-
tion on sets of cr-rules. In what follows, we
assume that a set with the smaller number of
rules is preferred to that with the larger one.

3. www.mat.unical.it/aspcomp2013/files/AS
P-CORE-2.03c .pdf

4. The full version makes use of sophisticat-
ed constructs, like weak constraints and
more complex aggregates (Alviano and
Leone 2015).

5. www.exeura.eu/en/solution/customer-
profiling.

References
Alviano, M., and Leone, N. 2015. Complex-
ity and Compilation of GZ-Aggregates in
Answer Set Programming. Theory and Prac-
tice of Logic Programming 15(4–5): 574–587.
dx.doi.org/10.1017/S147106841500023X

Alviano, M.; Faber, W.; Greco, G.; and
Leone, N. 2012. Magic Sets for Disjunctive
Datalog Programs. Artificial Intelligence 187:
156–192. dx.doi.org/10.1016/j.artint.2012.
04.008

Aschinger, M.; Drescher, C.; Friedrich, G.;
Gottlob, G.; Jeavons, P.; Ryabokon, A.; and
Thorstensen, E. 2011. Optimization Meth-
ods for the Partner Units Problem. In Inte-
gration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization
Problems: 8th International Conference,
CPAIOR 2011, Lecture Notes in Computer
Science 6697, 4–19. Berlin: Springer.
dx.doi.org/10.1007/978-3-642-21311-3_4

Balduccini, M., and Gelfond, M. 2003. Log-
ic Programs with Consistency-Restoring
Rules. In Logical Formalization of Com-
monsense Reasoning: Papers from the 2003
AAAI Spring Symposium, Technical Report
SS-03-05, 9–18. Menlo Park, CA: AAAI Press.

Baral, C.; Gelfond, M.; and Rushton, J. N.
2009. Probabilistic Reasoning with Answer
Sets. Theory and Practice of Logic Program-
ming 9(1): 57–144. dx.doi.org/10.1017/S147
1068408003645

Articles

FALL 2016 67

Brooks, D. R.; Erdem, E.; Erdogan, S. T.;
Minett, J. W.; and Ringe, D. 2007. Inferring
Phylogenetic Trees Using Answer Set Pro-
gramming. Journal of Automated Reasoning
39(4): 471–511. dx.doi.org/10.1007/s10817-
007-9082-1

Chen, X.; Ji, J.; Jiang, J.; Jin, G.; Wang, F.;
and Xie, J. 2010. Developing High-Level
Cognitive Functions for Service Robots. In
Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2010), 989–996. Richland, SC:
International Foundation on Autonomous
Agents and Multiagent Systems.

Dovier, A.; Formisano, A.; and Pontelli, E.
2009. An Empirical Study of Constraint
Logic Programming and Answer Set Pro-
gramming Solutions of Combinatorial
Problems. Journal of Experimental and Theo-
retical Artificial Intelligence 21(2): 79–121.
dx.doi.org/10.1080/09528130701538174

Eiter, T.; Ianni, G.; Schindlauer, R.; and
Tompits, H. 2006. Effective Integration of
Declarative Rules with External Evaluations
for Semantic-Web Reasoning. In Proceedings
of the Semantic Web: Research and Applica-
tions, 3rd European Semantic Web Conference,
ESWC 2006, Lecture Notes in Computer Sci-
ence 4011. Berlin: Springer. dx.doi.org/10.
1007/s11370-012-0119-x

Erdem, E.; Aker, E.; and Patoglu, V. 2012.
Answer Set Programming for Collaborative
Housekeeping Robotics: Representation,
Reasoning, and Execution. Intelligent Service
Robotics 5(4): 275–291. dx.doi.org/10.1017/
S1471068413000598

Erdem, E., and Oztok, U. 2015. Generating
Explanations for Biomedical Queries. Theo-
ry and Practice of Logic Programming
15(1):35–78. dx.doi.org/10.1017/S14710
68413000598

Erdem, E., and Türe, F. 2008. Efficient Hap-
lotype Inference with Answer Set Program-
ming. In Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence,
436–441. Menlo Park, CA: AAAI Press.

Erdem, E.; Erdem, Y.; Erdogan, H.; and
Öztok, U. 2011. Finding Answers and Gen-
erating Explanations for Complex Biomed-
ical Queries. In Proceedings of the Twenty-
Fifth AAAI Conference on Artificial
Intelligence. Palo Alto, CA: AAAI Press.

Erdem, E.; Lifschitz, V.; and Ringe, D. 2006.
Temporal Phylogenetic Networks and Logic
Programming. Theory and Practice of Logic
Programming 6(5): 539–558. dx.doi.org/10.
1017/S1471068406002729

Erdem, E.; Patoglu, V.; and Saribatur, Z. G.
2015. Integrating Hybrid Diagnostic Rea-
soning in Plan Execution Monitoring for
Cognitive Factories with Multiple Robots.
In Proceedings of the IEEE International Con-
ference on Robotics and Automation, ICRA
2015, 2007–2013. Piscataway, NJ: Institute

of Multiple Movable Objects on Cluttered
Surfaces: A Hybrid Reasoning Approach. In
Proceedings of the 2014 IEEE International
Conference on Robotics and Automation, ICRA
2014, 445–452. Piscataway, NJ: Institute for
Electrical and Electronics Engineers.
dx.doi.org/ 10.1109/icra.2014.6906894

Hayes, P. J., and McCarthy, J. 1969. Some
Philosophical Problems from the Stand-
point of Artificial Intelligence. In Machine
Intelligence 4 ed. B. Meltzer and D. Michie.
Edinburgh: Edinburgh University Press.
463–502.

Le, T.; Nguyen, H.; Pontelli, E.; and Son, T. C.
2012. ASP at work: An ASP Implementation
of Phylows. In Technical Communications
of the 28th International Conference on
Logic Programming, ICLP 2012, 359–369.
Saarbrücken, German: Schloss Dagstuhl –
Leibniz-Zentrum fuer Informatik.

Leone, N., and Ricca, F. 2015. Answer Set
Programming: A Tour from the Basics to
Advanced Development Tools and Industri-
al Applications. Tutorial Lecture presented
at Reasoning Web — Web Logic Rules: 11th
International Summer School 2015, Berlin,
Germany, July 31 - August 4.

Liu, H., and Singh, P. 2004. ConceptNet: A
Practical Commonsense Reasoning Toolkit.
BT Technology Journal 22(4): 211–226.
dx.doi.org/10.1023/B:BTTJ.0000047600
.4421.6d

Manna, M.; Scarcello, F.; and Leone, N.
2011. On the Complexity of Regular-Gram-
mars with Integer Attributes. Journal of Com-
puter and Systems Sciences International 77(2):
393–421.

McCarthy, J. 1990. Formalization of Common
Sense, Papers by John McCarthy, edited by V.
Lifschitz. Norwood, NJ: Ablex.

Nogueira, M.; Balduccini, M.; Gelfond, M.;
Watson, R.; and Barry, M. 2001. An A-Prolog
Decision Support System for the Space Shut-
tle. In Practical Aspects of Declarative Lan-
guages, Third International Symposium, PADL
2001. Lecture Notes in Computer Science
1990, 169–183. Berlin: Springer.

Ricca, F.; Dimasi, A.; Grasso, G.; Ielpa, S. M.;
Iiritano, S.; Manna, M.; and Leone, N. 2010.
A Logic-Based System for E-Tourism. Funda-
menta Informatica 105(1–2): 35–55. dx.doi.
org/10.1017/S147106841100007X

Ricca, F.; Grasso, G.; Alviano, M.; Manna, M.;
Lio, V.; Iiritano, S.; and Leone, N. 2012.
Team-Building with Answer Set Program-
ming in the Gioia-Tauro Seaport. Theory and
Practice of Logic Programming 12(3): 361–381.

Shanahan, M. 1997. Solving the Frame Prob-
lem: A Mathematical Investigation of the Com-
monsense Law of Inertia. Cambridge, MA:
The MIT Press.

Tiihonen, J.; Soininen, T.; and Sulonen, R.
2003. A Practical Tool for Mass-Customising

Configurable Products. In Proceedings of the
14th International Conference on Engineering
Design, 1290–1299. Edinburgh, UK: The
Design Society.

Tran, N., and Baral, C. 2009. Hypothesizing
about Signaling Networks. Journal of Applied
Logic 7(3): 253–274. dx.doi.org/10.1016/j.
jal.2008.10.001

Zhang, S.; Sridharan, M.; and Wyatt, J. L.
2015. Mixed Logical Inference and Proba-
bilistic Planning for Robots in Unreliable
Worlds. IEEE Transactions on Robotics 31(3):
699–713. dx.doi.org/10.1109/TRO.2015.
2422531

Zhang, S.; Sridharan, M.; Gelfond, M.; and
Wyatt, J. L. 2014. Towards an Architecture
For Knowledge Representation and Reason-
ing in Robotics. In Social Robotics: 6th Inter-
national Conference, ICSR 2014. Lecture
Notes in Computer Science 8755, 400–410.
Berlin: Springer. dx.doi.org/10.1007/978-3-
319-11973-1_41

Esra Erdem is an associate professor in
computer science and engineering at Saban-
ci University. She received her Ph.D. in
computer sciences at the University of Texas
at Austin (2002) and carried out postdoc-
toral research at the University of Toronto
and Vienna University of Technology from
2002 to 2006. Her research is about the
mathematical foundations of knowledge
representation and reasoning and their
applications to cognitive robotics and com-
putational biology.

Michael Gelfond is a professor of computer
science at Texas Tech University. He received
his Ph.D. from the Institute of Mathematics
of the Russian Academy of Sciences, St.
Petersburg in 1974.Gelfond contributed to
the development of the stable model/answer
set semantics of logic programming and the
answer set programming paradigm, which is
founded on the stable model semantics. He
is a fellow of the AAAI and recipient of three
Test of Time awards from the International
Association of Logic Programming.

Nicola Leone is a professor of computer sci-
ence at the University of Calabria, where he
heads the Department of Mathematics and
Computer Science and leads the AI Lab. Until
2000 was a professor of database systems at
Vienna University of Technology. He is inter-
nationally renowned for his research on
knowledge representation, answer set pro-
gramming, and database theory, and for the
development of DLV, a state-of-the-art ASP
system. He published more than 250 papers
in prestigious conferences and journals, and
has more than 8000 citations, with h-index
46. He is a fellow of ECCAI (now EurAI) and
recipient of an ACM Test of Time award.

for Electrical and Electronics Engineers.
dx.doi.org/10.1109/ICRA.2015.7139461

Erdem, E.; Patoglu, V.; Saribatur, Z. G.;
Schüller, P.; and Uras, T. 2013. Finding Opti-
mal Plans for Multiple Teams of Robots
Through a Mediator: A Logic-Based
Approach. Theory and Practice of Logic Pro-
gramming 13(4-5): 831–846. dx.doi.org/10.
1017/S1471068413000525

Friedrich, G.; Fugini, M.; Mussi, E.; Pernici,
B.; and Tagni, G. 2010. Exception Handling
for Repair in Service-Based Processes. IEEE
Transactions on Software Engineering 36(2):
198–215. dx.doi.org/10.1109/TSE.2010.8

Friedrich, G.; Ryabokon, A.; Falkner, A. A.;
Haselböck, A.; Schenner, G.; and Schreiner,
H. 2011. (Re)Configuration Based on Model
Generation. Paper presented at the Second
Workshop on Logics for Component Con-
figuration, Perugia, Italy, 12 September.
dx.doi.org/10.4204/eptcs.65.3

Gebser, M.; Guziolowski, C.; Ivanchev, M.;
Schaub, T.; Siegel, A.; Thiele, S.; and Veber,
P. 2010. Repair and Prediction (Under
Inconsistency) in Large Biological Networks
with Answer Set Programming. In Principles
of Knowledge Representation and Reasoning:
Proceedings of the Twelfth International Con-
ference. Menlo Park, CA: AAAI Press.

Gebser, M.; Schaub, T.; Thiele, S.; and Veber,
P. 2011. Detecting Inconsistencies in Large
Biological Networks with Answer Set Pro-
gramming. Theory and Practice of Logic Pro-
gramming 11(2): 1–38. dx.doi.org/10.1017/
s1471068410000554

Gelfond, M., and Kahl, Y. 2014. Knowledge
Representation, Reasoning, and the Design of
Intelligent Agents: The Answer-Set Program-
ming Approach. New York: Cambridge Uni-
versity Press. dx.doi.org/10.1017/CBO978
1139342124

Gelfond, M., and Lifschitz, V. 1988. The Sta-
ble Model Semantics for Logic Program-
ming. In Logic Programming, Proceedings of
the Fifth International Conference and Sympo-
sium, 1070–1080. Cambridge, MA: The MIT
Press.

Gelfond, M., and Lifschitz, V. 1991. Classi-
cal Negation in Logic Programs and Dis-
junctive Databases. New Generation Comput-
ing 9(3/4): 365–385. dx.doi.org/10.1007/
BF0303 7169

Gelfond, M., and Lifschitz, V. 1998. Action
Languages. Electronic Transactions on Artifi-
cial Intelligence, ETAI 2(3–4): 193–210.

Greco, G., and Terracina, G. 2013. Frequen-
cy-Based Similarity for Parameterized
Sequences: Formal Framework, Algorithms,
and Applications. Information Sciences
237(July): 176–195. dx.doi.org/10.1016/j.
ins.2013.03.016

Havur, G.; Ozbilgin, G.; Erdem, E.; and
Patoglu, V. 2014. Geometric Rearrangement

Articles

68 AI MAGAZINE

