
Lower Bound Founded Logic of Here-and-There: A Preliminary Report

Pedro Cabalar
University of Corunna, Spain

cabalar@udc.es

Jorge Fandinno
University of Toulouse, France

jorge.fandinno@irit.fr

Torsten Schaub and Sebastian Schellhorn
University of Potsdam, Germany

{torsten, seschell}@cs.uni-potsdam.de

Abstract

A distinguishing feature of Answer Set Programming is that
all atoms belonging to a stable model must be founded. That
is, an atom must not only be true but provably true. This
can be made precise by means of the constructive logic of
Here-and-There, whose equilibrium models correspond to
stable models. One way to look at foundedness is to regard
Boolean truth values as ordered by letting true be greater than
false. Then, each Boolean variable takes the smallest truth
values that can be proven for it. This idea was generalized by
Aziz to ordered domains and applied to constraint satisfaction
problems. As before, the idea is that a, say integer, variable
gets only assigned to the smallest integer that can be justified.
In this paper, we present a logical reconstruction of Aziz’ idea
in the setting of the logic of Here-and-There. More precisely,
we start by defining the logic of Here-and-There with lower
bound founded variables along with its equilibrium models and
elaborate upon their formal properties. We then define a logic
program fragment dealing with linear constraints over integers
and analyze it in terms of concepts from logic programming.
Finally, we compare our approach with related ones and sketch
future work.

1 Motivation
A distinguishing feature of Answer Set Programming (ASP ;
Baral 2003) is that all atoms belonging to a stable model must
be founded. That is, an atom must not only be true but prov-
ably true. This can be made precise by means of the construc-
tive logic of Here-and-There (HT ; Heyting 1930), whose
equilibrium models correspond to stable models (Pearce
2006). One way to look at foundedness is to regard Boolean
truth values as ordered by letting true be greater than false.
Then, each Boolean variable takes the smallest truth values
that can be proven for it. This idea was generalized in (Aziz
2015) to ordered domains and applied to constraint satis-
faction problems. As before, the idea is that a, say integer,
variable gets only assigned to the smallest integer that can be
justified. We refer to this idea by calling it foundedness.

The literature of ASP contains several approaches deal-
ing with atoms containing variables over non-Boolean do-
mains, among them (Baselice, Bonatti, and Gelfond 2005),
(Janhunen et al. 2017) and (Cabalar et al. 2016), but these

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approaches do not address foundedness in our sense. For in-
stance, Constraint ASP (CASP) approaches like (Baselice,
Bonatti, and Gelfond 2005) allow atoms with variables over
non-Boolean domains in the body of a rule only. Thus, these
atoms and the values of non-Boolean variables cannot be
founded in terms of ASP .

Approaches like (Janhunen et al. 2017) and (Cabalar et
al. 2016) allow any kind of atoms in heads and bodies. This
allows atoms with variables over non-Boolean domains to be
founded but their variables are not necessarily assigned to the
smallest value that can be justified. Since in the approach of
(Cabalar et al. 2016) atoms are founded and defaults are pos-
sible, one could think about to use defaults or minimization
to achieve foundedness. For instance, x = 3 ← ¬(x 6= 3)
assigns value 3 to x by default. If we add fact x = 1, then
we deactivate the default and assign value 1 to x. Similarly,
x ≥ 0 ← ¬(x < 0) assigns some arbitrary value greater
or equal than 0 by default. However, assigning a minimal
value by default cannot be done by rules as the above. To
point out the difference of foundedness and founded atoms,
the following examples illustrate that minimizing assigned
values does not restore foundedness either. Consider the rules
x ≥ 0 y ≥ 0 x ≥ 42← y < 42 (1)

The approach of (Cabalar et al. 2016) leads to solutions that
assign values greater or equal than 42 to x and values greater
or equal than 0 to y or vice versa, respectively. Thus, the two
solutions with minimal values assign 42 to x and 0 to y and
the other way around. Note that only the first one respects
foundedness, since there is no reason to assign a value greater
than 0 to y. Now, consider the rules

x ≥ 1 x ≥ 42← ¬(x ≤ 1) (2)
We expect two solutions in terms of foundedness. One as-
signs the value 1 to x and the other assigns value 42 to x,
since a value greater than 1 forces the derivation of value 42.
In general, the rules of (2) give us no reason to derive a value
greater than 42. In contrast, the approach presented in (Ca-
balar et al. 2016) yield an intuitive understanding assigning
value 1 or a value greater or equal than 42 to x. That is, the
corresponding solution with the minimal value assigned to
x assigns 1 to x. The second equally founded solution is not
obtained.

The existing approach regarding foundedness of (Aziz
2015) behaves counter intuitive. For instance, consider rule

p ← ¬p. Then, Aziz’ approach yields a solution where p
holds instead of no solution as expected in terms of ASP .
To this end, we present in the following a logical reconstruc-
tion of Aziz’ idea of foundedness in the setting of the logic
of Here-and-There. More precisely, we start by defining the
logic of Here-and-There with lower bound founded variables,
short HTLB , along with its equilibrium models. We elaborate
upon the formal properties of HTLB regarding persistence,
negation and strong equivalence. Furthermore, we point out
the relation of HTLB to HT , and show that our approach
corresponds to a straightforward extension of Ferraris’ stable
model semantics (Ferraris 2005). We then define a logic pro-
gram fragment dealing with linear constraints over integers
and analyze it in terms of concepts from logic programming.
Finally, we compare our approach with related ones, to point
out the benefits of HTLB and sketch future work.

2 Background
Let A be the set of propositional atoms. A formula ϕ is a
combination of atoms by logical connectives ⊥, ∧, ∨, and
←. As usual, we define > def= ⊥ → ⊥ and ¬ϕ def= ϕ→ ⊥. A
theory is a set of formulas.

We denote an interpretation over A by I ⊆ A and an HT -
interpretation over A by 〈H ,T 〉 where H ⊆ T ⊆ A are
interpretations. Since we want to abstract from the specific
form of atoms in the following sections, we rely upon deno-
tations for fixing their semantics. A denotation of atoms inA
is a function J · KA : A → 2A mapping atoms in A to sets of
interpretations over A. Accordingly, J p KA def= {I | p ∈ I }
represents the sets of interpretations where atom p holds.

With it, we next define satisfaction of formulas in HT .

Definition 1 Let 〈H ,T 〉 be an HT -interpretation over A
and ϕ a propositional formula overA. Then, 〈H ,T 〉 satisfies
ϕ, written 〈H ,T 〉 |= ϕ, if the following conditions hold:

1. 〈H ,T 〉 6|= ⊥
2. 〈H ,T 〉 |= p iff H ∈ J p KA for propositional atom p ∈ A
3. 〈H ,T 〉 |= ϕ1 ∧ ϕ2 iff 〈H ,T 〉 |= ϕ1 and 〈H ,T 〉 |= ϕ2

4. 〈H ,T 〉 |= ϕ1 ∨ ϕ2 iff 〈H ,T 〉 |= ϕ1 or 〈H ,T 〉 |= ϕ2

5. 〈H ,T 〉 |= ϕ1 → ϕ2 iff 〈I ,T 〉 6|= ϕ1 or 〈I ,T 〉 |= ϕ2 for
both I ∈ {H ,T}

As usual, we call 〈H ,T 〉 an HT -model of a theory Γ, if
〈H ,T 〉 |= ϕ for all ϕ in Γ. The usual definition of HT satis-
faction (cf. Pearce 2006) is obtained by replacing Condition 2
above by

2’. 〈H ,T 〉 |= p iff p ∈ H for propositional atom p ∈ A
It is easy to see that both definitions of HT satisfaction
coincide.

Proposition 1 Let 〈H ,T 〉 be an HT -interpretation and ϕ
a formula over A. Then, 〈H ,T 〉 |= ϕ iff 〈H ,T 〉 |= ϕ by
replacing Condition 2 by 2’.

As usual, an equilibrium model of a theory Γ is a (total) HT -
interpretation 〈T ,T 〉 such that 〈T ,T 〉 |= Γ and there is no
H ⊂ T such that 〈H ,T 〉 |= Γ.

3 Lower Bound Founded Logic of
Here-and-There

In what follows, we introduce the logic of Here-and-There
with lower bound founded variables, short HTLB and elab-
orate on some formal properties regarding satisfaction. We
discuss the relation of complements of atoms regarding nega-
tion and we point out the relation between HTLB and HT as
well as a straightforward extension of Ferraris’ stable model
semantics.

3.1 HTLB and its Properties
The language of HTLB is defined over a set of atoms AX
comprising variables, X , and constants over an ordered do-
main (D,�). For simplicity, we assume that each element
of D is uniquely represented by a constant and abuse nota-
tion by using D to refer to the set of constants. Similarly,
we identify � with its syntactic representative. The specific
syntax of atoms is left open but assumed to refer to elements
of X and D. The only requirement is that we assume that
an atom depends on a distinguished subset of variables of
X . An atoms can be understood to hold or not once all vari-
ables depending on it are substituted by domain elements.
Intuitively, variables not occurring in an atom are understood
as irrelevant for the atom evaluation. Examples of ordered
domains are ({0, 1, 2, 3},≥) and (Z,≥), respectively; cor-
responding atoms are x ≥ 42 and x = y. A formula ϕ
is a propositional combination of atoms and logical con-
nectives ⊥,∧,∨,→. As usual, we define > def= ⊥ → ⊥
and ¬ϕ def= ϕ → ⊥. A theory is a set of formulas. For in-
stance, ‘y < 42 ∧ ¬(x = y) → x ≥ 42’ is a formula. Let
vars(ϕ) ⊆ X be the set of variables and atoms(ϕ) ⊆ AX
the atoms occurring in a formula ϕ.

For capturing partiality, we introduce a special do-
main element u, standing for undefined, and extend (D,�
) to (Du,�u) where Du

def= D ∪ {u} and �u
def=

� ∪{(c,u) | c ∈ D}. With it, we define a (partial) valua-
tion over X ,D as a function v : X → Du mapping each
variable to a domain value or undefined. For comparing valu-
ations by set-based means, we alternatively represent them by
subsets of X ×D. Basically, any function v is a set of pairs
(x, c) such that v(x) = c for c ∈ D. In addition, we view a
pair (x, c) as x � c and add its downward closure (x↓c) def=
{(x, d) | c, d ∈ D, c � d}. Given this, a valuation v is repre-
sented by the set

⋃
v(x)=c,x∈X (x↓c).1 As an example, con-

sider variables x and y over domain ({0, 1, 2, 3}∪ {u},≥u).
The valuation v = {x 7→ 2, y 7→ 0} can be represented by
v = (x ↓ 2) ∪ (y ↓ 0) = {(x, 0), (x, 1), (x, 2), (y, 0)}. Then,
v ′ = {x 7→ 1, y 7→ u}, viz. {(x, 0), (x, 1)} in set notation,
can be regarded as “smaller” than v because v ′ ⊆ v . The
comparison of two valuations v and v ′ by their set-based
means using ⊆ amounts to a twofold comparison. That is, v
and v ′ are compared regarding the occurrence of variables
and their particular values wrt �. We let VX ,D stand for the
set of valuations over X and D.

We define the satisfaction of formulas over AX wrt atom
denotations over X ,D, which are functions J · KX ,D : AX →

1Note that (x↓u) = ∅, since u 6∈ D.

2VX ,D mapping atoms to sets of valuations. Let a be an
atom of AX and J a KX ,D its denotation. Then, J a KX ,D is
the set of valuations v so that a holds. Since a depends
on variables vars(a) ⊆ X , we have for each v ∈ J a K
and valuation v ′ with v(x) = v ′(x) for x ∈ vars(a) that
v ′ ∈ J a K. Intuitively, values of X \ vars(a) can vary freely
without changing the membership of a valuation to J a K.
For simplicity, we drop indices X ,D whenever clear from
context.

For instance, interpreting the atoms x ≥ 42, 42 ≥ 0 and
0 ≥ 42 over (Z,≥) yields the following denotations:

Jx ≥ 42 K def= {v | v(x) ≥ 42}
J 42 ≥ 0 K def= V

J 0 ≥ 42 K def= ∅.

In particular, Jx ≥ 42 K is the set of valuations where x is
assigned to a value greater or equal than 42 and all variables
in X \ vars(x ≥ 42) take any value of Du, eg (x ↓ 45)
and (x ↓ 45) ∪ (y ↓ 0) for y ∈ X \ vars(x ≥ 42) are
possible valuations. Interestingly, atoms like x � x with
Jx � x K = {v | v(x) 6= u} force variables to be defined
over D per definition of �. A valuation v is defined for a set
of variables Y ⊆ X if v(x) 6= u for all x ∈ Y .

We define an HTLB-valuation over X ,D as a pair 〈h, t〉
of valuations over X ,D with h ⊆ t . We define satisfaction
of a formula wrt an HTLB-valuation as follows.

Definition 2 Let 〈h, t〉 be an HTLB-valuation over X ,D
and ϕ be a formula overAX . Then, 〈h, t〉 satisfies ϕ, written
〈h, t〉 |= ϕ, if the following holds:

1. 〈h, t〉 6|= ⊥
2. 〈h, t〉 |= a iff v ∈ J a KX ,D for atom a ∈ AX and for both

v ∈ {h, t}
3. 〈h, t〉 |= ϕ1 ∧ ϕ2 iff 〈h, t〉 |= ϕ1 and 〈h, t〉 |= ϕ2

4. 〈h, t〉 |= ϕ1 ∨ ϕ2 iff 〈h, t〉 |= ϕ1 or 〈h, t〉 |= ϕ2

5. 〈h, t〉 |= ϕ1 → ϕ2 iff 〈v , t〉 6|= ϕ1 or 〈v , t〉 |= ϕ2 for both
v ∈ {h, t}

As usual, we call 〈h, t〉 an HTLB-model of a theory Γ, if
〈h, t〉 |= ϕ for all ϕ in Γ. For a simple example, consider
the theory containing atom x ≥ 42 only. Then, every HTLB-
valuation 〈h, t〉 with h, t ∈ Jx ≥ 42 K is an HTLB-model of
x ≥ 42. Note that, different to HT , satisfaction of atoms in
HTLB forces satisfaction in both h and t , instead of h only.
We discuss this in detail in Section 3.4.

Our first result shows that the characteristic properties of
persistence and negation hold as well when basing satisfac-
tion on valuations and denotations.

Proposition 2 Let 〈h, t〉 and 〈t , t〉 be HTLB-valuations
over X ,D, and ϕ be a formula over AX . Then,

1. 〈h, t〉 |= ϕ implies 〈t , t〉 |= ϕ, and
2. 〈h, t〉 |= ϕ→ ⊥ iff 〈t , t〉 6|= ϕ.

Persistence implies that all atoms satisfied by 〈h, t〉 are also
satisfied by 〈t , t〉. To make this precise, let At(〈h, t〉) def=
{a ∈ AX | h ∈ J a K and t ∈ J a K} be the set of atoms
satisfied by 〈h, t〉.

Proposition 3 Let 〈h, t〉 and 〈t , t〉 be HTLB-valuations
over X ,D. Then, At(〈h, t〉) ⊆ At(〈t , t〉)

Finally, we define an equilibrium model in HTLB .

Definition 3 An HTLB-valuation 〈t , t〉 over X ,D is an
HTLB-equilibrium model of a theory Γ iff 〈t , t〉 |= Γ and
there is no h ⊂ t such that 〈h, t〉 |= Γ.

We refer an HTLB-equilibrium model 〈t , t〉 of Γ as an HTLB-
stable model t of Γ. Let us reconsider the theory containing
atom x ≥ 42 only. Then, t = (x ↓ 42) is an HTLB-stable
model of x ≥ 42, since t ∈ Jx ≥ 42 K and there is no h ⊂ t
with h ∈ Jx ≥ 42 K. In contrast, neither HTLB-model 〈t ′, t ′〉
with t ′ = (x ↓ 42) ∪ (y ↓ 0) nor 〈t ′′, t ′′〉 with t ′′ = (x ↓ 53)
are HTLB-stable models since t is a proper subset of both
and 〈t , t ′〉 |= x ≥ 42 as well as 〈t , t ′′〉 |= x ≥ 42 holds.
Hence, HTLB-stable models make sure that each variable is
assigned to its smallest founded value and does not take any
value of possible valuations of corresponding denotations.

Note that HTLB-equilibrium models induce the non-
monotonic counterpart of the monotonic logic of HTLB . Fol-
lowing well-known patterns, we show that HTLB allows us
to decide strong equivalence wrt HTLB-equilibrium models.

Proposition 4 (Strong Equivalence) Let Γ1, Γ2 and Γ be
theories over AX . Then, theories Γ1 ∪ Γ and Γ2 ∪ Γ have
the same HTLB-stable models for every theory Γ iff Γ1 and
Γ2 have the same HTLB-models.

The idea is to prove the if direction by proving its con-
traposition, and the only if direction by proving its straight-
forward implication. The contraposition assumes that there
exists an HTLB-valuation that satisfies Γ1 but not Γ2 which
implies that the stable models of Γ1 ∪ Γ and Γ2 ∪ Γ do
not coincide. There are two cases to construct Γ in a way
that Γ1 ∪ Γ has a stable model which is not a stable model
of Γ2 ∪ Γ and the other way around, respectively. Let us
consider an example to illustrate the idea of the construc-
tion of Γ. Let h = (x ↓ 0) and t = (x ↓ 2) ∪ (y ↓ 0) be
HTLB-valuation over {x, y}, {0, 1, 2, 3} with 〈h, t〉 |= Γ1

and 〈h, t〉 6|= Γ2. For the first case assume that 〈t , t〉 6|= Γ2.
Since t cannot be a model of Γ2 ∪ Γ by assumption, we con-
struct Γ in a way that t is a stable model of Γ1∪Γ. Hence, let
Γ = {z � c | (z, c) ∈ t} = {x � 0, x � 1, x � 2, y � 0}
be the theory with the only stable model t . By persistence of
〈h, t〉 wrt Γ1 and construction of Γ we get that t is a stable
model of Γ1 ∪ Γ but not of Γ2 ∪ Γ. For the second case we
assume that 〈t , t〉 |= Γ2. Now we construct Γ in a way that
t is a stable model of Γ2 ∪ Γ but not of Γ1 ∪ Γ. By assump-
tion we have that 〈h, t〉 |= Γ1 and 〈h, t〉 6|= Γ2 as well as
〈t , t〉 |= Γ2, thus we want to have 〈h, t〉 and 〈v , v ′〉 with
t ⊆ v ⊆ v ′ as the only models of Γ. Hence, let Γ = Γ′ ∪ Γ′′

with Γ′ = {z � c | (z, c) ∈ h} = {x � 0} the theory
that is satisfied by everything that is greater or equal than h ,
and Γ′′ = {z � t(z) → z′ � t(z′), z � c → z � t(z) |
(z, c), (z, t(z)), (z′, t(z′)) ∈ t \ h, z 6= z′} = {x � 2 →
y � 0, y � 0→ x � 2, x � 1→ x � 2, x � 2→ x � 2}
the theory which derives values of t for each v ′′ with
h ⊂ v ′′ ⊂ t . Since 〈h, t〉 6|= Γ2 and by construction of
Γ we get that t is a stable model of Γ2 ∪ Γ but not of Γ1 ∪ Γ.

3.2 Negation in HTLB

In the following, we elaborate on complements of atoms
and its relation to negation, since AX may contain atoms
like x ≥ 42 and x < 42. Intuitively, one could expect that
the strong negation of an atom holds whenever the atom
itself does not hold. This can be easily expressed by defining
the complement of valuations of an atom denotation. More
formally, we characterize the complement a of atom a by its
denotation J a K def= 2V \ J a K.

To illustrate that the simple complement of an atom is
not sufficient to yield something similar to strong negation
let us take a closer look on propositional atoms in HTLB .
For mimicking Boolean truth values, we consider the do-
main ({t, f}, {t � f}). Then, the denotation of propositional
atoms in HTLB can be defined as follows: J p = t KA,{t,f}

def=
{v | v(p) = t} and J p = f KA,{t,f}

def= {v | v(p) = f}. Note
that p = t and p = f are regarded as strong negations of each
other, as in standard case (Gelfond and Lifschitz 1990); its
weak negations are given by ¬(p = t) and ¬(p = f), respec-
tively. For instance, the complement p = t is characterized by
denotation J p = t K = 2V\J p = t K = {v | v(p) 6= t}. Note
that this complement allows valuations v with v(p) = u,
which does not match p = f .

To this end, we define another complement to exclude as-
signing value undefined to variables of the atom. First, we de-
fine a denotation J a K of an atom a as strict if each v ∈ J a K
is defined for vars(a). Then, we characterize the strict com-
plement as of atom a by the strict denotation J as K def=
2V \ (J a K ∪ {v | v(x) = u for some x ∈ vars(a)}). In-
formally, the strict complement of an atom holds whenever
all variables are defined and the atom itself does not hold.
That is, atoms p = f and p = t are strict complements of
each other.

More generally, an atom with strict denotation and its strict
complement can be regarded as being strongly negated to
each other. For instance, consider atom x ≥ 42 and its strict
denotation Jx ≥ 42 K = {v | v(x) ≥ 42}. Then, its strict
complement x ≥ 42

s is defined by Jx ≥ 42
s K = {v | u 6=

v(x) < 42}. As in the Boolean case, the strict complement
x ≥ 42

s can be seen as the strong negation of x ≥ 42.
To make the relation of complements and negation precise,

let us define entailments. A theory (or a single formula) Γ
over AX entails a formula ϕ over AX , written Γ |= ϕ, when
all HTLB-models of Γ are HTLB-models of ϕ. Then, we
have the following result.
Proposition 5 Let a be an atom over AX , and a and as its
complement and its strict complement over AX , respectively.
Then, as |= a and a |= ¬a .
This implies that the strict complement as of an atom a im-
plies its negation ¬a , just as strong negation implies weak
negation in the standard case (Pearce 2006). To illustrate that
in general the negation of an atom does not entail its com-
plement (¬a 6|= a), let us consider atom x ≤ 42 with strict
denotation Jx ≤ 42 K = {v | u 6= v(x) ≤ 42}. Then, the
complement x ≤ 42 is defined by denotation Jx ≤ 42 K =
2V \ Jx ≤ 42 K = {v | v(x) = u or v(x) > 42}. For
valuations h = (x ↓ 42) and t = (x ↓ 50) we have that
〈h, t〉 |= ¬(x ≤ 42) since (x↓50) 6∈ Jx ≤ 42 K. In contrast,

〈h, t〉 |= x ≤ 42 does not hold, since (x ↓ 42) 6∈ Jx ≤ 42 K.
Thus, the complement a of an atom a can be seen as a kind
of negation in between of strong and weak negation.

3.3 HTLB versus HT
Analogously to (Cabalar et al. 2016), we next show that HT
can be seen as a special case of HTLB .

Note that both types of denotations J p KA and J p =
t KA,{t} of a propositional atom p collect interpretations and
valuations assigning true to p, respectively. To this end, we
define a transformation τ relating each propositional atom
p with corresponding atom p = t by τ(p) def= p = t. Let Γ
be a propositional theory, then τ(Γ) is obtained by substi-
tuting each p ∈ atoms(Γ) by τ(p). Moreover, we extend τ
to interpretations I by τ(I) def= {(p, t) | p ∈ I } to obtain a
corresponding valuation over A, {t}. The next proposition
establishes that HT can be seen as a special case of HTLB .
Proposition 6 Let Γ be a theory over propositional atoms
A and 〈H ,T 〉 an HT -interpretation over A. Let τ(Γ) be a
theory over atoms {p = t | p ∈ A} and 〈τ(H), τ(T)〉
an HTLB-valuation over A, {t}. Then, 〈H ,T 〉 |= Γ iff
〈τ(H), τ(T)〉 |= τ(Γ).
This can be generalized to any arbitrary singleton domain
{d} and corresponding atoms p = d and the relationship still
holds.

We obtain the following results relating HTLB and HT :
Proposition 7 Let Γ be a theory over AX and 〈h, t〉 an
HTLB-model of Γ over X ,D. Then, 〈At(〈h, t〉),At(〈t , t〉)〉
is an HT -model of Γ over AX .
That is, the collected atoms satisfied by an HTLB-model of
Γ can be seen as an HT -model of Γ by interpreting AX
as propositional atoms. For instance, consider the theory
containing only atom x 6= y and its denotation Jx 6= y K def=
{v | u 6= v(x) 6= v(y) 6= u}. Let h = (x↓0) ∪ (y ↓4) and
t = (x↓0) ∪ (y ↓42) be valuations and hence At(〈h, t〉) =
At(〈t , t〉) = {x 6= y} interpretations. Then, 〈h, t〉 |= x 6= y
in HTLB and 〈At(〈h, t〉),At(〈t , t〉)〉 |= x 6= y in HT .

Furthermore, we relate tautologies in HT and HTLB .
Proposition 8 Let ϕ be a tautology overA and ϕ′ a formula
over AX obtained by replacing all atoms in ϕ by atoms of
AX . Then, ϕ′ is a tautology in HTLB .
That is, tautologies in HT are independent of any form of
atoms.

3.4 HTLB-stable versus Ferraris-style stable
models

As mentioned, in Definition 2 satisfaction of atoms differs
from HT by forcing satisfaction in both h and t , instead of
h only. This is necessary to satisfy persistence in HTLB . In
fact, let HTLB-valuation 〈h, t〉 satisfy atom a in AX , and
by persistence HTLB-valuation 〈t , t〉 satisfies a as well, but
not necessarily each HTLB-valuation 〈v , t〉 with h ⊂ v ⊂ t
satisfies a . For instance, consider atom x 6= 42 with Jx 6=
42 K def= {v | u 6= v(x) 6= 42}. Let h = (x ↓ 0) and t =
(x ↓ 53) be valuations. Then, 〈h, t〉 |= x 6= 42 and 〈t , t〉 |=
x 6= 42, but for v = (x ↓ 42) with h ⊂ v ⊂ t we have
〈v , t〉 6|= x 6= 42.

A question that arises now from the above is whether
HTLB behaves as expected in terms of stable models se-
mantics. To this end, we give a straightforward definition
of classical satisfaction and of the reduct put by Ferraris in
(Ferraris 2005) in our setting and show that equilibrium mod-
els correspond to stable models according to the resulting
Ferraris’-like stable model semantics. We define the counter-
part of classical satisfaction as follows.
Definition 4 Let t be a valuation overX ,D and ϕ a formula
overAX . Then, t satisfies ϕ, written t |=cl ϕ, if the following
holds:

1. t 6|=cl ⊥
2. t |=cl a iff t ∈ J a KX ,D for atom a ∈ AX
3. t |=cl ϕ1 ∧ ϕ2 iff t |=cl ϕ1 and t |=cl ϕ2

4. t |=cl ϕ1 ∨ ϕ2 iff t |=cl ϕ1 or t |=cl ϕ2

5. t |=cl ϕ1 → ϕ2 iff t 6|=cl ϕ1 or t |=cl ϕ2.

We call t a classical model of a theory Γ, if t |=cl ϕ for all
ϕ in Γ. We define a Ferraris-like reduct, short F-reduct, wrt
atoms AX as follows.
Definition 5 Let ϕ be a formula over AX and t a valuation
over X ,D. Then, the F-reduct of ϕ over t , written ϕt , is
given by

ϕt def=

⊥ if t 6|=cl ϕ

a if t |=cl ϕ and ϕ = a atom of AX
ϕ1

t ⊗ ϕ2
t if t |=cl ϕ and ϕ = (ϕ1 ⊗ ϕ2)

for ⊗ ∈ {∧,∨,→}

For theory Γ and HTLB-valuation t , we define Γt def= {ϕt |
ϕ ∈ Γ}. Note that in case of propositional atoms the F-
reduct corresponds to Ferraris’ reduct. We define an F-stable
model as expected according to classical satisfaction and the
F-reduct above.
Definition 6 A valuation t over X ,D is an F-stable model
of theory Γ over AX iff t |=cl Γt and there is no h ⊂ t such
that h |=cl Γt .

The next propositions shows that models in HTLB can be
alternatively characterized in the style of Ferraris, rephrasing
(Ferraris 2005, Lemma 1):
Proposition 9 Let 〈h, t〉 be an HTLB-valuation over X ,D
and Γ a theory over AX . Then, h |=cl Γt iff 〈h, t〉 |= Γ.

As a special case, we obtain that every HTLB-stable model
corresponds to an F-stable model and vice versa.
Corollary 1 Let t be a valuation over X ,D and Γ a theory
over AX . Then, t is an HTLB-stable model of Γ iff t is an
F-stable model of Γ.

The last two results have shown that our logic follows well
known patterns wrt different representations of stable models.

4 Bound Founded Programs with Linear
Constraints

In this section, we focus on atoms representing linear con-
straints over integers and analyze them in terms of concepts
known from ASP . Due to space limitations, we present

proofs and some preliminaries needed for the following re-
sults in an extended version of this work. We illustrate the
modelling capabilities of this fragment of HTLB on an exam-
ple of error diagnosis.

4.1 Programs and its Properties
Reconsider the ordered domain of integers (Z,≥). We define
a linear constraint atom as

m∑
i=1

wixi ≺ k

where wi, k ∈ Z are constants, xi ∈ X are distinct variables,
and≺∈ {≥,≤, 6=,=}2 is a binary relation. ByLX we denote
the set of linear constraint atoms wrtX and Z. The denotation
of a linear constraint atom is given by

J
m∑
i=1

wixi ≺ k K def= {v |
m∑
i=1

wiv(xi) ≺ k, v(xi) 6= u}.

A linear constraint atom a and its negation ¬a are called
linear constraint literals. In the following, we just say atoms
and literals.

We define logic programs as follows.
Definition 7 A formula over LX is called a rule if it is of
form

a1 ∨ · · · ∨ an ← l1 ∧ · · · ∧ ln′ (3)

where ai is an atom for 1 ≤ i ≤ n and lj is a literal for
1 ≤ j ≤ n′ both over LX .
A logic program is a theory of rules of form (3). Following
logic programming syntax, we use ‘,’ and ‘;’ as alternative
representations of ∧ and ∨, respectively. Moreover, in this
context we write ϕ1 ← ϕ2 for ϕ2 → ϕ1 for formulas ϕ1

and ϕ2. Examples of programs over LX are given in the
introduction.

Let r be a rule of form (3). Then, we define by head (r) def=
{ai | 1 ≤ i ≤ n} and body (r) def= {lj | 1 ≤ j ≤ n′} the set
of literals of the left and right hand side of r, respectively.
Whenever body (r) = ∅, then we drop← and call r fact. If
head (r) = ∅ we write ⊥ ← l1, . . . , ln′ . Rules of latter form
are called integrity constraints; they eliminate all models sat-
isfying their body. The following result is related to integrity
constraints.
Proposition 10 Let P be a program over LX containing a
rule of form a ← ¬a and for each HTLB-stable model v of
P \ {a ← ¬a} over X ,Z we have that 〈v , v〉 6|= a .

Then, P has no HTLB-stable model.
This proposition seems to be trivial, but we show in Section 5
that Aziz’ original approach does not satisfy this property.

In basic ASP , normal programs are of special interest,
since their stable models are subset minimal.3 In the follow-
ing, we define and study normal programs in terms of HTLB .

2As usual, w1x1,+ · · · + wnxn < k and w1x1,+ · · · +
wnxn > k can be expressed by w1x1,+ · · · + wnxn ≤ k − 1
and w1x1,+ · · ·+ wnxn ≥ k + 1, respectively.

3The fact that stable models are subset minimal is also known
as anti-chain property.

Similar to ASP , we force the conclusion of normal rules to be
not ambiguous, thus forbidding for instance disjunctive heads.
We restrict heads to include exactly one atom and additionally
exactly one variable as well. For instance, let P be a program
consisting of fact x + y ≥ 42 over {x, y},Z only. Then, P
has infinitely many stable models {v | v(x) + v(y) = 42},
eg (x↓0) ∪ (y↓42) and (x↓42) ∪ (y↓0). Hence, P should
not be a normal program.

To illustrate that it is not enough to restrict heads for
defining normal programs, let us reconsider program P with
rules (2) of the introduction. Then, P has stable models (x↓1)
and (x ↓ 42). Let us take a closer look on how to get them.
First, we note that v1 = (x ↓ 1) and v2 = (x ↓ 42) are can-
didates of stable models, since both satisfy P . It is easy to
see that there is no v ′ ⊂ v1 with v ′ ∈ Jx ≥ 1 K and hence
v1 is a stable model of P . Furthermore, consider valuation
v ′′ ⊂ v2. Then, 〈v ′′, v2〉 |= x ≥ 42 ← ¬x ≤ 1 iff either
both v ′′ ∈ Jx ≥ 42 K and v2 ∈ Jx ≥ 42 K or v2 ∈ Jx ≤ 1 K
holds. This boils down to v ′′ ∈ Jx ≥ 42 K, which implies that
v ′′ ⊂ v2 is contradicted. That is, v2 is a stable model as well
and (x↓1) ⊂ (x↓42) holds. Hence, the stable models of P
are not subset minimal, P should not be a normal program.

The issue shown in the previous example arises, due to the
monotonicity of atoms. We define an atom a as monotonic
(resp. anti-monotonic) wrt variable x if v ∈ J a K implies v ′ ∈
J a K for every valuation v ′ with v ⊆ v ′ (resp. v ′ ⊆ v with
v ′(x) 6= u), where v(y) = v ′(y) for all y ∈ vars(a) \ {x}.4
We define an atom a as monotonic (resp. anti-monotonic)
if it is monotonic (resp. anti-monotonic) wrt all variables
in vars(a), and non-monotonic otherwise. Analogously, a
program P is monotonic (resp. anti-monotonic) if all atoms
occurring in it are monotonic (resp. anti-monotonic). We
call a program P directed if no atom in it is non-monotonic.
For instance, atom x ≥ 42 is monotonic, y < 42 is anti-
monotonic, and x − y ≥ 42 is non-monotonic, since x is
monotonic and y is anti-monotonic, respectively.

Thus, we define normal programs as follows.

Definition 8 A rule over LX is normal if it is of form

a0 ← a1, . . . , an,¬an+1, . . . ,¬an′ (4)

where |vars(a0)| = 1 and each atom ai is monotonic for
n+ 1 ≤ i ≤ n′.
A normal program is a set of rules of form (4). As the program
in (2) illustrates, programs containing rule bodies with not
monotonic atoms in the scope of negation, like ¬x ≤ 1, may
lead to stable models which are not subset minimal. As in
ASP , we have that stable models of normal programs are
subset minimal.

Proposition 11 Let P be a normal program over LX . Then,
each HTLB-stable model of P over X ,Z is subset minimal.

To elaborate more on the influence of atomic monotonicity
on programs, let us consider the following example. Let P
be a directed program, in which no atom occurs in the scope

4Note that our definition of monotonicity of atoms differs from
Aziz’ ones (Aziz 2015), due to different concepts of valuations.

of negation:

x ≥ 0 x ≥ 42← y < 42

y ≥ 0 y ≥ 42← x < 42

Then, P has the two stable models (x ↓ 42) ∪ (y ↓ 0) and
(x ↓ 0) ∪ (y ↓ 42). Compare this with the ASP program
{a ← ¬b. b ← ¬a.} formulating an “even loop” yielding
stable models {a} and {b}. Both programs behave similarly,
since assigning x (or y) to 42 disables the foundedness of
42 for y (or x) in the same way as assigning a (or b) to true
disables the foundedness of true for b (or a). That is, not
monotonic atoms implicitly involve negation.

The previous example motivates us to define positive pro-
grams. To this end, we first define the positive and nega-
tive body of a rule. Let r be a normal rule of form (4),
then we define the positive body of r as body+(r) def=
{ai | 1 ≤ i ≤ n, ai monotonic} and its negative body as
body−(r) def= body (r)\body+(r), respectively. That is, atoms
like x < 42 not occurring in the scope of negation belong to
the negative body, since they are not monotonic.

Then, we define positive programs as follows.

Definition 9 A normal rule r over LX is positive if head (r)
is monotonic and body−(r) = ∅.
A positive program is a set of positive rules.

The following result shows that a positive program has a
unique stable model, just as in ASP (Apt, Blair, and Walker
1987).

Proposition 12 Let P be a positive program over LX . Then,
P has exactly one HTLB-stable model over X ,Z.

The proof follows the well-known idea of applying a fix point
calculation using a continuous and monotonic operator.

In ASP , a program is stratified if it is free of recursion
through negation (Apt, Blair, and Walker 1987), also referred
to “negative loops”. This idea remains the same in case of
HTLB . Note that we drop in this work the preliminaries
needed for the following results, due to space limitations.
That is, we give the definitions of dependency graph, loop,
stratification and splitting set in terms of HTLB in an ex-
tended work of this version.

The next results generalize the calculation of a stable
model to stratified programs.

Proposition 13 Let P be a stratified program over LX with
monotonic heads only. Then, P has exactly one HTLB-stable
model over X ,Z.

Interestingly, allowing not monotonic atoms in the head may
eliminate stable models but it does not produce further stable
models. That is, if we drop the additional condition on heads,
then we can still apply a fix point calculation and get the
following result.

Proposition 14 Let P be a stratified program overLX . Then,
P has at most one HTLB-stable model over X ,Z.

For instance, the program consisting of facts x ≥ 42 and
x < 42 only has no HTLB-stable model.

4.2 Modelling Capabilities
In this section, we go into an example of error diagnosis
to illustrate some modelling features of HTLB in terms of
programs. In particular, the following example illustrates
foundedness and default valuations.

Let N = {1, . . . , n} ⊆ Z be an index set. We represent
events by constants ei and identify them with value i for i in
N . Consider program Perr given by

error ≥
∑
i∈X

ei ←
∧
i∈X

occur(ei) = 1 for all X ⊆ N (5)

occur(e2) = 1← occur(e3) = 1, error ≥ 4 (6)
occur(e4) = 1← temperature ≤ 42 (7)
temperature = 60← ¬temperature 6= 60 (8)

Rules of (5) express that the value of error is greater or equal
than the sum of occurred events.5 The empty sum means that
we have no error and is defined by 0. Rule (6) models the
dependency of event e2 regarding e3 and the comparison if
the value of error is beyond some threshold value 4. If the
value of temperature falls below 42 degrees, then event e4
occurs, modelled by Rule (7). Rule (8) sets the default value
of temperature to 60 degrees.

To illustrate the behaviour of Perr let us consider the spe-
cific instance Ierr containing fact occur(e3) = 1. Then, we
get the single stable model (temperature ↓ 60) ∪ (error ↓
3) ∪ (occur(e3) ↓ 1) of Perr ∪ Ierr . The minimal founded
value of temperature is the default value 60. Since e3 is the
only event that occurs, by (5) we derive error ≥ e3 and thus
the minimal founded value for error is 3.

Let us extend Ierr to I ′err by adding temperature ≥ 42.
Then we get stable models (temperature ↓ 60) ∪ (error ↓
3) ∪ (occur(e3) ↓ 1)) and (temperature ↓ 42) ∪ (error ↓
9) ∪ (occur(e2) ↓ 1) ∪ (occur(e3) ↓ 1) ∪ (occur(e4) ↓ 1)
of Perr ∪ I ′err . Note that for one stable model the default
valuation of temperature is founded and for the other one
not, due to non-monotonic atom temperature 6= 60 in the
scope of negation. Hence, we derive error ≥ e3 and error ≥
e2 + e3 + e4, respectively.

5 Related Work
In this section, we compare HTLB to existing formalisms
from the literature.

5.1 BFASP

First, let us compare HTLB to Aziz’ bound founded ASP
(BFASP ; Aziz 2015), since both share the same motivation
to generalize the idea of foundedness to ordered domains.

Let us point out some differences of both approaches. In
BFASP an arbitrary formula is called constraint and a rule
is defined as a pair of a constraint and a variable called head.
The constraint needs to be increasing wrt its head variable. A
constraint is increasing in one of its variables if the constraint
holds for a substitution of its variables by domain values and

5Note that (5) leads to exponentially many rules; it is also possi-
ble to write this in a more compact way using nested expressions,
what we not do in this work for reasons of simplicity.

it holds for each substitution where the value of the particular
variable is increased and rest stays the same as before. 6 Note
that the definition of increasing is made for constraints and
does not differentiate between the monotonicity of atoms
and logic connectives. In case of atoms Aziz’ definitions of
increasing and ours of monotonic coincide. Stable models
are defined in BFASP via a reduct depending on the mono-
tonicity of constraints wrt their variables and by applying a
fix point operation.

Both, BFASP and HTLB assign variables to their smallest
domain value per default. Interestingly, they differ in their
understanding of smallest domain values. In HTLB , the small-
est domain value is always the value undefined to capture
partiality, whereas in BFASP partiality is not considered if
the value undefined is not explicitly part of a given domain.

However, the value of the head variable is derived by the
constraint even if it contains no implication. For instance, let
Z+
0 be the variable domain of positive integers with 0 and

(x+ y ≥ 42, x) a rule in BFASP . Then, BFASP yields one
stable model assigning x to 42 and y to 0. The value of x is
derived from the value of 42 − y, obtained by the smallest
value of y. The value of y is 0, since y occurs in no head
and the default is the minimal domain value of Z+

0 . This is
different from HTLB where the fact x + y ≥ 42 results in
two stable models (x ↓ 0) ∪ (y ↓ 42) and (x ↓ 42) ∪ (y ↓ 0).
In HTLB , the variables of a fact are treated in an equal way
instead of an implicatory way by declaring one of them as
head.

Now, we show that BFASP does not satisfy the same
well-known properties as HTLB . In particular, BFASP does
not satisfying Proposition 10 in its turn. That is, in BFASP
we may get unintuitive stable models. For instance, consider
ASP rule p← ¬p. This rule has no stable model in ASP and
HTLB , since if p holds then we cannot derive p any more and
if p not holds then we need to derive p. In contrast, BFASP
yields the stable model assigning p to true, since the reduct
will never replace head variables and produce the rule as it is.
Hence, BFASP yields the stable model assigning p to true,
since it is the minimal (and only) model of the rule.

5.2 HTC

Next, we compare our approach to the logic of Here-and-
There with constraints (HTC ; Cabalar et al. 2016).

At first, we note that both are based on HT and capture
theories over (constraint) atoms in a non-monotonic setting
and can easily express default values. The key difference is
that HTLB inherently minimizes valuations wrt foundedness.
This is achieved by additionally comparing valuations wrt
the particular values assigned to the variables. To this end,
we represented valuations as a set of tuples together with
a downward closure regarding the assignments to yield a
comparison of values in a set based mean using standard
subset relation. For instance, consider the fact x ≥ 42 over
{x},Z. Then, for valuations v and v ′ with v(x) = 42 and
v ′(x) = 43 in HTC we have v 6= v ′, whereas in HTLB

we have v ⊆ v ′. Hence, both v and v ′ are stable models

6For more details see (Aziz 2015).

in HTC but only the first one is HTLB-stable model, due to
foundedness.

On a first look, HTLB seems like HTC with value mini-
mization on top. However, this is insufficient, since it does
generally not work for foundedness. Recall program P in (2)
with HTLB-stable models (x ↓ 1) and (x ↓ 42). In contrast,
the minimal stable model in HTC assigns x to 1. This elim-
inates the second HTLB-stable model. Moreover, program
P in (1) has the sole HTLB-stable model (x↓42) ∪ (y ↓0).
Whereas in HTC , we get two stable models with minimal
values: one assigns x to 42 and y to 0, and the other x to 0
and y to 42. That is in general, minimization on top of stable
models in HTC does not yield HTLB-stable models.

However, both HTLB and HTC define atomic satisfaction
in terms of atom denotations. A difference is that in HTC

denotations need to be closed.7 Informally, a denotation is
closed if for each valuation of the denotation every valuation
which is a superset is in the denotation as well. For HTLB

this cannot be maintained, due to the additional comparison
of valuations regarding values. For instance, consider atom
x 6= 42 with Jx 6= 42 K = {v | u 6= v(x) 6= 42} over {x},Z.
Then, valuations v and v ′ with v(x) = 0 and v ′(x) = 99
are part of the denotation, but v ′′ with v ′′(x) = 42 and v ⊆
v ′′ ⊆ v ′ is not. The reason to be closed or not is that v , v ′ and
v ′′ are different in HTC but subsets in HTLB , respectively.

The closure of denotions is significant to satisfy persistence
in HTC . In contrast, in HTLB persistence is maintained by
forcing atomic satisfaction in both h and t , instead of h only
as in HTC . The corresponding benefit is that this allows us
to consider atoms in HTLB which are not allowed in HTC ,
like x .

= y with Jx .
= y K def= {v | v(x) = v(y)} which is not

closed in HTC as well.

5.3 Other Formalisms
ILP Let us compare Integer Linear Programming (ILP ;
Schrijver 1999) with HTLB .

Note that ILP is a monotone theory. Hence, compared to
ASP it is not intuitive to model recursion like reachability
using ILP . For instance, in (Liu, Janhunen, and Niemelä
2012) it is mentioned that it is not easy to represent loop
formulas in ILP which are needed for this purpose.

To overcome this shortcoming, approaches like HTLB and
HTC tried to integrate monotone theories as ILP in a non-
monotonic setting. In other words, these approaches can be
seen as non-monotonic counterparts of ILP which support
an intuitive modelling of reachability and thus recursion, like
in ASP . That is, the benefit of an intuitive modelling is a key
difference of HTLB to ILP .

ASP modulo Theories Now, let us compare HTLB to
ASP modulo Theories approaches like in (Janhunen et al.
2017).

The idea of those approaches is to integrate monotone
theories as linear programming in the non-monotonic setting
of ASP . Informally, the theories are wrapped by ASP.

These approaches extend stable model semantics (Gelfond
and Lifschitz 1991) by following the approach of lazy theory

7Please see (Cabalar et al. 2016) for more details.

solving (Barrett et al. 2009). The idea is that a stable model is
a set of atoms which needs to be valid regarding the underly-
ing theory. Technically, in (Janhunen et al. 2017) a program
over a theory is extended by rules depending on possible as-
signments wrt the theory to determine the stable models. The
assignments for variables are obtained by particular theory
solvers if the atoms are valid in the theory. It is interesting to
note that there are two ways of interpreting atoms which do
not occur in a model: one way is to assume that the opposite
needs to hold and the other way is to let it open.

Similar to HTC , the main difference of ASP modulo The-
ory approaches to HTLB is that atoms are founded but per
definition foundedness regarding values is not achieved for
its comprised variables, since stable models in ASP modulo
Theory rely on any possible valid assignment for variables.

Aggregates Aggregates are extensions of ASP allowing
us to perform set operations like counting and summing on
elements of a respective set. Aggregates can be treated by
translating them into ASP rules. For instance, sum aggre-
gates can be translated by adapting well-known techniques
translating pseudo-Boolean constraints into SAT, cf (Sinz
2005) and (Bomanson and Janhunen 2013).

The syntax of an aggregate is given by f{c1 :ϕ1, . . . , cm :
ϕm} ≺ k, where f is an aggregate symbol, ci, k constants,
ϕi propositional formulas also called conditions with 1 ≤
i ≤ m, and ≺∈ {≤, <,>,≥,=, 6=} a binary relation.

On semantics side, the community comes up with dif-
ferent understandings for aggregates like in (Ferraris 2011;
Gelfond and Zhang 2014; Son and Pontelli 2007). Informally,
a constant belongs to the set if its condition holds. The aggre-
gate holds if the relation holds for all constants that belong
to the set.

Obviously, (sum) aggregates are related to (linear con-
straint) atoms of HTLB . As we will show in an extended
version of this work, aggregates under Ferraris’ semantics
(Ferraris 2011) can be represented by atoms in HTLB . To
this end, we restrict conditions of aggregates to propositional
atoms. Note that this is not a very limiting restriction, since
these atoms can be seen as auxiliaries for arbitrary formulas.

This is interesting, since it means that aggregates are no
longer an extension of an existing approach, instead aggre-
gates under Ferraris’ semantics are now already integrated as
atoms of an approach. Hence, the results shown in this work
allow us to view aggregates in a new setting and give us a
possibly better way to elaborate on their properties like mono-
tonicity. Maybe the view on aggregates as atoms in context of
HTLB helps us to better understand the existing discussion
of different aggregate semantics and their properties.

6 Conclusion
We presented the idea of foundedness for minimal values
of variables over ordered domains in the setting of the logic
of Here-and-There. We elaborated on important properties
like persistence, negation and strong equivalence and showed
that they hold in our approach. Furthermore, we pointed
out that the base logic HT can be seen as a special case of
HTLB . To prove if our approach follows well-known patterns,

we showed that HTLB-stable models correspond to stable
models according to a Ferraris’-like stable model semantics.

To elaborate on our approach in terms of logic program-
ming and modelling, we isolated a fragment dealing with
linear constraints over integers. In this context, we analyzed
the influence of monotonicity of atoms on programs and
concepts like normal, stratified and positive. Moreover, we
illustrated the features of foundedness and defaults with the
example of error diagnosis.

Finally, we compared our approach to related ones and
showed that foundedness is a non-trivial key feature of HTLB .
We showed that HTLB and BFASP have the same starting
motivation but differ in their treatments of undefined and
monotonicity. Furthermore, we pointed out that HTLB can
be seen as non-monotonic counterpart of monotonic theories.
We also mentioned that HTLB offers a new view of aggre-
gates under Ferraris’ semantics as atoms with its correspond-
ing monotonic properties. Thus, aggregates are integrated in
HTLB instead of being an extension of an existing approach.

In an extended version we plan to present a fix point oper-
ator, dependency graph, (odd and even) loops, stratification,
splitting sets, and the relation to aggregates in detail.

References
Apt, K.; Blair, H.; and Walker, A. 1987. Towards a theory
of declarative knowledge. In Minker, J., ed., Foundations
of Deductive Databases and Logic Programming. Morgan
Kaufmann Publishers. chapter 2, 89–148.
Aziz, R. 2015. Answer Set Programming: Founded Bounds
and Model Counting. Ph.D. Dissertation, University of Mel-
bourne.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
Barrett, C.; Sebastiani, R.; Seshia, S.; and Tinelli, C. 2009.
Satisfiability modulo theories. In Biere, A.; Heule, M.; van
Maaren, H.; and Walsh, T., eds., Handbook of Satisfiabil-
ity, volume 185 of Frontiers in Artificial Intelligence and
Applications. IOS Press. chapter 26, 825–885.
Baselice, S.; Bonatti, P.; and Gelfond, M. 2005. Towards an
integration of answer set and constraint solving. In Gabbrielli,
M., and Gupta, G., eds., Proceedings of the Twenty-first In-
ternational Conference on Logic Programming (ICLP’05),
volume 3668 of Lecture Notes in Computer Science, 52–66.
Springer-Verlag.
Bomanson, J., and Janhunen, T. 2013. Normalizing car-
dinality rules using merging and sorting constructions. In
Cabalar, P., and Son, T., eds., Proceedings of the Twelfth
International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’13), volume 8148 of Lecture
Notes in Artificial Intelligence, 187–199. Springer-Verlag.
Cabalar, P.; Kaminski, R.; Ostrowski, M.; and Schaub, T.
2016. An ASP semantics for default reasoning with con-
straints. In Kambhampati, R., ed., Proceedings of the Twenty-
fifth International Joint Conference on Artificial Intelligence
(IJCAI’16), 1015–1021. IJCAI/AAAI Press.
Ferraris, P. 2005. Answer sets for propositional theories.
In Baral, C.; Greco, G.; Leone, N.; and Terracina, G., eds.,

Proceedings of the Eighth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05),
volume 3662 of Lecture Notes in Artificial Intelligence, 119–
131. Springer-Verlag.
Ferraris, P. 2011. Logic programs with propositional connec-
tives and aggregates. ACM Transactions on Computational
Logic 12(4):25.
Gelfond, M., and Lifschitz, V. 1990. Logic programs with
classical negation. In Warren, D., and Szeredi, P., eds., Pro-
ceedings of the Seventh International Conference on Logic
Programming (ICLP’90), 579–597. MIT Press.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in
logic programs and disjunctive databases. New Generation
Computing 9:365–385.
Gelfond, M., and Zhang, Y. 2014. Vicious circle principle
and logic programs with aggregates. Theory and Practice of
Logic Programming 14(4-5):587–601.
Heyting, A. 1930. Die formalen Regeln der intuitionistis-
chen Logik. In Sitzungsberichte der Preussischen Akademie
der Wissenschaften. Deutsche Akademie der Wissenschaften
zu Berlin. 42–56. Reprint in Logik-Texte: Kommentierte
Auswahl zur Geschichte der Modernen Logik, Akademie-
Verlag, 1986.
Janhunen, T.; Kaminski, R.; Ostrowski, M.; Schaub, T.;
Schellhorn, S.; and Wanko, P. 2017. Clingo goes linear
constraints over reals and integers. Theory and Practice of
Logic Programming 17(5-6):872–888.
Liu, G.; Janhunen, T.; and Niemelä, I. 2012. Answer set
programming via mixed integer programming. In Brewka,
G.; Eiter, T.; and McIlraith, S., eds., Proceedings of the Thir-
teenth International Conference on Principles of Knowledge
Representation and Reasoning (KR’12), 32–42. AAAI Press.
Pearce, D. 2006. Equilibrium logic. Annals of Mathematics
and Artificial Intelligence 47(1-2):3–41.
Schrijver, A. 1999. Theory of linear and integer program-
ming. Discrete mathematics and optimization. John Wiley &
sons.
Sinz, C. 2005. Towards an optimal CNF encoding of Boolean
cardinality constraints. In van Beek, P., ed., Proceedings of
the Eleventh International Conference on Principles and
Practice of Constraint Programming (CP’05), volume 3709
of Lecture Notes in Computer Science, 827–831. Springer-
Verlag.
Son, T., and Pontelli, E. 2007. A constructive semantic
characterization of aggregates in answer set programming.
Theory and Practice of Logic Programming 7(3):355–375.

Appendix of Proofs
Proof of Proposition 1 To prove that 〈H ,T 〉 |= ϕ holds
under Definition 1 iff it holds when replacing Condition 2
by 2’ for 〈H ,T 〉 HT -interpretation over A and ϕ a propo-
sitional formula over A, it is enough to prove equivalence
of base cases 2 and 2’, since the rest follows directly by
structural induction. Per definition of denotation we have for
propositional atom p ∈ A that

H ∈ J p KA ⇔ H ∈ {I | p ∈ I } ⇔ p ∈ H

�

Proof of Proposition 2 It is enough to prove the propo-
sition for the base case, since the rest follows directly by
structural induction for each formula over AX . Let 〈h, t〉 an
HTLB-valuation over X ,D and a atom of AX .

First, we prove persistence, represented by 1 of the propo-
sition. We have

〈h, t〉 |= a ⇔ h ∈ J a K∧t ∈ J a K⇒ t ∈ J a K⇔ 〈t , t〉 |= a

Subsequently, we prove negation, represented by 2 of the
proposition. We have
〈h, t〉 |= a → ⊥

⇔ (〈h, t〉 |= ⊥ ∨ 〈h, t〉 6|= a) ∧ (〈t , t〉 |= ⊥ ∨ 〈t , t〉 6|= a)
⇔ 〈h, t〉 6|= a ∧ 〈t , t〉 6|= a
⇔ (h 6∈ J a K ∨ t 6∈ J a K) ∧ (t 6∈ J a K)
⇔ 〈t , t〉 6|= a �

Proof of Proposition 3 For any a ∈ At(〈h, t〉) = {a ∈
AX | h ∈ J a K and t ∈ J a K} we have h ∈ J a K and t ∈
J a K, thus we conclude a ∈ At(〈t , t〉) = {a ∈ AX | t ∈
J a K}. �

Proof of Proposition 4 Let Γ1, Γ2 and Γ be theories over
AX . First, we prove “⇐” of the proposition. For each HTLB-
valuation 〈h, t〉 over X ,D we have 〈h, t〉 |= Γ1 iff 〈h, t〉 |=
Γ2. This implies that 〈h, t〉 |= Γ1 ∪Γ iff 〈h, t〉 |= Γ2 ∪Γ for
any Γ. Hence, Γ1∪Γ and Γ2∪Γ have the same HTLB-stable
models for every Γ.

Secondly, we prove “⇒” by contradiction. Without loss of
generality, assume that 〈h, t〉 is HTLB-valuation over X ,D
with 〈h, t〉 |= Γ1 and 〈h, t〉 6|= Γ2. Then, we differ two cases.

Case 1: Let 〈t , t〉 6|= Γ2. We have 〈h, t〉 |= Γ1 and thus
by persistence (Proposition 2) 〈t , t〉 |= Γ1. Let Γ = {x �
c | (x, c) ∈ t}. Then, 〈t , t〉 |= Γ1 ∪Γ is HTLB-stable model.
But 〈t , t〉 6|= Γ2 ∪ Γ by assumption.

Case 2: Let 〈t , t〉 |= Γ2. Moreover, let Γ = Γ′ ∪ Γ′′ with
Γ′ = {x � c | (x, c) ∈ h} and Γ′′ = {x � t(x) → y �
t(y), x � c → x � t(x) | (x, c), (x, t(x)), (y, t(y)) ∈
t \ h, x 6= y}. Then, 〈t , t〉 |= Γ2 ∪ Γ by assumption and
h ⊆ t . Note there is no v ⊂ t with 〈v , t〉 |= Γ2 ∪ Γ, since
by 〈h, t〉 6|= Γ2 we get that h ⊂ v ⊂ t need to hold, and
thus there exists at least one pair a1, a2 ∈ atoms(Γ′′) with
v ∈ J a1 K and v 6∈ J a2 K. Hence, 〈v , t〉 6|= Γ2 ∪ Γ for h ⊆
v ⊂ t . Thus, 〈t , t〉 is HTLB-stable model of Γ2 ∪ Γ. By
assumption and construction, we have that 〈h, t〉 |= Γ1 and
〈h, t〉 |= Γ′, respectively. Moreover, we have that 〈h, t〉 6|= a
for every a ∈ atoms(Γ′′). Hence, 〈h, t〉 |= Γ′′ and thus
〈h, t〉 |= Γ1∪Γ. Note that since 〈h, t〉 6|= Γ2 and 〈t , t〉 |= Γ2

we have 〈h, t〉 6= 〈t , t〉, which implies that h ⊂ t . Finally,
〈t , t〉 is no HTLB-stable model of Γ1 ∪ Γ. �

Proof of Proposition 5 Let a be an atom over AX , and a
and as its complement and its strict complement over AX ,
respectively.

First, we prove as |= a . For any HTLB-valuation 〈h, t〉
over X ,D we have

〈h, t〉 |= as

⇔ h ∈ J as K ∧ t ∈ J as K with J as K = 2V \ (J a K ∪ {v |
v(x) = u for some x ∈ vars(a)})
⇒ h ∈ 2V \ J a K ∧ t ∈ 2V \ J a K
⇔ 〈h, t〉 |= a

Secondly, we prove a |= ¬a . For any HTLB-valuation
〈h, t〉 over X ,D we have
〈h, t〉 |= a

⇔ h ∈ J a K ∧ t ∈ J a K with J a K = 2V \ J a K
⇔ h 6∈ J a K ∧ t 6∈ J a K
⇒ t 6∈ J a K
Proposition 2 ⇔ 〈h, t〉 |= ¬a �

Proof of Proposition 6 It is enough to prove the propo-
sition for the base case, since the rest follows directly by
structural induction for each theory over A.

Let Γ be a theory over propositional atoms A and 〈H ,T 〉
an HT -interpretation over A. Let τ(Γ) be a theory over
atoms {p = t | p ∈ A} and 〈τ(H), τ(T)〉 an HTLB-
valuation over A, {t}. Then we have
〈H ,T 〉 |= p

⇔ H ∈ J p KA
H⊆T ⇔ H ∈ J p KA ∧ T ∈ J p KA
⇔ τ(H) ∈ J p = t KA,{t} ∧ τ(T) ∈ J p = t KA,{t}
⇔ 〈τ(H), τ(T)〉 |= p = t �

Proof of Proposition 7 It is enough to prove the propo-
sition for the base case, since the rest follows directly by
structural induction for each theory over AX .

First, note that the pair 〈H ,T 〉 over AX with H =
At(〈h, t〉) and T = At(〈t , t〉) is a well formed HT -
interpretation, since H ⊆ T holds by h ⊆ t and Propo-
sition 3. Then we have
〈h, t〉 |= a

⇔ h ∈ J a KX ,D ∧ t ∈ J a KX ,D
⇒ H ∈ J a KAX ∧ T ∈ J a KAX
⇒ 〈H ,T 〉 |= a �

Proof of Proposition 8 Let ϕ over A be an arbitrary tau-
tology in HT . This means that for every HT -interpretation
〈H ,T 〉 over A holds 〈H ,T 〉 |= ϕ. Thus, we conclude that
formula ϕ′ over AX obtained by replacing atoms(ϕ) in ϕ
by atoms of AX , is a tautology as well (for every HTLB-
valuation 〈h, t〉 over X ,D holds 〈h, t〉 |= ϕ′), since the
semantics of the atoms may change the truth value of a single
atom but can not affect the truth of the formula itself. �

Proof of Proposition 9 It is enough to prove the propo-
sition for the base case, since the rest follows directly by
structural induction for each theory over AX .

Let Γ be a theory over AX and 〈h, t〉 an HTLB-valuation
over X ,D. Then, we have

h |=cl a
t

⇔ h |=cl a ∧ t |=cl a
⇔ h ∈ J a K ∧ t ∈ J a K
⇔ 〈h, t〉 |= a �

