
Syntactic ASP Forgetting with Forks

Felicidad Aguado1[0000−0002−4334−9267], Pedro Cabalar1[0000−1111−2222−3333],
Jorge Fandinno2[0000−0002−3917−8717], David Pearce3[0000−0001−7407−326X],

Gilberto Pérez1[0000−0001−6269−6101], and Concepción
Vidal1[0000−0002−5561−6406]

1 University of Corunna, Spain,
{felicidad.aguado,cabalar,gperez,concepcion.vidalm}@udc.es,

2 University of Nebraska at Omaha, NE, USA,
jfandinno@unomaha.edu

3 Universidad Politécnica de Madrid, Spain,
david.pearce@upm.es

Abstract. In this paper, we present a syntactic transformation, called
the unfolding operator, that allows forgetting an atom in a logic program
(under ASP semantics). The main advantage of unfolding is that, unlike
other syntactic operators, it is always applicable and guarantees strong
persistence, that is, the result preserves the same stable models with
respect to any context where the forgotten atom does not occur. The
price for its completeness is that the result is an expression that may
contain the fork operator. Yet, we illustrate how, in some cases, the
application of fork properties may allow us to reduce the fork to a logic
program, even in conditions that could not be treated before using the
syntactic methods in the literature.

Keywords: Answer Set Programming, Equilibrium Logic, Forgetting,
Strong Persistence, Strong Equivalence, Forks

1 Introduction

A common representational technique in Answer Set Programming [13, 15] (ASP)
is the use of auxiliary atoms. Their introduction in a program may be due to
many different reasons, for instance, looking for a simpler reading, providing new
constructions (choice rules, aggregates, transitive closure, etc) or reducing the
corresponding ground program. When a program (or program fragment) Π for
signature AT uses auxiliary atoms A ⊆ AT , they do not have a relevant meaning
outside Π. Accordingly, they are usually removed4 from the final stable models,
so the latter only use atoms in V = AT \A, that is, the relevant or public vocab-
ulary that encodes the solutions to our problem in mind. Thus, when seen from
outside, Π becomes a black box that hides internal atoms from A and provides
solutions in terms of public atoms from V . A reasonable question is whether
we can transform these black boxes into white boxes, that is, whether we can
4 Most ASP solvers allow hiding the extension of some chosen predicates.

reformulate some program Π exclusively in terms of public atoms V , forgetting
the auxiliary ones in A. A forgetting operator f(Π,A) = Π ′ transforms a logic
program Π into a new program Π ′ that does not contain atoms in A but has a
similar behaviour on the public atoms V . Of course, the key point here is the
definition of similarity between Π and Π ′ (relative to V) something that gave
rise to different alternative forgetting operators, further classified in families,
depending on the properties they satisfy – see [9] for an overview. From all this
wide spectrum, however, when our purpose is forgetting auxiliary atoms, simi-
larity can only be understood as preserving the same knowledge for public atoms
in V , and this can be formalised as a very specific property. In particular, both
programs Π and Π ′ = f(Π,A) should not only produce the same stable models
(projected on V) but also keep doing so even if we add a new piece of program ∆
without atoms in A. This property, known as strong persistence, was introduced
in [12] but, later on, [10] proved that it is not always possible to forget A in an
arbitrary program Π under strong persistence. Moreover, [10] also provided a
semantic condition, called Ω, on the models of Π in the logic of Here-and-There
(HT) [11] (the monotonic basis of Equilibrium Logic [16]) so that atoms A are
forgettable in Π iff Ω does not hold. When this happens, their approach can be
used to construct f(Π,A) from the HT models using, for instance, the method
from [5, 7]. Going one step further in this model-based orientation for forgetting,
[1] overcame the limitation of unforgettable sets of atoms at the price of intro-
ducing a new type of disjunction, called fork and represented as ‘|’. To this aim,
[1] defined an HT-based denotational semantics for forks.

Semantic-based forgetting is useful when we are interested in obtaining a
compact representation. For instance, the method from [7] allows obtaining a
minimal logic program from a set of HT-countermodels. However, this is done
at a high computational cost (similar to Boolean function minimisation tech-
niques). When combined with the Ω-condition or, similarly, with the use of
HT-denotations, this method becomes practically unfeasible without the use of
a computer. This may become a problem, for instance, when we try to prove
properties of some new use of auxiliary atoms in a given setting, since one would
expect a human-readable proof rather than resorting to a computer-based ex-
haustive exploration of models. On the other hand, semantic forgetting may eas-
ily produce results that look substantially different from the original program,
even when this is not necessary. For example, if we apply an empty forgetting
f(Π, ∅) strictly under this method, we will usually obtain a different program
Π ′, strongly equivalent to Π, but built up from countermodels of the latter,
possibly having a very different syntactic look.

An alternative and in some sense complementary orientation for forgetting
is the use of syntactic transformations. [12] introduced the first syntactic for-
getting operator, fas, that satisfied strong persistence. This operator forgot a
single atom A = {a} at a time and was applicable, under some conditions, to
non-disjunctive logic programs. More recently, [4] presented a more general syn-
tactic operator fsp, also for a single atom A = {a}, that can be applied to any
arbitrary logic program and satisfies strong persistence when the atom can be

forgotten (i.e. the Ω condition does not hold). Moreover, Berthold et al. [4] also
provided three syntactic sufficient conditions (that they call a-forgettable) under
which Ω does not hold, and so, under which fsp is strongly persistent. Perhaps
the main difficulty of fsp comes from its complex definition: it involves 10 dif-
ferent types of rule-matching that further deal with multiple partitions of Π
(using a construction called as-dual). As a result, even though it offers full gen-
erality when the atom is forgettable, its application by hand does not seem very
practical, requiring too many steps and a careful reading of the transformations.

In this paper, we provide a general syntactic operator, called unfolding, that
is always applicable and allows forgetting an atom in a program, although it
produces a result that may combine forks and arbitrary propositional formulas.
We also discuss some examples in which a fork can be removed in favour of a
formula, something that allows one to obtain a standard program (since formulas
can always be reduced to that form [6]). We show examples where sufficient
syntactic conditions identified so far are not applicable, whereas our method can
still safely be applied to obtain a correct result, relying on properties of forks.
Unfolding relies on another syntactic operator for forgetting a single atom, fc,
based on the cut rule from a sequent calculus and is close to the application of
fsp from [4]. This operator produces a propositional formula without forks, but
is only applicable under some sufficient syntactic conditions.

The rest of the paper is organised as follows. Section 2 contains a back-
ground with definitions and results from HT, stable models and the semantics
of forks. Section 3 presents the cut transformation that produces a propositional
formula. Then, Section 4 introduces the unfolding, which makes use of the cut
and produces a fork in the general case. Finally, Section 5 concludes the paper.

2 Background

We begin by recalling some basic definitions and results related to the logic
of HT. Let AT be a finite set of atoms called the alphabet or vocabulary. A
(propositional) formula ϕ is defined using the grammar:

ϕ ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ ϕ ∧ ϕ
∣∣∣∣∣∣ ϕ ∨ ϕ

∣∣∣∣∣∣ ϕ→ ϕ

where p is an atom p ∈ AT . We define the language LAT as the set of all propo-
sitional formulas that can be formed over alphabet AT . We use Greek letters
ϕ,ψ, γ and their variants to stand for formulas. Implication ϕ→ ψ will be some-
times reversed as ψ ← ϕ. We also define the derived operators ¬ϕ def= (ϕ→ ⊥),
> def= ¬⊥ and ϕ↔ ψ def= (ϕ→ ψ) ∧ (ϕ← ψ). We use letters p, q, a, b for represent-
ing atoms in AT , but normally use a for an auxiliary atom to be forgotten. A
theory Γ is a finite5 set of formulas that can be also understood as their con-
junction. When a theory consists of a single formula Γ = {ϕ} we will frequently
5 As we will see, the cut operator support is a conjunction built from a finite set

of rules that is sometimes negated. Generalising to infinite theories would require
infinitary Boolean connectives.

omit the brackets. Given any theory Γ , we write Γ [γ/ϕ] to denote the uniform
substitution of all occurrences of subformula γ in Γ by formula ϕ. An extended
disjunctive rule r is an implication of the form:

p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn ∧ ¬¬pn+1 ∧ · · · ∧ ¬¬pk → pk+1 ∨ · · · ∨ ph

where all pi above are atoms in AT and 0 ≤ m ≤ n ≤ k ≤ h. The antecedent and
consequent of a rule r are respectively called the body and the head. We define
the sets of atoms Hd(r) def= {pk+1, . . . , ph}, Bd+(r) def= {p1, . . . , pm}, Bd−(r) def=
{pm+1, . . . , pn}, Bd−−(r) def= {pn+1, . . . , pk} and Bd(r) def= Bd+(r) ∪ Bd−(r) ∪
Bd−−(r). We say that r is an extended normal rule if |Hd(r)| ≤ 1. A rule with
Hd(r) = ∅ is called a constraint. A normal rule with Bd(r) = ∅ and |Hd(r)| = 1
is called a fact. Given some atom a, a rule r is said to contain an a-choice if
a ∈ Bd−−(r) ∩ Hd(r), that is, the rule has the form ϕ ∧ ¬¬a → ψ ∨ a. A
program is a finite set of rules, sometimes represented as their conjunction. We
say that program Π belongs to a syntactic category if all its rules belong to
that category. For instance, Π is an extended normal program if all its rules
are extended normal. We will usually refer to the most general class, extended
disjunctive logic programs, just as logic programs for short.

A classical interpretation T is a set of atoms T ⊆ AT . We write T |= ϕ to
stand for the usual classical satisfaction of a formula ϕ. An HT-interpretation is
a pair 〈H,T 〉 (respectively called “here” and “there”) of sets of atoms H ⊆ T ⊆
AT ; it is said to be total when H = T . The fact that an interpretation 〈H,T 〉
satisfies a formula ϕ, written 〈H,T 〉 |= ϕ, is recursively defined as follows:
– 〈H,T 〉 6|= ⊥
– 〈H,T 〉 |= p iff p ∈ H
– 〈H,T 〉 |= ϕ ∧ ψ iff 〈H,T 〉 |= ϕ and 〈H,T 〉 |= ψ
– 〈H,T 〉 |= ϕ ∨ ψ iff 〈H,T 〉 |= ϕ or 〈H,T 〉 |= ψ
– 〈H,T 〉 |= ϕ→ ψ iff both (i) T |= ϕ→ ψ and (ii) 〈H,T 〉 6|= ϕ or 〈H,T 〉 |= ψ

An HT-interpretation 〈H,T 〉 is a model of a theory Γ if 〈H,T 〉 |= ϕ for all
ϕ ∈ Γ . Two formulas (or theories) ϕ and ψ are HT-equivalent, written ϕ ≡ ψ, if
they have the same HT-models. The logic of HT satisfies the law of substitution
of logical equivalents so, in particular:

Π ∧ a ≡ Π ∧ (a↔ >) ≡ Π[a/>] ∧ a (1)
Π ∧ ¬a ≡ Π ∧ (a↔ ⊥) ≡ Π[a/⊥] ∧ ¬a (2)

Π ∧ ¬¬a ≡ Π ∧ (¬a↔ ⊥) ≡ Π[¬a/⊥] ∧ ¬¬a (3)

A total interpretation 〈T, T 〉 is an equilibrium model of a formula ϕ iff 〈T, T 〉 |= ϕ
and there is no H ⊂ T such that 〈H,T 〉 |= ϕ. If so, we say that T is a stable
model of ϕ. We write SM(ϕ) to stand for the set of stable models of ϕ and
SMV (ϕ) def= {T ∩V | T ∈ SM(ϕ) } for their projection onto some vocabulary V .

In [1], we extended logic programs to include a new construct ‘ | ’ we called
fork and whose intuitive meaning is that the stable models of two logic programs
Π1 | Π2 correspond to the union of stable models from Π1 and Π2 in any
context Π ′, that is SM((Π1 | Π2) ∧Π ′) = SM(Π1 ∧Π ′) ∪ SM(Π2 ∧Π ′). Using

this construct, we studied the property of projective strong equivalence (PSE)
for forks: two forks satisfy PSE for a vocabulary V iff they yield the same stable
models projected on V for any context over V . We also provided a semantic
characterisation of PSE that allowed us to prove that it is always possible to
forget (under strong persistence) an auxiliary atom in a fork, something proved
to be false in standard HT. We recall now some definitions from [1] and [3].

Definition 1. Given T ⊆ AT , a T -support H is a set of subsets of T , that is
H ⊆ 2T , satisfying that H , ∅ iff T ∈ H.

To increase readability, we write a support as a sequence of interpretations
between square brackets. For instance, possible supports for T = {a, b} are
[{a, b} {a}], [{a, b} {b} ∅] or the empty support []. Given a propositional formula
ϕ and T ⊆ AT , the set of HT-models {H ⊆ T | 〈H,T 〉 |= ϕ} forms a T -support
we denote as Jϕ KT .

For any T -support H and set of atoms V , we write HV to stand for {H ∩V |
H ∈ H}. We say that a T -support H is V -feasible iff there is no H ⊂ T in
H satisfying that H ∩ V = T ∩ V . The name comes from the fact that, if this
condition does not hold for some H = Jϕ KT with T ⊆ V , then T cannot be
stable for any formula ϕ∧ψ with ψ ∈ L(V) because 〈H,T 〉 |= ϕ∧ψ and H ⊂ T .

We can define an order relation � between T -supports by saying that, given
two T -supports, H and H′, H � H′ iff either H = [] or [] , H′ ⊆ H. It is clear
that [] and [T] are the bottom and top elements, respectively, in the class of all
T -supports. Given a T -support H, we define its complementary support H as:

H def=
{

[] if H = 2T
[T] ∪ {H ⊆ T | H < H} otherwise

We also consider the ideal of H defined as ↓H = {H′ | H′ � H} \ { [] }. Note
that, the empty support [] is not included in the ideal, so ↓[] = ∅. If ∆ is any
set of supports:

↓∆ def=
⋃
H∈∆

↓H =
⋃
H∈∆
{ H′ � H

∣∣ H′ , [] }

Definition 2. A T -view ∆ is a set of T -supports that is �-closed, i.e., ↓∆ = ∆.

A fork is defined using the grammar:

F ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ (F | F)
∣∣∣∣∣∣ F ∧ F

∣∣∣∣∣∣ ϕ ∨ ϕ
∣∣∣∣∣∣ ϕ→ F

where ϕ is a propositional formula and p ∈ AT is an atom. We write LAT
to stand for the language formed by all forks for signature AT . Given a fork
(F | G), we say that F and G are its left and right branches, respectively.

We provide next the semantics of forks in terms of T -denotations. To this
aim, we will use a weaker version of the membership relation, ∈̂, defined as
follows. Given a T -view ∆, we write H∈̂∆ iff H ∈ ∆ or both H = [] and ∆ = ∅.

Definition 3 (T -denotation of a fork). Let AT be a propositional signature
and T ⊆ AT a set of atoms. The T -denotation of a fork F , written 〈〈F 〉〉T , is a
T -view recursively defined as follows:

〈〈⊥ 〉〉T def= ∅
〈〈 p 〉〉T def= ↓J p KT for any atom p

〈〈F ∧G 〉〉T def= ↓{ H ∩H′
∣∣ H ∈ 〈〈F 〉〉T and H′ ∈ 〈〈G 〉〉T }

〈〈ϕ ∨ ψ 〉〉T def= ↓{ H ∪H′
∣∣ H ∈̂ 〈〈ϕ 〉〉T and H′ ∈̂ 〈〈ψ 〉〉T }

〈〈ϕ→ F 〉〉T def=
{

{2T } if Jϕ KT = []
↓{ Jϕ KT ∪H

∣∣ H ∈ 〈〈F 〉〉T } otherwise
〈〈F | G 〉〉T def= 〈〈F 〉〉T ∪ 〈〈G 〉〉T

If F is a fork and T ⊆ V ⊆ AT , we can define the T -view:

〈〈F 〉〉TV
def= ↓{ H|V

∣∣ H ∈ 〈〈F 〉〉Z s.t. Z ∩ V = T and H is V -feasible }

Definition 4 (Projective Strong Equivalence). Let F and G be forks and
V ⊆ AT a set of atoms. We say that F and G are V -strongly equivalent, in
symbols F �V G, if for any fork L in LV , SMV (F ∧ L) = SMV (G ∧ L). When
V = AT we write F � G dropping the V subindex and simply saying that F and
G are strongly equivalent.

The properties listed in the following theorem were proved in [1].

Theorem 1. Let F and G be arbitrary forks, and ϕ and ψ propositional formu-
las all of them for signature AT , and let V ⊆ AT . Then:

(i) F �V G iff 〈〈F 〉〉TV = 〈〈G 〉〉TV , for every T ⊆ V
(ii) F � G iff 〈〈F 〉〉T = 〈〈G 〉〉T , for every T ⊆ AT

(iii) 〈〈ϕ 〉〉T = ↓Jϕ KT for every T ⊆ AT
(iv) ϕ � ψ iff Jϕ KT = Jψ KT , for every T ⊆ AT , iff ϕ ≡ ψ in HT.
(v) The set of atoms AT \ V can be forgotten in F as a strongly persistent

propositional formula6 iff for each T ⊆ V , 〈〈F 〉〉TV has a unique maximal
support. �

Proposition 1. For every pair α and β of propositional formulas:

(> | α) � (¬α | α) � ¬¬α→ α � α ∨ ¬α (4)
(⊥ | α) � α (5)

(¬α | ¬¬α) � > (6)
(α ∧ ¬β | α ∧ ¬¬β) � α (7)

Proposition 2. Let F, F ′, G and G′ be forks for some signature AT and let
V ⊆ AT . If F �V F ′ and G �V G′ then (F | G) �V (F ′ | G′). �
6 This is, therefore, equivalent to not satisfying the Ω condition from [10].

3 The Cut Operator

Given any program Π, let us define the syntactic transformation beheada(Π) as
the result of removing all rules with a ∈ Hd(r)∩Bd+(r) and all head occurrences
of a from rules where a ∈ Hd(r) ∩ Bd−(r). Intuitively, beheada(Π) removes
from Π all rules that, having a in the head, do not provide a support for a. In
fact, rules with a ∈ Hd(r) ∩ Bd+(r) are tautological, whereas rules of the form
ϕ ∧ ¬a→ a ∨ ψ are strongly equivalent to ϕ ∧ ¬a→ ψ. As a result:
Proposition 3. For any logic program Π: Π � beheada(Π). �

The cut operator is defined in terms of the well-known cut inference rule
from the sequent calculus which, when rephrased for program rules, amounts to:

ϕ ∧ a→ ψ ϕ′ → a ∨ ψ′

ϕ ∧ ϕ′ → ψ ∨ ψ′
(CUT)

where ϕ, ϕ′ are conjunctions of elements that can be an atom a, its negation ¬a
or its double negation ¬¬a, and ψ′ and ψ are disjunctions of atoms. If r and r′

stand for ϕ ∧ a → ψ and ϕ′ → a ∨ ψ′ respectively, then we denote Cut(a, r, r′)
to stand for the resulting implication ϕ ∧ ϕ′ → ψ ∨ ψ′.

Example 1 (Example 9 from [4]). Let Π1 be the program:

a→ t (8)
¬a→ v (9)
s→ a (10)
r → a ∨ u (11)

Then, Cut(a, (8), (11)) = (r → t ∨ u) is the result of the cut application:

> ∧ a→ t r → a ∨ u
> ∧ r → t ∨ u

In this program we can also perform a second cut through atom a corresponding
to Cut(a, (8), (10)) = (s→ t). �

Given a rule r with a ∈ Bd+(r), we define the formula:

NES(Π, a, r) def=
∧
{ Cut(a, r, r′) | r′ ∈ Π, a ∈ Hd(r′) }

that is, NES(Π, a, r) collects the conjunction of all possible cuts in Π for a
given atom a and a selected rule r with a in the positive body. For instance, in
our example program Π1 for rule (8) we get:

NES(Π1, a, (8)) = (r → t ∨ u) ∧ (s→ t). (12)

When r = ¬a = (> ∧ a→ ⊥) we can observe that:

NES(Π, a,¬a) =
∧
{(> ∧ ϕ′ → ⊥∨ ψ′) | (ϕ′ → a ∨ ψ′) ∈ Π}

=
∧
{(ϕ′ → ψ′) | (ϕ′ → a ∨ ψ′) ∈ Π}

That is, we just take the rules with a in the head, but after removing a from that
head. As an example, NES(Π1, a,¬a) = (s → ⊥) ∧ (r → u) = ¬s ∧ (r → u).
Note that, since a was the only head atom in (10), after removing it, we obtained
an empty head ⊥ leading to (s→ ⊥).

An interesting relation emerges from the negation of NES that can be con-
nected with the so-called external support from [8] . In particular, we can use de
Morgan and the HT equivalence ¬(ϕ′ → ψ′) ≡ ¬¬ϕ′ ∧ ¬ψ′ to conclude:

¬NES(Π, a,¬a) = ¬¬
∨
{(ϕ′ ∧ ¬ψ′) | (ϕ′ → a ∨ ψ′) ∈ Π} = ¬¬ESΠ(a)

where ESΠ(a) corresponds to the external support7 ESΠ(Y) from [8] for any
set of atoms Y , but applied here to Y = {a}. In the example:

¬NES(Π1, a,¬a) = ¬(¬s ∧ (r → u)) ≡ ¬¬s ∨ (¬¬r ∧ ¬u) (13)

Definition 5 (Cut operator fc). Let Π be a logic program for alphabet AT
and let a ∈ AT . Then fc(Π, a) is defined as the result of:

(i) Remove atom ‘a’ from non-supporting heads obtaining Π ′ = beheada(Π);
(ii) Replace each rule r ∈ Π ′ with a ∈ B+(r) by NES(Π ′, a, r).

(iii) From the result, remove every rule r with Hd(r) = {a};
(iv) Finally, replace the remaining occurrences of ‘a’ by ¬NES(Π ′, a,¬a). �

Example 2 (Example 1 continued). Step (i) has no effect, since beheada(Π1) =
Π1. For step (ii), the only rule with a in the positive body is (8) and so, the latter
is replaced by (12). Step (iii) removes rule (10) and, finally, Step (iv) replaces a
by (13) in rules (9) and (11). Finally, fc(Π1, a) becomes to the conjunction of:

(s→ t) ∧ (r → t ∨ u) (14)
¬(¬¬s ∨ (¬¬r ∧ ¬u))→ v (15)
r → ¬¬s ∨ (¬¬r ∧ ¬u) ∨ u (16)

Now, by simple HT transformations [6], it is easy to see that the antecedent
of (15) amounts to ¬s ∧ (¬r ∨ ¬¬u)), so (15) can be replaced by the two rules
(17) and (18) below, whereas (16) is equivalent to the conjunction of (19) below
that stems from r → ¬¬s ∨ ¬u ∨ u, plus the rule r → ¬¬s ∨ ¬¬r ∨ u that is
tautological and can be removed.

¬s ∧ ¬r → v (17)
¬s ∧ ¬¬u→ v (18)

r ∧ ¬s ∧ ¬¬u→ u (19)

To sum up, fc(Π1, a) is strongly equivalent to program (14)∧(17)∧(18)∧(19). �
7 In fact, [2] presented a more limited forgetting operator fes based on the external

support.

The program we obtained above is the same one obtained with the fsp operator
in [4] although the process to achieve it, is slightly different. This is because, in
general, fc(Π, a) takes a logic program Π but produces a propositional formula
where a has been forgotten, whereas fsp produces the logic program in a direct
way. Although, at a first sight, this could be seen as a limitation of fc, the truth
is that it is not an important restriction, since there exist well-known syntactic
methods [6, 14] to transform a propositional formula8 into a (strongly equivalent)
logic program under the logic of HT. Moreover, in the case of fsp, directly
producing a logic program comes with the cost of a more complex transformation,
with ten different cases and the combinatorial construction of a so-called as-dual
set of rules generated from multiple partitions of the original program9. We
suggest that well-known logical rules such as de Morgan or distributivity (many
of them still valid in intuitionistic logic) are far easier to learn and apply than
the fsp transformation when performing syntactic transformations by hand. On
the other hand, we may sometimes be interested in keeping the propositional
formula representation inside HT (for instance, for studying strong equivalence
or the relation to other constructions) rather than being forced to unfold the
formula into a logic program, possibly leading to a combinatorial explosion due
to distributivity.

As happened with fsp, the main restriction of fc is that it does not always
guarantee strong persistence. Note that this was expected, given the already
commented result on the impossibility of arbitrary forgetting by just produc-
ing an HT formula. To check whether forgetting a in Π is possible, we can use
semantic conditions like Theorem 1(v) or the Ω-condition, but these imply in-
specting the models of Π. If we want to keep the method at a purely syntactic
level, however, we can at best enumerate sufficient conditions for forgettability.
For instance, [4] proved that a can be forgotten under strong persistence in any
program Π that satisfies any of the following syntactic conditions:

Definition 6 (Definition 4 from [4]). An extended logic program Π is a-
forgettable if, at least one of the following conditions is satisfied:

1. Π contains the fact ‘a’ as a rule.
2. Π does not contain a-choices.
3. All rules in Π in which a occurs are a-choices.

It is not difficult to see that Condition 2 above is equivalent to requiring that
atom a does not occur in NES(Π, a,¬a), since the only possibility for a to occur
in that formula is that there is a rule in Π of the form ¬¬a∧ϕ→ a∨ψ. In fact,
as we prove below, Definition 6 is a quite general, sufficient syntactic condition
for the applicability of fc.
8 In most cases, after unfolding fc as a logic program, we usually obtain not only a

result strongly equivalent to fsp but also the same or a very close syntactic repre-
sentation.

9 In fact, the as-dual set from [4] can be seen as an effect of the (CUT) rule. Moreover,
our use of the latter was inspired by this as-dual construction.

Theorem 2. Let Π be a logic program for signature AT , let V ⊆ AT and a ∈
AT \V and let Π ′ = beheada(Π). If Π ′ is a-forgettable, then: Π �V fc(Π, a). �

In our example, it is easy to see that this condition is satisfied because
beheada(Π1) = Π1 and this program does not contain a-choices.

4 Forgetting into forks: the unfolding operator

As we have seen, syntactic forgetting is limited to a family of transformation
operators whose applicability can be analysed in terms of sufficient syntactic
conditions. This method is incomplete in the sense that forgetting a in Π may
be possible, but still the syntactic conditions we use for applicability may not
be satisfied. Consider the following example.

Example 3. Take the following logic program Π3:

¬¬a→ a (20)
¬a→ b (21)
a→ c (22)
b→ c (23)
c→ b (24)

This program does not fit into the a-forgettable syntactic form, but in fact we
can forget a under strong persistence to obtain b ∧ c, as we will see later. �

If we look for a complete forgetting method, one interesting possibility is
allowing the result to contain the fork operator. As proved in [1], forgettability
as a fork is always guaranteed: that is, it is always possible to forget any atom if
we allow the result to be in the general form of a fork. The method provided in [1]
to obtain such a fork, however, was based on synthesis from the fork denotation,
which deals with sets of sets of HT models. We propose next an always applicable
syntactic method to obtain a fork as the result of forgetting any atom.

In the context of propositional logic, forgetting an atom a in a formula ϕ
corresponds to the quantified Boolean formula ∃a ϕ which, in turn, is equivalent
to the unfolding ϕ[a/⊥]∨ϕ[a/>]. In the case of Equilibrium Logic, we will apply
a similar unfolding but, instead of disjunction, we will use the fork connective,
and rather than ⊥ and > we will have to divide the cases into ¬a and ¬¬a, since
(¬a | ¬¬a) ≡ >. More precisely, using (6) and (7) from Proposition 1 we can
build the chain of equivalences Π � Π∧> � Π∧(¬a | ¬¬a) � (Π∧¬a | Π∧¬¬a).
Then, by Proposition 2, we separate the task of forgetting a in Π into forgetting
a in each one of these two branches, leading to:

Definition 7 (Unfolding operator, f|). For any logic program Π and atom
a we define: f|(Π, a) def= (fc(Π ∧ ¬a, a) | fc(Π ∧ ¬¬a, a)) �

Theorem 3. Let Π be a logic program for signature AT , let V ⊆ AT and
a ∈ AT \ V . Then, Π �V f|(Π, a). �

Corollary 1. If a < V and Π is a-forgettable then f|(Π, a) �V fc(Π, a), and
so, f|(Π, a) � fc(Π, a). �

Using (2) and (3), it is easy to prove:
Theorem 4. For any logic program Π and atom a:

f|(Π, a) � (fc(Π[a/⊥] ∧ ¬a, a) | fc(Π[¬a/⊥] ∧ ¬¬a, a))
� (Π[a/⊥] | fc(Π[¬a/⊥] ∧ ¬¬a, a))

This theorem provides a simpler application of the unfolding operator: the
left branch, for instance, is now the result of replacing a by ⊥. The right branch
applies the cut operator, but introducing a prior step: we add the formula ¬¬a
and replace all occurrences of ¬a by ⊥. It is easy to see that, in this previous
step, any occurrence of a in the scope of negation is removed in favour of truth
constants10. This means that the result has no a-choices since a will only occur
in the scope of negation in the rule ¬¬a = (¬a → ⊥). Therefore, the use of fc
in f| is always applicable. Moreover, in many cases, we can use elementary HT
transformations to simplify the programs Π[a/⊥] and Π[¬a/⊥] ∧ ¬¬a, to look
for a simpler application of fc, or to apply properties about the obtained fork.

As an illustration, consider again forgetting a in Π3 and let us use the trans-
formation in Theorem 4. We can observe that Π3[a/⊥] replaces (20), (21) and
(22) respectively by (¬¬⊥ → ⊥) (a tautology), (¬⊥ → b) ≡ b and (⊥ → c)
(again, a tautology), leaving (23)-(24) untouched. To sum up, Π3[a/⊥] ≡ b∧(b→
c) ∧ (c → b) ≡ (b ∧ c). On the other hand, Π3[¬a/⊥] replaces (20) and (21) re-
spectively by (¬⊥ → a) ≡ a and (⊥ → b) (a tautology), so that Π3[¬a/⊥]∧¬¬a
amounts to the formula a∧ (a→ b)∧ (b→ c)∧ (c→ b)∧¬¬a which is equivalent
to a ∧ b ∧ c and, trivially, fc(a ∧ b ∧ c, a) = (b ∧ c). Putting everything together,
we get f|(Π3, a) � (b ∧ c | b ∧ c) � (b ∧ c) since forks satisfy the idempotence
property for ‘|’ – see (11) from Proposition 12 in [1]. In this way, we have syntac-
tically proved that a was indeed forgettable in Π3 leading to b ∧ c even though
this program was not a-forgettable. We claim that the f| operator plus the use
of properties about forks (like the idempotence used above) opens a wider range
of syntactic conditions under which forks can be reduced into formulas, and so,
under which an atom can be forgotten in ASP.

An important advantage of the unfolding operator is that, since it is always
applicable, it can be used to forget a set of atoms by forgetting them one by one.
We illustrate this with another example.
Example 4. Suppose we want to forget atoms {a, b} in the program Π4

def= (20)∧
(21) ∧ (22) where we simply removed (23) and (24) from Π3.

This program is not a-forgettable, but nevertheless let us assume that we
start forgetting a with the application of the unfolding f|(Π4, a). For the left
hand side, we get that Π4[a/⊥] ≡ (¬¬⊥ → a) ∧ (¬⊥ → b) ∧ (⊥ → c) ≡ b as we
had seen before. Similarly, for the right hand side:

Π4[¬a/⊥] ∧ ¬¬a = (¬⊥ → a) ∧ (⊥ → b) ∧ (a→ c) ∧ ¬¬a � a ∧ c
10 Truth constants can be removed using trivial HT simplifications.

so the application of fc becomes trivially fc(a ∧ c, a) = c and the final result
amounts to f|(Π4, a) = (b | c) that is, a fork of two atoms, which as discussed
in [1], is (possibly the simplest case of) a fork that cannot be reduced to a formula.
Still, we can use Proposition 2 to continue forgetting b in each of the two branches
of (b | c). As none of them contains b-choices, we can just apply fc to obtain
the fork (fc(b, b) | fc(b, c)) = (> | c) which, by (4), is equivalent to the formula
(¬¬c→ c). We end up with one more example.
Example 5. Suppose we want to forget q in the following program Π5:

¬¬q → q q → u q → s ¬q → t

Although this program is not q-forgettable, it was included as Example 7
in [4] to illustrate the application of operator fsp. If we use f|(Π5, q), it is very
easy to see that Π5[q/⊥] � t whereas Π5[¬q/⊥]∧¬¬q � q ∧ u∧ s so that we get
f|(Π5, q) = (t | fc(q∧u∧s, q)) = (t | (u∧s)). This fork cannot be represented as
a formula, since t and u∧s have no logical relation and the fork is homomorphic
to (b | c) obtained before. In other words, atom q cannot be forgotten in Π5 as
a formula, and so, fsp(Π5, q) from [4] does not satisfy strong persistence.

5 Conclusions

We have presented a syntactic transformation, we called unfolding, that is always
applicable on any logic program and allows forgetting an atom (under strong
persistence), producing an expression that may combine the fork operator and
propositional formulas. Unfolding relies on another syntactic transformation, we
called the cut operator (close to fsp from [4]), that can be applied on any program
that does not contain choice rules for the forgotten atom and, unlike unfolding, it
returns a propositional formula without forks. Although, in general, the forks we
obtain by unfolding cannot be reduced to propositional formulas, we have also
illustrated how the use of general properties of forks makes this possible some-
times, even in conditions where previous syntactic methods were not known to
be applicable. Future work will be focused on extending the syntactic conditions
under which forks can be reduced to formulas – we claim that this is an analo-
gous situation to finding conditions under which second order quantifiers can be
removed in second order logic. We will also study the extension of the unfolding
operator to sets of atoms, instead of proceeding one by one.

Acknowledgements We want to thank the anonymous reviewers for their sugges-
tions that helped to improve this paper. Partially funded by Xunta de Galicia
and the European Union, grants CITIC (ED431G 2019/01) and GPC ED431B
2022/33, and by the Spanish Ministry of Science and Innovation (grant PID2020-
116201GB-I00).

References
1. Aguado, F., Cabalar, P., Fandinno, J., Pearce, D., Pérez, G., Vidal, C.: Forgetting

auxiliary atoms in forks. Artificial Intelligence 275, 575–601 (2019)

2. Aguado, F., Cabalar, P., Fandinno, J., Pérez, G., Vidal, C.: A logic program trans-
formation for strongly persistent forgetting – extended abstract. In: Proc. of the
37th Intl. Conf. on Logic Programming (ICLP’21), Porto, Portugal (virtual event),
Electronic Proceedings in Theoretical Computer Science (EPTCS), vol. 345, pp.
11–13 (2021)

3. Aguado, F., Cabalar, P., Pearce, D., Pérez, G., Vidal, C.: A denotational semantics
for equilibrium logic. Theory and Practice of Logic Programming 15(4-5), 620–634
(2015)

4. Berthold, M., Gonçalves, R., Knorr, M., Leite, J.: A syntactic operator for forget-
ting that satisfies strong persistence. Theory and Practice of Logic Programming
19(5-6), 1038–1055 (2019)

5. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic
programs. Theory and Practice of Logic Programming 7(6), 745–759 (2007)

6. Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilib-
rium logic to logic programs. In: Bento, C., Cardoso, A., Dias, G. (eds.) Proceedings
of the 12th Portuguese Conference on Progress in Artificial Intelligence (EPIA’05).
Lecture Notes in Computer Science, vol. 3808, pp. 4–17. Springer (2005)

7. Cabalar, P., Pearce, D., Valverde, A.: Minimal logic programs. In: Dahl, V.,
Niemelä, I. (eds.) Proceedings of the 23rd International Conference on Logic Pro-
gramming, (ICLP’07). pp. 104–118. Springer (2007)

8. Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Annals
of Mathematics and Artificial Intelligence 47(1-2), 79–101 (2006)

9. Gonçalves, R., Knorr, M., Leite, J.: The ultimate guide to forgetting in answer set
programming. In: KR. pp. 135–144. AAAI Press (2016)

10. Gonçalves, R., Knorr, M., Leite, J.: You can’t always forget what you want: On
the limits of forgetting in answer set programming. In: Kaminka, G.A., Fox, M.,
Bouquet, P., Hüllermeier, E., Dignum, V., Dignum, F., van Harmelen, F. (eds.)
Proceedings of 22nd European Conference on Artificial Intelligence (ECAI’16).
Frontiers in Artificial Intelligence and Applications, vol. 285, pp. 957–965. IOS
Press (2016)

11. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte
der Preussischen Akademie der Wissenschaften, pp. 42–56. Deutsche Akademie der
Wissenschaften zu Berlin (1930), reprint in Logik-Texte: Kommentierte Auswahl
zur Geschichte der Modernen Logik, Akademie-Verlag, 1986.

12. Knorr, M., Alferes, J.J.: Preserving strong equivalence while forgetting. In: Fermé,
E., Leite, J. (eds.) Logics in Artificial Intelligence - 14th European Conference,
JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings.
Lecture Notes in Computer Science, vol. 8761, pp. 412–425. Springer (2014)

13. Marek, V., Truszczyński, M.: Stable models and an alternative logic programming
paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective. pp. 169–
181. Springer-Verlag (1999)

14. Mints, G.: Cut-free formulations for a quantified logic of here and there. Annals of
Pure and Applied Logic 162(3), 237–242 (2010)

15. Niemelä, I.: Logic programs with stable model semantics as a constraint program-
ming paradigm. Annals of Mathematics and Artificial Intelligence 25, 241–273
(1999)

16. Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Dix, J., Pereira, L.M., Przymusinski, T.C. (eds.) Selected Papers from the Non-
Monotonic Extensions of Logic Programming (NMELP’96). Lecture Notes in Ar-
tificial Intelligence, vol. 1216, pp. 57–70. Springer-Verlag (1996)

