
deolingo: extending Answer Set Programming
with Deontic Reasoning

Pedro Cabalar

University of A Coruña (Spain)
cabalar@udc.es

Ovidio M. Moar

University of A Coruña (Spain)
ovidio.manteiga@udc.es

Abstract

This work introduces deolingo, a system for deontic reasoning that extends the
knowledge representation paradigm of Answer Set Programming (ASP) with deontic
operators such as obligations, prohibitions, permissions and other derived connec-
tives. The semantics of deolingo is based on Deontic Equilibrium Logic with eXplicit
negation (DELX), a recently proposed formalism that was shown to provide a simple
representational solution to many of the main deontic reasoning challenges in the
literature, like the use of defeasible obligations, the distinction between explicit and
implicit permissions, a proper treatment of dilemmas versus contrary-to-duty (CTD),
or the formalisation of deontic and factual detachment, to name the most relevant
ones. In the paper, we describe the basic syntax of deolingo, deontic logic programs,
and explain how these programs are translated into regular ASP, using the ASP solver
clingo as a backend. Apart from producing the models (answer sets) generated by
clingo containing the derived obligations, deolingo can also provide explanations in
terms of derivation trees using natural language statements. To this aim, deolingo has
been extended with rule annotations that are interpreted using the ASP explanation
tool xclingo. Finally, we include some running examples to illustrate the use of
explainable deontic reasoning.

Keywords: Deontic Logic, Answer Set Programming, Equilibrium Logic, Normative
Reasoning, Deontic Equilibrium Logic with eXplicit negation, Explainable Deontic
Logic.

1 Introduction

One of the important needs in the field of Deontic Reasoning is the availability of
automated reasoning tools that allow, not only to test the logical formalisation
of common scenarios (or so-called “deontic paradoxes”) from the literature in a
systematic way on a computer, but also to incorporate normative reasoning to
existing tools for practical knowledge representation and problem solving. In

2 deolingo: extending Answer Set Programming with Deontic Reasoning

this work, we focus on adding deontic reasoning to the successful knowledge
representation paradigm of Answer Set Programming (ASP) [19,17,3]. The uses
and applications of ASP [8] have been continuously growing in the last decade
and cover many diverse areas such as product configuration, work force and
resource management, phone call routing, train scheduling, data integration,
planning and robotics, music composition, video game scenario generation or
spacecraft diagnosis, to name a few. Potentially, any of these scenarios could
be subject to the incorporation of normative reasoning. To illustrate this idea,
just consider any of the recent ASP applications to scheduling problems in
digital health [7] (such as assignment of pre-surgical exams, periodic treatments,
staff turns, room scheduling, etc) and how convenient would be the addition of
a normative reasoning layer incorporating multiple regulations (health, data
protection, risk management, etc), without losing the capabilities of ASP for
combinatorial problem solving. Although there exist recent implementations of
formalisms for normative reasoning that use ASP tools as a backend [15,13], they
do not constitute an extension of ASP themselves, but use substantially different
input languages: the policy language from [12] or the use of Defeasible Deontic
Logic [14], respectively. Another interesting approach for automated normative
reasoning is Kowalski’s Logical English [16], that uses Prolog instead of ASP
as a backend. However, none of these cases allows reusing current practical
systems implemented in ASP to be extended with normative reasoning.

In this paper, we introduce a system, called deolingo, that incorporates
deontic reasoning to the tool clingo [9], a popular and efficient solver im-
plementing the successful knowledge representation paradigm of Answer Set
Programming (ASP) [19,17,3]. The theoretical foundation for this extension
relies on the recently introduced formalism of Deontic Equilibrium Logic with
eXplicit negation (DELX) [4]. DELX is based on Equilibrium Logic [20] with
explicit negation [1], a well-established, full logical characterisation of ASP
that extends its semantics to any arbitrary propositional formula and further
allows two types of negation: default and explicit. DELX further adds two
operators, Oϕ and Fϕ (respectively read as “obligatory” and “forbidden”),
whose semantics extends the three-valued setting already existing for explicit
negation in Equilibrium Logic. One of the salient features of this formalism
is that it deals with a weakened version of the D axiom of Standard Deontic
Logic (SDL) [23], which can be stated as ¬(Op ∧ Fp), namely, the obligation
and prohibition of a same fact cannot be simultaneously true. In DELX, this
constraint is only imposed when no information about p or its negation is
available (which would correspond to a dilemma) but consistency is restored if
any of the two obligations is violated, that is, if either we do p violating the
prohibition, or ¬p violating the obligation. Cabalar et al. [4] illustrated how
DELX can be used to solve many of the deontic reasoning challenges in the
literature, like the use of defeasible obligations, the distinction between explicit
and implicit permissions, a proper treatment of dilemmas versus contrary-to-
duty (CTD), or the formalisation of deontic and factual detachment, to name
the most relevant ones. Finally, Cabalar et al. also proved that any DELX

P. Cabalar and O. M. Moar 3

theory can be reduced to a form called deontic logic program that has a direct
translation to ASP, something we exploit now in the current paper for the
deolingo implementation.

Since deolingo extends ASP, it inherits all its reasoning and problem solving
capabilities and can be immediately used for various analytical tasks [2] in
normative reasoning such as checking compliance of a situation with respect to a
set of norms, consistency inter or intra-regulations, entailment of some particular
obligation from a set of norms, or normative Artificial Intelligence (AI), that is,
providing other AI systems with deontic reasoning capabilities. Additionally, we
have also exploited the ASP system xclingo [5], that enriches clingo with the
generation of explanations, to allow constructing natural language explanations
in the form of proof trees that allow justifying the obligations and prohibitions
derived in each model.

The rest of the paper is structured as follows. The next section contains some
preliminaries, including a brief description of DELX, plus some basic concepts of
ASP and the clingo solver. Section 3 describes the implemented tool, including
the input language, its use and some implementation details. Section 3.5
further introduces the explainability features and presents an example. Finally,
Section 4 concludes the paper.

2 Background

2.1 Deontic Equilibrium Logic with Explicit Negation (DELX)

As happens with Equilibrium Logic, DELX is defined in two steps: we first
describe a monotonic logic (an three-valued extension of an intermediate logic)
and then define its equilibrium models as a model selection criterion, obtaining
a non-monotonic formalism in that way. The mononotic basis of DELX, called
Deontic Here-and-There with eXplicit negation (DHTX) is defined as follows.
A formula ϕ of DHTX follows the grammar:

ϕ ::= p ∈ At | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | ¬ϕ | Oϕ | Fϕ

We define the derived operators ϕ ↔ ψ
def
= (ϕ → ψ) ∧ (ψ → ϕ), not ϕ

def
=

(ϕ→ ⊥) and the constant > as not ⊥. Intuitively, not ϕ stands for the default
negation of ϕ (there is no evidence about ϕ) whereas ¬ϕ represents its stronger,
explicit negation (ϕ can be proved to be false). We sometimes write ψ → ϕ
reversed as ϕ ← ψ (to represent rules in logic programs). We also define
the derived deontic operators shown in Figure 1. Pϕ stands for the explicit
permission for ϕ whereas Pdϕ is its default version. The superindices above
stand for: d=default, f=fulfilled, v=violated, nv=non-violated, nf=non-fulfilled
and u=undetermined. We define the same variants Fx in terms of Ox for all
x ∈ {d, f ,v,nv,nf ,u}. For more details on these operators, see [4].

A theory Γ is defined as a set of formulas. Given a signature or set of atoms
At , an extended atom is any of the expressions p, Op or Fp for any p ∈ At . We
define an explicit literal as any extended atom a or its explicit negation ¬a. A
set of explicit literals is said to be consistent if it contains no pair {a,¬a}. A

4 deolingo: extending Answer Set Programming with Deontic Reasoning

Ov ϕ
def
= Oϕ ∧ ¬ϕ Of ϕ

def
= Oϕ ∧ ϕ

Onf ϕ
def
= Oϕ ∧ not ϕ Onv ϕ

def
= Oϕ ∧ not ¬ϕ

Ou ϕ
def
= Oϕ ∧ not (ϕ ∨ ¬ϕ) Pϕ

def
= ¬Fϕ

Od ϕ
def
= (not P¬ϕ→ Oϕ) Pdϕ

def
= (not Fϕ→ Pϕ)

O(ϕ | ψ)
def
= (ψ ∨Onv ψ → Oϕ) Fx ϕ

def
= Ox ¬ϕ

Fig. 1. Derived deontic operators.

default literal is any explicit literal L or its default negation not L. We define a
rule as an implication of the form

H1 ∨ · · · ∨Hn ← B1 ∧ · · · ∧Bm (1)

with n,m ≥ 0 where the Hi and Bj are default literals. The disjunction in
the consequent is called the rule head and the conjunction in the antecedent
receives the name of rule body. A deontic logic program is a set of rules.

The semantics of DHTX is as follows. A Deontic interpretation T for a
signature At is a consistent set of explicit literals satisfying: {Op,Fp} ⊆ T
implies {p,¬p} ∩ T 6= ∅, for any p ∈ At . This condition corresponds to the
weakening of the D axiom from SDL we commented before: obligation Op and
prohibition Fp can only coexist when there is either evidence about p or about
¬p and so, one of the two obligations has been violated.

A Deontic HT-interpretation is a pair 〈H,T 〉 of sets of explicit literals s.t. T
is a deontic interpretation and H ⊆ T . 〈H,T 〉 is total when H = T . We define
the set of deontic worlds as {r, o, f} respectively standing for real, obligation and

forbidden. The complement of a world w ∈ {r, o, f} is defined as r
def
= r, o

def
= f

and f
def
= o. DHTX constitutes a three-valued logic whose satisfaction relation

has a dual falsification relation, both described in the following definition.

Definition 2.1 (Satisfaction/falsification) M = 〈H,T 〉 satisfies (resp. fal-
sifies) a formula ϕ at a deontic world w ∈ {r, o, f}, written M,w |= ϕ
(M,w=| ϕ), if the conditions from Fig. 2 hold.

As usual, when some interpretation 〈H,T 〉 satisfies all the formulas in a
theory Γ we write 〈H,T 〉 |= Γ and call 〈H,T 〉 a model of Γ.

Definition 2.2 ((Deontic) Equilibrium model)
A total DHTX-interpretation 〈T, T 〉 is a (deontic) equilibrium model of a theory
Γ if 〈T, T 〉 |= Γ and there is no H ⊂ T such that 〈H,T 〉 |= Γ.

DELX is the logic induced by equilibrium models defined in this way and
subsumes standard Equilibrium Logic, and so ASP, for the syntactic fragment
without deontic operators. An important result from [4] is the following:

Theorem 2.3 (Theorem 4 from [4]) Any deontic theory can be reduced to
a deontic logic program with the same DHTX models.

The proof of this theorem provides the transformations required for the

P. Cabalar and O. M. Moar 5

ϕ M,w |= ϕ when M,w=| ϕ when

> (⊥) always (never) never (always)

α ∧ β M,w |= α and M,w |= β M,w=| α or M,w=| β
α ∨ β M,w |= α or M,w |= β M,w=| α and M,w=| β

α→ β
M ′, w 6|= α or M ′, w |= β
for M ′∈{M, 〈T, T 〉}

〈T, T 〉, w |= α and M,w=| β

¬α M,w=| α M,w |= α

p
p ∈ H if w = r

Op ∈ H if w = o
¬Fp ∈ H if w = f

¬p ∈ H if w = r
¬Op ∈ H if w = o

Fp ∈ H if w = f

Oα M, o |= α M, o=| α
Fα M, f =| α M, f |= α

Fig. 2. Conditions for satisfaction and falsification in DHTX.

reduction 1 . In fact, some of these transformations are applied by deolingo to
unfold the deontic constructs accepted in its input language. The interest of
deontic logic programs is that they can be directly encoded in ASP by treating
deontic atoms Op and Fp as regular atoms and adding the constraint:

⊥ ← Op,Fp,not p,not ¬p (2)

corresponding to the already mentioned weakening of the SDL axiom D.

2.2 Brief overview of ASP and clingo

Answer Set Programming (ASP) [17,19,3] is a declarative problem solving
paradigm rooted in non-monotonic logic, logic programming with default nega-
tion, and the stable models semantics [11]. It provides a powerful framework for
solving complex combinatorial search problems by representing knowledge in a
logical form (programs consisting of a set of logical rules, facts, and constraints)
and computing stable models (answer sets) that correspond to solutions. ASP
solvers such as clingo [10] are used to compute these answer sets, effectively
solving the encoded problem.

In ASP, propositional programs are built from atoms (elementary proposi-
tions) and rules of the form (1) where, this time, Hi and Bi can only be atoms
p or their default negation not p. In standard ASP syntax, conjunctions in
the rule body are represented as commas whereas, in code text files, the left
implication← is written as ‘:-’, and rules are ended by a dot. As an example, a
possible propositional ASP program is shown in Listing 1. The first rule states
that the light is on if the power is on and we cannot prove that the bulb is
broken. The second rule contains a choice, that corresponds an abbreviation of
the formula broken∨not broken← hit and has a non-deterministic effect: if we

1 For space reasons, we do not include them here but we refer the reader to [4].

https://potassco.org/clingo/

6 deolingo: extending Answer Set Programming with Deontic Reasoning

hit the bulb, we generate two answer sets, one in which it is broken, and one in
which it is not. The third line is a constraint that corresponds to a rule with an
empty head, or ⊥, and disregards any potential answer set where both broken
and protected are true. The second rule is a fact (corresponding to a rule with
empty body, or >) directly stating that the power is on. Finally, the last two
lines are facts (corresponding to a rules with empty body, or >) directly stating
that the power is on and that we hit the bulb. The program has two answer
sets, {power on, hit, light on} and {power on, hit, broken}.

1 light_on :- power_on , not broken.

2 {broken} :- hit.

3 :- broken , protected.

4 power_on.

5 hit.

Listing 1. An example of propositional ASP program.

As we explained before, explicit negation (¬) distinguishes between lack of
justification (not a) and justification for negation (¬a). In program rules, this
negation can only appear in front of atoms and, in code text files, it is normally
written as -a. The use of strong negation is a modelling convenience, reducible
to ordinary programs by treating the strong negated atoms as renamed atoms
where they cannot appear together in any answer set.

The traditional semantics of ASP [12] based on stable models is defined
in terms the so-called program reduct but, for the purposes of this paper, it
suffices to say that the stable models of an ASP program just correspond to
its equilibrium models as in Definition 2.2, since ASP programs constitute a
(non-deontic) syntactic fragment of the language defined in Section 2.1.

Propositional programs, however, are not the most common use of ASP.
Logic programs usually accept a limited version of a first-order language where
atomic formulas are formed with predicates, the use of function symbols is
forbidden or, at least, limited and all variables in a rule are universally quantified.
Variables are represented with identifiers starting with an upper-case letter.
For instance, a possible program with predicates and variables could look like
Listing 2 where we have now three lamps (1, 2, 3) connected to the same power
line and we hit bulb number 2. Variables in a rule must satisfy a so-called safety
condition: a variable is safe if it occurs in some predicate in the positive body
of the rule. This explains why the rule line 4 includes predicate lamp(X) in the
positive body (otherwise, X would not be safe) whereas lines 5 and 6 do not
need to specify that X is a lamp.

Given a program with variables P , we define ground(P) as the ground pro-
gram that results from replacing the variables by all their possible instantiations
formed by elements in the domain. The answer sets of P then simply correspond
to the answer sets of ground(P) understood as a propositional program. In the
case of our example above, for instance, the ground program would correspond
to replacing each one of the lines 4 to 6 by three copies replacing X respectively

P. Cabalar and O. M. Moar 7

1 lamp (1).

2 lamp (2).

3 lamp (3).

4 light_on(X) :- lamp(X), power_on , not broken(X).

5 {broken(X)} :- hit(X).

6 :- broken(X), protected(X).

7 power_on.

8 hit (2).

Listing 2. An example of ASP program with variables.

by 1, 2 and 3. The program has two answer sets, respectively differing in
the atoms light on(2) and broken(2), whereas they share the rest of atoms
{lamp(1), lamp(2), lamp(3), power on, hit(2), light on(1), light on(3)}.

Current tools for computing with answer set programs support several basic
reasoning tasks, which include computing a single answer set, determining that
none exist, computing a given number of answer sets, and computing all of them.
ASP processing typically works in two stages. First, the predicate program
is replaced with an equivalent propositional program by variable replacement
(grounding). Second, that program is processed by a propositional ASP solver.
Most of ASP processing systems make a clear distinction between the two stages
and offer separate tools for each, others integrate them. A simple approach to
grounding is to replace a program P with ground(P), but generally this is not
efficient and multiple optimisation techniques need to be applied to obtain a
simpler ground program that has the same answer sets as the original P .

We conclude this section recalling some basic features of clingo, especially
those related to the deolingo implementation. clingo is a state-of-the-art ASP
solver developed by the Potassco group [10], freely available at the Potassco web
page. It integrates both a grounder (gringo) and a solver (clasp) into a single,
efficient system, making it a popular choice for solving complex computational
problems with a declarative approach. clingo can be easily installed as a
Python package and run as a command-line application. It also provides a
library with an extensible Application Programming Interface (API) that can
be imported to build other solvers using it, as is the case of deolingo. Version
clingo 5 introduced the possibility of extending the language with theory
atoms [9], whose syntax can be flexibly defined using a grammar description
(this is called a theory specification) and whose semantics can be programmed
by the user. A theory atom has is denoted starting with the symbol & and
followed by an atom name and a list of expressions between curly braces and
separated by ‘;’. Alternatively, the theory atom may additionally contain
some order or comparison symbol followed by another expression. To put an
example, an atom of the form &sum{2*x; -3*y}>=5 could be used to represent
the linear inequation 2 ∗ x− 3 ∗ y ≥ 5, where x and y are external numerical
variables whose evaluation is programmed externally. In fact, atoms like the
one above are commonly used in extensions of clingo (such as clingcon,
clingo[DL] and clingo[LP]) that deal with external computation of numerical

https://potassco.org/
https://potassco.org/

8 deolingo: extending Answer Set Programming with Deontic Reasoning

constraints, interleaved with the ASP solving search process through routines
called propagators.

In the case of deolingo, however, we do not need using propagators with
an external solver, but we exploit instead the use of the Abstract Syntax Tree
(AST) module inside clingo API that allows exploring the syntactic form of
theory atoms. This allows the possibility to introduce syntactic transformations
in a program before initiating the solving process or even to remove theory
atoms in favour of standard (auxiliary) predicates that encode their meaning,
which is the technique actually used by deolingo.

3 The deolingo system

The system deolingo consists of a command-line application and a Python
library implemented on top of clingo. Furthermore, a web interface is provided
in order to easily try, encode and solve their deontic theories without need
of local installation. Both the input and the output formats are adapted to
represent the necessary concepts from deontic logic. For the input, a special
syntax is used to encode the deontic problems which is provided by clingo

theory atoms. On the other hand, the normal output from clingo - with the
true atoms in each answer set - is extended by grouping them in the three
deontic worlds defined by DELX.

Additionally, deolingo also features explainability by means of xclingo.
The deolingo input language is extended by including the xclingo annotations
(a kind of formatted comments) that contain natural language descriptions to
be shown in the explanations plus directives about what the user considers
relevant information to be shown in each case. When working in explainable
mode, deolingo output generates explanations for each (relevant) true atom in
the answer set. Those explanations have the form of proof trees whose nodes
are textual descriptions of the rules and atoms applied.

3.1 Input language

The input to the deolingo system is a set of text files containing clingo

logic programs together with a clingo theory specification, which defines the
grammar for the deolingo theory atoms. The complete theory specification can
be seen in Appendix A. Without entering into detail about theory specifications
in clingo (see [9]), in our case, it first defines a deontic term (used inside
theory atoms) as an expression that can be formed with the Boolean operators
-, &&, || that respectively stand for explicit negation ¬, conjunction ∧ and
disjunction ∨. Operator ‘|’ is used for conditional obligations of the form
O(ϕ | ψ) as defined in Figure 1. The list of the most relevant theory atoms
is described in Figure 3, where they are grouped in three main categories. In
the figure, we assume that p actually represents any deontic term (not just a
proposition). The main atoms in Fig. 3(a), correspond to obligations or their
explicit negations (permissions). As a remark, it is worth to note that clingo
does not allow explicit negation of a theory atom, so the formula ¬Op cannot
be represented as “-&obligatory{p}”. This explains the need of a specific

P. Cabalar and O. M. Moar 9

theory atom for that purpose we called &omissible{p}. The second group
in Fig. 3(b) corresponds to violations and fulfillments: these atoms can be
easily rephrased in terms of the main atoms, but are sometimes convenient
to write more readable rule bodies. Finally, the third group has to do with
default obligations. The first four theory atoms in that group have the form of
conditionals and can only be used in rule heads in deolingo.

Deontic atom DELX formula Equivalent to
&obligatory{p} Op F¬p, &forbidden{-p}
&forbidden{p} Fp O¬p, &obligatory{p}
&permitted{p} Pp ¬O¬p, &omissible{-p}
&omissible{p} ¬Op P¬p
&optional{p} ¬(Op ∨ Fp) Pp ∧P¬p

(a) Main deontic atoms

Deontic atom DELX formula Equivalent to
&violated obligation{p} Op ∧ ¬p
&violated prohibition{p} Fp ∧ p O¬p ∧ p
&fulfilled obligation{p} Op ∧ p
&fulfilled prohibition{p} Fp ∧ ¬p O¬p ∧ ¬p
&non violated obligation{p} Op ∧ not ¬p
&non violated prohibition{p} Fp ∧ not p O¬p ∧ not p
&non fulfilled obligation{p} Op ∧ not p
&non fulfilled prohibition{p} Fp ∧ not ¬p O¬p ∧ not ¬p
&undetermined obligation{p} Op ∧ not p ∧ not ¬p
&undetermined prohibition{p} Fp ∧ not p ∧ not ¬p O¬p ∧ not p ∧ not ¬p

(b) Violation/fulfillment deontic atoms

Deontic atom DELX formula Equivalent to
&default obligation{p} Od p not P¬p→ Op
&default prohibition{p} Fd p not Pp→ Fp
&omissible by default{p} not Op→ P¬p not Op→ ¬Op
&permitted by default{p} not Fp→ Pp not O¬p→ ¬O¬p
&omissible implicitly{p} not Op not &obligatory{p}
&permitted implicitly{p} not Fp not &forbidden{p}

(c) Implicit/default deontic atoms

Fig. 3. Explanation of deolingo theory atoms.

As an example of an input program, take the file included in Listing 3
describing the well-known Prakken and Sergot’s Cottage Fence scenario [21].
Line 2 states that fences are forbidden by default, namely, unless there exists
evidence of an explicit permission. This line is an abbreviation of the also
admissible rule:

&forbidden{fence} :- not &permitted{fence}.

Line 3 is a CTD stating that if the prohibition of is violated and a fence is

10 deolingo: extending Answer Set Programming with Deontic Reasoning

placed, then the fence must be painted in white. Again, the rule can be seen as
an abbreviation, this time of:

&obligatory{white_fence} :- &forbidden{fence}, fence.

Line 4 grants a permission for a fence if the cottage is by the sea. Lines 5 and 6
state that a white fence counts as a fence (both in the factual world and inside
obligations). Finally, lines 7 and 8 state that the cottage is by the sea and that
we put a fence.

1 % File cottage.lp: Prakken & Sergot cottage scenario

2 &default_prohibition{fence}.

3 &obligatory{white_fence} :- &violated_prohibition{fence}.

4 &permitted{fence} :- sea.

5 fence :- white_fence.

6 &obligatory{fence} :- &obligatory{white_fence }.

7 sea.

8 fence.

Listing 3. An enconding of the Cottage Fence Scenario in deolingo.

As we explained above, theory atoms can be applied to deontic terms, some-
thing that provides some (limited) use of complex formulas and combination
with other usual ASP constructs (use of ASP variables, pooling, conditional
literals, etc). For instance, we can use conjunction in obligations in a rule body
as in &obligatory{p; q(X); a(Y):b(Y)} being unfolded as the conjunction
of &obligatory{p}; &obligatory{q(X)}; &obligatory{a(Y)}:b(Y). Simi-
larly, we can use disjunction in obligations in the rule head with an analogous
effect. The rules containing deontic theory atoms are processed by deolingo

and translated into regular atoms in ASP, using for that purpose their for-
malisation in DELX. deolingo reduces a deontic program with formulas to
a deontic program in normal form before solving it, but not all the complex
formulas are supported. Some of these equivalences were not implemented,
either due to syntax limitations of clingo, or due to potential performance
overhead, or also to follow the established programming conventions. One
example of syntax limitation which prevented the implementation of nested
formulas (like obligations of obligations), is that clingo syntax does not accept
nested theory atoms. Nevertheless, the equivalent normalised formulas can be
used to represent the same deontic logic semantics, so in practice, the limitations
are just syntactical, but they do not limit the expressive power. For a complete
list of complex formulas accepted by deolingo see [18].

3.2 Running deolingo

deolingo can be used as a command-line interface application (CLI) and
it supports all the clingo command-line options since it extends the clingo

Application class. deolingo can be easily installed 2 in any computer by using

2 More details on installation at https://github.com/ovidiomanteiga/deolingo.

https://github.com/ovidiomanteiga/deolingo

P. Cabalar and O. M. Moar 11

the Python package manager command pip install deolingo. To solve the
deontic logic program written in file cottage.lp, use the following command:
$ deolingo cottage.lp. By default, deolingo output the first answer set, as
clingo. To print only a certain number of models, the clingo syntax for the
command line invocation is supported: $ deolingo 2 cottage.lp, where 0
has the special meaning of all models. Refer to the GitHub repository to see all
the options to run deolingo.

The default deolingo output shows all the true atoms in each deontic answer
set grouped by the three worlds, as described in DELX: facts, obligations,
and prohibitions. In the factual worlds representing facts, in the obligations
world representing obligation or its absence (omission), and, in the prohibitions
world, representing prohibition or its absence (permission). The deolingo

output for the file in Listing 3 is shown in Listing 4, where, in this case, the
explicit permission disables the default prohibition of a fence.

1 Answer: 1

2 FACTS: fence , sea

3 OBLIGATIONS:

4 PROHIBITIONS: &permitted{fence}

5 SATISFIABLE

Listing 4. Output for deonitc program in Listing 3.

In order to run a deontic logic program using the deolingo web editor 3 the
input program must be coded in the deolingo editor. That can be achieved
either by simply typing it in the editor, or by loading it from a local file, or
by selecting one example from the drop-down selector with all the examples.
Once that is ready, simply select the desired run options (a subset of the ones
available in the CLI app) and click the Solve button. The program is solved in
the backend and, when finished, the deontic answer sets are displayed under
the deolingo editor.

3.3 Translation to regular ASP

deolingo generates a translated program from the original program with theory
atoms into another logic program which has prefixed symbolic atoms instead
of theory atoms, so that it can be directly grounded and solved by clingo.
This translated program can be printed by using the command-line argument
--translate for development and debug purposes. The translated program
contains comments with the original source lines of each translated expression.
Besides, all the necessary deontic rules are added after the translated sentences
from the source program, so that the meaning of the program is preserved. Here
is an example of translation of the source program:

1 &obligatory{a} :- b.

3 deolingo web editor https://deolingo.azurewebsites.net/editor.

https://deolingo.azurewebsites.net/editor

12 deolingo: extending Answer Set Programming with Deontic Reasoning

To the translated program:

1 % Source line: 1

2 deolingo_obligatory(a) :- b.

3 % Deontic weak axiom D for DELX

4 :- deolingo_obligatory(X), deolingo_forbidden(X), not

deolingo_holds(X), not deolingo_holds(-X).

5 % ALL THE DEONTIC RULES HERE ... %

The translation contains the transformed first line of the source program;
then the weak version of the deontic axiom D corresponding to (2); then all the
deontic operators and equivalence rules; and finally the truth reification rules
for each deontic atom (each atom that is either obligatory or forbidden). For
instance, the rules defining the obligation violation operator would look like:

1 % Obligation violation

2 deolingo_violated_obligation(X) :- deolingo_obligatory(X),

deolingo_holds(-X).

3 deolingo_obligatory(X) :- deolingo_violated_obligation(X).

4 deolingo_holds(-X) :- deolingo_violated_obligation(X).

These rules define the operator in both directions of the implication, being
the first rule the one that defines that if something is obligatory and false, it
means the obligation to do it was violated. The other two rules specify that it
must be derived that something is obligatory and false if it is proved that there
is a violated obligation to do it.

Also, deolingo adds the rules that define the equivalence between deon-
tic atoms. For example, the following rules define the equivalence between
obligations and prohibitions:

1 % Obligation/prohibition equivalence

2 deolingo_obligatory(X) :- deolingo_forbidden(-X).

3 deolingo_forbidden(X) :- deolingo_obligatory(-X).

4 -deolingo_obligatory(X) :- -deolingo_forbidden(-X).

5 -deolingo_forbidden(X) :- -deolingo_obligatory(-X).

3.4 Implementation details

deolingo consists of two main software components developed in Python
and bundled as package: the deolingo Python library and the Python CLI
application. deolingo extends the Application class from clingo API, which
handles some input and output, and provides template methods that are useful
to run the deolingo application. deolingo also extends the clingo Control

class, providing the same interface as the former, while it reuses some existing
functionality from it. In the case of xclingo, the integration is done with the
xclingo library by extending the XClingoControl class.

deolingo is designed to respect the clingo interfaces so that other solvers
can be build on top, by extending the uniform interface in a similar manner as
deolingo does with clingo. They can extend both the DeolingoApplication

and the DeolingoControl classes to provide the same interface, process the de-

P. Cabalar and O. M. Moar 13

ontic part of their input clingo programs and then apply their transformations
during the process of parsing, transforming the abstract syntax tree, grounding,
solving and printing the output answer sets.

The integration of deolingo with clingo follows these steps:

1. deolingo first uses the clingo application to load the input programs and
parse them into clingo abstract syntax trees (ASTs).

2. Then, it uses custom clingo transformers to transform the ASTs such that
the complex formulas are broken into the deontic atom normal form [4]
where we only allow O and F applied to atoms. After that, deontic theory
atoms are transformed into symbolic atoms.

3. deolingo adds the weak deontic axiom (2), the deontic equivalence rules
and the deontic operator rules.

4. Then, it grounds the translated program by calling the ground() method
of the clingo Control object.

5. deolingo calls the solve() method of the clingo Control object to find
solutions.

6. Finally, it transforms the output from clingo by grouping the atoms in
the three deontic worlds defined by DELX and prints the output.

3.5 Explainability with xclingo

We conclude this section describing the deolingo explainable mode which
accepts annotations inherited from the ASP explanation tool xclingo. These
annotations have the form of formatted comments (lines starting with ‘%!’) that
can be ignored by clingo but are used by xclingo to decide which information
must be displayed in the explanations. The main types of annotations are:
trace_rule, that includes some text describing that a rule has been fired; trace,
that allows describing the meaning of some atom in natural language; and
show_trace that tells xclingo the atoms we want to explain, among all those
ones included in the current answer set. Listing 5 shows an annotated version
of Listing 3. If we run the command $ deolingo cottage.lp --explain on
this version, we obtain the following output:

1 *

2 |__The cottage is by the sea

3 *

4 |__There is a fence

5 *

6 |__There may be a fence , if the cottage is by the sea; A

fence is permitted

7 | |__The cottage is by the sea

that tells us that the permission “A fence is permitted” is derived because “The
cottage is by the sea” and the rule justifying that derivation was “There may
be a fence, if the cottage is by the sea”.

When reaching deontic contradictions without factual information related,
in the normal operation of deolingo, the system outputs UNSATISFIABLE,

14 deolingo: extending Answer Set Programming with Deontic Reasoning

1 %!trace_rule {"There must be no fence , unless a permission

is granted "}

2 &default_prohibition{fence}.

3 %!trace_rule {"It must be a white fence , if the prohibition

of a fence is violated "}

4 &obligatory{white_fence} :- &violated_prohibition{fence}.

5 %!trace_rule {"There may be a fence , if the cottage is by

the sea"}

6 &permitted{fence} :- sea.

7 %!trace_rule {"A white fence is a fence"}

8 fence :- white_fence.

9 %!trace_rule {"It is obligatory a fence , if it is obligatory

a white fence"}

10 &obligatory{fence} :- &obligatory{white_fence }.

11 %!show_trace sea.

12 sea.

13 %!show_trace fence.

14 fence.

15 %!show_trace &permitted{X}.

16 %!trace {"There is a fence "} fence.

17 %!trace {"The cottage is by the sea"} sea.

18 %!trace {"A fence is permitted "} &permitted{fence }.

Listing 5. An annotated version of Listing 3.

meaning there are no answer sets that can satisfy the deontic logic program.
When working with a small sample program, it is relatively easy to spot the
contradictory deontic statements, but in a big normative set of rules, that task
can be much more difficult.

deolingo provides a command-line option --weak which can help finding
the root cause of these contradictions. When running in that mode, deolingo
adds the deontic weak axiom (2) as a weak constraint to the program, instead
of a normal constraint. A symbolic atom capturing the inconsistent deontic
atom is added to the answer set in case of contradiction and, additionally, that
atom is traced in the xclingo explanation.

1 deolingo_inconsistency(X) :- not deolingo_inconsistency(-X),

obligatory(X), forbidden(X), not holds(X), not holds(-X

)}.

2 :~ deolingo_inconsistency(X). [1@1, X]

3 #show deolingo_inconsistency /1.

4 %!trace {" INCONSISTENCY: % is obligatory and forbidden

without factual information !", X} deolingo_inconsistency

(X).

5 %!show_trace deolingo_inconsistency(X).

Listing 6: Deontic weak axiom D as a weak constraint.

4 Conclusions and Future Work

We have presented a deontic reasoning tool, deolingo, that extends ASP
with deontic operators allowing normative reasoning. The tool constitutes

P. Cabalar and O. M. Moar 15

a logic-programming based implementation of the recent logical formalism
of Deontic Equilibrium Logic with eXplicit negation (DELX) [4]. deolingo

provides multiple advantages. On the one hand, it constitutes a proper extension
of the ASP solver clingo, immediately allowing the incorporation of deontic
reasoning on already existing practical applications of ASP. On the other hand,
it provides all the representational advantages of DELX for solving deontic
reasoning challenges 4 as discussed in [4]. A third important advantage is
deolingo’s explainability that allows providing a derivation proof, expressed in
natural language, justifying all the derived obligations, permissions, violations
and fulfillments. This feature is crucial for modern AI systems, especially in
those cases related to regulations.

The main topic for immediate future work is providing a temporal extension
of deolingo, based on the recent extension of DELX to the temporal case [22]
and potentially using the temporal ASP tool telingo [6] as a backend.

References

[1] Aguado, F., P. Cabalar, J. Fandinno, D. Pearce, G. Pérez and C. Vidal, Revisiting explicit
negation in answer set programming, Theory and Practice of Logic Programming 19
(2019), pp. 908–924.

[2] Benzmüller, C., X. Parent and L. van der Torre, A deontic logic reasoning infrastructure,
Computer Science and Communications, University of Luxembourg, Luxembourg (2018).

[3] Brewka, G., T. Eiter and M. Truszczyński, Answer set programming at a glance,
Communications of the ACM 54 (2011), pp. 92–103.

[4] Cabalar, P., A. Ciabattoni and L. van der Torre, Deontic equilibrium logic with explicit
negation, in: Logics in Artificial Intelligence: 18th European Conference, JELIA 2023,
Dresden, Germany, September 20–22, 2023, Proceedings (2023), p. 498–514.

[5] Cabalar, P., J. Fandinno and B. Muñiz, A system for explainable answer set programming,
Electronic Proceedings in Theoretical Computer Science 325 (2020), p. 124–136.

[6] Cabalar, P., R. Kaminski, P. Morkisch and T. Schaub, telingo = asp + time, in:
M. Balduccini, Y. Lierler and S. Woltran, editors, Logic Programming and Nonmonotonic
Reasoning (2019), pp. 256–269.

[7] Cappanera, P., S. Caruso, C. Dodaro, G. Galatà, M. Gavanelli, M. Maratea, C. Marte,
M. Mochi, M. Nonato and M. Roma, Recent answer set programming applications to
scheduling problems in digital health, in: Proceedings of the Workshop on Experimental
evaluation of algorithms for solving problems with combinatorial explosion (RCRA24),
CEUR-WS proceedings, vol. 3883, 2024.

[8] Erdem, E., M. Gelfond and N. Leone, Applications of answer set programming, AI
Magazine 37 (2016), pp. 53–68.

[9] Gebser, M., R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub and P. Wanko, Theory
solving made easy with clingo 5, in: International Conference on Logic Programming,
2016.

[10] Gebser, M., R. Kaminski, B. Kaufmann and T. Schaub, Answer set programming, in:
Handbook of knowledge representation (2012), pp. 285–340.

[11] Gelfond, M. and V. Lifschitz, Stable model semantics for logic programming, Logic
programming, Proceedings of the fifth international conference and symposium 2 (1988),
pp. 1070–1080.

4 For an implementation of these challenges in deolingo, see [18]

16 deolingo: extending Answer Set Programming with Deontic Reasoning

[12] Gelfond, M. and J. Lobo, Authorization and obligation policies in dynamic systems,
in: M. G. de la Banda and E. Pontelli, editors, Logic Programming, 24th International
Conference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings, Lecture Notes
in Computer Science 5366 (2008), pp. 22–36.

[13] Governatori, G., An ASP implementation of defeasible deontic logic, Künstliche Intelligenz
38 (2024), pp. 79–88.

[14] Governatori, G., F. Olivieri, A. Rotolo and S. Scannapieco, Computing strong and weak
permissions in defeasible logic, Journal of Philosophical Logic 42 (2013), pp. 799–829.

[15] Inclezan, D., An ASP framework for the refinement of authorization and obligation
policies, Theory and Practice of Logic Programming 23 (2023), pp. 832–847.

[16] Kowalski, R., Logical english for legal applications, 2020.

[17] Marek, V. and M. Truszczyński, “Stable models and an alternative logic programming
paradigm,” Springer-Verlag, 1999 pp. 169–181.

[18] Moar, O. M., “Deolingo: a Deontic Logic solver system based on Answer Set Programming,”
Master’s thesis, University of A Coruña, Faculty of Computer Science, A Coruña, Galicia,
Spain (2024).
URL http://hdl.handle.net/2183/41411

[19] Niemelä, I., Logic Programs with Stable Model Semantics as a Constraint Programming
Paradigm, Annals of Mathematics and Artificial Intelligence 25 (1999), pp. 241–273.

[20] Pearce, D., A new logical characterisation of stable models and answer sets, in: Non
monotonic extensions of logic programming. Proc. NMELP’96. (LNAI 1216), Springer-
Verlag, 1996 .

[21] Prakken, H. and M. Sergot, Dyadic deontic logic and contrary-to-duty obligations, in:
D. Nute, editor, Defeasible Deontic Logic, Dordrecht, 1997, pp. 223–262.

[22] Soldà, D., P. Cabalar, A. Ciabattoni and E. A. Neufeld, Tackling temporal deontic
challenges with equilibrium logic, in: Proceedings of the 24th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2025), 2025.

[23] von Wright, G. H., Deontic logics, American Philosophical Quarterly 4 (1967), pp. 136–
143.

Appendix

A Complete theory specification for deolingo

1 #theory deolingo {

2 deontic_term {

3 - : 4, unary;

4 && : 3, binary , left;

5 || : 2, binary , left;

6 | : 1, binary , left

7 };

8 show_term { / : 1, binary , left };

9 &obligatory /0 : deontic_term , any;

10 &forbidden /0 : deontic_term , any;

11 &omissible /0 : deontic_term , any;

12 &permitted /0 : deontic_term , any;

13 &optional /0 : deontic_term , any;

14 &permitted_by_default /0 : deontic_term , any;

15 &omissible_by_default /0 : deontic_term , any;

16 &holds/0 : deontic_term , any;

17 &deontic /0 : deontic_term , any;

18 &permitted_implicitly /0 : deontic_term , any;

19 &omissible_implicitly /0 : deontic_term , any;

20 &violated /0 : deontic_term , any;

21 &fulfilled /0 : deontic_term , any;

22 &violated_obligation /0 : deontic_term , any;

http://hdl.handle.net/2183/41411

P. Cabalar and O. M. Moar 17

23 &fulfilled_obligation /0 : deontic_term , any;

24 &non_violated_obligation /0 : deontic_term , any;

25 &non_fulfilled_obligation /0 : deontic_term , any;

26 &undetermined_obligation /0 : deontic_term , any;

27 &default_obligation /0 : deontic_term , any;

28 &violated_prohibition /0 : deontic_term , any;

29 &fulfilled_prohibition /0 : deontic_term , any;

30 &non_violated_prohibition /0 : deontic_term , any;

31 &non_fulfilled_prohibition /0 : deontic_term , any;

32 &undetermined_prohibition /0 : deontic_term , any;

33 &default_prohibition /0 : deontic_term , any;

34 &show/0 : show_term , directive

35 }.

Listing 7: clingo theory specification for deolingo.

	Introduction
	Background
	Deontic Equilibrium Logic with Explicit Negation (DELX)
	Brief overview of ASP and clingo

	The deolingo system
	Input language
	Running deolingo
	Translation to regular ASP
	Implementation details
	Explainability with xclingo

	Conclusions and Future Work
	References
	Complete theory specification for deolingo

