
Compiling Metric Temporal Answer Set Programming

A. Becker3, P. Cabalar1, M. Diéguez2, J. Romero3, S. Hahn3, and T. Schaub3

1Univ. of Corunna, Spain 2LERIA, Univ. d’Angers, France 3Univ. of Potsdam, Germany

Abstract. We develop a computational approach to Metric Answer Set Program-
ming (ASP) to allow for expressing quantitative temporal constrains, like durations
and deadlines. A central challenge is to maintain scalability when dealing with fine-
grained timing constraints, which can significantly exacerbate ASP’s grounding
bottleneck. To address this issue, we leverage extensions of ASP with difference
constraints, a simplified form of linear constraints, to handle time-related aspects
externally. Our approach effectively decouples metric ASP from the granularity of
time, resulting in a solution that is unaffected by time precision.

1 Introduction

Metric temporal logics [12] allow for expressing quantitative temporal constrains, like du-
rations and deadlines. As an example, consider the dentist scenario [19]:

D H O A
D 0 20 30 40
H 20 0 15 15
O 30 15 0 20
A 40 15 20 0

Table 1. Du-
rations between
locations

“Ram is at his office and has a dentist appointment in one hour. For the
appointment, he needs his insurance card which is at home and cash
to pay the doctor. He can get cash from the nearby Atm. Table 1 shows
the time in minutes needed to travel between locations: Dentist, Home,
Office and Atm. For example, the time needed to travel between Ram’s
office to the Atm is 20 minutes. The available actions are: moving from
one location to another and picking items such as cash or insurance.
The goal is to find a plan which takes Ram to the doctor on time.” This
example combines planning and scheduling, and nicely illustrates the
necessity to combine qualitative and quantitative temporal constraints.

Extensions to the Logic of Here-and-There and Equilibrium Logic [20] were devel-
oped in [9, 6] to semantically ground the incorporation of metric constraints into Answer
Set Programming (ASP; [18]). Building upon these semantic foundations, we develop
a computational approach to metric ASP. A central challenge in this is to maintain
scalability when dealing with fine-grained timing constraints, which can significantly
exacerbate ASP’s grounding bottleneck. To address this issue, we leverage extensions of
ASP with difference constraints [15], a simplified form of linear constraints, to handle
time-related aspects externally. This approach effectively decouples metric ASP from the
granularity of time, resulting in a solution that is unaffected by time precision. In detail,
we (i) propose translations of metric logic programs into regular logic programs and
their extension with difference constraints, (ii) prove the completeness and correctness
of both translations in terms of equilibrium logic and its extensions with metric and
difference constraints, and (iii) describe an implementation of both translations in terms
of meta encodings and give some indicative experimental results. Conversely, we may
consider metric logic programs as a high-level modeling language for logic programs

with difference constraints in the context of temporal domains. We consider a simple
yet expressive fragment in which the next operator can be supplied with a time frame
expressed as an interval; the full paper shows how this extends to the entire language.

Related work. Pioneering work on extending ASP with linear integer constraints to
express quantitative temporal relations was done in [4, 19]. This work ultimately inspired
the development of hybrid ASP systems such as clingcon [3] and clingo[DL] [15]. Metric
equilibrium logic was defined in [9, 6] by building on Linear temporal equilibrium
logic [1]. The latter provides the logical foundations of the temporal ASP system
telingo [8]. Metric concepts are also present in stream reasoning, notably, the approach
of lars [5]. Metric extensions are also considered in Datalog [22], where they led to
the meteor [23] and (temporal) vadalog [7] systems. Actions with durations in ASP are
explored in [21]. Finally, [14] considers reductions of (monotonic) Metric temporal logic
to Linear temporal logic. A comprehensive comparative account of metric approaches in
logic programming is given in [6].

2 Background

To ease the formal elaboration of our translations from metric ASP to regular logic
programs and their extension with difference constraints, we put ourselves into the
context of the logical framework of Here-and-There and Equilibrium Logic.

The Logic of Here-and-There [20]. A formula over an alphabet A is defined as

φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ where a ∈ A .

We define the derived operators ¬φ = φ→ ⊥ and ⊤ = ¬⊥. Elements a of A are called
(Boolean) atoms. A literal is an atom or an atom preceded by negation, viz. a or ¬a. A
theory is a set of formulas. We sometimes write φ ← ψ instead of ψ → φ to follow
logic programming conventions. A program is a set of implications of the form φ← ψ
where φ is a disjunction of literals and ψ is a conjunction of literals.

We represent an interpretation T as a set of atoms T ⊆ A. An HT-interpretation is
a pair ⟨H,T ⟩ of interpretations such that H ⊆ T ; it is said to be total if H = T . An
HT-interpretation ⟨H,T ⟩ satisfies a formula φ, written ⟨H,T ⟩ |= φ, if

1. ⟨H,T ⟩ |= a if a ∈ H
2. ⟨H,T ⟩ |= φ ∧ ψ if ⟨H,T ⟩ |= φ and ⟨H,T ⟩ |= ψ
3. ⟨H,T ⟩ |= φ ∨ ψ if ⟨H,T ⟩ |= φ or ⟨H,T ⟩ |= ψ
4. ⟨H,T ⟩ |= φ→ ψ if ⟨H ′, T ⟩ ̸|= φ or ⟨H ′, T ⟩ |= ψ for each H ′ ∈ {H,T}

An HT-interpretation ⟨H,T ⟩ is an HT-model of a theory Γ if ⟨H,T ⟩ |= φ for each φ ∈
Γ . A total model ⟨T, T ⟩ of a theory Γ is an equilibrium model if there is no other
model ⟨H,T ⟩ of Γ with H ⊂ T ; T is also called a stable model of Γ .

The Logic of Here-and-There with Constraints [10]. The syntax of HTc relies on a
signature ⟨X ,D, C⟩, similar to constraint satisfaction problems, where elements of set X
represent variables and elements of D are domain values (usually identified with their
respective constants). The constraint atoms in C provide an abstract way to relate values
of variables and constants according to the atom’s semantics. For instance, difference

constraint atoms are expressions of the form ‘x− y ≤ d’, containing variables x, y ∈ X
and the domain value d ∈ D. A constraint formula φ over C is defined as

φ ::= ⊥ | c | φ ∧ φ | φ ∨ φ | φ→ φ where c ∈ C

Concepts like defined operators, programs, theories, etc. are analogous to HT. Variables
can be assigned some value from D or left undefined. For the latter, we use the special
symbol u ̸∈ D and the extended domain Du = D ∪ {u}. A valuation v is a function
v : X → Du. We let V stand for the set of all valuations. We sometimes represent a
valuation v as a set {(x, v(x)) | x ∈ X , v(x) ∈ D} of pairs, so that (x,u) is never
formed. This allows us to use standard set inclusion, v ⊆ v′, for comparing v, v′ ∈ V.

The semantics of constraint atoms is defined in HTc via denotations, that is, functions
J · K : C → 2V mapping each constraint atom to a set of valuations. An HTc-interpretation
is a pair ⟨h, t⟩ of valuations such that h ⊆ t; it is total if h = t. Given a denotation J · K,
an HTc-interpretation ⟨h, t⟩ satisfies a constraint formula φ, written ⟨h, t⟩ |= φ, if

1. ⟨h, t⟩ |= c if h ∈ J c K
2. ⟨h, t⟩ |= φ ∧ ψ if ⟨h, t⟩ |= φ and ⟨h, t⟩ |= ψ
3. ⟨h, t⟩ |= φ ∨ ψ if ⟨h, t⟩ |= φ or ⟨h, t⟩ |= ψ
4. ⟨h, t⟩ |= φ→ ψ if ⟨v, t⟩ ̸|= φ or ⟨v, t⟩ |= ψ for each v ∈ {h, t}

An HTc-interpretation ⟨h, t⟩ is an HTc-model of a theory Γ if ⟨h, t⟩ |= φ for every φ ∈ Γ .
A total model ⟨t, t⟩ of a theory Γ is a constraint equilibrium model if there is no other
model ⟨h, t⟩ of Γ with h ⊂ t.

The Metric Temporal Logic of Here-and-There [9, 6]. Given an alphabet A and
I = {[m..n) | m ∈ N, n ∈ N ∪ {ω}}, a metric temporal formula is defined as1

φ ::= ⊥ | a | φ ∧ φ | φ ∨ φ | φ→ φ | I | ◦Iφ | □Iφ | ♢Iφ where a ∈ A, I ∈ I

The last three cases deal with metric temporal operators, which are indexed by some
interval I . In words, ◦I , □I , and ♢I are called next, always, and eventually. I simply
refers to the initial state. We write ◦, □, ♢ for ◦[0..ω), □[0..ω), ♢[0..ω), respectively. In
addition to the aforedefined Boolean operators, we define F = ¬◦⊤, which allow us to
refer to the final state. Concepts like programs, theories, etc. are analogous to HT.

The semantics of temporal formulas is defined via traces, being sequences T =
(Ti)i∈[0..λ) of interpretations Ti ⊆ A; λ is the length of T. Here, we consider only traces
of finite length. We define the ordering H ≤ T between traces of the same length λ as
Hi ⊆ Ti for each i ∈ [0..λ), and H < T as both H ≤ T and H ̸= T. An HT-trace over
A of length λ is a sequence of pairs (⟨Hi, Ti⟩)i∈[0..λ) with Hi ⊆ Ti for any 0 ≤ i < λ;
it is total if Hi = Ti. For convenience, we represent it as the pair ⟨H,T⟩ of traces
H = (Hi)i∈[0..λ) and T = (Ti)i∈[0..λ).

Metric information is captured by timing functions. Given λ ∈ N, we say that
τ : [0..λ)→ N is a (strict) timing function wrt λ if τ(0) = 0 and τ(k) < τ(k + 1) for
0 ≤ k < λ− 1. A timed HT-trace (⟨H,T⟩, τ) over A and (N, <) of length λ is a pair
consisting of an HT-trace ⟨H,T⟩ over A of length λ and a timing function τ wrt λ. A
timed HT-trace M = (⟨H,T⟩, τ) of length λ over alphabet A satisfies a metric formula
φ at k ∈ [0..λ), written M, k |= φ, if

1 More general formulas, including until, release and past operators, are presented in [6].

1. M, k |= a if a ∈ Hk

2. M, k |= φ ∧ ψ if M, k |= φ and M, k |= ψ
3. M, k |= φ ∨ ψ if M, k |= φ or M, k |= ψ
4. M, k |= φ→ ψ if M′, k ̸|= φ or M′, k |= ψ,

for both M′ = M and M′ = (⟨T,T⟩, τ)
5. M, k |= I if k = 0
6. M, k |= ◦I φ if k + 1 < λ and M, k+1 |= φ and τ(k+1)− τ(k) ∈ I
7. M, k |= ♢I φ if M, i |= φ for some i ∈ [k..λ) with τ(i)− τ(k) ∈ I
8. M, k |= □I φ if M, i |= φ for all i ∈ [k..λ) with τ(i)− τ(k) ∈ I

A timed HT-trace M is an MHT-model of a metric theory Γ if M, 0 |= φ for all φ ∈ Γ .
A total MHT-model (⟨T,T⟩, τ) of a theory Γ is a metric equilibrium model if there is
no other model (⟨H,T⟩, τ) of Γ with H < T.

For illustration, let us consider the formalization of the dentist scenario in (1) to (9).
We assume that variables L and L′ are substituted by distinct locations office, atm,
dentist, and home; and variable I by items cash and icard. We use δ⟨L,L′⟩ to refer to
the distance between two locations from Table 1. As in [19], we assume that Ram is
automatically picking up items when being at the same position.

□(at(ram, office)← I) (1)
□(at(cash, atm)← I) (2)

□(at(icard, home)← I) (3)
□(

∨
L′ ̸=L go(ram, L′)← at(ram, L) ∧ ¬F) (4)

□(has(ram, I)← at(ram, L) ∧ at(I, L)) (5)
□(at(I, L)← at(ram, L) ∧ has(ram, I)) (6)

□(◦[δ⟨L,L′⟩..δ⟨L,L′⟩+1)at(ram, L′)← at(ram, L) ∧ go(ram, L′)) (7)
□(◦has(ram, I)← has(ram, I) ∧ ¬F) (8)

□(◦at(I, L)← ¬has(ram, I) ∧ at(I, L) ∧ ¬F) (9)

In brief, Rules (1) to (3) give the initial situation. Rule (4) delineates possible actions.
Rules (5) and (6) capture indirect effects. Rule (7) is the effect of moving from location
L to L′; it uses the next operator restricted by the duration between locations. Rules (8)
and (9) address inertia.

3 Metric Logic Programs

Metric logic programs, defined as metric theories composed of implications akin to
logic programming rules, derive their semantics from their metric equilibrium models.
Syntactically, a metric logic program over A is a set of metric rules of form

□(α← β) or □(◦Ia← β)

for α = a1 ∨ · · · ∨ am ∨ ¬am+1 ∨ · · · ∨ ¬an, β = b1 ∧ · · · ∧ bo ∧ ¬bo+1 ∧ · · · ∧ ¬bp,
and m,n, o, p ∈ N with a, ai ∈ A for 1 ≤ i ≤ n, and bi ∈ A ∪ {I,F} for 1 ≤ i ≤ p.

While our considered language fragment excludes global temporal operators and
disjunctive metric heads, it effectively captures state transitions and allows for imposing
timing constraints upon them. A comprehensive treatment is provided in our full paper,
but they are omitted here for simplicity as they require more elaborate translations.

Our two alternative translations share a common structure, each divided into three
distinct parts. The first part maps a metric program into a regular one. This part captures
the state transitions along an HT-trace specified by the metric program, and is common
to both translations. The second and third part capture the timing function along with its
interplay with the interval constraints imposed by the metric program, respectively. The
two variants of these parts are described in Section 4 and 5 below.

The first part of our translation takes a metric program over A and yields rules over
A∗ =

⋃
k∈NAk for Ak = {ak | a ∈ A} and k ∈ N. Atoms of form ak in A∗ represent

the values taken by variable a ∈ A at different points k along a trace of length λ.
We begin by inductively defining the translation (r)k of a metric rule □r at k for

0 ≤ k < λ and λ ∈ N as follows:2

(a)k = ak if a ∈ A

(◦Ia)k =

{
⊥ if k = λ− 1

(a)k+1 otherwise

(I)k =

{
⊤ if k = 0
⊥ otherwise

(⊥)k = ⊥
(φ1 ∧ φ2)k = (φ1)k ∧ (φ2)k

(φ1 ∨ φ2)k = (φ1)k ∨ (φ2)k

(α← β)k = {(φ1)k ← (φ2)k}

Note that we drop the always operator □ preceding metric rules in the translation; it is
captured by producing a rule instance for every 0 ≤ k < λ. Accordingly, for a metric
program P over A and λ ∈ N, we define

Πλ(P) =
⋃

□r∈P, 0≤k<λ(r)k over A∗ .

For illustration, consider the instance of (7) for moving from office to home

□(◦[15..16)at(ram, home)← at(ram, office) ∧ go(ram, home)) . (10)

Our translation ignores □ at first and yields:

⊥ ← at(ram, office)k ∧ go(ram, home)k for k = λ− 1 (11)
at(ram, home)k+1 ← at(ram, office)k ∧ go(ram, home)k otherwise (12)

When assembling Πλ(P) for λ = 100 and P being the rules in (1) to (9), we account
for □ by adding 99 instances of the rule in (12) and a single instance of (11).

This first part of our translation follows Kamp’s translation [17] for Linear temporal
logic. Of particular interest is the translation of ◦Ia← β. The case analysis accounts
for the actual state transition of the next operator, which is infeasible at the end of the
trace. Thus, we either derive ak+1 or a contradiction. The metric aspect is captured by
the translations in Section 4 and 5. Whenever all intervals in a metric programs P are of
form [0..ω), we get a one-to-one correspondence between MHT-traces of length λ of P
with an arbitrary yet fixed timing function and HT-interpretations of Πλ(P). Finally, it
is worth noting that the size of the resulting program Πλ(P) grows with λ.

2 Note that ⊤, ¬ and F are defined operators.

4 Translation of Metric Logic Programs to HT

We begin by formalizing timing functions τ via Boolean atoms in T = {tk,d | k, d ∈ N}.
An atom like tk,d represents that τ(k) = d. To obtain finite theories, we furthermore
impose an upper bound ν ∈ N on the range of τ . Hence, together with the trace length λ,
our formalization ∆λ,ν only captures timing functions τ satisfying τ(λ− 1) ≤ ν.

Given λ, ν ∈ N, we let

∆λ,ν = {t0,0} ∪ {
∨

d<d′≤ν tk+1,d′ ← tk,d | 0 ≤ k < λ− 1, 0 ≤ d ≤ ν} (13)

Starting from τ(0) = 0, represented by t0,0, the rule in (13) assigns strictly increasing
time points to consecutive states, reflecting that τ(k) < τ(k + 1) for 0 ≤ k < λ− 1.

The last part of our formalization accounts for the interplay of the timing function
with the interval conditions imposed in the program. Given λ, ν ∈ N and a metric
program P , we let

Ψλ,ν(P) = {⊥ ← (β)k ∧ tk,d ∧ tk+1,d′ | 0 ≤ k < λ− 1, 0 ≤ d < d′ ≤ ν, (14)
d′ − d < m,□(◦[m..n)a← β) ∈ P} ∪

{⊥ ← (β)k ∧ tk,d ∧ tk+1,d′ | 0 ≤ k < λ− 1, 0 ≤ d < d′ ≤ ν, (15)
n ∈ N, d′ − d ≥ n,□(◦[m..n)a← β) ∈ P}

The integrity constraints ensure that for every metric rule □(◦[m..n)a← β) the duration
between the kth and (k+1)st state in a trace falls within interval [m..n). With τ(k) = d
and τ(k+1) = d′, this amounts to checking whether d+m ≤ d′ < d+ n, if n is finite;
otherwise, the verification of the upper bound in (15) is dropped for n = ω.

Note that the size of both∆λ,ν and Ψλ,ν(P) is proportional toO(λ ·ν2). Hence, long
traces and even more severely fine-grained timing functions lead to a significant blow up
when translating metric programs into regular ones with the above formalization.

For the rule in (10), we get

⊥ ← at(ram, office)k ∧ go(ram, home)k ∧ tk,d ∧ tk+1,d′ for d′ − d < 15 (16)
⊥ ← at(ram, office)k ∧ go(ram, home)k ∧ tk,d ∧ tk+1,d′ for d′ − d ≥ 16 (17)

and 0 ≤ k < λ− 1, 0 ≤ d < d′ ≤ ν. For λ = 100 and ν = 1000, this then amounts to
roughly 108 instances for each of the above constraints.

In what follows, we characterize the effect of our formalization in terms of HT-
models, and ultimately show the completeness and correctness of our translation.

Definition 1. An HT interpretation ⟨H,T ⟩ over A with T ⊆ A, is timed wrt λ ∈ N,
if there is a timing function τ wrt λ such that for all 0 ≤ k < λ, d ∈ N, we have

⟨H,T ⟩ |= tk,d iff τ(k) = d and ⟨T, T ⟩ |= tk,d iff τ(k) = d

We also call τ the timing function induced by ⟨H,T ⟩.

Proposition 1. Let λ, ν ∈ N.
If ⟨T, T ⟩ is an equilibrium model of ∆λ,ν then ⟨T, T ⟩ is timed wrt λ.

Proposition 2. Let ⟨H,T ⟩ be an HT interpretation and λ ∈ N.
If ⟨H,T ⟩ is timed wrt λ and induces τ then ⟨H,T ⟩ |= ∆λ,ν for ν = τ(λ− 1).

Clearly, the last proposition extends to equilibrium models.
Given a timed HT-trace M = (⟨Hk, Tk⟩k∈[0..λ), τ) of length λ over A, we define

θ(M) as HT interpretation ⟨H ∪X,T ∪X⟩ where

H = {ak ∈ Ak | 0 ≤ k < λ, a ∈ Hk} T = {ak ∈ Ak | 0 ≤ k < λ, a ∈ Tk}
X = {tk,d | τ(k) = d, 0 ≤ k < λ, d ∈ N}

Note that θ(M) is an HT interpretation timed wrt λ.
Conversely, given an HT interpretation ⟨H,T ⟩ timed wrt λ over A∗ ∪ T and its

induced timing function τ , we define σ(⟨H,T ⟩) as the timed HT-trace

(⟨{a ∈ A | ak ∈ H}, {a ∈ A | ak ∈ T}⟩k∈[0..λ), τ)

In fact, both functions σ and θ are invertibles, and we get a one-to-one correspondence
between HT interpretations timed wrt λ and timed HT-traces of length λ.

Finally, we have the following completeness and correctness result.

Theorem 1 (Completeness). Let P be a metric logic program and M = (⟨T,T⟩, τ) a
total timed HT-trace of length λ.

If M is an metric equilibrium model of P , then θ(M) is an equilibrium model of
Πλ(P) ∪∆λ,ν ∪ Ψλ,ν(P) with ν = τ(λ− 1).

Theorem 2 (Correctness). Let P be a metric logic program, and λ, ν ∈ N.
If ⟨T, T ⟩ is an equilibrium model of Πλ(P) ∪∆λ,ν ∪ Ψλ,ν(P), then σ(⟨T, T ⟩) is a

metric equilibrium model of P .

5 Translation of Metric Logic Programs to HTc

We now present an alternative, refined formalization of the second and third parts,
utilizing integer variables and difference constraints to capture the timing function more
effectively. To this end, we use the logic of HTc to combine the Boolean nature of ASP
with constraints on integer variables.

Given base alphabet A and λ ∈ N, we consider the HTc signature ⟨X ,D, C⟩ where3

X = A∗ ∪ {tk | 0 ≤ k < λ}
D = {t} ∪ N
C = {a = t | a ∈ A∗} ∪ {x = d | x ∈ X \ A∗, d ∈ N} ∪
{x− y ≤ d | x, y ∈ X \ A∗, d ∈ N}

Rather than using Boolean variables, this signature represents timing functions τ directly
by integer variables tk, capturing that τ(k) = tk for 0 ≤ k < λ. This is enforced by the
integer constraints in C, whose meaning is defined by the following denotations:

J a = t K = {v ∈ V | v(a) = t} for all a ∈ A∗

3 In HTc [10], Boolean variables are already captured by truth values t and u (rather than f [alse]).

Jx = d K = {v ∈ V | v(x), d ∈ N, v(x) = d}
Jx− y ≤ d K = {v ∈ V | v(x), v(y), d ∈ N, v(x)− v(y) ≤ d}

This leads us to the the following counterpart of ∆λ,ν in (13). Given λ ∈ N, we define

∆c
λ = {t0 = 0} ∪ {tk − tk+1 ≤ −1 | 0 ≤ k < λ− 1} (18)

Starting from t0 = 0, the difference constraints in (18) enforce that tk < tk+1 reflecting
that τ(0) = 0 and τ(k) < τ(k + 1) for 0 ≤ k < λ− 1. Moreover, ∆c

λ is unbound and
thus imposes no restriction on timing functions. And no variable tk is ever undefined:

Proposition 3. Let ⟨h, t⟩ be an HTc interpretation and λ ∈ N
If ⟨h, t⟩ |= ∆c

λ, then h(tk) ∈ N for all 0 ≤ k < λ.

We also have t(tk) ∈ N by definition of HTc interpretations, that is, since h ⊆ t.
Our variant of the third part of our translation re-expresses the ones in (14/15) in

terms of integer variables and difference constraints. Given λ ∈ N and a metric logic
program P , we define

Ψ c
λ(P) = {⊥ ← (β)k ∧ ¬(tk − tk+1 ≤ −m) | 0 ≤ k < λ− 1, (19)

□(◦[m..n)a← β) ∈ P} ∪
{⊥ ← (β)k ∧ ¬(tk+1 − tk ≤ n− 1) | 0 ≤ k < λ− 1, (20)

n ∈ N,□(◦[m..n)a← β) ∈ P}

In fact, both ∆c
λ and Ψ c

λ(P) drop the upper bound on the range of a timing function,
as required in their Boolean counterparts. Hence, their size is only proportional to O(λ),
and thus considerably smaller than their purely Boolean counterparts.

For the rule in (10), we get

⊥ ← at(ram, office)k ∧ go(ram, home)k ∧ ¬(tk − tk+1 ≤ −15) (21)
⊥ ← at(ram, office)k ∧ go(ram, home)k ∧ ¬(tk+1 − tk ≤ 15) (22)

for 0 ≤ k < λ− 1. Given λ = 100, this only amounts to 102 instances.
Mirroring our approach in Section 4, we capture the meaning of∆c

λ using specialized
HTc-models. This leads to the completeness and correctness of our translation.

Definition 2. An HTc interpretation ⟨h, t⟩ over ⟨X ,D, C⟩ is timed wrt λ, if there is a
timing function τ wrt λ such that h(tk) = τ(k) and t(tk) = τ(k) for all 0 ≤ k < λ.

As above, we call τ the timing function induced by ⟨h, t⟩.

Proposition 4. Let ⟨h, t⟩ be an HTc interpretation and λ ∈ N.
If ⟨h, t⟩ |= ∆c

λ then ⟨h, t⟩ is timed wrt λ.

Proposition 5. Let ⟨h, t⟩ be an HTc interpretation and λ ∈ N.
If ⟨h, t⟩ is timed wrt λ then ⟨h, t⟩ |= ∆c

λ.

Unlike Proposition 1, the latter refrain from requiring HTc-interpretations in equilibrium.
Given an HT-trace M = (⟨Hk, Tk⟩k∈[0..λ), τ) of length λ, we define θc(M) as the

HTc interpretation ⟨h ∪ x, t ∪ x⟩ where h, t, x are valuations such that

h = {(ak, t) | 0 ≤ k < λ, a ∈ Hk} t = {(ak, t) | 0 ≤ k < λ, a ∈ Tk}
x = {(tk, d) | τ(k) = d, 0 ≤ k < λ, d ∈ N}

Similar to above, θc(M) is an HTc interpretation timed wrt λ.
Conversely, given an HTc interpretation ⟨h, t⟩ timed wrt λ and its induced timing

function τ , we define σc(⟨h, t⟩) as the timed HT-trace

(⟨{a | h(ak) = t}, {a | t(ak) = t}⟩k∈[0..λ), τ)

As above, functions σc and θc are invertibles. Hence, we get a one-to-one correspondence
between HTc interpretations timed wrt λ and timed HT-traces of length λ.

Finally, we have the following completeness and correctness result.

Theorem 3 (Completeness). Let P be a metric logic program and M = (⟨T,T⟩, τ) a
total timed HT-trace of length λ.

If M is an metric equilibrium model of P , then θc(M) is a constraint equilibrium
model of Πλ(P) ∪∆c

λ ∪ Ψ c
λ(P).

Theorem 4 (Correctness). Let P be a metric logic program, and λ ∈ N.
If ⟨t, t⟩ is a constraint equilibrium model of Πλ(P) ∪∆c

λ ∪ Ψ c
λ(P), then σc(⟨t, t⟩)

is a metric equilibrium model of P .

6 Implementation

In what follows, we rely on a basic acquaintance with the ASP system clingo [13]. We
outline specialized concepts as they are introduced throughout the text. We show below
how easily our approach is implemented via clingo’s meta encoding framework. This
serves us as a blueprint for a more sophisticated future implementation. Clingo allows
for reifying a ground logic program in terms of facts, which can then be (re)interpreted
by a meta encoding. The result of another grounding is then channeled to the respective
back-end, in our case a regular or hybrid ASP solver, respectively. Though, for brevity,
we must refer to [16] for details, we mention that a reified ground program is represented
by instances of predicates atom_tuple, literal_tuple, rule, output, etc. 4

1 time(0..lambda-1).

3 conjunction(B,T) :- literal tuple(B), time(T),
4 hold(L,T) : literal tuple(B, L), L > 0;
5 not hold(L,T) : literal tuple(B,-L), L > 0.

7 body(normal(B),T) :- rule(,normal(B)), conjunction(B,T).
8 body(sum(B,G),T) :- rule(,sum(B,G)), time(T),
9 #sum{W,L : hold(L,T), weighted literal tuple(B, L,W), L>0;

4 Below we draw upon the symbol table, captured by output/2, for extracting syntactic entities.

10 W,L : not hold(L,T), weighted literal tuple(B,-L,W), L>0} >= G.

12 hold(A,T) : atom tuple(H,A) :- rule(disjunction(H),B), body(B,T).
13 { hold(A,T) : atom tuple(H,A) } :- rule(choice(H),B), body(B,T).

Listing 1. Timed meta encoding (meta.lp)

Listing 1 modifies the basic meta encoding in [16] by adding a variable T for time steps
to all derived predicates. Their range is fixed in Line 1. In this way, an atom hold(a,k)
stands for ak in A∗, where a is the numeric identifier of a in A. While this encoding
handles Boolean connectives, the metric ones are treated in Listing 2. The rules in Line 1
and 2 restore the symbolic representation of the numerically identified atoms, which
allows us to analyze the inner structure of modalized propositions. Lines (4/5) and (7/8)
deal with I and F, respectively. Lines 10 and 11 realize the metric next operator, ◦Ia,
represented by term next(I,a). Together Listing 1 and 2 account for Πλ(P).

1 true(O,K) :- output(O,B), time(K), hold(L,K) : literal tuple(B,L).
2 hold(L,K) :- output(O,B), time(K), true(O,K), literal tuple(B,L).

4 :- true(initially,K), time(K), K!=0.
5 true(initially,0).

7 :- true(finally,K), time(K), K!=lambda-1.
8 true(finally,lambda-1).

10 :- true(next(,),K), time(K), K=lambda-1.
11 true(V,K+1) :- true(next(I,V),K).

Listing 2. Meta encoding for metric part of Πλ(P) (bounded.lp)

When expressing time via Boolean variables, the two previous listings are combined
with Listing 3 and 4 below, which realize ∆λ,ν and Ψλ,ν(P), respectively. Atoms tk,d
in T are represented by t(k,d). The upper bound ν on the timing function’s range is
given by v, and ω is represented by w. The two encodings directly mirror the definitions
of ∆λ,ν and Ψλ,ν(P), with one key difference: the rule bodies in (14) and (15) are
replaced in Lines 1 and 2 of Listing 4 by auxiliary atoms of predicate true/2.

1 timepoint(0..v).

3 t(0,0).
4 t(K+1,D’) : D<D’, timepoint(D’) :- t(K,D), time(K+1).

Listing 3. Meta encoding for ∆λ,ν (time.lp)

1 :- true(next((M,N),V),K), t(K,D), t(K+1,D’), D’ - D < M.
2 :- true(next((M,N),V),K), t(K,D), t(K+1,D’), D’ - D >= N , N!=w.

Listing 4. Meta encoding for Ψλ,ν(P) (interval.lp)

When expressing time in terms of integer variables, we rely on difference con-
straints for modeling timing functions. Such simplified linear constraints have the form
‘x − y ≤ d’ for x, y ∈ X and d ∈ Z and are supported by the clingo extensions
clingcon [3] and clingo[DL] [15]. We use below clingcon’s syntax and represent them
as ‘&sum{x ; y} <= d’. A Boolean atom a can be seen as representing ‘a = t’.
In the case at hand, Listing 1 and 2 are now completed by Listing 5 and 6 below. As
above, they faithfully replicate the definitions of ∆c

λ and Ψ c
λ(P). Unlike above, however,

the timing function is now captured by integer variables of form t(k) and its range

restriction is now obsolete. The rules in Listing 5 mirror the two conditions on timing
functions, namely, that t(0) equals zero and that the instances of t(K+1) receive
a strictly greater integer than the ones of t(K) for K ranging from 0 to lambda-1.
Similarly, given that w stands for ω, the two rules in Listing 6 correspond to the difference
constraints in (19) and (20).

1 &sum{t(0)} = 0.
2 &sum{t(K) ; -t(K+1)} <= -1 :- time(K), time(K+1).

Listing 5. Meta encoding for ∆c
λ (time-c.lp)

1 &sum{t(K); -t(K+1)} <= -M :- true(next((M,N),V),K), time(K), time(K+1).
2 &sum{t(K+1); -t(K)} <= N-1 :- true(next((M,N),V),K), time(K), time(K+1), N!=w.

Listing 6. Meta encoding for Ψc
λ(P) (interval-c.lp)

As in Listing 4, we use auxiliary atoms of predicate true/2 rather than the corre-
sponding rule bodies. Notably, we shifted in Listing 6 the difference constraints in (19)
and (20) from the body to the head. This preserves (strong) equivalence in HTc whenever
all variables comprised in a constraint atom are defined, as guaranteed by Proposition 3.

1 item(icard). item(cash).
2 loc(dentist). loc(office). loc(atm). loc(home).

4 at(ram,office) :- initially.
5 at(cash,atm) :- initially.
6 at(icard,home) :- initially.

8 go(ram,L’) : loc(L’), L’!=L :- at(ram,L), not finally.

10 has(ram,I) :- at(ram,L), at(I,L), item(I).
11 at(ram,L) :- at(ram,L), has(ram,I).

13 next((D,D+1),at(ram,L’)) :- at(ram,L), go(ram,L’), distance(L,L’,D).

15 next((0,w),has(ram,I)) :- has(ram,I), not finally.
16 next((0,w),at(I,L)) :- at(I,L), item(I), not has(,I), not finally.

Listing 7. Metric logic program for dentist example (dentist.lp)

Listing 7 illustrates the above concepts using the dentist example (leaving out the
representation of Table 1 in terms of distance/3). For simplicity, we assume that
each rule is implicitly in the scope of an always operator □. Moreover, included temporal
operators and their comprised atoms are exempt from simplifications during grounding.5

We use predicate next/2 for the metric next operator. As an example, consider the
instance of Line 13 for moving from office to home, viz. the counterpart of (10).

1 next((15,16),at(ram,home)) :-
2 at(ram,office), go(ram,home), distance(office,home,15).

Note that next((0,w),·) in the head of the last two rules stands for ◦ aka ◦[0..ω).
Note that the above encoding does not enforce that Ram is at the dentist in one hour

with all necessary items. Ideally, this is represented with a global operator like ♢Iϕ. In
our example, this amounts to adding the (informal) rules

5 In meta encodings, this is done by adding corresponding #external directives.

1 :- initially, not ♢[0..61)goal
2 goal :- at(ram,dentist), has(ram,icard), has(ram,cash).

In the two approaches at hand, we may compensate the lack of global metric operators
by replacing Line 1 by ‘:- finally, not goal’ and enforcing the time limit
either by setting ν to 60 in our HT-based approach or by extending Listing 5 with
‘&sum{t(K)} <= 60 :- time(K), not time(K+1).’ in our HTc-based ap-
proach. However, this is only effective when the goal is achieved at the final step.

The example in Listing 7 is addressed with clingo in the following way.

clingo dentist.lp --output=reify |
clingo 0 - meta.lp bounded.lp time.lp interval.lp -c lambda=4 -c v=110

When using clingcon instead, it suffices to replace the second line with:

clingcon 0 - meta.lp bounded.lp time-c.lp interval-c.lp -c lambda=4

Our choices of lambda and v allow for all movement combinations within the 4 steps
required to reach the goal; we obtain in each case 27 solutions. Once we include the
query-oriented additions from above, we obtain a single model instead.

To gather some indicative results on the scalability of both approaches, we multiplied
the durations in Table 1 (and limit v for clingo) with 1, 5, and 10 and summarize the
results in Table 2. Despite the rather limited setting, we observe that the usage of integer
variables leads to a complete independence of performance and time granularity.

clingo [16] clingcon [3] clingo[DL] [15]
solve ground #rules solve ground #rules solve ground #rules

1 0.01 0.281 297211 0.00 0.020 2165 0.00 0.018 2165
5 7.09 19.358 7527451 0.00 0.020 2165 0.00 0.018 2165

10 609.46s 143.083 30177751 0.00 0.020 2165 0.00 0.018 2165

Table 2. Indicative results for clingo, clingcon, clingo[DL] (times in seconds; no resource limits).

7 Conclusion

We presented a computational approach to metric ASP that allows for fine-grained timing
constraints. We developed two alternative translations from firm semantic foundations,
and proved their completeness and correctness. Our second translation has a clear edge
over the first one, when it comes to a fine-grained resolution of time. This is achieved by
outsourcing the treatment of time. Clearly, this is not for free either. clingo[DL] maps
difference constraints into graphs, whose nodes are time variables and weighted edges
reflect the actual constraints. This results in a quadratic space complexity. clingcon
pursues a lazy approach to constraint solving that gradually unfolds an ASP encoding of
linear constraints. In the worst case, this amounts to the space requirements of our first
translation. As well, such constraints are hidden from the ASP solver and cannot be used
for directing the search. Hence, despite our indicative observations, a detailed empirical
analysis is needed to account for the subtleties of our translation and its target systems.

However, a prominent use case involves employing the identity (timing) function,
where intervals reference only state indices within traces. This coarser notion of time

reduces the discrepancy between our two translations. Further improvement is possible
through more sophisticated Boolean encodings, such as an order encoding [11, 2].

References

1. Aguado, F., Cabalar, P., Diéguez, M., Pérez, G., Schaub, T., Schuhmann, A., Vidal, C.:
Linear-time temporal answer set programming. TPLP 23(1), 2-56 (2023).

2. Banbara, M., Gebser, M., Inoue, K., Ostrowski, M., Peano, A., Schaub, T., Soh, T., Tamura, N.,
Weise, M.: aspartame: Solving constraint satisfaction problems with answer set programming.
In: LPNMR. pp. 112-126. Springer (2015)

3. Banbara, M., Kaufmann, B., Ostrowski, M., Schaub, T.: Clingcon: The next generation. TPLP
17(4), 408-461 (2017).

4. Baselice, S., Bonatti, P., Gelfond, M.: Towards an integration of answer set and constraint
solving. In: ICLP. pp. 52-66. Springer (2005)

5. Beck, H., Dao-Tran, M., Eiter, T.: LARS: A logic-based framework for analytic reasoning
over streams. AIJ 261, 16-70 (2018).

6. Becker, A., Cabalar, P., Diéguez, M., Schaub, T., Schuhmann, A.: Metric temporal equilibrium
logic over timed traces. CoRR abs/2304.14778 (2023)

7. Bellomarini, L., Blasi, L., Nissl, M., Sallinger, E.: The temporal vadalog system. In:
RuleML+RR. pp. 130-145. Springer (2022).

8. Cabalar, P., Diéguez, M., Laferriere, F., Schaub, T.: Implementing dynamic answer set pro-
gramming over finite traces. In: ECAI. pp. 656-663. IOS (2020).

9. Cabalar, P., Diéguez, M., Schaub, T., Schuhmann, A.: Towards metric temporal answer set
programming. TPLP 20(5), 783-798 (2020)

10. Cabalar, P., Kaminski, R., Ostrowski, M., Schaub, T.: An ASP semantics for default reasoning
with constraints. In: IJCAI. pp. 1015–1021. IJCAI/AAAI Press (2016).

11. Crawford, J., Baker, A.: Experimental results on the application of satisfiability algorithms to
scheduling problems. In: AAAI. pp. 1092-1097. AAAI (1994)

12. Fisher, M., Gabbay, D., Vila, L. (eds.): Handbook of Temporal Reasoning in Artificial
Intelligence, Elsevier (2005)

13. Gebser, M., Kaminski, R., Kaufmann, B., Lindauer, M., Ostrowski, M., Romero, J., Schaub,
T., Thiele, S.: Potassco User Guide. (2015), http://potassco.org

14. Hustadt, U., Ozaki, A., Dixon, C.: Theorem proving for pointwise metric temporal logic over
the naturals via translations. JAR 64(8), 1553-1610 (2020).

15. Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S., Wanko, P.: Clingo
goes linear constraints over reals and integers. TPLP 17(5-6), 872-888 (2017).

16. Kaminski, R., Romero, J., Schaub, T., Wanko, P.: How to build your own ASP-based system?!
TPLP 23(1), 299-361 (2023).

17. Kamp, J.: Tense Logic and the Theory of Linear Order. Ph.D. thesis, UCLA (1968)
18. Lifschitz, V.: Answer Set Programming. Springer (2019).
19. Mellarkod, V.: Integrating ASP and CLP systems: computing answer sets from partially

ground programs. Ph.D. thesis, Texas Tech (2007)
20. Pearce, D.: A new logical characterisation of stable models and answer sets. In: NMELP. pp.

57-70. Springer (1997).
21. Son, T., Baral, C., Tuan, L.: Adding time and intervals to procedural and hierarchical control

specifications. In: AAAI’04 pp. 92–97. AAAI Press (2004)
22. Wałega, P., Cuenca Grau, B., Kaminski, M., Kostylev, E.: DatalogMTL: Computational

complexity and expressive power. In: IJCAI. pp. 1886-1892. ijcai.org (2019)
23. Wang, D., Hu, P., Wałega, P., Grau, B.: MeTeoR: Practical reasoning in Datalog with metric

temporal operators. In: AAAI. pp. 5906-5913. AAAI (2022).

