
Under consideration for publication in Theory and Practice of Logic Programming 1

Causal Graph Justifications of Logic Programs∗
Pedro Cabalar, Jorge Fandinno

Department of Computer Science
University of Corunna, Spain

(e-mail: {cabalar, jorge.fandino}@udc.es)

Michael Fink
Vienna University of Technology,
Institute for Information Systems

Vienna, Austria
(e-mail: fink@kr.tuwien.ac.at)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

In this work we propose a multi-valued extension of logic programs under the stable models semantics
where each true atom in a model is associated with a set of justifications. These justifications are expressed
in terms of causal graphs formed by rule labels and edges that represent their application ordering. For
positive programs, we show that the causal justifications obtained for a given atom have a direct correspon-
dence to (relevant) syntactic proofs of that atom using the program rules involved in the graphs. The most
interesting contribution is that this causal information is obtained in a purely semantic way, by algebraic
operations (product, sum and application) on a lattice of causal values whose ordering relation expresses
when a justification is stronger than another. Finally, for programs with negation, we define the concept of
causal stable model by introducing an analogous transformation to Gelfond and Lifschitz’s program reduct.
As a result, default negation behaves as “absence of proof” and no justification is derived from negative
literals, something that turns out convenient for elaboration tolerance, as we explain with several examples.

KEYWORDS: Answer Set Programming, Causality, Knowledge Representation, Multi-valued Logic Pro-
gramming

1 Introduction

An important difference between classical models and most Logic Programming (LP) semantics
is that, in the latter, true atoms must be founded or justified by a given derivation. Consequently,
falsity is understood as absence of proof: for instance, a common informal way reading for default
literal not p is “there is no way to derive p.” Although this idea seems quite intuitive, it actually
resorts to a concept, the ways to derive p, outside the scope of existing LP semantics. In other
words, LP semantics point out whether there exists some derivation for an atom, but do not
provide the derivations themselves, if several alternatives exist.

However, such information on justifications for atoms can be of great interest for Knowl-
edge Representation (KR), and especially, for dealing with problems related to causality. An

∗ This research was partially supported by Spanish MEC project TIN2009-14562-C05-04, Xunta program INCITE 2011
and Inditex-University of Corunna 2013 grants, as well as by the Austrian Science Fund (FWF) project P24090.

2 P. Cabalar, J. Fandinno & M. Fink

important challenge in causal reasoning is the capability of not only deriving facts of the form
“A has caused B,” but being able to represent them and reason about them. This kind of informa-
tion is crucial, for instance, in diagnosis or in legal reasoning. As an example, take the assertion:

“If somebody causes an accident, (s)he is legally responsible for that.”

This law does not specify the possible ways in which a person may cause an accident. Depending
on a representation of the domain, the chain of events from the agent’s action(s) to the final effect
may be simple (a direct effect) or involve a complex set of indirect effects and defaults like inertia.
Regarding representation of the above law, for instance, one might think of an informal rule:

responsible(X ,Y)← action(A), person(X),accident(Y),“do(A,X) caused occurs(Y)”.

If the pseudo-literal “do(A,X) caused occurs(Y)” actually corresponds to an explicit repre-
sentation of all the possible ways of causing an accident, however, one immediately runs into
a problem of elaboration tolerance (McCarthy 1998) — adding new rules that causally con-
nect do(A,X) to occurs(Y) (in a direct or indirect way) would force us to build new rules for
responsible(X ,Y). What is needed instead, and what we actually propose, is to introduce, in-
deed, some kind of new LP literal “A caused B,” with an associated semantics capable of reveal-
ing causes A of a given true atom B.

While not straightforward, the rewarding perspective of such a semantic approach is an ex-
tension of Answer Set Programming (ASP) (Brewka et al. 2011) with causal literals capable of
representing different kinds of causal influences (sufficient cause, necessary cause, etc). In this
paper, we tackle the above issue and, as a first step and basic underlying requirement, develop a
suitable semantics capable of associating causal justifications with each true atom. To this end,
we propose a multi-valued extension of logic programs under the stable model semantics (Gel-
fond and Lifschitz 1988) where each true atom in a model is associated with a set of justifications
in the form of causal graphs. To further illustrate our motivation, consider the following example.

Example 1 (From Cabalar 2011)
Some country has a law l that asserts that driving drunk is punishable with imprisonment. On the
other hand, a second law m specifies that resisting arrest has the same effect. The execution e of
a sentence establishes that a punishment implies imprisonment. Suppose that some person drove
drunk and resisted to be arrested. �

We can capture this scenario with the following logic program P1:

l : punish← drive,drunk m : punish← resist e : prison← punish
d : drive k : drunk r : resist

The least model of this positive program makes atom prison true, so we know that there exists a
possible derivation for it. In particular, two alternative justifications can be made, corresponding
to the graphs in Figure 1(a): driving drunk and, independently, resisting to authority. Rather than
the result of syntactic transformations, in our approach these graph structures are embodied in the
semantics of the logic programs. More specifically, we summarise our contributions as follows.

• We define a multi-valued semantics for (normal) logic programs based on causal graphs.
An important result is that, despite of this semantic nature, we are able to show that causal
values have a direct correspondence to (relevant) syntactic proofs using the program rules
involved in the graphs (cf. Section 4).

Theory and Practice of Logic Programming 3

d

++

k

ss

r

��
l

��

m

��
e e

G1 G2
(a) Causal graphs

d

++

��

!!

k

ss

��

}}

r

��

��

��

l

��

��
m

��

$$

e ZZ e ZZ

G∗1 G∗2
(b) Reflexive, transitive closures

Fig. 1. Derivations G1 and G2 justifying atom prison in program P1.

• We also define an ordering relation that specifies when a cause is stronger than another, and
show how causal values form a lattice with three associated algebraic operations: a product
‘∗’ representing conjunction or joint causation; a sum ‘+’ representing alternative causes;
and a non-commutative product ‘·’ that stands for rule application. We study beneficial
properties of these operations that allow manipulating and reasoning with causal values in
an analytical way (cf. Sections 2 and 3).
• Finally, we provide several examples illustrating the behaviour of the semantics on typical

KR scenarios and action theories (throughout the paper; cf. also Appendix B).

Fostered by its algebraic treatment of causal values, our work facilitates the incorporation of
dedicated, more specific causal expressions representing causal influence of different kinds.

2 Causes as graphs

In this and subsequent Section 3, we introduce the lattice of causal values in two different steps.
In a first step, we focus on the idea of an “individual” cause and then we proceed to explain the
concept of causal value that allows collecting different alternative causes.

We begin recalling several graph definitions and notation. A (directed) graph is a pair 〈V,E〉
where V is a set of vertices V ⊆ Lb and E is a set of edges E ⊆V×V . In the following definitions,
let G= 〈V,E〉 and G′= 〈V ′,E ′〉 be two graphs. We say that G is a subgraph of G′, written G⊆G′,
when V ⊆V ′ and E ⊆E ′. We write G∪G′ to stand for the graph 〈V ∪V ′,E∪E ′〉. We represent the
reflexive and transitive closure of G as G∗. Finally, we introduce a concatenation operation G�G′

on graphs corresponding to a graph with vertices V ∪V ′ and edges E∪E ′∪{(x,y) | x∈V,y∈V ′}.
Notice that, G∪G′ ⊆G�G′, that is, the concatenation extends the union of graphs by adding all
possible arcs that go from some node in G to some node in G′.

Let Lb be some finite set of (rule) labels. A causal graph G = 〈V,E〉 is just a graph whose
vertices are labels, that is, V ⊆ Lb. Intuitively, the vertices correspond to rules involved in a
derivation of a given atom (or formula), and the edges point out a (partial) ordering of application
of rules in the derivation. Figure 1(a) shows two causal graphs with labels from P1.

Definition 1 (Cause)
A cause G is a causal graph closed under reflexivity and transitivity, i.e., G∗ = G. For a set of
labels Lb, we denote with CLb the set of all possible causes over Lb. �

The intuition is that a cause captures not only the direct application of rules in a justification,
but also a dependence relation among them. E.g., to form a cause, G2 in Figure 1(a) would

4 P. Cabalar, J. Fandinno & M. Fink

also include an arc (r,e) meaning that the application of rule e for prison depends on r for
resist. Reflexivity is convenient for simpler definitions. For instance, the cause formed by a single
label l also has a single edge (l, l)—we call this an atomic cause and represent it just by its
label. For simplicity, we will usually omit transitive and reflexive arcs when depicting a cause,
that is we use causal graphs for representing their reflexive and transitive closure. For instance,
taking G1 and G2 in Figure 1(a) as causes actually amounts to considering the graphs shown in
Figure 1(b), where previously omitted arcs are shown as dotted lines. We define next a natural
ordering relation among causes.

Definition 2 (Sufficient cause)
A cause G is sufficient for another cause G′, written G≤ G′, when G⊇ G′. �

Saying that G is sufficient for G′ intuitively means that G contains enough information to yield
the same effect than G′, but perhaps more than needed (this explains G ⊇ G′). For this reason,
we sometimes read G ≤ G′ as “G′ is stronger than G.” For instance, cause G2 for prison is
obviously sufficient for justifying atom punish, although e is not necessary for that purpose and
can be removed, so that arc (r,m) is actually enough.

Since graphs with the subgraph relation form a poset, the set of causes also constitutes a
poset 〈CLb,≤〉 with a top element corresponding to the empty cause, that is, the empty graph
G /0 = 〈 /0, /0〉. This cause stands for a kind of “absolute truth” and is of interest for including rules
or facts one does not want to label, that is, their effect will not be traced in the justifications.

Any cause can be built up from labels (atomic causes) using two basic operations: the product
G ∗G′ def

= (G∪G′)∗ that stands for union of causes or joint interaction, and the concatenation

G ·G′ def
= (G�G′)∗ that captures their sequential application. The reason for applying a closure

is that the result of G∪G′ and G�G′ on causes does not need to be closed under transitivity. We
can extend the product to any (possibly infinite) set of causes S so that Π S def

=
(⋃

G∈S G
)∗.

Example 2 (Ex. 1 continued)
The cause for the body of l in P1 is the product of causes for drive and drunk, that is d ∗ k
formed with vertices {d,k} and edges {(d,d),(k,k)}. As a result, the explanation of the rule
head, punish, is formed by the concatenation of its body cause d ∗k with its label, that is (d ∗k) · l.
In its turn, this becomes the cause for the body of e and so, we get the explanation (d ∗ k) · l · e
for atom prison represented as G1 in Figure 1(b). Similarly, G2 corresponds to r ·m · e. �

When writing these causal expressions, we assume that ‘·’ has higher priority than ‘∗’. Fur-
thermore, we will usually omit ‘·’ when applied to consecutive labels, so that r ·m · e will be
abbreviated as rme. It is easy to see that G ∗G′ = G′ ∗G while, in general, G ·G′ 6= G′ ·G, that
is, concatenation is not commutative. Another observation is that G ·G′ ≤ G ∗G′, that is, con-
catenation is sufficient for the product, but the opposite does not hold in general. Moreover, in
our running example, we can check that (d ∗ k) · l is equal to (d · l) ∗ (k · l). In fact, application
distributes over products and, as a result, we can identify any cause with the product of all its
edges. To conclude this section, we note that the set of causes CLb ordered by ≤ forms a lower
semilattice 〈CLb,∗〉, where the product constitutes the infimum.

3 Alternative causes

Having settled the case for individual causes, let us now proceed to represent situations in which
several alternative and independent causes can be found for an atom p. The obvious possibility

Theory and Practice of Logic Programming 5

is just using a set of causes for that purpose. However, we should additionally disregard causes
for which a stronger alternative exists. For instance, as we saw before, cause rme is sufficient
for punish and therefore, it is also an alternative way to prove this atom, but redundant in the
presence of the stronger cause rm. This suggests to choose sets of ≤-maximal causes as our
appropriate ‘truth values’. In principle, this is the central idea, although ≤-maximal causes incur
some minor inconveniences in mathematical treatment. For instance, the union of two sets of
maximal causes, does not need to be a set of maximal causes. Besides, the operations of product
and concatenation are expected to extend to the sets adopted as causal values. To address these
issues, a more solid representation is obtained resorting to ideals of causes, as we see next.

Given any poset 〈A,≤〉, an ideal I is any set I ⊆ A satisfying1: if x ∈ I and y ≤ x then y ∈ I.
A compact way of representing an ideal I is by using its set of maximal elements S, since the
rest of I contains all elements below them. The principal ideal of an individual element x ∈ A
is denoted as ↓ x def

= {y ∈ A | y ≤ x}. We extend this notion for any set of elements S so that

↓ S def
=
⋃
{↓ x | x ∈ S}= {y ∈ A | y≤ x, for some x ∈ S}. Thus, we will usually represent an ideal

I as ↓ S where S are the maximal elements in I. In fact, maximal elements constitute the relevant
information provided by the ideal, while keeping all other elements is convenient for simplicity
of algebraic treament (but we do not assign a particular meaning to them).

Definition 3 (Causal Value)
Given a set of labels Lb, a causal value is any ideal for the lower semilattice 〈CLb,∗〉. We denote
by VLb the set of causal values. �

The product of causes maps to the intersection of causal values, that is ↓ (G1 ∗G2) =↓ G1∩ ↓ G2.
Analogously, the ordering relation ≤ among causes maps to the subset relation ⊆ among causal
values, i.e. G1 ≤ G2 iff ↓ G1 ⊆↓ G2. In fact, for ideals U,U ′ we will keep the notation U ≤U ′

to stand for U ⊆ U ′. Concatenation also extends easily to any pair U,U ′ of causal values as:
U ·U ′ def

= ↓ {G ·G′ |G∈U and G′ ∈U ′}. Finally, the union of causal values allows for collecting
alternative causes stemming from different rules.

Example 3 (Ex. 1 continued)
The interpretation for punish has two alternative causes (d ∗ k) · l and rm that become the causal
values ↓ (d ∗ k) · l and ↓ rm. The causal value for punish is then formed by their union:

↓ (d ∗ k) · l ∪ ↓ rm = ↓ { (d ∗ k) · l, rm }
This ideal contains, among others, the cause rme, although it is not maximal due to rm:

↓ { (d ∗ k) · l, rm } ∪ ↓ rme = ↓ { (d ∗ k) · l, rm, rme} = ↓ { (d ∗ k) · l, rm } �

Theorem 1
〈VLb,∪,∩〉 is the free completely distributive lattice generated by the lower semilattice 〈CLb,∗〉
using the injective homomorphism (or embedding) ↓: CLb −→ VLb . �

The lattice of causal values has as bottom element the empty ideal /0 (standing for “falsity”)
and as top element the ideal formed by the empty cause ↓ G /0 which corresponds to the whole
set of causes CLb (standing for “absolute truth”). By abuse of terminology we will stick to the
term “cause” referring to any causal value of the form ↓ G where G is a cause. To improve

1 We use terminology from (Stumme 1997). In some texts this is known as semi-ideal or down-set to differentiate this
definition from the stronger case in which ideals are applied on a (full) lattice rather than a semi-lattice.

6 P. Cabalar, J. Fandinno & M. Fink

readability, we introduce the syntactic notion of causal term, that allows for representing causal
values without explicitly resorting to graphs or ideals.

Definition 4 (Causal term)
A causal term, t, over a set of labels Lb, is recursively defined as one of the following expressions:

t ::= l | ∏S | ∑S | t1 · t2

where l ∈ Lb, t1, t2 are in their turn causal terms and S is a (possibly empty) set of causal terms.
When S is finite and non-empty, S = {t1, . . . , tn} we write ∏S simply as t1 ∗ · · · ∗ tn and ∑S as
t1 + · · ·+ tn. By 1 and 0 we respectively denote ∏ /0 and ∑ /0. �

As usual, we assume that ‘∗’ has higher priority than ‘+’. Each causal term t represents a causal
value, value(t) naturally defined as follows:

value(l) def
= ↓ l value(t1 · t2)

def
= value(t1) · value(t2)

value
(

∑S
)

def
=

⋃{
value(t)

∣∣ t ∈ S
}

value
(

∏S
)

def
=

⋂{
value(t)

∣∣ t ∈ S
}

The value for label l is the ideal for the cause l which, as we commented before, is an abbrevi-
ation for the graph formed by vertex l and edge (l, l). When S = /0, the union of elements in S
corresponds to /0 (the identity for the ∪ operation) that is, value(0) = value(∑ /0) =

⋃
/0= /0. Anal-

ogously, the intersection of elements in S = /0 corresponds to CLb (the set of all possible elements,
i.e., the identity for ∩ in this context), i.e., value(1) = value(∏ /0) =

⋂
/0 = CLb = ↓ G /0.

From now on, we will use causal terms as compact representations of causal values. Causes
correspond to causal terms without addition (note that this also excludes 0, the empty sum). Sev-
eral interesting algebraic properties can be proved for causal values. In particular, Theorem 1
guarantees that they form a completely distributive lattice with respect to ‘∗’ and ‘+’ satisfying
the standard properties such as associativity, commutativity, idempotence, absorption or distribu-
tivity on both directions. Besides, as usual, 0 (resp. 1) is the annihilator for ‘∗’ (resp. ‘+’) and the
identity for ‘+’ (resp. ‘∗’). More significantly, the main properties for ‘·’ are shown in Figure 2.

Absorption

t = t + u · t · w
u · t · w = t ∗ u · t · w

Associativity

t · (u·w) = (t·u) · w
Identity

t = 1 · t
t = t · 1

Annihilator

0 = t · 0
0 = 0 · t

Addition distributivity

t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity (c,d,e are causes)

c ·d · e = (c ·d)∗ (d · e) with d 6= 1
c · (d ∗ e) = (c ·d)∗ (c · e)
(c∗d) · e = (c · e)∗ (d · e)

Fig. 2. Properties of the ‘·’ operator (c,d,e represent causes).

4 Positive programs and minimal models

Let us now reconsider logic programs and provide a semantics based on the causal values we
have just defined. For the syntax, we recall standard LP definitions, just slightly extending it
by introducing rule labels. A signature is a pair 〈At,Lb〉 of sets that respectively represent a
set of atoms (or propositions) and a set of labels. As usual, a literal is defined as an atom p
(positive literal) or its default negation not p (negative literal). In this paper, we will concentrate
on programs without disjunction in the head (leaving its treatment for future work).

Theory and Practice of Logic Programming 7

Definition 5 (Causal logic program)
Given a signature 〈At,Lb〉, a (causal) logic program P is a set of rules of the form:

t : H← B1, . . . ,Bn, (1)

where t is a label l over Lb or the constant 1, H is an atom or ⊥ (the head of the rule) and
B1, . . . ,Bn are literals (the body of the rule). �

For any rule R of the form (1) we define label(R) def
= t. We denote by head(R) def

= H its head,

and by body(R) def
= {B1, . . . ,Bn} its body. When n = 0 we say that the rule is a fact and omit the

symbol ‘←.’ When t ∈ Lb we say that the rule is labelled; otherwise t = 1 and we omit both t
and ‘:’. By these conventions, for instance, an unlabelled fact p is actually an abbreviation of
(1 : p←). A logic program P is positive if it contains no default negation. A program is uniquely
labelled if no pair of labelled rules share the same label, and completely labelled if, additionally,
all rules are labelled. For instance, P1 is completely labelled.

Given a signature 〈At,Lb〉 a causal interpretation is a mapping I : At → VLb assigning a causal
value to each atom. An interpretation is classical if it maps all atoms to {0,1}. Furthermore, for
any causal interpretation we can define its corresponding classical interpretation, written Icl , so
that, for any atom p: Icl(p) def

= 0 if I(p) = 0; and Icl(p) def
= 1 otherwise. The partial order ≤ is

extended to interpretations I,J by I ≤ J def
= I(p)≤ J(p) for each atom p∈ At. Hence, there is a≤-

bottom interpretation 0 (resp. a ≤-top interpretation 1) that stands for the interpretation mapping
each atom p to 0 (resp. 1). The value assigned to a negative literal not p by an interpretation I,
denoted as I(not p), is defined as: I(not p) def

= 1 if I(p) = 0; and I(not p) def
= 0 otherwise.

Definition 6 (Causal model)
Given a positive causal logic program P, a causal interpretation I is a causal model, in symbols
I |= P, if and only if, for each rule R ∈ P of the form (1), the following condition holds:(

I(B1)∗ . . .∗ I(Bn)
)
· t ≤ I(H) �

Example 4 (Ex. 1 continued)
Take rule l from program P1 and let I be such that I(drive) = d and I(drunk) = k. Then I will be a
model of l when (d∗k) · l≤ I(punish). In particular, this holds when I(punish) = (d ∗ k) · l + r ·m
which was the value we expected for that atom. But it would also hold when, for instance,
I(punish) = l +m or I(punish) = 1. The inequality in Definition 6 is important to accommo-
date possible additional facts such as (l : punish) or even (1 : punish) in the program. �

The fact that any I(punish) greater than (d ∗ k) · l + r ·m also becomes a model clearly points
out the need for selecting minimal models. In fact, as it is the case for non-causal programs,
positive programs have a ≤-least model that can be computed by iterating an extension of the
well-known direct consequences operator (van Emden and Kowalski 1976).

Definition 7 (Direct consequences)
Given a positive logic program P over signature 〈At,Lb〉, the operator of direct consequences is
a function TP : I−→ I such that, for any causal interpretation I and any atom p ∈ At:

TP(I)(p) def
= ∑

{ (
I(B1)∗ . . .∗ I(Bn)

)
· t | (t : p← B1, . . . ,Bn) ∈ P

}

8 P. Cabalar, J. Fandinno & M. Fink

Theorem 2
Let P be a positive logic program P over signature 〈At,Lb〉. Then, (i) there exists some integer
n≥ 0 such that TP ↑ ω (0) = TP ↑ n (0) = lfp(TP), and (ii) lfp(TP) is the least model of P. �

The proof of this theorem relies on an encoding of causal logic programs into Generalized Anno-
tated Logic Programming (GAP) (Kifer and Subrahmanian 1992). GAP is a general multi-valued
framework for LP for which the main properties for the least model and TP operator have been
already proved. Theorem 2 is an interesting result, but it does not explain the relation between
the causal values we obtain for atoms and their role in the program. We illustrate next that there
exists a direct relation between causal values and the idea of proof from a positive program.

Definition 8
Given a positive program P, a proof π(p) of an atom p can be recursively defined as a derivation:

π(p) def
=

π(B1) . . . π(Bn)

p
(R),

where R ∈ P is a rule with head(R) = p and body(R) = {B1, . . . ,Bn}. When n = 0, the derivation
antecedent π(B1) . . . π(Bn) is replaced by > (corresponding to the empty body). �

Each derivation in a proof is a particular application of Modus Ponens where, once the body
(conjunction of literals B) of a rule R (p← B) has been proved, then the head p can be concluded.

>
drive

(d)
>

drunk
(k)

punish
(l)

prison
(e)

>
resist

(r)

punish
(m)

prison
(e)

>
drive

(d)
>

drunk
(k)

punish
(l)

sentence
(s)

punish
(n)

prison
(e)

Fig. 3. Some proofs for atom prison (the rightmost proof is redundant).

Example 5 (Ex. 1 continued)
Program P1 is positive and, in fact, completely labelled, so we can identify each rule with its
label. Atom prison can be derived in P1 using the two proofs on the left in Figure 3. These two
proofs have a clear correspondence to causes (d ∗ k) · le and rme depicted in Figure 1(b). In fact,
the least model I of P1 assigns causal value I(punish) = (d ∗ k) · le+ rme. �

Let P be a positive, completely labelled program. Given a proof π , we define its graph Gπ as
follows. For each sub-derivation in π of the form π(p) in Definition 8 we include an edge (li,m)

where m is the label of rule R and li is the label of the top-level rule in π(Bi), for all i = 1, . . . ,n.

The vertices in Gπ exclusively collect the labels in those edges. We define cause(π) def
= G∗π . The

two left proofs in Figure 3 are then obviously mapped to the causes in Figure 1(b). If Π is a set
of proofs, we define causes(Π)

def
= {cause(π) | π ∈Π}.

A proof can be sometimes redundant, in the sense that some of its derivation steps could be
removed. A natural way of defining a non-redundant proof is resorting to its associated graph.
We say that a proof π(p) for an atom p in a positive, completely labelled program P is redundant
if there exists another proof for p, π ′(p), such that cause(π(p))≤ cause(π ′(p)), in other words,
we can build another proof π ′ with a smaller associated graph.

Theory and Practice of Logic Programming 9

Example 6
Suppose that we introduce an atom sentence which acts as a synonym for punish. Furthermore,
assume law m mentions sentence as its head now, instead of punish. Hence, let P2 be program:

l : punish← drive,drunk d : drive n : punish← sentence
m : sentence← resist k : drunk s : sentence← punish
e : prison← punish r : resist

Then, the rightmost proof shown in Figure 3 together with its associated cause (d ∗ k) · lsne is
redundant, since the (still valid) leftmost proof in Figure 3 for prison has an associated stronger
cause (or smaller graph) (d ∗ k) · le. Considering the positive loop formed by n and s, one may
wonder why it does not spoil the computation of TP2 to iterate forever (adding more and more
concatenations of n and s). The reason is that, at a given point, subsequent iterations yield redun-
dant causes subsumed by previous steps. In particular, the iteration of TP2 yields the steps:

i drive drunk resist sentence punish prison

1 d k r 0 0 0
2 d k r rm (d ∗ k) · l 0
3 d k r rm+(d ∗ k) · ls (d ∗ k) · l + rmn (d ∗ k) · le
4 d k r rm+(d ∗ k) · ls (d ∗ k) · l + rmn ((d ∗ k) · l + rmn) · e

reaching a fixpoint at step 4. The value for sentence at step 4 would actually be the sum of rm
(derived from resist) with the value of punish in the previous step, (d ∗k) · l+ rmn followed by s.
This corresponds to:

rm+((d ∗ k) · l + rmn︸ ︷︷ ︸
punish

) · s = rm+(d ∗ k) · ls+ rmns distributivity

= rm+ rmns+(d ∗ k) · ls commutativity

= rm+ rm ·ns+(d ∗ k) · ls associativity

= rm+1 · rm ·ns+(d ∗ k) · ls identity

= rm+(d ∗ k) · ls absorption for ‘+’ and ‘·’

That is, iterating the loop rmns is redundant since a stronger cause rm was obtained before. �

Theorem 3
Let P be a positive, completely labelled program, and Πp the set of non-redundant proofs for
some atom p with respect to P. If I denotes the least model of P, then:

G ∈ causes(Πp) iff G is a maximal cause in I(p) �

Completely labelled programs are interesting for establishing the correspondence in the theorem
above, but there are several scenarios in which one may be interested in disregarding the effect
of rules in a program or in identifying a group of rules under the same label.

Example 7
Let P3 be the following variation of P2:

z : sentence← drive,drunk d : drive punish← sentence
z : punish← resist k : drunk sentence← punish
e : prison← punish r : resist

where l and m in P2 are now just two cases of a common law z, and punish and sentence depend
on each other through unlabelled rules. �

10 P. Cabalar, J. Fandinno & M. Fink

Removing the labels in the positive cycle between sentence and punish captures the idea that,
since they are synonyms, whenever we have a cause for sentence, it immediately becomes a
cause for punish and vice versa. By iterating the TP operator, it is not difficult to see that the
least causal model I3 makes the assignments I3(sentence) = I3(punish) = (d ∗ k) · z+ rz (that is
sentence and punish are equivalent) and I3(prison) = (d ∗ k) · ze+ rze. This result could also be
computed from the least model I2 for P2 by replacing l and m by z and “removing” n and s (that
is, replacing them by 1). This is, in fact, a general property we formalise as follows. Given two
causal terms t,u and a label l, we define t[l 7→ u] as the result of replacing label l in t by term u.

Theorem 4
Let P be a positive causal logic program and P′ be the result of replacing a label l in P by some u,
where u is any label or 1. Furthermore, let I and I′ be the least models of P and P′, respectively.
Then, I′(p) = I(p)[l 7→ u] for any atom p. �

In particular, in our example, I3(p) = I2(p)[l 7→ z][m 7→ z][n 7→ 1][s 7→ 1], for any atom p. If we
remove all labels in a program, we eventually get a standard, unlabelled program. Obviously, its
least model will be classical, since removing all labels in causal terms, eventually collapses all
of them to {0,1}. As a result, we can easily establish the following correspondence.

Theorem 5
Let P be a causal positive logic program and P′ its unlabelled version. Furthermore, let I be the
least causal model of P and I′ the least classical model of P′. Then I′ = Icl . �

5 Default negation

To introduce default negation, let us consider the following variation of our running example.

Example 8
Assume now that law e is a default and that there may be exceptional cases in which punishment
is not effective. In particular, some of such exceptions are a pardon, that the punishment was
revoked, or that the person has diplomatic immunity. A possible program P4 encoding this variant
of the scenario is:

l : punish← drive,drunk d : drive abnormal← pardon
m : punish← resist k : drunk abnormal← revoke
e : prison← punish,not abnormal r : resist abnormal← diplomatic

This program has a unique stable model which still keeps prison true, since no proof for abnormal
could be obtained, i.e., no exception occurred. �

From a causal perspective, saying that the lack of an exception is part of a cause (e.g., for impris-
onment) is rather counterintuitive. It is not the case that we go to prison because of not receiving
a pardon, not having a punishment revocation, not being a diplomatic, or whatever possible ex-
ception that might be added in the future2. Instead, as nothing violated default e, the justifications
for prison should be those shown in Figure 1(a). In this way, falsity becomes the default situation

2 A case of the well-known qualification problem (McCarthy 1977), i.e., the impossibility of listing all the possible
conditions that prevent an action to cause a given effect. Appendix B contains a more elaborated example showing
how the qualification problem may affect causal explanations when inertia is involved.

Theory and Practice of Logic Programming 11

that is broken when a cause is found3. This interpretation carries over to negative literals, so that
the presence of not p in a rule body does not propagate causal information, but instead is a check
for the absence of an exception. To capture this behaviour, we proceed to extend the traditional
program reduct (Gelfond and Lifschitz 1988) to causal logic programs.

Definition 9 (Program reduct)
The reduct of program P with respect to causal interpretation I, in symbols PI , is the result of:

1. removing from P all rules R, s.t. I(B) 6= 0 for some negative literal B ∈ body(R);
2. removing all negative literals from the remaining rules of P. �

An interpretation I is a causal stable model of program P iff I is the least causal model of PI .

Example 9 (Ex. 8 continued)
Suppose that we add atoms (p : pardon) and (d : diplomatic) to program P4. The only stable
model I of this extended program makes I(prison) = 0 and I(abnormal) = p+d as expected. �

Theorem 6 (Correspondence to non-causal stable models)
Let P be a causal logic program and P′ its unlabelled version. Then:

1. If I is a causal stable model of P, then Icl is a stable model of P′.
2. If I′ is a stable model of P′ then there is a unique causal stable model I of P s.t. I′ = Icl . �

This theorem also shows a possible method for computing causal stable models of a program P.
We may first run a standard ASP solver on the unlabelled version of P to obtain a stable model
I′. This stable model I′ has a corresponding causal stable model I, such that I′ = Icl and both
interpretations coincide in their assignment of 0’s. Therefore, PI = PI′ and we can use the latter
to iterate the TP operator and obtain the least causal model of this reduct, which will mandatorily
be a causal stable model due to Theorem 6.

6 Related Work

(Cabalar 2011) already introduced the main motivations of our work, but used ad hoc opera-
tions on proof trees without resorting to algebraic structures. A preliminary version (Cabalar
and Fandinno 2013) of the current approach relied on chains of labels but was actually weaker,
missing basic properties we can derive now from causal graphs.

There exists a vast literature on causal reasoning in Artificial Intelligence. Papers on reasoning
about actions and change (Lin 1995; McCain and Turner 1997; Thielscher 1997) have been
traditionally focused on using causal inference to solve representational problems (mostly, the
frame, ramification and qualification problems) without paying much attention to the derivation
of cause-effect relations. Perhaps the most established AI approach for causality is relying on
causal networks (Pearl 2000; Halpern and Pearl 2005; Halpern 2008). In this approach, it is
possible to conclude cause-effect relations like “A has caused B” from the behaviour of structural
equations by applying the counterfactual interpretation from Hume (1748): “had A not happened,
B would not have happened.” As discussed by Hall (2004), the counterfactual-based definition
of causation corresponds to recognising some kind of dependence relation in the behaviour of a
non-causal system description. As opposed to this, Hall considers a different (and incompatible)

3 The paper (Hitchcock and Knobe 2009) contains an extended discussion with several examples showing how people
ordinarily understand causes as deviations from a norm.

12 P. Cabalar, J. Fandinno & M. Fink

definition where causes must be connected to their effects via sequences of causal intermediates,
something that is closer to our explanations in terms of causal graphs.

Apart from the different AI approaches and attitudes towards causality, from the technical
point of view, the current approach can be classified as a labelled deductive system (Broda et al.
2004). In particular, the work that has had a clearest and most influential relation to the current
proposal is the Logic of Proofs (LP) by Artëmov (2001). We have borrowed from that formalism
part of the notation for our causal terms and rule labellings and the fundamental idea of keeping
track of justifications by considering rule applications.

Focusing on LP, our work obviously relates to explanations as provided by approaches to
debugging in ASP (Gebser et al. 2008; Pontelli et al. 2009; Schulz et al. 2013; Damásio et al.
2013). These works aim at explaining discrepancies between an expected result and the obtained
stable models. Accordingly, explanations usually contain all possible ways to derive an atom or to
prevent its derivation, including paths through negation. This differs from a KR orientation where
only the cause-effect relations that “break the norm” should be considered relevant. This point of
view is also shared, e.g., by the counterfactual-based causal LP approach (Vennekens 2011).

A more far-fetched resemblance exists to work on the analysis of tabled Prolog computations.
There, the goal is to identify potential causes for non-termination of program evaluations, which
can be achieved examining so-called forest logs, i.e., a log of table operations for a computation.
By adding unique labels for rules (with the original intention to disambiguate analysis results,
cf. Liang and Kifer (2013), however not as an explicit means for representing knowledge), in
principle a forest log implicitly contains the information necessary to read of the causal model
of a completely labelled positive causal logic program.

7 Conclusions

In this paper we have provided a multi-valued semantics for normal logic programs whose truth
values form a lattice of causes. A cause is nothing else but a graph of rule labels that reflects some
order of rule applications. In this way, a model assigns to each true atom a value that contains
justifications for its derivation from the existing rules. We have further provided three basic oper-
ations on the lattice: an addition, that stands for alternative, independent justifications; a product,
that represents joint interaction of causes; and a concatenation that reflects rule application. We
have shown that, for positive programs, there exists a least model that coincides with the least
fixpoint of a direct consequences operator, analogous to van Emden and Kowalski (1976). With
this, we are able to prove a direct correspondence between the semantic values we obtain and the
syntactic idea of proof. These results have been extrapolated to stable models of programs with
default negation, understanding the latter as “absence of cause.”

Several topics remain open for future study. An interesting issue is to replace the syntactic
definition by a reduct in favour of a logical treatment of default negation, as has been done
for (non-causal) stable models and their characterisation in terms of Equilibrium Logic (Pearce
2006). Regarding the representation of causal information, a natural next step would be the con-
sideration of syntactic operators for more specific knowledge like the influence of a particular
event or label in a conclusion, expressing necessary or sufficient causes, or even dealing with
counterfactuals. Further ongoing work is focused on implementation, complexity assessment,
and an extension to disjunctive programs. Exploring related areas of KR and reasoning, such as,
e.g., Paraconsistent Reasoning and Belief Revision, seems promising with respect to extending
the range of problems to which our approach may effectively be applied.

Theory and Practice of Logic Programming 13

References

ARTËMOV, S. N. 2001. Explicit provability and constructive semantics. Bulletin of Symbolic Logic 7, 1,
1–36.

BREWKA, G., EITER, T., AND TRUSZCZYNSKI, M. 2011. Answer set programming at a glance. Commun.
ACM 54, 12, 92–103.

BRODA, K., GABBAY, D., LAMB, L., AND RUSSO., A. 2004. Compiled Labelled Deductive Systems: A
Uniform Presentation of Non-Classical Logics. Research Studies Press.

CABALAR, P. 2011. Logic programs and causal proofs. In AAAI Spring Symposium: Logical Formalizations
of Commonsense Reasoning. AAAI.

CABALAR, P. AND FANDINNO, J. 2013. An algebra of causal chains. In Proc. of the 6th Workshop on
Answer Set Programming and Other Computing Paradigms (ASPOCP’13).

DAMÁSIO, C. V., ANALYTI, A., AND ANTONIOU, G. 2013. Justifications for logic programming. In Proc.
of the 12th Intl. Conf. on Logic Programming and Nonmonotonic Reasoning, (LPNMR’13). Lecture Notes
in Computer Science, vol. 8148. Springer, 530–542.

GEBSER, M., PÜHRER, J., SCHAUB, T., AND TOMPITS, H. 2008. Meta-programming technique for
debugging answer-set programs. In Proc. of the 23rd Conf. on Artificial Inteligence (AAAI’08). 448–453.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In Logic
Programming: Proc. of the Fifth International Conference and Symposium (Volume 2), R. A. Kowalski
and K. A. Bowen, Eds. MIT Press, Cambridge, MA, 1070–1080.

HALL, N. 2004. Two concepts of causality. 181–276.
HALPERN, J. Y. 2008. Defaults and normality in causal structures. In Proc. of the Eleventh International

Conference on Principles of Knowledge Representation and Reasoning (KR 2008). 198–208.
HALPERN, J. Y. AND PEARL, J. 2005. Causes and explanations: A structural-model approach. part I:

Causes. British Journal for Philosophy of Science 56, 4, 843–887.
HITCHCOCK, C. AND KNOBE, J. 2009. Cause and norm. Journal of Philosophy 11, 587–612.
HUME, D. 1748. An enquiry concerning human understanding. Reprinted by Open Court Press, LaSalle,

IL, 1958.
KIFER, M. AND SUBRAHMANIAN, V. S. 1992. Theory of generalized annotated logic programming and

its applications. Journal of Logic Programming 12.
LIANG, S. AND KIFER, M. 2013. A practical analysis of non-termination in large logic programs.

TPLP 13, 4-5, 705–719.
LIN, F. 1995. Embracing causality in specifying the indirect effects of actions. In Proc. of the Intl. Joint

Conf. on Artificial Intelligence (IJCAI), C. S. Mellish, Ed. Morgan Kaufmann, Montreal, Canada.
MCCAIN, N. AND TURNER, H. 1997. Causal theories of action and change. In Proc. of the AAAI-97.

460–465.
MCCARTHY, J. 1977. Epistemological problems of Artificial Intelligence. In Proc. of the Intl. Joint Conf.

on Artificial Intelligence (IJCAI). MIT Press, Cambridge, MA, 1038–1044.
MCCARTHY, J. 1998. Elaboration tolerance. In Proc. of the 4th Symposium on Logical Formalizations of

Commonsense Reasoning (Common Sense 98). London, UK, 198–217. Updated version at
http://www-formal.stanford.edu/jmc/elaboration.ps.

PEARCE, D. 2006. Equilibrium logic. Ann. Math. Artif. Intell. 47, 1-2, 3–41.
PEARL, J. 2000. Causality: models, reasoning, and inference. Cambridge University Press, New York, NY,

USA.
PONTELLI, E., SON, T. C., AND EL-KHATIB, O. 2009. Justifications for logic programs under answer set

semantics. Theory and Practice of Logic Programming 9, 1, 1–56.
SCHULZ, C., SERGOT, M., AND TONI, F. 2013. Argumentation-based answer set justification. In Proc. of

the 11th Intl. Symposium on Logical Formalizations of Commonsense Reasoning (Commonsense’13).
STUMME, G. 1997. Free distributive completions of partial complete lattices. Order 14, 179–189.
THIELSCHER, M. 1997. Ramification and causality. Artificial Intelligence Journal 1-2, 89, 317–364.

14 P. Cabalar, J. Fandinno & M. Fink

VAN EMDEN, M. H. AND KOWALSKI, R. A. 1976. The semantics of predicate logic as a programming
language. J. ACM 23, 4, 733–742.

VENNEKENS, J. 2011. Actual causation in cp-logic. TPLP 11, 4-5, 647–662.

Theory and Practice of Logic Programming 15

Appendix A. Auxiliary figures

Associativity

t + (u+w) = (t+u) + w
t ∗ (u∗w) = (t ∗u) ∗ w

Commutativity

t + u = u + t
t ∗ u = u ∗ t

Absorption

t = t + (t ∗u)
t = t ∗ (t+u)

Distributive

t + (u∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t ∗u) + (t ∗w)

Identity

t = t + 0
t = t ∗ 1

Idempotence

t = t + t
t = t ∗ t

Annihilator

1 = 1 + t
0 = 0 ∗ t

Fig. 4. Sum and product satisfy the properties of a completely distributive lattice.

Appendix B. An example of causal action theory

In this section we consider a more elaborated example from Pearl (2000).

Example 10
Consider the circuit in Figure 5 with two switches, a and b, and a lamp l. Note that a is the main
switch, while b only affects the lamp when a is up. Additionally, when the light is on, we want
to track which wire section, v or w, is conducting current to the lamp. �

As commented by Pearl (2000), the interesting feature of this circuit is that, seen from outside
as a black box, it behaves exactly as a pair of independent, parallel switches, so it is impossible
to detect the causal dependence between a and b by a mere observation of performed actions and
their effects on the lamp. Figure 5 also includes a possible representation for this scenario; let us
call it program P5. It uses a pair of fluents up(X) and down(X) for the position of switch X , as
well as on and off to represent the state of the lamp. Fluents up(X) and down(X) (respectively,
on and off) can be seen as the strong negation of each other, although we do not use an operator
for that purpose4. Action m(X ,D) stands for “move switch X in direction D ∈ {u,d}” (up and
down, respectively). Actions between state t and t +1 are located in the resulting state. Finally,
we have also labelled inertia laws (by i) to help keeping track of fluent justifications inherited by
persistence.

Suppose we perform the following sequence of actions: we first move down both switches,
next switch b is moved first up and then down, and finally we move up switch a. Assume also
that each action occurrence is labelled with the action name so that, for instance, moving b up
in Situation 1 corresponds to the program fact m(b,u)1 : m(b,u)1. The table in Figure 6 shows
the resulting temporal projection. Note how the lamp turns on in Situation 1 but only because
of v, that is, moving a down. Movements of b at 2 and 3 do not affect the lamp, and its causal
explanation (down(a)) is maintained by inertia. In Situation 4, the lamp is still on but the reason
has changed. The explanation this time is that we had closed down b at 3 (and this persisted by
inertia) while we have just moved a up, firing rule w.

4 Notice how strong negation would point out the cause(s) for a boolean fluent to take value false, whereas default
negation represents the absence of cause.

16 P. Cabalar, J. Fandinno & M. Fink

Circuit diagram

a

b

l

w

v

Inertia
i : up(X)t+1 ← up(X)t , not down(X)t+1
i : down(X)t+1 ← down(X)t , not up(X)t+1

Direct effects
up(X)t ← m(X ,u)t

down(X)t ← m(X ,d)t

Causal rules (indirect effects)
v : ont ← down(a)t
w : ont ← up(a)t , down(b)t

offt ← up(a)t , up(b)t

Constraints
⊥ ← m(X ,u)t , m(X ,d)t
⊥ ← up(X)t , down(X)t
⊥ ← ont , offt

Initial state
up(a)0 up(b)0 off0

Fig. 5. A circuit with two switches together with a possible representation.

t 0 1 2 3 4

Actions m(a,d)1, m(b,d)1 m(b,u)2 m(b,d)3 m(a,u)4

up(a)t 1 0 0 0 m(a,u)4
down(a)t 0 m(a,d)1 m(a,d)1 · i m(a,d)1 · i 0

up(b)t 1 0 m(b,u)2 0 0
down(b)t 0 m(b,d)1 0 m(b,d)3 m(b,d)3 · i

ont 0 m(a,d)1 · v m(a,d)1 · iv m(a,d)1 · iv (m(b,d)3 · i∗m(a,u)4) ·w
offt 1 0 0 0 0

Fig. 6. Temporal projection of a sequence of actions for program P5.

This example also illustrates why we are not interested in providing negative justifications through
default negation. This would mean to explicitly include non-occurrences of actions that might
otherwise have violated inertia. For instance, the explanation for on2 would include the fact that
we did not perform m(a,u)2. Including this information for one transition is perhaps not so cum-
bersome, but suppose that, from 2 we executed a high number of transitions without performing
any action. The explanation for on3 would additionally collect that we did not perform m(a,u)3

either. The explanation for on4 should also collect the negation of further possibilities: moving a
up at 4; three movements of a up, down and up; moving b at 3 and both switches at 4; moving
both switches at 3 and b at 4; etc. It is easy to see that negative explanations grow exponentially:
at step t we would get the negation of all possible plans for making ont false, while indeed,
nothing has actually happened (everything persisted by inertia).

Theory and Practice of Logic Programming 17

Appendix C. Proofs

In order to improve clarity, for any cause G = 〈V,E〉 we use the notation V (G) and E(G) to refer
to V and E respectively.

Proposition 1 (Monotonicity)
Let G,G′ be a pair of causes with G≤ G′. Then, for any cause H:

G∗H ≤ G′ ∗H, G ·H ≤ G′ ·H and H ·G≤ H ·G′

Proof . First we will show that G∗H ≤G′ ∗H. Suppose that E(G∗H) 6⊇ E(G′ ∗H) and let (l1, l2)
be an edge in E(G′ ∗H) but not in E(G∗H ′), i.e. (l1, l2) ∈ E(G′ ∗H)\E(G∗H ′).

Thus, since by product definition E(G′∗H) =E(G′)∪E(H), it follows that either (l1, l2)∈E(G′)
or (l1, l2) ∈ E(H). It is clear that if (l1, l2) ∈ E(H) then (l1, l2) ∈ E(G ∗H) = E(G)∪ E(H).
Furthermore, since G≤ G′ it follows that E(G)⊇ E(G′), if (l1, l2) ∈ E(G′) then (l1, l2) ∈ E(G)

and consequently (l1, l2) ∈ E(G ∗H) = E(G)∪E(H). That is E(G ∗H) ⊇ E(G′ ∗H) and then
G ∗H ≤ G′ ∗H. Note that V (G ∗H) ⊇ V (G′ ∗H) follows directly from E(G ∗H) ⊇ E(G′ ∗H)

and the fact that every vertex has and edge to itself.

To show that G ·H ≤ G′ ·H (the case for H ·G≤ H ·G′ is analogous) we have has to show that,
in addition to the previous, for every edge (lG, lH) ∈ E(G′ ·H) with lG ∈V (G′) and lH ∈V (H) it
holds that (lG, lH) ∈ E(G ·H). Simply note that since G≤ G′ it follows V (G)⊇V (G)′ and then
lG ∈V (G). Consequently (lG, lH) ∈ E(G ·H). �

Proposition 2 (Distributivity)
For every pair of sets of causal graphs S and S′, it holds that(

∏S
)
·
(
∏S′

)
= ∏

{
G ·G′

∣∣ G ∈ S and G′ ∈ S′
}
.

Proof . For readability sake, we define two causes

GR
def
=
(
∏S

)
·
(
∏S′

)
and GL

def
= ∏

{
G ·G′

∣∣ G ∈ S and G′ ∈ S′
}

and we assume that both S and S′ are not empty sets. Note that ∏ /0 = CLb = ∏{G /0}. Then, by
product definition, it follows that

E(GL) =
(⋃{

E(G)
∣∣ G ∈ S

}
∪
⋃{

E(G′)
∣∣ G ∈ S′

}
∪EL

)∗
E(GR) =

(⋃{
E(G)∪E(G′)∪ER(G,G′)

∣∣ G ∈ S and G′ ∈ S′
})∗

where

EL =
{
(l, l′)

∣∣ l ∈
⋃
{ V (G)

∣∣ G ∈ S } and l′ ∈
⋃
{ V (G′)

∣∣ G′ ∈ S′ }
}

ER(G,G′) = { (l, l′)
∣∣ l ∈V (G) and l′ ∈V (G′) }

Furthermore let ER =
⋃
{ ER(G,G′)

∣∣ G ∈ S and G′ ∈ S′ }. For every edge (l, l′) ∈ EL there are a
pair of causes G ∈ S and G′ ∈ S′ s.t. l ∈V (G) and l′ ∈V (G′) and then (l, l′) ∈ ER(G,G′) and so
(l, l′) ∈ ER. Moreover, for every edge (l, l′) ∈ ER there are a pair of causes G ∈ S and G′ ∈ S′ s.t.
(l, l′) ∈ ER(G,G′) with l ∈V (G) and l′ ∈V (G)′. So that (l, l′) ∈ EL. That is EL = ER. Then

E(GR) =
(⋃{

E(G)
∣∣ G ∈ S

}
∪
⋃{

E(G′)
∣∣ G′ ∈ S′

}
∪ER

)∗
=
(
E(GL)\EL∪ER

)∗
=
(
E(GL)

)∗
= E(GL)

18 P. Cabalar, J. Fandinno & M. Fink

Consequently GL = GR. �

Proposition 3
For every cause G = 〈V,E〉 it holds that G = ∏

{
l · l′

∣∣ (l, l′) ∈ E
}

.

Proof . Let G′ be a cause s.t. G′ = ∏
{

l · l′
∣∣ (l, l′) ∈ E

}
. Then for every edge (l, l′) ∈ E(G) it

holds that (l, l′)∈ E(l · l′) and then (l, l′)∈ E(G′) =
⋃
{ E(l · l′)

∣∣ (l, l′)∈ E }, i.e. E(G)⊆ E(G′).
Furthermore for every (l, l′) ∈ E(G′) there is li · l j s.t. (l, l′) ∈ li · l j and (li, l j) ∈ E(G). Then,
since E(li · l j) = {(li, l j)} it follows that (l, l′) ∈ E(G), i.e. E(G) ⊇ E(G′). Consequently G =

G′ = ∏
{

l · l′
∣∣ (l, l′) ∈ E

}
. �

Proposition 4 (Infimum)
Any set of causes S has a ≤-infimum given by their product ∏S.

Proof . By definition ∏S is the causal graph of which vertex and edges are respectively the sets
V (∏S) =

⋃{
V (G)

∣∣ G ∈ S
}

and E(∏S) =
⋃{

E(G)
∣∣ G ∈ S

}
. It is easy to see that ∏S is the

supremum of the subgraph relation, so that, since for every pair of causes G ≤ G′ iff G ⊇ G′, it
follows that infimum of S w.r.t. ≤. �

Proof of Theorem 1. Let F be the set of filters over the lower semilattice 〈CLb,∗〉. Stumme was
showed in (Stumme 1997) that the concept lattice B〈F,VLb,∆〉 (with F∆I⇔F∩I 6= /0) is isomor-
phic to the free completely distributive complete lattice generated by the partial lattice 〈CLb,+,∗〉
where + and ∗ are two partial functions corresponding with the supremum and infimum. Note
that, in our particular, case for every set of causes S its infimum is defined and is ∏S but the
supremum is not. Thus VLb is the set of ideals over the partial lattice 〈CLb,+,∗〉, i.e. every
I ∈ VLb is also closed under defined suprema (since it never is defined). He also show that the
elements of such lattice are described as pairs{

(Ft ,It)
∣∣ Ft ⊆ F, It ⊆ VLb, FI

t = It and Ft = II
t
}

where FI
t =
{

I ∈ I
∣∣ ∀F ∈ Ft : F ∩ I 6= /0

}
II

t =
{

F ∈ F
∣∣ ∀I ∈ It : F ∩ I 6= /0

}
That is, every element is in the form 〈II

t ,It〉. Furthermore infima and suprema can be described
as follows: ∧

t∈T

(II
t ,It) =

(⋂
t∈T

II
t ,
(⋃

t∈T

It

)II)
∨
t∈T

(II
t ,It) =

((⋃
t∈T

II
t

)II
,
⋂
t∈T

It

)
We will show that εI : B−→ VLb given by (II

t ,It) 7→
⋂

It is an isomorphism between 〈B,∨,∧〉
and 〈VLb,∪,∩〉. Note that, since ∏ /0 = G /0 it holds that the empty set is not close under defined
infimum and then it is not a filter, i.e. /0 6∈ F, and then for every filter F ∈ F it holds that G /0 ∈ F .
Thus if It = /0 follows that II

t =F and then III
t = {I ∈VLb |G /0 ∈ I}=CLb 6= It . That is, 〈 /0I , /0〉 6∈B.

We will show that for every ideal It ∈ I and for every set of ideals It ⊆ I s.t. It =
⋂

It it holds that

(II
t ,It) ∈B〈F,I,∆〉 ⇐⇒ It =

{
I ∈ I

∣∣ It ⊆ I
}

(2)

Theory and Practice of Logic Programming 19

and consequently εI is a bijection between and B and VLb.

Suppose that (II
t ,It) ∈B〈F,I,∆〉. For every I ∈ It it holds that It ⊆ I. So suppose there is I ∈ I

s.t. It ⊆ I and I 6∈ It . Then there is F ∈ II
t s.t. I∩F = /0 and for every element I′ ∈ It it holds that

I′ ∩F 6= /0. Pick a causal graph G s.t. G = ∏{G′ | G′ ∈ I′ ∩F and I′ ∈ It}. Since for every G′ it
holds G′ ∈ F and G ≤ G′ follows that G ∈ F (F is close under infimum) and G ∈ I′ (every I′ is
close under ≤). That is, for every I′ ∈ It it holds that G ∈ I′∩F and then, since It =

⋂
It , it also

holds that G ∈ It ∩F and since It ⊆ I also G ∈ I∩F which contradict that I∩F = /0. So that I ∈ It

and it holds that

(II
t ,It) ∈B〈F,I,∆〉=⇒ It =

{
I ∈ I

∣∣ It ⊆ I
}

Suppose that It = {I ∈ I | It ⊆ I} but (II
t ,It) ∈B〈F,I,∆〉, i.e. It 6= III

t . Note that It ⊆ III
t because

otherwise there are I ∈ It and F ∈ II
t s.t. I∩F = /0 which is a contradiction with the fact that for

every F ∈ II
t and I ∈ It it holds that F ∩ I 6= /0.

So, there is I ∈ III
t s.t. I 6∈ It , i.e. for every F ∈ II

t it holds that F ∩ I 6= /0 but It 6⊆ I. Pick G ∈ It\I
and F = {G′ | G ≤ G′}. It is clear that F ∈ F and F ∩ It 6= /0 because G ∈ It , so that F ∈ II

t .
Furthermore F ∩ I = /0, because G 6∈ I, which is a contradiction with the assumption. Thus

(II
t ,It) ∈B〈F,I,∆〉 ⇐= It =

{
I ∈ I

∣∣ It ⊆ I
}

Now, we will show that (II
1,I1)∨ (II

2,I2) = (II
3,I3) iff I1 ∪ I2 = I3. From the above statement

follows that

I1∩ I2 = {I ∈ I | I1 ⊆ I and I2 ⊆ I}=
= {I ∈ I | I1∪ I2 ⊆ I}

I3 = {I ∈ I | I3 ⊆ I}

That is, I1 ∩ I2 = I3 iff I1 ∪ I2 = I3 and by definition of ∨ the first is equivalent to (II
1,I1)∨

(II
2,I2) = (II

3,I3).

Finally we will show that (II
1,I1)∧ (II

2,I2) = (II
3,I3) iff I1∩ I2 = I3. It holds that

(I1∪ I2)
II =

({
I ∈ I

∣∣ I1 ⊆ I or I2 ⊆ I
})II

=

=
({

I ∈ I
∣∣ I1∩ I2 ⊆ I

})II

I3 =
{

I ∈ I
∣∣ I3 ⊆ I

}
Since εI is a bijection, it holds that (I1∪ I2)

II = I3 iff I1∩ I2 = I3.

Thus εI : B −→ VLb is an isomorphism between 〈B,∨,∧〉 and 〈VLb,∪,∩〉, i.e. 〈VLb,∪,∩〉 is
isomorphic to the free completely distributive lattice generated by 〈CLb,∗〉.

Let’s check now that ↓: CLb −→ VLb defined as is an injective homomorphism. Stumme has
already showed that εp : CLb −→B given by

εp(G) 7→
({

F ∈ F
∣∣ G ∈ F

}
,
{

I ∈ I
∣∣ G ∈ I

})

20 P. Cabalar, J. Fandinno & M. Fink

is an injective homomorphism between the partial lattice 〈CLb,+,∗〉 and 〈B,∨,∧〉. So that εI ◦εp

is an injective homomorphism between 〈CLb,+,∗〉 and 〈VLb,∪,∩〉 given by

εI ◦ εp(G) 7→
⋂{

I ∈ VLb

∣∣ G ∈ I
}

Note that for any causal graph G and G′ ∈ CLb s.t. G′ ≤ G it holds that G′ ∈ εI ◦ εp(G) that
is ↓ G ⊆ εI ◦ εp(G). Furthermore for every causal graph G it holds that ε(G) is an ideal, i.e.
↓G ∈VLb and it is clear that G ∈↓G so that, εI ◦εp is a intersection of which one element is ↓G,
thus εI ◦εp(G)⊆↓G. That is ↓G = εI ◦εp(G) and consequently it is an injective homomorphism
between 〈CLb,+,∗〉 〈VLb,∪,∩〉.

Proof of Theorem 2. Since the set of causal values forms a lattice causal logic programs can
be translated to Generalized Annotated Logic Programming (GAP). GAP is a general a frame-
work for multivalued logic programming where the set of truth values must to form an upper
semilattice and rules (annotated clauses) have the following form:

H : ρ ← B1 : µ1 & . . . & Bn : µm (3)

where L0, . . . ,Lm are literals, ρ is an annotation (may be just a truth value, an annotation variable
or a complex annotation) and µ1, . . . ,µn are values or annotation variables. A complex annotation
is the result to apply a total continuous function to a tuple of annotations. Thus a positive program
P is encoded in a GAP program, GAP(P) rewriting each rule R ∈Π of the form

t : H← B1∧ . . .∧Bn (4)

as a rule GAP(R) in the form (3) where µ1, . . . ,µn are annotation that capture the causal values
of each body literal and ρ is a complex annotation defined as ρ = (µ1 ∗ . . .∗µn) · t.

Thus we will show that a causal interpretation I |= Π if and only if I |=r GAP(P) where |=r refers
to the GAP restricted semantics.

For any program P and interpretation I, by definition, I |= P (resp. I |=r GAP(P)) iff I |= R (resp.
I |=r GAP(R)) for every rule R ∈ P. Thus it is enough to show that for every rule R it holds that
I |= R iff I |=r GAP(R).

By definition, for any rule R of the form of (4) and an interpretation I, I |= R if and only if(
I(B1)∗ . . .∗ I(Bn)

)
· t ≤ I(H) whereas for any rule GAP(R) in the form of (3), I |=r GAP(R) iff

for all µi ≤ I(Bi) implies that ρ = (µ1 ∗ . . .∗µn) · t ≤ I(H).

For the only if direction, take µi = I(Bi), then ρ = (µ1 ∗ . . .∗µn) · t = (I(B1)∗ . . .∗ I(Bn)) · t and
then ρ ≤ I(H) implies

(
I(B1)∗ . . .∗ I(Bn)

)
· t ≤ I(H), i.e. I |=r GAP(R) implies I |= R. For the if

direction, take µi ≤ I(Bi) then, since product an applications are monotonic operations, it follows
that (µ1 ∗ . . .∗µn) · t ≤ (I(B1)∗ . . .∗ I(Bn)) · t ≤ I(H), That is, I |= R also implies I |=r GAP(R).
Consequently I |= R iff I |=r GAP(R).

Thus, from Theorem 1 in (Kifer and Subrahmanian 1992), it follows that the operator TP is
monotonic.

To show that the operator TP is also continuous we need to show that for every causal program
P the translation GAP(P) is an acceptable program. Indeed since in a program GAP(P) all body
atoms are v-annotated it is acceptable. Thus from Theorem 3 in (Kifer and Subrahmanian 1992),
it follows that TP ↑ ω (0) = l f p(TP) and this is the least model of P. Furthermore, since the lattice
form by interpretations is finite, there is some positive interger n s.t. TP ↑ n (0) = TP ↑ ω (0).

Theory and Practice of Logic Programming 21

Lemma 7.1
Given a completely labelled program P, for every atom p and positive integer n it holds that

TP ↑ n (0)(p) = ∑
R∈Ψ

∑
f∈R

∏
{

f
(
TP ↑ k (0)(q)

) ∣∣ q ∈ body(R)
}
· label(R)

where Ψ is the set of rules Ψ = { R ∈ Π
∣∣ head(R) = p } and R is the set of choice functions

R =
{

f
∣∣ f (S) ∈ S

}
.

Proof . By definition of TP ↑ k (0)(p) it follows that

TP ↑ n (0)(p) = ∑
{ (

TP ↑ n−1 (0)(q1)∗ . . .∗TP ↑ n−1 (0)(q1)
)
· label(R)

∣∣ R ∈ P with head(R) = p
}

then, applying distributive of application w.r.t. to the sum and and rewriting the sum and the
product aggregating properly, it follows that

TP ↑ n (0)(p) = ∑
R∈Ψ

∏
{

TP ↑ n−1 (0)(q)
∣∣ q ∈ body(R)

}
· label(R)

Furthermore for any atom q the causal value TP ↑ n−1 (0)(q) can be expressed as the sum of all
causes in it and then

TP ↑ n (0)(p) = ∑
R∈Ψ

∏
{

∑
f∈R

f
(
TP ↑ n−1 (0)(q)

) ∣∣ q ∈ body(R)
}
·abel(R)

and applying distributivity of products over sums it follows that

TP ↑ n (0)(p) = ∑
R∈Ψ

∑
f∈R

∏
{

f
(
TP ↑ n−1 (0)(q)

) ∣∣ q ∈ body(R)
}
· lR �

Lemma 7.2
Let P be a positive, completely labelled program and G be a cause. Then for every atom p it holds
that G ∈ TP ↑ n (0)(p) iff there is a rule l : p← q1, . . . ,qm and causes Gq1 , . . . , Gqm respectively
in TP ↑ n (0)(qi) and G≤

(
Gq1 ∗ . . .∗Gqm

)
· l.

Proof . From Lemma 7.1 it follows that G ∈ TP ↑ n (0)(p) iff

G ∈ value
(

∑
R∈Ψ

∑
f∈R

∏
{

f
(
TP ↑ n−1 (0)(q)

) ∣∣ q ∈ body(R)
}
· label(R)

)
iff G ∈

⋃
R∈Ψ

⋃
f∈R

value
(
∏
{
↓ f
(
TP ↑ n−1 (0)(q)

)) ∣∣ q ∈ body(R)
}
· label(R)

iff there is R ∈Φ, with head(R) = p and a choice function f ∈Ψ s.t.

G ∈ value
(
∏
{

f
(
TP ↑ n−1 (0)(q)

) ∣∣ q ∈ body(R)
}
· label(R)

)
Let R = l : p← q1, . . . ,qm and f

(
TP ↑ n−1 (0)(qi)

)
= Gqi . Then the above can be rewritten as

G≤
(
Gq1 ∗ . . .∗Gqm

)
· l. �

22 P. Cabalar, J. Fandinno & M. Fink

Lemma 7.3
For any proof π(p) it holds that

cause
(π(q1), . . . ,π(qm)

p
(l)
)
=
(
cause(π(q1))∗ . . .∗ cause(π(q1))

)
· l

Proof . We proceed by structural induction assuming that for every proof in the antecedent π(qi)

and every label l′ ∈V (cause(π(qi))) there is an edge (l′label(π(qi))) ∈ E(cause(π(qi))).

By definition cause(π(p)) = G∗
π(p) is the reflexive and transitive closure of Gπ(p) and then

cause(π(p)) =
(⋃{

cause(π(qi))
∣∣ 1≤ i≤ m

}
∪
{
(label(π(qi), l)

∣∣ 1≤ i≤ m
})∗

Thus, cause(π(p))≥∏
{

cause(π(qi))
∣∣ 1≤ i≤m

}
· l and remain to show that for every atom qi

and label l′ ∈V (cause(π(qi))) the edge (l′, l) ∈ E(cause(π(p))). Indeed, since by induction hy-
pothesis there is an edge (l′, label(π(qi))) ∈ E(cause(π(qi)))⊆ E(cause(π(p)), the fact that the
edge (label(π(qi), l) ∈ E(cause(π(p))) and since cause(π(p)) is closed transitively, it follows
that (l′, l) ∈ E(cause(π(p))). �

Lemma 7.4
Let P be a positive, completely labelled program and π(p) be a proof for p w.r.t. P. Then it holds
that cause(αp) ∈ TP ↑ h (0)(p) where h is the height of π(p) which is recursively defined as

height(π) = 1+max{ heigh(π ′)
∣∣ π
′ is a sub-proof of π }

Proof . In case that h = 1 the antecedent of π(p) is empty, i.e.

π(p) =
>
p
(l)

where l is the label of the fact (l : p). Then casue(π(p)) = l. Furthermore, since the fact (l : p)
is in the program P, it follows that l ∈ TP ↑ 1 (0)(p).

In the remain cases, we proceed by structural induction assuming that for every natural num-
ber h ≤ n− 1, atom p and proof π(p) of p w.r.t. P of which height(π(p)) = h it holds that
casue(π(p)) ∈ TP ↑ h (0)(p) and we will show it in case that h = n.

Since heigh(αp)> 1 it has a non empty antecedent, i.e.

π(p) =
π(q1), . . . ,π(qm)

p
(l)

where l is the label of the rule l : p← q1, . . . ,qm. By height definition, for each qi it holds that
heigh(π(qi))≤ n−1 and so that, by induction hypothesis, casue(π(qi))∈ TP ↑ h−1 (0)(qi). Thus,
from Lemmas 7.2 and 7.3, it follows respectively that

∏{ casue(π(qi))
∣∣ 1≤ i≤ m } · l ∈ TP ↑ h (0)(p)

cause(π(p)) = ∏{ casue(π(qi))
∣∣ 1≤ i≤ m } · l

That is, cause(π(p)) ∈ TP ↑ h (0)(p). �

Theory and Practice of Logic Programming 23

Lemma 7.5
Let P be a positive, completely labelled program and G be a cause. Then for every atom p it
holds that G is maximal in TP ↑ n (0)(p) iff there is a rule l : p← q1, . . . ,qm and causes Gq1 , . . . ,
Gqm which are respectively maximal in TP ↑ n (0)(qi) and G =

(
Gq1 ∗ . . .∗Gqm

)
· l

Proof . From Lemma 7.2 it follows that G ∈ TP ↑ n (0)(p) iff there is a rule l : p← q1, . . . ,qm

and causes Gq1 , . . . ,Gqm respectively in TP ↑ n−1 (0)(qi) s.t. G =
(
Gq1 ∗ . . . ∗Gqm

)
· l. Suppose

that some Gqi is not maximal, i.e. there is some maximal G′qi
∈ TP ↑ n−1 (0)(qi) s.t. Gqi < G′qi

.
Then for the cause G′ defined as G′ = (Gq1 ∗ . . . ∗Gqi−1 ∗G′qi

∗Gqi+1 ∗ . . . ∗Gqm) · l it holds that
G′ ∈ TP ↑ n (0)(p). Furthermore, by product and application monotonicity it holds that G ≤ G′

and since G is maximal, it must to be that G = G′. That is, G =
(
Gq1 ∗ . . .∗Gqm

)
· l where each

Gqi is maximal.

Lemma 7.6
Let P be a positive, completely labelled program and π(p) be a proof of p w.r.t. P. For every
atom p and maximal cause G ∈ TP ↑ ω (0)(p) there is a non-redundant proof π(p) for p w.r.t. P
s.t. cause(π(p)) = G.

Proof . From Lemma 7.5 for any maximal cause G∈TP ↑ n (0)(p), there is a rule l : p← q1, . . . ,qm

and maximal causes Gq1 ∈ TP ↑ h−1 (0)(q1), . . . ,Gqm ∈ TP ↑ n−1 (0)(qm) s.t.

G = (Gq1 ∗ . . .∗Gqm) · l

Furthermore, we assume as induction hypothesis that for every atom qi there is a non redundant
proof π(qi) for qi w.r.t. P s.t. cause(π(qi)) = Gqi . Then π(p) defined as

π(p) =
π(q1), . . . ,π(qm)

p
(l)

is a proof for p w.r.t. P which holds cause(π(p)) = Gp (from Lemma 7.3) and height(π(p)≤ h.
Furthermore, suppose that π(p) is redundant, i.e. there is a cause π ′ for p w.r.t P such that
cause(π(p)) < cause(π ′). Let n be a natural number grater that height(π ′) and heigh(π(p)).
Then, from Lemma 7.3, it follows that cause(π ′) ∈ TP ↑ n (0)(p), i.e. cause(π ′) ∈ TP ↑ ω (0)(p)
which contradicts the hypothesis that G is maximal in TP ↑ ω (0)(p). �

Proof of Theorem 3. From Theorem 2 it follows that the least model I is equal to TP ↑ ω (0).
For the only if direction, from Lemma 7.6, it follows that for every maximal cause G ∈ I(p) =
TP ↑ ω (0)(p) there is a non-redundant proof π(p) for p w.r.t P s.t. G = cause(π(p)). That is,
π(p) ∈ Πp and then G = cause(π(p)) ∈ causes(Πp). For the if direction, from Lemma 7.4, for
every G ∈ causes(Πp), i.e. G = causes(π(p)) for some non-redundant proof π(p) for p w.r.t. P,
it holds that G∈ TP ↑ ω (0)(p) and so that G∈ I(p). Furthermore, suppose that G is not maximal,
i.e. there is a maximal cause G′ ∈ I(p) s.t. G < G′ and a proof π ′ for p w.r.t. P s.t. cause(π ′) = G′

which contradicts that π(p) is non-redundant. �

24 P. Cabalar, J. Fandinno & M. Fink

Lemma 7.7
Let P,Q two positive causal logic programs such that Q is the result of replacing label l in P
by some u (a label or 1) then TQ ↑ n (0)(p) = TP ↑ n (0)(p)[l 7→ u] for any positive integer n and
atom p.

Proof . In case that n = 0 TQ ↑ n (0)(p) = 0 and TP ↑ n (0)(p) = 0 and 0 = 0[l 7→ u]. That is
TQ ↑ n (0)(p) = TP ↑ n (0)(p)[l 7→ u].

We proceed by induction on n assuming that TQ ↑ n−1 (0)(p) = TP ↑ n−1 (0)(p)[l 7→ u] for any
atom p and we will show that TQ ↑ n (0)(p) = TP ↑ n (0)(p)[l 7→ u].

Pick G ∈ TP ↑ n (0)(p) then, from Lemma 7.2, there is a rule l′ : p ← q1, . . . ,qm and causes
Gq1 , . . . , Gqm respectively in TP ↑ n−1 (0)(qi) s.t. G ≤ GR = (Gq1 ∗ . . . ∗Gqm) · l′. Thus, by in-
duction hypothesis, for every atom qi and cause Gqi ∈ TP ↑ n−1 (0)(q) it holds that Gqi [l 7→ u] ∈
TQ ↑ n−1 (0)(qi). where Gqi [l 7→ u] is just the result of replacing l by u when u is a label or
removing l when u = 1.

Let GR[l 7→ u] be a cause defined as GR[l 7→ u] =
(
Gq1 [l 7→ u]∗ . . .∗Gqm [l 7→ u]

)
· l′[l 7→ u]. Then,

since G≤ GR, it follows that G[l 7→ u]≤ GR[l 7→ u] and then, again from Lemma 7.2, it follows
that G[l 7→ u] ∈ TQ ↑ n (0)(p). That is TP ↑ n (0)(p)[l 7→ u]⊆ TQ ↑ n (0)(p).

Pick G ∈ TQ ↑ n (0)(p) then, from Lemma 7.2, there is a rule there is a rule l′ : p← q1, . . . ,qm s.t.
G ≤ GR = (Gq1 ∗ . . . ∗Gqm) · l′[l 7→ u]. By induction hypothesis, for every atom qi and cause
Gqi ∈ TQ ↑ n−1 (0)(qi) it holds that Gqi ∈ TP ↑ n−1 (0)(qi)[l 7→ u], i.e. there is a cause G′qi

∈
TP ↑ n−1 (0)(qi) s.t. G′qi

[l 7→ u] = Gqi . Let G′R be a cause s.t. G′R =
(
G′q1
∗ . . . ∗G′qm

)
· l′. From

Lemma 7.2 for every cause G′ ≤ G′R it holds that G′ ∈ TP ↑ n (0)(p). Since G′R[l 7→ u] = GR and
G≤GR it follows that G∈TP ↑ n (0)(p)[l 7→ u]. Consequently TP ↑ n (0)(p)[l 7→ u]⊇ TQ ↑ n (0)(p)
and then TP ↑ n (0)(p)[l 7→ u] = TQ ↑ n (0)(p).

Lemma 7.8
Let t be a causal term. Then value(t[l 7→ u]) = value(t)[l 7→ u].

Proof . We proceed by structural induction. In case that t is a label. If t = l then value(l[l 7→
u] = value(u) =↓ u = value(l)[l 7→ u]. If t = l′ 6= l then value(l′[l 7→ u] = value(l′) =↓ l′ =
value(l′)[l 7→ u]. In case that t = ∏T it follows that value(∏T [l 7→ u]) =

⋂
{ value(t ′[l 7→

u])
∣∣ t ′ ∈T }) and by induction hypothesis value(t ′[l 7→ u])= value(t ′)[l 7→ u]. Then value(∏T [l 7→

u]) =
⋂
{ value(t ′)[l 7→ u]

∣∣ t ′ ∈ T }) = value(∏T)[l 7→ u]. The cases for t = ∑T is analo-
gous. In case that t = t1 · t2 it follows that value(t[l 7→ u]) = value(t1[l 7→ u]) ·value(t2[l 7→ u]) =
value(t1)[l 7→ u] · value(t2)[l 7→ u] = value(t)[l 7→ u]

Proof of Theorem 4. From Theorem 2 there is some positive integer n s.t. TP ↑ n (0) and TP′ ↑ n (0)
are equal to the least model of P and P′ respectively. Furthermore, from Lemma 7.7, it follows
that TP ↑ n (0)(p) = TP′ ↑ n (0)(p) for any atom p. Lemma 7.8 shows that the replacing can be
done in any causal term of which valuation is equivalent to them.

Proof of Theorem 5. It is clear that if every rule in P is unlabelled, i.e. P = P′, then their least
model assigns 0 to every f alse atom and 1 to every true atom, so that their least models coincide
with the classical one, i.e. I = I′ and then Icl = I = I′. Otherwise, let Pn be a program where n

Theory and Practice of Logic Programming 25

rules are labelled. We can build a program Pn−1 removing one label l and, from Theorem 4, it
follows that In−1 = In[l→ 1]. By induction hypothesis the corresponding classical interpretation
of least model of Pn−1 coincides with the least model of the unlabelled program, i.e. Icl

n−1 = I′,
and then In[l 7→ 1]cl = Icl

n−1 = I′. Furthermore, for every atom p and cause G it holds that G ∈
In(p) iff G[l 7→ 1] ∈ In[l 7→ 1](p). Simple remain to note that value(0) = /0, so that In(p) = 0 iff
In[l 7→ 1](p) = 0 and consequently Icl

n = In[l 7→ 1]cl = I′. �

Proof of Theorem 6. By definition I and Icl assigns 0 to the same atoms, so that PI = PIcl
.

Furthermore let Q (instead of P′ for clarity) be the unlabelled version of P. Then QIcl
is the

unlabelled version of PI . (1) Let I be a stable model of P and J be the least model of QIcl
. Then,

I is the least model of PI and, from Theorem 5, it follows that Icl = J, i.e. Icl is a stable model
of Q. (2) Let I′ is a stable model of Q and I be the least model of PI′ . Since I′ is a stable model
of Q, by definition it is the least model of QI′ , furthermore, since QI′ is the unlabelled version of
PI′ it follows, from Theorem 5, that Icl = I′. Note that PI = PIcl

= PI′ . Thus I is a stable model
of P. �

