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Abstract
The stable model semantics of logic programs has been char-
acterized by Equilibrium Logic, which is a non-monotonic
formalism that selects models from the (monotonic) interme-
diate logic of Here-and-There. It provides stable models for
arbitrary propositional formulas and has been fruitfully ex-
tended to different modal languages. Among them are theories
in the syntax of Linear-Time Temporal Logic (LTL), giving
rise to Temporal Equilibrium logic (TEL) based on Temporal
Here-and-There (THT). In TEL, models are selected that mini-
mize truth among THT traces of the same length. In this paper,
we consider a selection that in addition may reduce the number
of transitions in a trace, intuitively forming a contraction of it.
We thus introduce contracted THT and contracted TEL on top
of a model selection on a logical basis. The resulting c-stable
models can be viewed as stable models in TEL that can not
be summarized into a smaller trace. We illustrate contraction
on several examples related to logic programming and explore
several properties, like the relation to TEL and LTL, and in
particular the connection to the LTL property of stuttering.

1 Introduction
(Linear-time) Temporal Equilibrium Logic (TEL) (Aguado
et al. 2013) is a well-known extension of Equilibrium Logic
(Pearce 2006), the nonmonotonic logic that characterizes
answer sets of a logic program. Its semantics is defined by
selecting certain models of a theory in Temporal Here-and-
There (THT), a temporal extension of the intermediate logic
of Here-and-There (Heyting 1930). These selected models
have the form of traces that are said to be in equilibrium (also
called stable models or stable traces) when a certain kind
of minimality holds, obtaining in this way a non-monotonic
entailment relation.

A TEL theory may have many stable models, such as the
formula φ = □(a∨ b), where each trace T = T0·T1·T2 · · ·
with Ti being either {a} or {b} is a stable model; in partic-
ular T = {a}·{a}·{b}·{b}·{b}·{a}·{a}·{a} · · · and T′ =
{a}·{b}·{a} are stable models. The is intuitively more suc-
cinct and may be preferred over T. A natural question then
is how to select stable models with relevant state transitions.

In the literature, trace selection by length has been con-
sidered; e.g., in (Schuppan and Biere 2005) the authors se-
lect models on the basis of the shortest counterexamples
for model checking purposes. For planning problems, ASP
solvers are usually run up to a certain plan horizon, aiming

at the computation of shortest plans. Other approaches for
selection over traces involve the use of minimization criteria
with weighted atoms, see (Dodaro, Fionda, and Greco 2022)
for LTL over finite traces among others.

However, rather than simply imposing a selection function
on stable models, we are interested in providing, in the spirit
of TEL, a semantics that selects models on a logical basis.
The idea is that not only the truth of atoms is minimized, but
in addition segments of a trace are summarized.

To illustrate this superficially on the formula from above,
by contracting in the trace T the initial segment {a}·{a} into
{a}, and similarly {b}·{b}·{b} and {a}·{a}·{a} · · · into {b}
and {a}, respectively, we obtain T′ which preserves φ under
contraction, as b resp. a is true over the segment associated
with each position. The trace T′ is a model of φ that can not
be contracted, and is thus selected. To see why taking the
stable models of minimum length does not suffice, consider
the following example.

Example 1 Suppose that, to move to the airport from our of-
fice, we may go by bus or take a taxi. If we go by bus, we must
make two bus stops, bs1 and bs2 before arriving whereas, if
we go by taxi, we always have to stop at a crossroad c. The
number of transitions we may take between two stops is not
predetermined. The following TEL theory is one possible
simplified formalization of this example (recall that □, ♢, ◦
stand for always, eventually, and next time, respectively):

bus ∨ taxi (1)
□(bus → ◦♢bs1) (2)
□(bs1 → ◦♢bs2) (3)

□(bs2 → ◦♢airport) (4)
□(taxi → ◦♢c) (5)

□(c→ ◦♢airport) (6)

The stable models of (1)-(6) follow two different patterns:

1. {bus} · ∅∗ · {bs1} · ∅∗ · {bs2} · ∅∗ · {airport} · ∅∗

2. {taxi} · ∅∗ · {c} · ∅∗ · {airport} · ∅∗

where, in both cases, we may replace the last ∅∗ by ∅ω,
dealing with traces of infinite length. The shortest stable
model corresponds to {taxi} ·{c} ·{airport}, where we take
the taxi and it arrives in the fastest possible way, without any
delay in each trip segment. We claim that the stable model



{bus} · {bs1} · {bs2} · {airport}, although longer, should
be incomparably minimal as well, as it corresponds to the
shortest trace we may get when we decide to take the bus.

For developing contraction, we consider furthermore the
following desiderata as a guidance: (D1) A contracted trace
should be in equilibrium, that is, contraction selects from
the stable traces. (D2) Consecutively repeated states, known
as stuttering, should preferably be eliminated, if possible.
(D3) Prevailing semantics such as LTL and TEL should be
recoverable by including axioms into a theory.

Our main contributions are then as follows.
• We introduce contraction THT (cTHT), in which interpre-
tations are structures ⟨T′,T, µ⟩ where µ maps segments of
T to T′, in a way such that the contracted (summarized) trace
T′ is sound with respect to inferences that could be made
in the trace T; that is, while inferences might be dropped,
no new formulas are derivable in a summarized segment of
T. For the definition of entailment, we resort to a temporal
version of the intermediate logic known as Bounded Depth 2.
• On top of contracted THT, we then define contracted TEL
(cTEL) by model selection according to a preference relation.
Intuitively, a trace is in equilibrium, if no proper summariza-
tion can be made. The resulting equilibrium models, called
c-stable models, obey D1 because they are also regular stable
models, and D2 for meaningful language fragments. For
instance, for formulas without the next-operator (◦) and with-
out nested implication, we are able to prove that c-stable
models coincide exactly with the regular stable models (D1)
that are stutter-free (D2).
• Both LTL and TEL can be recovered from cTEL by
adding suitable axioms; the well-known property of LTL that
for ◦-free formulas states can be stuttered is then a corollary.
• We show that satisfiability (stable model existence) has in
cTEL the same complexity as in TEL, which is EXPSPACE-
complete (Bozzelli and Pearce 2015), and that for cTEL
fragments, standard reasoning tasks can be modularly trans-
lated into TEL.

We believe that our work provides a basic framework for
defining contraction and summarization of (stable) traces that
can be utilized in various contexts, such as for generating
example traces, condensing given traces, analyzing minimal
plans, and many further applications.

2 Preliminaries
The syntax of THT (and TEL) is the same as for LTL. In
particular, in this paper, we use the following notation. Given
a (countable, possibly infinite) set A of propositional vari-
ables (called alphabet), temporal formulas φ are defined by
the grammar:

φ ::= a | ⊤ | ⊥ | φ1 ⊗ φ2 | ◦φ | φ1 U φ2 | φ1 R φ2

where a ∈ A is an atom and ⊗ is any binary Boolean con-
nective ⊗ ∈ {→,∧,∨}. The last four cases correspond to
the temporal connectives whose names are listed as follows:
◦ for next; U for until; and R for release. A formula φ is
said to be ⊗-free if it does not contain any occurrence of
some connective ⊗. We also define several common derived

operators like the Boolean connectives ¬φ =def φ → ⊥,
φ ↔ ψ =def (φ → ψ) ∧ (ψ → φ), and the following tem-
poral operators: always as □φ =def ⊥ R φ, eventually as
♢φ =def ⊤ U φ, final as F =def ¬◦⊤, and weak next as
◦̂φ =def ◦φ ∨ F. A (temporal) theory is a (possibly infinite)
set of temporal formulas.

Although THT and LTL share the same syntax, they have
different semantics, the former being a weaker logic than
the latter. The semantics of THT relies on the concept of
pairs of traces. In LTL, a trace T of length λ ≥ 1 (possibly
infinite, λ = ω) is a sequence T = (Ti)[0..λ) of sets Ti ⊆ A.
A THT-trace M is a pair M = ⟨H,T⟩ where H and T
are LTL traces of the same length, H = H0 ·H1 · . . . and
T = T0 ·T1 · . . . , and we additionally require Hi ⊆ Ti ⊆ A.
We sometimes use the notation |M| =def λ to stand for the
length of the trace. We say that T is infinite if |T| = ω and
finite if |T| ∈ N. Given a ∈ N and b ∈ N ∪ {ω}, we let[
a..b

)
stand for the set {i ∈ N | a ≤ i < b} and, analogously,(

a..b
]

when b ̸= ω stands for {i ∈ N | a < i ≤ b}.

Definition 1 (THT-satisfaction) Let M be a cTHT-trace
M = ⟨H,T⟩ over alphabet A and let λ = |H| = |T|. Then
M satisfies a temporal formula φ at step k ∈

[
0..λ

)
, written

M, k |= φ, if the following recursive conditions hold:

1. M, k |= ⊤ and M, k ̸|= ⊥;
2. M, k |= p if p ∈ Hk for any atom p ∈ A;
3. M, k |= φ ∧ ψ iff M, k |= φ and M, k |= ψ;
4. M, k |= φ ∨ ψ iff M, k |= φ or M, k |= ψ;
5. M, k |= φ → ψ iff ⟨H′,T⟩, k ̸|= φ, or ⟨H′,T⟩, k |= ψ

for all H′ ∈ {H,T};
6. M, k |= ◦φ iff k+1 < λ and M, k+1 |= φ;
7. M, k |= φUψ iff for some j ∈

[
k..λ

)
, we have M, j |= ψ

and M, i |= φ for all i ∈
[
k..j

)
;

8. M, k |= φ R ψ iff for all j ∈
[
k..λ

)
, we have M, j |= ψ

or M, i |= φ for some i ∈
[
k..j

)
. □

If H = T in Definition 1, then we obtain that ⟨T,T⟩, 0 |=
φ iff T is an LTL model of φ.

Definition 2 (TEL) A total cTHT-trace ⟨T,T⟩ is a tem-
poral equilibrium model (or stable model) of a theory Γ if
T, 0 |= Γ and there is no H ̸= T such that ⟨H,T⟩ |= Γ.

3 Contracted THT
To compare two different traces, we start introducing the
concept of a contractor function µ, a mapping that transforms
indices i ∈

[
0..λ

)
from an interval of length λ into new

positions µ(i) inside an interval of length λ′ ≤ λ.

Definition 3 (Contractor) Let λ, λ′ ∈ N∪{ω} be two trace
lengths. A contractor function µ from λ to λ′ is any surjective
function of type µ :

[
0..λ

)
→

[
0..λ′

)
that satisfies µ(0) = 0

and is monotonic, i.e., µ(i+1) ≤ µ(i) + 1 for all i ∈
[
0..λ

)
and i+ 1 < λ. □

Note first that, by monotonicity, µ(i+ 1) ≥ µ(i) and so,
µ(i+ 1) can only be either µ(i) or µ(i) + 1. Second, as µ is
surjective, all elements in

[
0..λ′

)
have a preimage in

[
0..λ

)
,
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Figure 1: Example of contractor function µ1.

T0 //
OO
⊆

T1==

⊆

// T2 //
OO

⊆

T3 //
==⊆

T4 //66

⊆

T5 //
OO

⊆

T6 //
==⊆

. . .66

⊆
H0

// H1
// H2

Figure 2: Subset relations imposed by T ↓µ1 H.

so λ′ ≤ λ, that is, µ generally produces an image interval of
a smaller (or equal) length λ′ than the original one λ (hence
the name “contractor”). Moreover, for each point i ∈

[
0..λ′

)
we can define its (non-empty) preimage set as usual:

µ−(i) =def {j ∈
[
0..λ

)
| µ(j) = i}.

The identity function id(i) =def i is the only case of con-
tractor in which the preimage id−(i) is a singleton – in other
words, id− constitutes an inverse function. An example of
a contractor µ1 for λ = ω and λ′ = 3 is shown in Figure 1,
where µ1(i) = 2 for all i ≥ 5.

We can also see a contractor function µ as a way to orga-
nize the points in

[
0..λ

)
into a sequence of λ′ consecutive

intervals so that µ−(i) denotes the i-th interval (starting in
0). For instance, for µ1 in Figure 1 we have the intervals
µ1

−(0) =
[
0..2

)
, µ1

−(1) =
[
2..5

)
and µ1

−(2) =
[
5..ω

)
.

As we can see, we may have cases in which the contractor
just leaves the same length λ′ = λ, that is, there is no length
contraction at all. If λ ∈ N this only happens with the identity
function id: any other contractor will necessarily reduce the
length λ′ < λ. However, when λ = ω we have (infinitely
many) other contractors µ different from id that do not reduce
the interval length, leaving λ′ = ω as well. As an example,
we may take the function µ2(i) =def i÷ 2 for all i ∈ N.

Definition 4 (Trace Contraction) Let H and T be two
traces of lengths λh = |H| and λt = |T| respectively. We say
that a contractor µ from λt to λh contracts T to H, written
T ↓µ H, when Ti ⊇ Hµ(i) for all i ∈

[
0..λt

)
. □

Definition 5 (Summarization ⪯) We say that trace H sum-
marizes trace T, written H ⪯ T, when there exists some
contractor µ such that T ↓µ H. □

Figure 2 shows the inclusion relations (in dashed lines)
imposed by T ↓µ1 H using the contractor µ1 in Figure 1
for two traces T of length λt = ω and H of length λh =
3. Informally speaking, when we jump from Hi to Hi+1
we allow trace T to make any finite number of additional
transitions, but all those new states must be supersets of Hi.
In other words, all those new Tj are allowed to include more
information than Hi, but never to remove any atom that is
true at Hi. When H is shorter than T, as in the example, the
last state in H, in the example H2, must be a subset of all the
remaining states in T, even if the latter is infinite.

To introduce the relation with THT, we notice that:

{p} //

��

{p, q} //

��

{q}

zz
{p} // {q}

{p} //

��

{p, q} //

zz

{q}

��
{p} // {q}

Figure 3: Two possible contractors to prove that H ≺ T for traces
H = {p} · {q} and T = {p} · {p, q} · {q}.

Proposition 1 The condition from Defn. 4 for T ↓id H
amounts to:

• λh = λt and, for all i ∈
[
0..λh

)
, Hi ⊆ Ti. □

In fact, the condition we obtained above with µ = id
amounts to the ordering relation among traces used in stan-
dard TEL (Aguado et al. 2021). Moreover, we will also use
the previous notation H ≤ T to mean T ↓id H. Note that
H ≤ T implies H ⪯ T but the opposite is not true, for
instance, ⪯ allows now comparing traces of different lengths.

Proposition 2 ⪯ is a preorder relation among traces.

In other words, ⪯ is reflexive and transitive but, in general,
anti-symmetry may not hold (at least, for pairs of infinite
traces). As a counterexample, consider the traces T = ∅ ·
∅ · {a}ω and T′ = ∅ · {a}ω. We can observe that T′ ↓id T
whereas we can also contract T ↓µ T′ using the function
µ(0) = 0 and µ(i) = i − 1 for all i > 0. This means we
have both T ⪯ T′ and T′ ⪯ T but T ̸= T′. However, in
the finite case, anti-symmetry holds, and we thus have:

Proposition 3 ⪯ is an order relation among finite traces.

In the sequel, we write H ≺ T if H ⪯ T and H ̸= T. It
must be observed that, given two traces H ≺ T, we may have
more than one contractor function µ for which T ↓µ H. As a
simple example, take T = {p}·{p, q}·{q} and H = {p}·{q}.
To prove that these two traces satisfy H ≺ T we can use
contractor µ with µ(1) = µ(2) = 1 or contractor µ′ with
µ′(1) = 0 and µ′(2) = 2 as shown in Figure 3.

Definition 6 (cTHT-trace) A cTHT-trace for alphabet A
is a triple ⟨H,T, µ⟩ satisfying T ↓µ H.

A cTHT-trace ⟨H,T, µ⟩ is called integral when µ = id
(there is no contraction) and contracted otherwise. An inte-
gral trace where we further have H=T is said to be total.

Given a cTHT-trace ⟨H,T, µ⟩, we call each k ∈
[
0..|H|

)
a trace step. Moreover, step k is said to be integral when
µ(k) = {i} is a singleton and when this happens, by abuse
of notation, we may sometimes use µ−(k) as a function
denoting the element i. We say that step k is contracted when
it is not integral, i.e., |µ−(k)| > 1. To put an example, for the
contractor on the left of Figure 3, step 0 is integral because
µ−(0) = 0 while step 1 is contracted as µ−(1) = {1, 2}. The
opposite happens for the contractor on the right: in that case
0 is contracted µ−(0) = {0, 1} and 1 is integral µ−(1) = 2.

We define next a particular kind of traces that we will
consider later on.

Definition 7 (cTHT-satisfaction) Let M be a cTHT-trace
M = ⟨H,T, µ⟩ over alphabet A and let λ = |H|. Then M
satisfies a temporal formula φ at step k ∈

[
0..λ

)
, written
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M, k |= φ, if the same conditions 1–8 as in Defn. 1 hold
excepting 5 and 6, which are modified as follows:

5. M, k |= φ→ ψ iff both:
(a) M, k ̸|= φ or M, k |= ψ;
(b) ⟨T,T, id⟩, j ̸|= φ or ⟨T,T, id⟩, j |= ψ ∀j ∈ µ−(k)

6. M, k |= ◦φ iff |µ−(k)| = 1, k+1 < λ, and M, k+1 |= φ

□

The intuitive meaning of the condition for the next operator
◦φ is that the current step k must not be a final state k+1 <
λ, it must be integral (|µ−(k)| = 1) and φ must hold at
k+1. The fact that k is integral means that Hk cannot be an
“abbreviation” of a sequence of T states above. That is, to
satisfy ◦φ at k we force the existence of a state at k+1 (as
usual) but also that the transition from k to k+1 is integral
for T. To put an example, M, 0 |= ◦q in the interpretation
M = ⟨H,T, µ⟩ corresponding to the left diagram of Fig. 3,
but not in the right as the transition from 0 to 1 is contracting
in that case. The reason for this restriction has to do with
persistence (anything satisfied in H must be satisfied in T
too) as we will prove later on. Informally speaking, in the
right diagram, from H0 we can see that q holds at the next
state H1. But when we move above, we should check ◦q
both at T0 and T1 as µ−(0) = {0, 1}. Here this holds, but
if T1 were {p} instead, then T0 does not satisfy ◦q and we
would have a case where ◦q is true in H but not in T. If the
transition is integral, as in the left diagram, we can guarantee
that T1 satisfies q because it is restricted by H1 = {q}.

Proposition 4 Satisfaction ⟨H,T, id⟩, k |= φ is equivalent
to satisfaction ⟨H,T⟩, k |= φ in THT.

Corollary 1 ⟨T,T, id⟩, k |= φ is equivalent to T, k |= φ in
LTL.

Due to these results, we may replace an integral trace
⟨H,T, id⟩ by the THT-trace ⟨H,T⟩ and ⟨T,T, id⟩ by T
when using them in satisfaction relations. Given an interval
or set S of time steps, we will also write T, S |= φ to stand
for T, j |= φ for all j ∈ S. Using this result and notation, we
can replace item 7(b) in Definition 7 by the simpler condition:

7(b′) T, µ−(k) |= φ→ ψ.
The following result lifts an essential property of THT

to the contracted setting: that every formula that is satisfied
by a THT-trace ⟨H,T⟩ must be satisfied by T viewed as
LTL-interpretation. It reflects the intuitionistic view that
when moving from a state H to a state T with more truth
information, inferences made will be preserved.

Theorem 1 (Persistence) For every cTHT-trace M =
⟨H,T, µ⟩ with λ = |H| and every k ∈

[
0..λ

)
: M, k |= φ

implies T, µ−(k) |= φ.

As in THT, the satisfaction of negation ¬φ at point k
amounts to an LTL check on the T component, but in this
case, we must make that check on all the preimage points
µ−(k). Formally:

Proposition 5 For every cTHT-trace M = ⟨H,T, µ⟩, for-
mula φ, and position k, M, k |= ¬φ iff T, µ−(k) |= ¬φ (in
LTL).

As usual, given a temporal formula φ for alphabet A,
we write |= φ to represent that φ is a tautology, that is,
M, k |= φ for every cTHT-trace M = ⟨H,T, µ⟩ over A
and every k ∈

[
0..|H|

)
.

Definition 8 (entailment/equivalence) Let φ and ψ be two
temporal formulas over alphabet A. We say that φ entails ψ,
written φ |= ψ, when M, k |= φ implies M, k |= ψ, for any
trace M = ⟨H,T, µ⟩ over A and every k ∈

[
0..|H|

)
. We

say that φ and ψ are equivalent, written φ ≡ ψ, when both
φ |= ψ and ψ |= φ.

Proposition 6 φ |= ψ iff |= φ→ ψ.

Corollary 2 φ ≡ ψ iff |= φ↔ ψ.

A cTHT-trace M is a model of a theory Γ if M, 0 |= φ
for all φ ∈ Γ. The following property from LTL and THT
also holds in cTHT (yet, it is known to be false once we
introduce past operators).
Proposition 7 φ ≡ ψ iff φ and ψ have the same models.

Proposition 8 The semantics induced for derived operators
is the following. Let M be a cTHT-trace M = ⟨H,T, µ⟩
over alphabet A and let λ = |H|.
1. M, k |= ♢φ iff M, j |= φ for some j ∈

[
k..λ

)
2. M, k |= □φ iff M, j |= φ for all j ∈

[
k..λ

)
3. M, k |= F iff |µ−(k)| = 1 and k+1 = λ

4. M, k |= ◦̂φ iff |µ−(k)|=1 and either k+1=λ or
M, k+1 |=φ.

It is well-known that THT is a strictly weaker logic than
LTL (Aguado et al. 2021), that is THT ⊂ LTL. Proposi-
tion 4 allows proving that cTHT ⊆ THT, namely, that any
cTHT-tautology is also an THT-tautology. We may also ob-
serve that this relation is strict, cTHT ⊂ THT. For instance,
while ◦̂⊤ ≡ ◦⊤ ∨ ¬◦⊤ is a tautology in LTL and in THT,
it is not a tautology any more in cTHT. Indeed, from Propo-
sition 8.4 we conclude that M, k |= ◦̂⊤ iff |µ−(k)| = 1, that
is, satisfying ◦̂⊤ at point k just means requiring that k is
an integral transition. Thus, we can take any interpretation
where k is contracting, such as k = 0 in Figure 2, to falsify
◦̂⊤. Furthermore, including the axiom:

□◦̂⊤ (INT)

forces all steps to be integral (no contraction), and so, µ = id
collapsing to THT. In other words, cTHT+ (INT) = THT.

Similarly, we may also observe that the THT-equivalent
formulas ◦⊤ and ¬¬◦⊤(= ¬F) are not equivalent in cTHT
either. While satisfying ◦⊤ at k asserts that k is integral and
jumps to a state k+1, ¬F just means the preimage of k does
not contain the last position in T.
Proposition 9 Let M = ⟨H,T, µ⟩ be a cTHT-trace. Then,
M, k |= ¬F iff max(µ−(k)) + 1 < |T|.

One important observation is that the non-temporal frag-
ment of cTHT is actually weaker than HT. If we restrict
to propositional connectives ∨,∧,→,⊥,⊤ and atoms, the
satisfaction relation collapses to an intermediate logic whose
Kripke models have the form of “forks”, namely, one point
(or world)H0 that can see a group of worlds Ti for i ∈ µ−(0)

4



c-THT THT LTL TEL c-TEL
INT EM

INT ∧ EM

EM INT

INT ∧ EM

Figure 4: Relations between LTL, THT, and cTHT.

with no (intuitionistic) accessibility among them. This struc-
ture corresponds to the intermediate logic of Bounded Depth
2 (BD2), one of the seven interpolable intermediate log-
ics (Maksimova 1977), like HT itself, although BD2 is also
strictly weaker. For instance, BD2 does not satisfy the prin-
ciple of weak excluded middle ¬φ ∨ ¬¬φ, which is an HT-
tautology. In some sense, cTHT can be seen as one of the
(possible) temporal extensions of BD2.

We have seen that axiom (INT) allows collapsing cTHT
into THT. It is also known that THT collapses to LTL by
the addition of the (temporal) excluded middle axiom (EM)
scheme. We also introduce its weaker version (WEM):

EM := □(p ∨ ¬p) (7)
WEM := □(¬¬p ∨ ¬p) (8)

for every p ∈ A. Figure 4 depicts some reductions among
different logics obtained by the inclusion of axioms.

Although cTHT is strictly weaker than LTL, there are
syntactic fragments on which LTL-equivalences are still ap-
plicable for cTHT. For instance:
Proposition 10 Let φ,ψ be a pair of →-free, ◦-free formu-
las. Then, the formula φ ↔ ψ is a cTHT-tautology iff it is
an LTL-tautology.
As an illustration, the LTL-tautology

pU ♢q ↔ ♢q (9)
is also a cTHT-tautology because the formulas on the two
sides of the double implication are →-free and ◦-free. Note
that we can still exploit this result to prove properties about
formulas with ◦ or →. To put an example, the formula

◦φU ♢(ψ → γ) ↔ ♢(ψ → γ) (10)
is still a cTHT-tautology because cTHT satisfies the law
of uniform substitution, whose validity can be proved by
contradiction, and we can replace p by ◦φ and q by (ψ → γ)
in (9) to obtain (10).

4 Contracted Temporal Equilibrium Logic
We are now introducing a selection criterion over cTHT
models, which requires the nonexistence of a proper logical
summarization. As pointed out in (Lamport 1983), standard
temporal logics like LTL cannot express possibilities (or the
absence of possibilities) over different behaviors; for that,
a second-order logic is needed. TEL already provides a
notion of possibility, in the sense that a selection criteria over
models is employed, but its purpose is to simulate the stable
semantics on a temporal setting only.
Definition 9 (cTEL) A total cTHT-trace ⟨T,T, id⟩ is a
contracted temporal equilibrium model (or c-stable model)
of a theory Γ if it is a model of Γ (that is T, 0 |= Γ in LTL)
and there is no model ⟨H,T, µ⟩ of Γ with H ≺ T.

If we constrain µ in Definition 9 to identity id, then we ob-
tain the definition of (integral) temporal equilibrium model as
in (Aguado et al. 2013) for infinite and finite traces, which we
call stable models. A first observation is then the following.

Theorem 2 Any c-stable model of a theory Γ is also a (stan-
dard) stable model of Γ.

Hence, the desidered condition (D1) is satisfied. To see
how the semantics works, let us see some examples.

Example 2 Consider the theory Γ = {♢p}. Its stable mod-
els are the traces T with p at a single state, i.e., T =
∅m · {p} · ∅n with m,n ≥ 0 and, possibly, n = ω. Let us try
to build an H and µ such that ⟨H,T, µ⟩ |= ♢p and H ≺ T.

• Consider T = {p}. Then |H| = 1 and µ = id must hold;
as T is stable, H ≺ T is not possible, so T is c-stable.

• Consider T = ∅ · {p}. Then H0 = {p} is not possible
as µ(0) = 0, which forces H0 ⊆ T0 = ∅. So, we must
have H0 = ∅; as ⟨H,T, µ⟩, 0 |= ♢p must hold, this forces
H1 = {p}, µ(1) = 1 and so H = T. Again T is c-stable.

• Also trace T = {p} · ∅ is c-stable: |H| = 1 would force
p ∈ H0 and H0 ⊆ T1 = ∅, while |H| = 1 forces µ = id ;
then H1 ⊆ T1 = ∅ and so H0 = {p} but then H = T.

• The trace T = ∅ · {p} · ∅ is c-stable: |H| = 3 would
force µ = id, and as T is stable, H ≺ T is not possible.
Otherwise, µ(2) = 1 would force H1 = ∅ thus H0 =
{p} ⊆ T0 = ∅; µ(2) = 0 would force H = H0 = ∅ but
then ⟨H,T, µ⟩, 0 |= ♢p is not possible.

• Take any trace T = ∅m · {p} · ∅n where m > 1. Then, we
can build H = ∅ · {p} · ∅n and use µ(i) = m+ i− 1 for
all i ≥ 1 for the model H ≺ T, so T is not c-stable.

• Finally for any trace T = ∅m · {p} · ∅n with n > 1 we
similarly build H = ∅m · {p} · ∅ and use µ(i) = i for all
i ∈

[
0..m

)
(remember the last state forces µ(m+1) = ω)

for the desired model H ≺ T, so T is not c-stable.

In conclusion, this theory has only four c-stable models: {p},
{p} · ∅, ∅ · {p}, and ∅ · {p} · ∅, which are compactly repre-
sented with the regular expression as T = ∅? · {p} · ∅?. □

Example 3 Consider the dual theory Γ = {□p }. Its stable
models are T = {p}λ where λ ≥ 1 and possibly λ = ω. The
only c-stable stable model is T = {p}: for any λ > 1 we
can use H = {p} and readily show that T is not c-stable.

Example 4 Consider next the theory Γ with the formulas

♢p (11)
□(p→ ◦p ∨ q). (12)

To satisfy (11), any stable model T must make p true
at some point k, and by (12) p must be true forever, i.e.,
Ti = {p} for i ∈

[
k..λ

)
, or until both p and q are true

at some point k′ ≥ q, i.e., Ti = {p} for i ∈
[
k..k′

)
and

Tk′ = {p, q}. By the minimality condition of T, no p or q
can appear before k or after k′, i.e., Ti = ∅ for i ∈

[
0..k

)
and i ∈

[
k′+1..λ

)
, as we could make them all false in a

smaller H for an HT-model; likewise, we could make all p at
i ∈

[
k..λ

)
resp. i ∈

[
k..k′

)
false. Thus, T must be, written

as regular expression, of the form T = ∅∗ · {p, q} · (∅∗+∅ω).
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It is not hard to check that any nonempty subsequence ∅k in
T, including ∅ω, can be contracted into ∅, leading to four c-
stable models: {p, q}, ∅ · {p, q}, {p, q} · ∅, and ∅ · {p, q} · ∅,
which are compactly represented as T = ∅? · {p, q} · ∅?. □

Example 5 Let then Γ = {♢(p∧□(p→ ◦p∨q)) }. In LTL,
this theory is weaker than Γ in Example 4, which we rename
to Γ′, as (12) is nested into (11); thus we have Γ′ |=LTL Γ;
the same holds in THT and in cTHT.

Consequently, any stable model T of Γ must be a stable
model of Γ′. Conversely, any stable model T of Γ′ is an LTL
model of Γ, and by its particular form, we can not form a
smaller H such that ⟨H,T⟩ |= Γ; hence T is also a stable
model of Γ. This likewise holds for c-stable models. Thus Γ
and Γ′ have the same stable resp. c-stable models. □

We next consider occurrence of negation.

Example 6 Let Γ = {□(¬p ∨ p)}. As THT plus EM col-
lapses to LTL, any trace is a stable model of Γ that intuitively
represents a choice for p or ¬p at each point.

To see which of them are c-stable, whenever we have a
state repetition in T, i.e., Ti = Ti+1 for some i ≥ 0, then
we can contract T to T′ by leaving out Ti+1, i.e., we let
µ(j) = j for j ∈

[
0..i

]
and µ(j) = j−1 for j ∈

[
i..|T|

)
,

and obtain ⟨T′,T.µ⟩ |= Γ; if all Tj , j > i, are the same, we
can also set µ(j) = i. As this can be repeated, the c-stable
models of Γ are all traces that alternate between {p} and ∅;
formally, they are captured by the regular expression
∅·({p}·∅)∗·{p}? + {p}·(∅·{p})∗·∅? + (∅·{p})ω + ({p}·∅)ω

□

In the examples above, repeated states have been elim-
inated, as desired by condition (D2). Clearly, this is not
always possible.

Example 7 Take Γ = {p,◦p}. Its stable models are T =
{p} · {p}(∅∗+∅ω), and the formula ◦p forces any contraction
µ to be integral at step 0; the c-stable models are {p} · {p}
and {p} · {p} · ∅.

The ◦-operator can be seen as a way to state that a given
transition cannot be contracted. Thus, when a ◦-formula
is derived, we may have repetitions of states that cannot
be removed in c-stable models; as we shall see in the next
section, we can safely remove stuttering when we deal with
◦-free formulas, so (D2) will be satisfied.

Regarding (D3), we readily obtain from the discussion
about LTL, THT and cTHT in the previous section that
cTEL+(INT) = TEL and TEL+(EM) = LTL, complet-
ing the diagram in Figure 4.

5 Characterising c-Stable Models
We notice that c-stable models are ω-regular languages,
which follows from an automata construction for deciding
the satisfiability problem in cTEL. Intuitively, this can be
already seen from Defn. 9, as we need to produce an LTL
automaton for the guess T, and a THT automaton for pro-
ducing a defeater H and µ. After completing the defeater
automaton, we project away all the atoms referring to H and
µ, and we compute the intersection of the two automata. All

the above mentioned automata operators are closed under
ω-regular languages (Büchi 1960).

We further note that for ◦-free formulas, an alphabet of size
at least 2 is needed for having an aperiodic c-stable trace. For
instance, the trace T = ∅ · a · ∅ · ab · ∅ · (ab)2 · ∅ · (ab)3 · . . .
is a c-stable trace for the formula □((a ∨ ¬a) ∧ (b ∨ ¬b)).

5.1 ◦-free formulas
We now turn our attention to ◦-free formulas, i.e., formulas
without the ◦-operator. The absence of the intricate semantic
behavior of the latter allows us to identify sufficient condi-
tions for the existence of c-stable models as well as charac-
terizations for classes of ◦-free theories, and under restricted
contractions for all such theories.

A key notion for this endeavor is stuttering of traces.

Definition 10 (Stuttering) A trace T is a stuttering of a
trace T′ if T ↓µ T′ for some µ such that Ti = T ′

µ(i), for all
i ∈

[
0..|T|

)
; it is proper if, in addition, T ̸= T′.

That is, in a stuttering the same state is repeated, possibly
multiple times or even infinitely often; properness ensures
that T must have some repetition that is not in T′.

Let us consider what happens when we “pump” LTL and
THT models of a set Γ of ◦-free formulas.

Lemma 1 (Stutter Equivalences) Suppose T (resp. H) is
a stuttering of T′ (resp. H′) via contraction µ. If φ is ◦-free,
then for each j ∈ [0, λ′),
1. T′, j |= φ iff T, µ−1(j) |= φ, and
2. ⟨H′,T′⟩, j |= φ iff ⟨H,T⟩, µ−1(j) |= φ.

Item 1 of Lemma 1 is a well-known result of the LTL
◦-free fragment, while 2 is an immediate generalization of 1.
Notably, we can summarize stuttered intervals in the There-
trace using contractors while preserving THT satisfaction:

Proposition 11 (T-stutter Equivalence) Let M =
⟨T′,T, µ⟩ where Ti = Tj for every i, j ∈ µ−(k) and
k ∈ [0, |T′|), and let H ↓µ T′ be a stuttering of T′. If φ
is a ◦-free formula, then for each k ∈ [0, |T|), we have
M, µ(k) |= φ iff ⟨H,T⟩, k |= φ.

Proposition 11 allows us to link summarisation inference
to ordinary HT-inference. Armed with this proposition, we
then show the following property. Let us call a trace T
stutter-free, if it is not a proper stuttering of any sequence T′.

Proposition 12 For any set Γ of ◦-free formulas, T is a c-
stable model of Γ only if T is a stable model of Γ such that
Ti ̸= Ti+1 for all i ∈ [0, λ), i.e., T is stutter-free.

Thus, stutter-freeness is a necessary condition for c-
stability in the absence of the ◦-operator. On the other hand
this condition is not sufficient in general, as shown by the
following example.

Example 8 Consider the theory Γ = {¬p → ♢p}, which
has the stable model T = ∅ · {p}: at i = 0, p is false and
thus p must be true at i = 1. However, while T is stutter-free,
it is not a c-stable model. Indeed, for M = ⟨T′,T, µ⟩ where
T ′ = ∅ and µ(0) = µ(1) = 0, we have M |= Γ as M ̸|= ¬p
and T |= ♢p. Intuitively, contraction of T into T′ affects
stability as the antecedent ¬p is no longer provable. □
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To obtain a fragment of TEL for which stutter-freeness
is a sufficient condition for summarization, we thus have to
impose some restrictions. This intuitively regards negation
respectively implication, as summarization does not affect
provability of formulas without implication, which we call
positive formulas. As it turns out, by excluding nested impli-
cation we achieve this goal.

Let THT1 denote the class of all formulas without nested
implication. We then obtain the following result, which
informally generalizes the only-if direction of Proposition 11
for THT1 theories.

Proposition 13 Let M = ⟨T′,T, µ⟩ and H ↓µ T′ be a
stuttering of T′. If φ is a ◦-free formula from THT1, then
for each k ∈ [0, λ′), M, k |= φ implies ⟨H,T⟩, µ−(k) |= φ.

The converse direction does not hold, as shown by T′ = ∅,
T = {p}·∅, µ as obvious, H = ∅·∅, and Γ = {♢(p ∨ ¬p)}.

From Proposition 13, we obtain the converse of Proposi-
tion 12 for THT1:

Proposition 14 Suppose Γ is a set of ◦-free formulas from
THT1. Then T is a c-stable model of Γ if T is a stable model
of Γ such that Ti ̸= Ti+1 for all i ∈ [0, λ), i.e., T is not a
proper stuttering of any sequence T′.

From Propositions 12 and 14, we then obtain the charac-
terization of the c-stable models in terms of stable models.

Theorem 3 For any ◦-free THT1 theory Γ, (i) the c-stable
models coincide with the stutter-free stable models; (ii) a
c-stable model exists iff a stable model exists; and (iii) every
stable model becomes c-stable by removing all repetitions.

Revisiting Example 6, we see that the c-stable models of Γ
are captured by the characterization in Theorem 3.

Even ◦-free THT1 formulas allows us to enforce infinite
models sensitive to c-stability.

Example 9 By adding the formula □(◦⊤) to the theory Γ =
{□(¬p ∨ p)} in Example 6, as well as to any theory, all
models of Γ must be infinite, and only the two infinite traces

(∅ · {p})ω and ({p} · ∅)ω)

would remain as c-stable models.
Infinite models may be also enforced by adding the formula

□((q ∨ ¬q) ∧ ♢q ∧ ♢¬q) (13)

where is q is an auxiliary atom. While □(◦⊤) restricts any
mapping T ↓µ T′ between traces to identity (µ = id) and
thus c-stability falls back to stability, formula (13) preserves
the full mappability.

We note that Theorem 3 can be extended to non-THT1

theories by imposing syntactic conditions. In particular, it
continues to hold if Γ contains for each non-THT1 formula
φ in Γ also (EM) for each variable p that occurs in φ; this
enforces totality of models on the variables Aφ in φ, and
thus the condition in Proposition 11 applies relative to Aφ.
As LTL equals THT+ (EM) (cf. Figure 4), the stutter-free
LTL-models of any ◦-free theory Γ are thus characterized by
the c-stable models of Γ ∪ (EM), i.e., by the contractions of
the stable models of Γ under classical semantics.

We further remark that (EM) also belong to the syntactic
fragment THT1 whereas its inclusion captures full LTL: we
can convert each formula φ in LTL into negation normal
form in polynomial , by rewriting implication to disjunction
and moving negations inside formulas – in particular, using
¬(φ U ψ) ≡ ¬φ R ¬ψ and ¬(φ R ψ) ≡ ¬φ U ¬ψ in LTL,
where double negation cancels.

5.2 GP-formulas
While the class THT1 excludes nested implication, it is still
expressive and allows for encoding EXPSPACE-complete
problems, even if ♢ and □ are the only temporal operators
available (Bozzelli and Pearce 2015). In particular, it em-
braces theories that include statements of the form

α1 ∧ · · · ∧ αm → β1 ∨ · · · ∨ βn, (14)
□(α1 ∧ · · · ∧ αm → β1 ∨ · · · ∨ βn) (15)
□(□α1 → β1) (16)
□(α1 → ♢β1) (17)
α1 ∨ ¬α1 (18)

m,n ≥ 0, where all αi and βj are positive formulas. They
are rules of temporal logic programs (Aguado et al. 2021)
if the formulas are atoms in (16)-(17) and atoms or formu-
las ◦p in (14)-(15) where p is an atom. For m = 0 these
are (disjunctive) facts, and for n = 0 constraints where the
consequent is ⊥). The formula (18) is a guessing rule which
makes in stable semantics α1 either true or false, which then
leads to two different scenarios reflected in different stable
models (so they exist).

It is well-known that for positive disjunctive logic pro-
grams, which are sets of formulas (14) where all αi and βj
are atoms, the stable models coincide with the ⊆-minimal
(in short, minimal) models. We now present the class GP
(standing for Generalized Positive) of formulas with an anal-
ogous property for theories Γ over this class. The c-stable
models of ◦-free Γ theories are then the minimal stutter-free
models of Γ; furthermore, for no different c-stable models T′

and T of Γ, we can have T′ ≺ T (which for arbitrary ◦-free
theories is possible, cf. Example 6).

Definition 11 (GP formulas) The class GP consists of all
THT1 formulas φ where each subformula φ1 ∨φ2, φ1 Uφ2,
or φ1 R φ2 of φ is positive unless φ1 = ⊥.

Clearly GP properly generalizes positive formulas; e.g.
p→ q is positive and an admissible GP formula, but □(p ∧
♢r → q ∨ □s) is only admissible GP. The restriction on
U and R subformulas mirrors the restriction on disjunction
∨, since both operators involve temporal disjunction. i.e.,
over time instants. Exempting the case φ1 = ⊥ means
that φ1 ∨ φ2 amounts to φ2, which then simply must be
from THT1, φ1 U φ2 amounts similarly to φ2, and φ1 R φ2

amounts to □φ2, which intuitively is a temporal conjunction
of φ2 over the timeline.

Notably, positive (negation-free) temporal logic programs
with rules of the form (14)–(17) fall into the class GP, and
several examples considered above involve GP formulas.

Furthermore, with □◦⊤ but also with ◦-free GP formulas
we may enforce infinite LTL models, such as with □((p→
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Figure 5: T-stuttering and T-stable semantics vs. the other semantics.

♢q)∧(q → ♢p)); by further adding □((p∨q)∧(p∧q → ⊥)),
each infinite stable trace gives rise to some c-stable model.

Based on Theorem 3, we then obtain the following charac-
terization of c-stable models.

Theorem 4 For any theory Γ of ◦-free GP formulas, the
following conditions are equivalent:
(1) T is a c-stable model of Γ;
(2) T is a stutter-free ⊆-minimal model of Γ, i.e., Ti ̸= Ti+1

for all i ∈ [0, λ);
(3) T is a (⊆-minimal) model of Γ and no model T′ ≺ T of

Γ exists.

We remark that Theorem 4 does not hold for THT1 formu-
las, which is easily witnessed by Γ = {p∨¬p} and T = {p}:
T is a c-stable model but the conditions (2) and (3) are not
satisfied. As this example shows, requiring in (2) and (3) that
T is an stable model would not change this. However, the
conditions (2) and (3) are sufficient for c-stability.

Proposition 15 For any ◦-free theory Γ of THT1 formulas,
T is a c-stable model of Γ if (1) T is a stutter-free ⊆-minimal
model of Γ, or (2) T is a model of Γ and no model T′ ≺ T
of Γ exists.

5.3 Taming summarization
As we illustrated with Example 8, if our theory is not in the
fragment THT1, stutter-free stable models may not c-stable,
even in the absence of the next-operator. An intuitive expla-
nation for this is that arbitrary contractions can be aggressive
and compromise stability of formulas, as negation has to be
evaluated over a segment in the There-trace. Specifically, this
happens in Example 8 for the contraction of the stable model
T = ∅·{p} of Γ = {¬p→ ♢p,¬p→ ◦p} to T′ = ∅, where
the antecedent ¬p of the implications has to be evaluated over
∅ · {p}, while for stability, it is only evaluated over T0 = ∅.

Similarly, aggressive summarization may eliminate sta-
ble models if a change of axioms should only affect lo-
cal stability, as for the theories Γ1 = {□(p ∨ q)} and
Γ2 = {□(¬p → q),□(¬q → p)}, which have the same
stable models. However, while the c-stable models of Γ1

are its (infinitely many) stutter-free stable models, which are
all the finite and infinite traces T that alternate between {p}
and {q}, Γ2 has only {p} and {q} as c-stable models: each
different stable model T can be contracted by µ to T′ = ∅,
for which ⟨T′,T, µ⟩ |= Γ2 holds.

Aggressive summarization can be avoided by restricting
contractions. In particular, the elimination of repetitions,
which is a necessary feature of c-stable models, would be
sufficient. To this end, we introduce the following notion.

Definition 12 (T-stutter,T-stable model) We call a cTHT-
trace ⟨H,T, µ⟩ T-stutter, if Ti = Tj whenever µ(i) = µ(j),

for every i, j ∈
[
0..|T|

)
. Furthermore, a trace T is a T-

stable model of a theory Γ if T |= Γ and no T-stutter M =
⟨T′,T, µ⟩ exists such that M |= Γ and T′ ̸= T.

The less aggressive summarization allows us to recover all
the ◦-free THT tautologies.
Proposition 16 Let φ,ψ be a pair of ◦-free formulas. Then,
φ↔ ψ is a T-stuttering tautology iff it is a LTL-tautology.

In Example 8, we thus can’t contract T = ∅ · {p} to T′=∅,
and T is T-stable; similarly, no stable model T of Γ2 with al-
ternating {p} and {q} can be contracted to any trace T′ ̸= T
such that M = ⟨T′,T, µ⟩ is T-stutter and M |= Γ2. Clearly,
Proposition 17 Every c-stable model T of a theory Γ is a
T-stable model of Γ.

It is not hard to see that we can constrain models M to be
T-stutter by the temporal weak excluded middle axiom. We
thus obtain the following characterization.

Theorem 5 For any theory Γ, the T-stable models of Γ coin-
cide with the c-stable models of Γ ∪ (WEM).

The refined picture of semantics is shown in Figure 5.
Many of the results for c-stable models of THT1 theories
similarly hold for T-stable models. The main result is an
analogon of Theorem 3 for all ◦-free theories.

Theorem 6 For any ◦-free theory Γ, (i) the T-stable models
coincide with the stutter-free stable models; (ii) some T-stable
model exists iff some stable model exists; and (iii) every stable
model becomes T-stable by removing all repetitions.

In other words, the T-stable models capture the stutter-free
stable models of any ◦-free theory. Furthermore,

Corollary 3 For any ◦-free THT1 theory Γ, the T-stable
models of Γ coincide with the c-stable models of Γ.

As a final remark, when we consider the non-temporal
fragment of cTHT under T-stutter traces, it is easy to see
that we return back to the HT intermediate logic – although
the current world in the BD2 structure may still see multiple
accessible worlds in T, all of them have the same valuation
of atoms and collapse to a single point.

6 Computational Complexity and Reasoning
The satisfiability problem for LTL is well-known to
be PSPACE-complete, while Bozzelli and Pearce (2015)
showed that for TEL it is EXPSPACE-complete. They
gave a detailed complexity picture for syntactic fragments
THTnm(Op1, . . . , Opk), where n is the implication depth, m
the temporal operator depth, and (optional) theOp1, . . . , Opk
are the admitted temporal operators, focusing on infinite
traces but with corollaries for arbitrary and finite traces. We
present the following novel results (’c’ stands for ’complete’).

Theorem 7 (TEL complexity) Deciding TEL satisfiability
of a theory, i.e., whether it has some stable model, from
• GP2(□,♢) is EXPSPACE-c for infinite traces;
• THT2

2(U) is EXPSPACE-c for finite and for infinite traces.
• THT1

2(◦,□,♢) is PSPACE-hard for finite traces, and
THT1

2(◦,□,♢, ◦̂,F) is in PSPACE for finite traces.
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• THT1
2(□,♢,F) is NP-c for finite traces.

Notably, as a corollary we get that deciding TEL satisfiabil-
ity of ¬-free (and ◦-free) temporal programs from (Cabalar
and Schaub 2019) is PSPACE-c (is NP-c), while it remains
EXPSPACE-c in the general case.

For c-stable semantics, we easily obtain from our discus-
sion about enforcing infinite traces (see Section 5) and the
results in (Bozzelli and Pearce 2015) some lower bounds, as
we can block non-id mappings by adding the formula □◦⊤.

Lemma 2 Deciding whether a given theory Γ has some c-
stable model is

1. EXPSPACE-hard in general and for THT1
m+1(♢,□),

GP2(♢,□,◦), and THT2
2(U) and

2. PSPACE-hard for THT1(◦,R) and THT0.

The general case has a matching upper bound, which can
be shown using automata-theoretic techniques, similar as for
the result that satisfiability for TEL is in EXPSPACE. Hence,
cTEL does not have higher complexity than TEL.

Theorem 8 (cTEL-complexity) Deciding cTEL satisfiabil-
ity of a theory Γ, i.e., whether Γ has a c-stable model, is
EXPSPACE-complete.

Combining our results in Section 5 with results in (Bozzelli
and Pearce 2015), we obtain some upper bounds for infinite
models (remind the non-duality between U and R in TEL):

Proposition 18 Let INF =def □♢◦⊤ denote an operator
expressing infinity. Then deciding whether a given theory Γ
has an infinite c-stable model is

1. in PSPACE for THT1(R) and THT1(U, INF), and
2. in Σp2 for THT(♢, INF).

Notably, in many cases, the existence of a stable model
for a formula φ is, as shown by (Bozzelli and Pearce 2015),
equivalent to the existence of a stable model T that is strongly
ultimately periodic, i.e., that some j ≥ k exists such that
Ti = Tj for all i ≥ j, where j is bounded in the size of the
formula φ. For c-stability, the ultimate periodic part may
either remain or be reduced to a finite suffix of the trace; thus,
finite c-stable model existence is covered as well.

A detailed study of the complexity of cTHT and cTEL
is beyond this paper. We remark, however, that are also low
complexity fragments of cTEL semantics. In particular,

Proposition 19 Deciding whether a given ◦-free theory Γ
has some c-stable model is NP-complete for THT1

1 and GP1.

This holds as some c-stable model exists in case of THT1
1

(which includes GP1) by Theorem 3 iff some stable model
exists iff some infinite stable model exists (as states can be
stuttered), which is NP-complete to decide (Bozzelli and
Pearce 2015). The NP-hardness holds for GP1, as it includes
positive disjunctive logic programs (empty rule heads permit-
ted), for which deciding stable model existence is well-known
to be NP-complete (Eiter and Gottlob 1995). Proposition 19
thus shows that the benign complexity of a major class of
logic programs extends to a meaningful temporal analogue.

6.1 Reasoning
Theorem 6 can be exploited to obtain the T-stable models of
Γ from the stable models of an extension of Γ.

Let diff be a fresh atom and let Γdiff be defined as

Γdiff = Γ ∪ { diff , □(¬diff → ⊥)} ∪
{□((p ∧ ◦¬p) ∨ (¬p ∧ ◦p) → ◦diff ) | p ∈ A}.

That is, diff must be derived at each position; it is a fact at
position 0, but at later positions can be derived iff adjacent
positions are different. In case A or Γ is finite, we can also
eliminate the auxiliary atom. Formally, we obtain:

Proposition 20 The T-stable models T of any theory Γ of
◦-free THT1 formulas correspond 1-1 to the stable models
T′ of Γdiff , where T ′

i = Ti ∪ {diff } for all i ∈ [0, λ).

From Theorem 6, We obtain that inference from the T-
stable models of Γ is captured by inference from the stable
models of Γdiff . Furthermore, by Corollary 1, for ◦-free
formulas, inference from the stable models is preserved:

Theorem 9 Let Γ be a ◦-free theory and φ be a formula
over A. Then the following conditions are equivalent:
(1) T |= φ for every / some T-stable model T of Γ;
(2) T |= φ for every / some stable model T of Γdiff ;
(3) T |= φ for every / some stable model T of Γ, if φ is

◦-free.

Since by Corollary 3 the T-stable models of ◦-free THT1

theories coincide with the c-stable models, we obtain for this
syntactic fragment an analogous result to Theorem 9 with
with c-stable models in place of T-stable models.

7 Related Work and Conclusion
As mentioned in the Introduction, other works such as (Schup-
pan and Biere 2005; Dodaro, Fionda, and Greco 2022) aim at
cost-based trace selection in LTL, using length or weighted
atoms. Our setting relies on a non-monotonic logic, and con-
traction may preserve patterns that are eliminated by cost
based selection, e.g. for Γ = {□(p ∨ ¬p)}.

Stutter-invariance of ◦-free formulas in LTL is widely
used, and our results generalize it to cTEL thanks to the
recoverage of LTL. Extensions to nesting of ◦ and patterns
in LTL have been studied, cf. (Kucera and Strejcek 2002),
which would be interesting to explore for cTEL as well.

In planning, some approaches render simplified plans, such
as CEGAR planning, (Seipp and Helmert 2013) or hierarchi-
cal planning, where macro-actions are composed of concrete
actions. However, both are different from summarization in
c-stable models: the former focuses on sets of states whereas
the latter has an I/O flavor, disregarding intermediate states.

Another related line is the HyperLTL extensions of LTL
using sets of traces for modeling concurrent processes. This
was recently enriched with control of moving/stuttering traces
(Baumeister et al. 2021) and lockstepwise traversal of sub-
traces removing “redundant” positions HyperLTL (Bozzelli,
Peron, and Sánchez 2021). While our contraction establishes
some asynchronous relationship between traces, it aims to
support non-monotonic inference rather than to control exe-
cution traces; possible connections remain for study.

9



Outlook Our core work can be continued in several directions.
Regarding logic and semantics, the connection to modal log-
ics may be further investigated, as well as logical properties
such as normal forms or equivalence in cTHT and cTEL.
Further characterizations of the c-stable models, in particular
in the presence of the next-operator, are an intriguing issue.

For computation, refining the complexity picture is sug-
gestive and will help in guiding the development of suitable
algorithms and implementations, especially for finite traces,
where existing solvers such as telingo may be used.

Finally, we also plan to explore the application of c-stable
models in the context of planning and explanation finding,
such as for constructing plans or counterexamples.
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Appendix. Proofs.
Contracted THT

Given a contractor from λ′ to λ, the following lemma shows
that if j is the last position in

[
0..λ′

)
then µ(j) is the last

position in
[
0..λ

)
.

Lemma 3 Let µ be a contractor from λ′ to λ. If j+1 = λ′

then µ(j)+1 = λ.

Proof. Let k = µ(j). Suppose j+1 = λ′ but k+1 < λ.
As µ is surjective, we should have some i ∈ µ−(k+1), i ∈[
0..λ′

)
=

[
0..j+1

)
. Thus, we conclude i < j+1, that is

i ≤ j and then k+1 = µ(i) ≤ µ(j) = k (by monotonicity),
reaching a contradiction. □

Similarly, the next lemma shows that if k is the last position
in

[
0..λ

)
and the preimage of k is a singleton {j}, then j is

the last position in
[
0..λ′

)
.

Lemma 4 Let µ be a contractor from λ′ to λ. If k+1 = λ
and µ−(k) = {j} then j+1 = λ′.

Proof. Suppose k+1 = λ but j+1 < λ′. Then, we can ap-
ply the contractor on j+1 to get µ(j+1) ∈

[
0..λ

)
=

[
0..k+1

)
and so µ(j+1) < k+1 that is µ(j+1) ≤ k. By monotonicity
µ(j+1) ≥ µ(j) = k so we conclude µ(j+1) = k which
contradicts µ−(k) = {j}. □ We next observe that
contractors can be composed.

Lemma 5 If µ is a contractor from λ to λ′ and µ′ is a con-
tractor from λ′ to λ′′ then ν = µ′ · µ is a contractor from λ
to λ′′.

Proof. Note first that ν :
[
0..λ

)
→

[
0..λ′′

)
since µ maps

from
[
0..λ

)
to

[
0..λ′

)
and this is mapped, in its turn, to[

0..λ′′
)

by µ′. We prove next that ν is surjective. Since µ′ is
surjective, for all i ∈

[
0..λ′′

)
we have µ′(j) = i for some j ∈[

0..λ′
)
, but as µ is surjective too, we must also have j = µ(k)

for some k ∈
[
0..λ

)
. But then i = µ′(j) = µ′(µ(k)) = ν(k).

Finally, we must prove ν(i) ≤ ν(i+ 1) ≤ ν(i) + 1 for all i
such that i+ 1 ∈

[
0..λ

)
. Since µ(i) ≤ µ(i+ 1) ≤ µ(i) + 1

we have two cases

1. If µ(i + 1) = µ(i), then ν(i + 1) = µ′(µ(i + 1)) =
µ′(µ(i)) = ν(i).

2. If µ(i+ 1) = µ(i) + 1, then let us call j = µ(i) so that:

ν(i+ 1) = µ′(µ(i+ 1)) = µ′(µ(i) + 1) = µ′(j + 1) (19)

Again, we have two cases: either µ′(j + 1) = µ′(j) or
µ′(j+1) = µ′(j)+1. If µ′(j+1) = µ′(j) then ν(i+1) =
µ′(j + 1) = µ′(j) = µ′(µ(i)) = ν(i). In the second case,
µ′(j + 1) = µ′(j) + 1 and then ν(i + 1) = µ′(j + 1) =
µ′(j) + 1 = µ′(µ(i)) + 1 = ν(i) + 1.

□
Proof of Proposition 2. We prove reflexivity and transitivity.

1. Reflexivity: to prove T ⪯ T we just take µ = id , so
by Proposition 1, the condition for T ↓id T amounts to
Ti ⊆ Ti that is tautological.

2. Transitivity: if H ⪯ T and T ⪯ T′ there exist contractors
µ and µ′ such that T ↓µ H and T′ ↓µ′

T, respectively.
We define the function ν = µ′ · µ that is, the consecutive
application of µ and µ′. We will prove that T′ ↓ν H. Let
λh = |H|, λt = |T| and λ′t = |T′|. By Lemma 5, ν is a
contractor from λ′t to λh. Then, we must proveHν(i) ⊆ T ′

i

for all i ∈
[
0..λ′t

)
. Take some i ∈

[
0..λ′t

)
. From T′ ↓µ′

T
we know that Tµ′(i) ⊆ T ′

i . Let j = µ′(i): from T ↓µ H
we also know Hµ(j) ⊆ Tj that is Hν(i) = Hµ(µ′(i)) ⊆
Tµ′(i) ⊆ T ′

i .

□

Proof of Proposition 3. Given Proposition 2, we remain to
prove that, for finite traces, the ⪯ relation is antisymmetric.
Let T, T′ be two finite traces such that T ⪯ T′ and T′ ⪯ T,
that is, there exist contractors µ and µ′ such that T ↓µ T′

and T′ ↓µ′
T. Since µ and µ′ are two surjective functions

mapping two finite sets back and forth, then they are also
injective, that is, both µ and µ′ are bijective. This also implies
both traces have the same length |T| = |T′| = λ. Now, since
µ is monotonic, this implies µ(0) ≤ µ(1) ≤ · · · ≤ µ(λ− 1)
and as µ is bijective, the only possibility is µ(i) = i for
all i ∈

[
0..λ

)
. Thus, µ = id and an analogous reasoning

applies to conclude µ′ = id. Finally, when µ = µ′ = id

the conditions T ↓µ T′ and T′ ↓µ′
T imply Ti ⊆ T ′

i and
T ′
i ⊆ Ti for all i ∈

[
0..λ

)
, that is T = T′. □

Proof of Theorem 1 (Persistence). We proceed by structural
induction.

• If φ = ⊥ or φ = ⊤ the result follows trivially

• If φ = p then M, k |= p amounts to p ∈ Hk. From
T ↓µ H, we have Hk ⊆ Tj for j ∈ µ−(k) so we conclude
p ∈ Tj for all those j and the latter is equivalent to T, j |=
p for j in that range.

• If φ = α ∨ β then M, k |= φ is equivalent to the dis-
junction of M, k |= α or M, k |= β. We can apply the
induction hypothesis on the subformulas to conclude ei-
ther (1) T, µ−(k) |= α or (2) T, µ−(k) |= β. But clearly,
any of the two cases imply T, µ−(k) |= α ∨ β.

• If φ = α ∧ β the proof is analogous to the previous step
φ = α ∨ β.

• If φ = α→ β and M, k |= α→ β we conclude both

– M, k ̸|= α or M, k |= β;
– T, µ−(k) |= α→ β;

and the second item is directly what we need to prove.

• If φ = ◦α then M, k |= φ implies |µ−(k)| = 1, k+1 < λ
and M, k+1 |= α. Let us call i to the only element in
µ−(k) = {i}. From k+1 < λ we conclude there is a
next state in T, and so, i+1 ∈ µ−(k+1). By induction
hypothesis on M, k+1 |= α we obtain T, µ−(k+1) |=
α and, in particular T, i+1 |= α. Finally, the latter is
equivalent to T, i |= ◦α and so T, µ−(k) |= α since i is
the only element in that set.

• If φ = α U β, then M, k |= α U β implies there exists
j ∈

[
k..λ

)
such that M, j |= β and M, i |= α for all
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i ∈
[
k..j

)
. We can apply the induction hypothesis on

M, j |= β to conclude T, µ−(j) |= β. Now, we consider
two cases: (i) j = k or (ii) j > k. For case (i), we may
simply note that T, µ−(j) |= β amounts to T, µ−(k) |= β
and so, T, µ−(k) |= αU β follows trivially, since in LTL,
any state satisfying β trivially satisfies α U β. For case
(ii), we have j > k. Let us define m = max(µ−(k)) and
n = min(µ−(j)). Then µ(n) = j and µ(m) = k so,
given j > k, we conclude µ(n) > µ(m) and, thus, n > m
by monotonicity of µ. Take now any x ∈ µ−(k). It is
easy to see that n > x since n > m = max(µ−(k)). On
the other hand, from T, µ−(j) |= β we conclude T, n |=
β. Now, as we know M, i |= α for all i ∈

[
k..j

)
, by

induction hypothesis, T, h |= α for all h ∈ µ−(i). Finally,
consider any point y ∈

[
x..n

)
. As n = min(µ−(j)) and

x ∈ µ−(k) and n > x there must exist some i ∈
[
k..j

)
satisfying µ(y) = i. But then, we had concluded T, h |= α
for h ∈ µ−(i) and so, in particular T, y |= α. To sum up,
we have some n > x such that T, n |= β and T, y |= α
for all y ∈

[
x..n

)
, that is, T, x |= α U β, given any

x ∈ µ−(k).

• If φ = α R β, then M, k |= α R β and we want to prove
T, µ−(k) |= α R β that is, for all x ∈ µ−(k) and all y ∈[
x..λt

)
such that T, y ̸|= β we must find some z ∈

[
x..y

)
such that T, z |= α. Let us call j = µ(y). By monotonic-
ity of µ, y ≥ x implies j = µ(y) ≥ µ(x) = k. By the
induction hypothesis, T, y ̸|= β implies M, µ(y) ̸|= β,
that is, M, j ̸|= β and j ∈

[
k..λ

)
. Since M, k |= α R β,

this implies there is some i ∈
[
k..j

]
such that M, i |= α.

By the induction hypothesis, T, µ−(i) |= α. By mono-
tonicity of µ all points in µ−(i) are greater or equal than
x ∈ µ−(k). Since µ−(i) is not empty, we can take any
z ∈ µ−(i). But then, x ≤ z < y and T, z |= α because
T, µ−(i) |= α. Thus, T, x |= α R β.

□

Proof of Proposition 5. The left to right direction follows
from Persistence (Theorem 1). For the right to left direction,
we proceed by contradiction. Suppose T, µ−(k) |= ¬φ and
M, k ̸|= ¬φ. The latter implies, as ¬φ is φ→ ⊥, that either
(i) M, k |= φ and M, k ̸|= ⊥; or (ii) T, i |= φ and T, i ̸|= ⊥
for some i ∈ µ−(k). In case (i), by Persistence T, µ−(k) |=
φ, hence T, j ̸|= ¬φ for every j ∈ µ−(k); as µ−(k) ̸= ∅,
this raises a contradiction. In case (ii), we similarly obtain
T, i ̸|= ¬φ, which contradicts T, µ−(k) |= ¬φ. □

Proof of Proposition 6. We prove both directions by contra-
position.

For the left to right direction, suppose ̸|= φ → ψ. This
means there is some M = ⟨H,T, µ⟩ and k ∈

[
0..|H|

)
for

which M, k ̸|= φ → ψ. Then, we have two cases: (a)
M, k |= φ and M, k ̸|= ψ; or (b) T, j |= φ and T, j ̸|= ψ
for some j ∈ µ−(k). But in both cases, we found a trace and
a point satisfying φ and falsifying ψ, something that implies
φ ̸|= ψ.

For the right to left direction, suppose φ ̸|= ψ. This means
there is a trace M = ⟨H,T, µ⟩ and some k ∈

[
0..|H|

)

for which M, k |= φ and M, k ̸|= ψ. But this implies
M, k ̸|= φ→ ψ. □

The following property can be easily observed by a simple
analysis of cTHT satisfaction conditions:

Proposition 21 M, k |= φ iff M[k], 0 |= φ.

Proof of Proposition 7. The left to right direction is trivial: if
φ ≡ ψ then M, k |= φ iff M, k |= ψ for any M = ⟨H,T, µ⟩
and k ∈

[
0..|H|

)
including the case k = 0.

For the right to left direction, we use contraposition. Sup-
pose φ ̸≡ ψ and, without loss of generality, assume that
φ ̸|= ψ. That is, M, k |= φ and M, k ̸|= ψ for some
M = ⟨H,T, µ⟩ and k ∈

[
0..|H|

)
. By Proposition 25, we

conclude M[k], 0 |= φ and M[k], 0 ̸|= ψ and so, we found a
trace M[k] that is a model of φ but not of ψ, i.e., the formulas
do not have the same models. □

Proof of Proposition 8. For the proof of ♢ we have the
equivalent conditions:

M, k |= ♢φ
⇔ M, k |= ⊤U φ
⇔ for some j ∈

[
k..λ

)
,M, j |= φ and M, i |= ⊤

for all i ∈
[
k..j

)
⇔ for some j ∈

[
k..λ

)
,M, j |= φ

The proof of □ is analogous:

M, k |= □φ
⇔ M, k |= ⊥ R φ
⇔ for all j ∈

[
k..λ

)
,M, j |= φ or M, i |= ⊥

for some i ∈
[
k..j

]
⇔ for all j ∈

[
k..λ

)
,M, j |= φ

The proof for F proceeds as follows. Let λt = |T|.

M, k |= F
⇔ M, k |= ¬◦⊤
⇔ T, µ−(k) |= ¬◦⊤ by Prop. 5
⇔ T, j ̸|= ◦⊤for all j ∈ µ−(k)
⇔ ⟨T,T, id⟩, j ̸|= ◦⊤for all j ∈ µ−(k)
⇔ not ( |id−(j)| = 1︸ ︷︷ ︸

true

and j+1 < λt

and M, j+1 |= ⊤︸ ︷︷ ︸
true

)

for all j ∈ µ−(k)
⇔ not (j+1 < λt) for all j ∈ µ−(k)
⇔ j+1 = λt for all j ∈ µ−(k)

Now, note that the above condition states that j is the last
position of T and this cannot be satisfied by more than one
point j ∈ µ−(k), so the latter is a singleton µ−(k) = {j},
namely:

⇔ j+1 = λt and µ−(k) = {j}
⇔ j+1 = λt and µ−(k) = {j} By Lemma 3

and k+1 = λ and µ(k) = j
⇔ µ−(k) = {j} and k+1 = λ By Lemma 4
⇔ |µ−(k)| = 1 and k+1 = λ
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Finally, the proof for ◦̂ follows from the equivalences

M, k |= ◦̂φ
⇔ M, k |= ◦φ ∨ F
⇔ (|µ−(k)| = 1 and k+1 < λ and M, k+1 |= φ)

or (|µ−(k)| = 1 and k+1 = λ)
⇔ |µ−(k)| = 1 and

((k+1 < λ and M, k+1 |= φ) or k+1 = λ)
⇔ |µ−(k)| = 1 and

(k+1 < λ or k+1 = λ)︸ ︷︷ ︸
true

and (M, k+1 |= φ or k+1 = λ)
⇔ |µ−(k)| = 1 and (k+1 = λ or M, k+1 |= φ)

□

Proof of Proposition 9. By definition of F, M, k |= ¬F
amounts to M, k |= ¬¬◦⊤. According to Proposition 5,
this is equivalent to: T, j |= ¬¬◦⊤ in LTL, for all j ∈
µ−(k). But this means T, j |= ◦⊤, for all j ∈ µ−(k). The
latter is trivially true for all elements j ∈ µ−(k) except the
maximum. Finally, if j = max(µ−(k)), T, j |= ◦⊤ is
equivalent to requiring that j is not the last position in T, that
is, j + 1 < |T|. □ □

Lemma 6 Let φ be a →-free and ◦-free formula and
let ⟨H,T, µ⟩ and ⟨H,T′, µ′⟩ be two HT-traces. Then,
⟨H,T, µ⟩, k |= φ iff ⟨H,T′, µ′⟩, k |= φ.
Proof. It is easy to see that, if the formula contains no im-
plication or ◦ (or their derived operators), the satisfaction
relation becomes independent of the T component or the
contractor µ, so we may equivalently use any (well-formed)
arbitrary T′ and µ′ without affecting satisfaction. □

By Lemma 6, if ⟨H,T, µ⟩, k |= φ then ⟨H,H, id⟩ |= φ.
Moreover, also By Lemma 6, the opposite holds too, and
thus:
Corollary 4 Let φ be a →-free and ◦-free formula and let
⟨H,T, µ⟩ be an HT-trace. Then, ⟨H,T, µ⟩, k |= φ iff
H, k |= φ.

Proof of Proposition 10. The left to right direction fol-
lows directly from the fact cTHT ⊆ LTL (Corollary 1).
For the right to left direction, suppose φ ↔ ψ is an LTL-
tautology. Assume, for the sake of contradiction, that there
exists M = ⟨H,T, µ⟩ such that M, i ̸|= φ↔ ψ. Then, note
that T, µ−(i) |= φ ↔ ψ since we assumed this formula to
be an LTL-tautology. As a result, the only possibilities are:
either M, i |= φ and M, i ̸|= ψ; or M, i |= ψ and M, i ̸|= φ.
Take the first case (the second is analogous): by Corollary 4,
the condition amounts to H, i |= φ and H, i ̸|= ψ. But then,
̸|= φ → ψ in LTL, and thus ̸|= φ ↔ ψ either, reaching a
contradiction. □

Temporal Equilibrium Models

Proof of Theorem 2. Since THT models are also contracted
ones with µ = id , if T is an contracted temporal stable
model, there is no smaller H ≺ T forming a THT model,
and so, there is no integral smaller H either, T is also tempo-
ral stable model under the traditional or standard definition
using integral pairs of traces. □

◦-free formulas
Proof of Lemma 1. Let T (resp. H) be a stuttering of T′

(resp. H′), then the 1. point is a well-known result of LTL
that can be proved on the structural complexity of φ.

Point 2. can be reduce to 1. using the star-transformation
for THT formulas (Aguado et al. 2008) here recalled:
• (⊥)∗ = ⊥ and (p)∗ = p′, where p′ is a fresh atom;
• (φ1 · φ2)

∗ = (φ1)
∗ · (φ2)

∗ for · ∈ {∨,∧,U,R};
• (· φ)∗ = · (φ)∗ for · ∈ {□,♢}, and
• (φ1 → φ2)

∗ = (φ∗
1 → φ∗

2) ∧ (φ1 → φ2).
From Theorem 1 in (Aguado et al. 2008), we know that
⟨H,T⟩ |= φ iff T′ |=LTL φ∗ ∧ □(

∧
p∈A p

′ → p), where
p ∈ T′

i iff p ∈ Ti and p′ ∈ T′
i iff p ∈ Hi for each p ∈ A

and i ≥ 0.
□

Proof of Proposition 11. The proof is by structural induction.
Let M = ⟨T′,T, µ⟩.

The cases 1-4 in Definition 7 are immediately verified; in
particular case 2 (φ is an atom p) is by the construction of H
from T′.

In case 5, φ is of the form φ1 → φ2, and we have

• M, k |= φ iff


1a : M, k ̸|= φ1 or M, k |= φ2

1b : ⟨T,T, id⟩, j ̸|= φ1 or
⟨T,T, id⟩, j |= φ2 for all j ∈ µ−1(k)

• ⟨H,T⟩, i |= φ iff{
2a : ⟨H,T⟩, i ̸|= φ1 or ⟨H,T⟩, i |= φ2

2b : ⟨T,T⟩, i ̸|= φ1 or ⟨T,T⟩, i |= φ2

By the induction hypothesis, conditions 1a and 2a are equiv-
alent. Furthermore, also conditions 1b and 2b are equivalent,
as by Proposition 4 for any j and formula ψ, ⟨T,T⟩, j |= ψ
iff ⟨T,T, id⟩, j |= ψ, and we can apply the induction hy-
pothesis for ψ ∈ {φ1, φ2} and obtain that ⟨T,T⟩, i |= ψ iff
⟨T,T⟩, j |= ψ, for all j ∈ µ−(k).

Case 6 does not apply, as φ is ◦-free.
In case 7, i.e., φ = φ1 U φ2, M, k |= φ iff for some

j ∈
[
k..λ

)
, we have M, j |= φ2 and M, j′ |= φ1 for all

j′ ∈
[
k..j

)
.

By the induction hypothesis, we have for each j′ ∈
[
k..j

)
that (a) M, j′ |= φ1 iff ⟨H,T⟩, i |= φ1 for some (equiva-
lently, every) i ∈ µ−(j′), and (b) M, j |= φ2 iff ⟨H,T⟩, i |=
φ2 for some (equivalently, every) i ∈ µ−(j).

Suppose M, k |= φ. If j = k, we must have ⟨H,T⟩, i |=
φ2 and thus ⟨H,T⟩, i |= φ; if j > k, then ⟨H,T⟩, i′ |=
φ1 for all i′ ∈ [i, i′′) and ⟨H,T⟩, i′′ |= φ2, where i′′ =
min(µ−(j)), thus again ⟨H,T⟩, i |= φ. Conversely, suppose
⟨H,T⟩, i |= φ. If ⟨H,T⟩, i |= φ2, then we can set j = k
and obtain by (b) that M, k |= φ. Otherwise, we set j > k,
where j = µ(i′) and i′ ≥ i is the least number such that
⟨H,T⟩, i′ |= φ2; then M, j′ |= φ1 holds by (a) for each
j′ ∈

[
k..j

)
and M, j |= φ2 holds by (b), thus M, k |= φ.

Case 8, i.e., φ = φ1 R φ2, is similar to the previous
case, where we may consider the equivalent definition that
M, k |= φ iff either M, j |= φ2 for all j ∈

[
k..λ

)
or for

some j ∈
[
k..λ

)
, we have M, j |= φ1 and M, j′ |= φ2 for

all j′ ∈
[
k..j

]
.
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□
Proof of Proposition 12. Let T be an c-stable model of Γ.
Towards a contradiction, suppose T is a proper stuttering of
some trace T′, i.e., T ̸= T′ and T ↓µ T′ for some µ such
that Ti = T ′

µ(i) for each i ∈
[
0..λ

)
. By Proposition 11, we

obtain for H = T that ⟨T′,T, µ⟩, 0 |= φ iff ⟨T,T⟩, 0 |= φ
for every formula φ ∈ Γ, thus ⟨T′,T, µ⟩ |= Γ iff ⟨T,T⟩ |=
Γ. As T is c-stable, by Theorem 2 it is an stable model of Γ,
and thus ⟨T,T⟩ |= Γ holds. Consequently ⟨T′,T, µ⟩ |= Γ,
which means that T is not c-stable, which is the desired
contradiction. □

Proof of Proposition 13. We show this result by structural
induction, where we take into account that for positive for-
mulas, the stronger condition of Proposition 11 holds, i.e.,

(*) for every k ∈ [0, λ′) and i ∈ µ−(k), ⟨T′,T, µ⟩, k |= φ iff
⟨H,T⟩, i |= φ.

This can be easily shown along the lines of the proof of
Proposition 11; informally, for positive φ the T trace is
irrelevant.

The cases 1 and 2 in Definition 7 are thus covered, as there
φ is positive.

In case 3, φ = φ1 ∧ φ2 and M |= φ implies M |=
φ1 and M |= φ2. By the induction hypothesis, M |= φj
implies ⟨H,T⟩, i |= φj for every i ∈ µ−(k) and j ∈ {1, 2};
consequently, ⟨H,T⟩, i |= φ1 ∧ φ2, i.e., ⟨H,T⟩, i |= φ, for
every i ∈ µ−(k).

In case 4, φ = φ1∨φ2 and M |= φ implies either M |= φ1

or M |= φ2. By the induction hypothesis, M |= φj implies
⟨H,T⟩, i |= φj for every i ∈ µ−(k) and j ∈ {1, 2}. By
weakening φj to φ = φ1 ∨φ2, it follows that ⟨H,T⟩, i |= φ
for every i ∈ µ−(k).

In case 5, φ = φ1 → φ2, and as φ is from THT1, φ1 and
φ2 are positive. We recall from the proof of Proposition 11
the conditions of satisfactions:

• M, k |= φ iff


1a : M, k ̸|= φ1 or M, k |= φ2

1b : ⟨T,T, id⟩, j ̸|= φ1 or
⟨T,T, id⟩, j |= φ2 for all j ∈ µ−1(k)

• ⟨H,T⟩, i |= φ iff{
2a : ⟨H,T⟩, i ̸|= φ1 or ⟨H,T⟩, i |= φ2

2b : ⟨T,T⟩, i ̸|= φ1 or ⟨T,T⟩, i |= φ2

By the stronger property (*) for φ1 and φ2, the conditions
1a and 2a are equivalent. Furthermore, clearly condition 1b
implies condition 2b; hence M |= φ implies ⟨H,T⟩, i |= φ
for all i ∈ µ−(k).

Case 6 does not apply, as φ is ◦-free.
In case 7, i.e., φ = φ1 U φ2, M, k |= φ implies that for

some j ∈
[
k..λ

)
, we have M, j |= φ2 and M, j′ |= φ1 for

all j′ ∈
[
k..j

)
. By the induction hypothesis, we have for

each j′ ∈
[
k..j

)
that ⟨H,T⟩, i |= φ1 for every i ∈ µ−(j′)

and ⟨H,T⟩, i |= φ2 for every i ∈ µ−(j). If j = k, we
have ⟨H,T⟩, i |= φ2 and thus ⟨H,T⟩, i |= φ, for every
i ∈ µ−(k). If j > k, then ⟨H,T⟩, i′ |= φ1 for all i′ ∈ [i, i′′)
and ⟨H,T⟩, i′′ |= φ2, where i′′ = min(µ−(j)), thus again
⟨H,T⟩, i |= φ for every i ∈ µ−(k).

Case 8, i.e., φ = φ1 R φ2, is again similar to the previous
case, using that M, k |= φ iff either M, j |= φ2 for all
j ∈

[
k..λ

)
or for some j ∈

[
k..λ

)
, we have M, j |= φ1 and

M, j′ |= φ2 for all j′ ∈
[
k..j

)
.

□
Proof of Proposition 14. Assume T is an stable model of
Γ and not a stuttering of any sequence T′ ̸= T. Towards a
contradiction, suppose T is not c-stable. Then some T′ ̸= T
and µ exist such that T ↓µ T′ and ⟨T′,T, µ⟩ |= Γ. Let H
be the stuttering of T′ induced by µ, i.e., such that H ↓µ T′.
Then by Proposition 13, ⟨H,T⟩ |= Γ. As T ↓id H, we
must have H = T; otherwise, T would not be stable. This,
however, implies that T ′

j = Ti for each j ∈ [0, λ′) and
i ∈ µ−(j). As T ̸= T′. this means that T is a stuttering of
T′, which is in contradiction to the assertion. □

Proof of Theorem 3. It remains to argue about items (ii)
and (iii) of the statement. As for (ii), suppose T is an stable
model of Γ; then we have ⟨T,T⟩ |= Γ. Let us contract T
to the sequence T′ by mapping each maximal segment of
identical elements to the first element, i.e., µ(0) = 0 and
T ′
0 = T0, and for each i ∈

[
1..λ

)
,

µ(i+ 1) =


µ(i) if Ti+1 = Ti, and
µ(i+ 1) = µ(i) + 1 otherwise, with

T ′
µ(i)+1 = Ti+1.

Then we obtain from Proposition 11 that ⟨T′,T, µ⟩ |= Γ (T
itself is the stuttering H of T′ there, i.e. H = T).

Let us assume towards a contradiction that T′ is not stable,
namely that there exists H′ such that ⟨H′,T′⟩ |= Γ, and
H′ ⊂ T′. By Lemma 1, we can stretch T′ into T and
similarly H′ into H, so that we obtain ⟨H,T⟩ |= Γ; this
contradicts the hypothesis that T was stable. Hence, (ii)
holds. Item (iii) then holds since by construction T′ is stutter-
free. □

GP-formulas

For our purposes, the following lemmas are useful.

Lemma 7 Suppose φ is a positive formula. Then for every
M = ⟨H,T⟩ and every k ∈

[
0..λ

)
, it holds that M, k |= φ

iff H, k |= φ iff H, k |= φ and T, k |= φ.

Proof. (Sketch) The proof is by structural induction on
φ, using the fact that T plays no role for the evaluation of a
positive formula φ, and using Persistence. □

Lemma 8 For every M = ⟨H,T⟩ and k ∈
[
0..λ

)
, (1) if φ

is from THT1 then M, k |= φ implies H, k |= φ, and (2) if
φ is from GP, then M, k |= φ iff H, k |= φ and T, k |= φ.

Proof. The proof is by structural induction. We first show
(1).

The cases 1 (φ = ⊥,⊤), 2 (φ = p) and 3 (φ = φ1 ∧ φ2,
using the induction hypothesis) in Definition 7 are immediate.
In case 4, if M, k |= φ1 ∨ φ2 then w.l.o.g. φ1 ̸= ⊥ (else
the result follows immediately by the induction hypothesis
for φ2) and M, k |= φ1. H, k |= φ1 holds by the induction
hypothesis. Thus H, k |= φ1 ∨ φ2.
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In case 5, φ is of the form φ1 → φ2, where φ1 and φ2

are positive. We show the claim by contraposition. Suppose
that H, k ̸|= φ, i.e., H, k |= φ1 and H, k ̸|= φ2. As φ1 and
φ2 are positive, by Lemma 7 M, k |= φ1 and M, k ̸|= φ2;
hence M, k ̸|= φ.

In case 6, M, k |= ◦φ iff M, k+1 |= φ and k+1 <
λ; thus by the induction hypothesis, M, k |= ◦φ implies
H, k+1 |= φ which is equivalent to H, k |= ◦φ.

In case 7, φ = φ1 U φ2 and M, k |= φ iff for some
j ∈

[
k..λ

)
, we have M, j |= φ2 and M, j′ |= φ1 for all

j′ ∈
[
k..j

)
. By the induction hypothesis, it follows that

H, j |= φ2 and H, j′ |= φ2 for each j′ ∈
[
k..j

)
; hence,

H, k |= φ.
Case 8, i.e., φ = φ1 R φ2, is similar to the previous

case, where we may consider the equivalent definition that
M, k |= φ iff either M, j |= φ2 for all j ∈

[
k..λ

)
or for

some j ∈
[
k..λ

)
, we have M, j |= φ1 and M, j′ |= φ2 for

all j′ ∈
[
k..j

)
.

This concludes the proof of (1). For (2), it remains to
prove the if-direction for GP-formulas, i.e., that for every
M = ⟨H,T⟩ and k it holds that H, k |= φ and T, k |= φ
implies M, k |= φ. We again proceed by structural induction.

As above the cases 1 (φ = ⊥,⊤), 2 (φ = p) and 3 (φ =
φ1 ∧ φ2, using the induction hypothesis) are immediate.

In case 4, consider H, k |= φ1∨φ2. Then w.l.o.g. H, k |=
φ1; as φ1 must be positive, by Lemma 7 M, k |= φ1, thus
by weakening also M, k |= φ1 ∨ φ2.

In case 5, we argue by contraposition. If M, k ̸|= φ, then
either (a) M, k |= φ1 and M, k ̸|= φ2 or (b) T, k |= φ1 and
T, k ̸|= φ2, i.e., T, k ̸|= φ. It remains to consider (a), where
we can assume T, k |= φ. As φ1 is positive, it follows by
Lemma 7 from M, k |= φ1 that H, k |= φ1 and T, k |= φ1,
which implies T, k |= φ2 as T, k |= φ. Since M, k ̸|= φ2

and φ2 is positive, it follows by Lemma 7 that H, k ̸|= φ2.
Hence, H, k ̸|= φ.

In case 6, M, k |= ◦φ iff M, k+1 |= φ and k+1 < λ.
If H, k |= ◦φ and T, k |= ◦φ, then H, k+1 |= φ and
T, k+1 |= φ, and by the induction hypothesis hypothesis
M, k+1 |= φ, which implies hypothesis M, k |= ◦φ.

In case 7, suppose H, k |= φ, and T, k |= φ. Then some
j ∈

[
k..λ

)
exists such that H, j |= φ2 and H, j′ |= φ1 for all

j′ ∈
[
k..j

)
. If φ1 = ⊥, then j = k and φ is equivalent to φ2,

and the result follows from the induction hypothesis. Other-
wise, φ1 and φ2 are positive, and by Lemma 7 T, j |= φ2 and
T, j′ |= φ1; hence by the induction hypothesis M, j |= φ2

and M, j′ |= φ1 for all j′ ∈
[
k..j

)
, thus M, k |= φ.

The case 8, i.e., φ = φ1 R φ2, is similar to case 7, using
that M, k |= φ iff either M, j |= φ2 for all j ∈

[
k..λ

)
or for

some j ∈
[
k..λ

)
, we have M, j |= φ1 and M, j′ |= φ2 for

all j′ ∈
[
k..j

)
.

□
Note that item (2) of Lemma 8 would not hold for ¬p ∨ p

nor for ¬p → p or ♢(p → q); the latter is witnessed by
T = {p}·{p, q} and H = ∅·{p}, as both T and H are
models of ♢(p → q) while ⟨H,T⟩ is not a model. Item (1)
was reported for infinite HT-traces in (Bozzelli and Pearce
2015).

Lemma 8 can be generalized for ◦-free formulas to con-
tracted HT-traces.

Proposition 22 For every HT-trace M = ⟨T′,T, µ⟩, ◦-
free formula φ, and k ∈

[
0..λ′

)
, (1) if φ is from THT1, then

M, k |= φ implies T′, k |= φ, and (2) if φ is from GP, then
M, k |= φ iff T′, k |= φ and T, µ−(k) |= φ.

Proof. Item (1) follows from Proposition 13 and Lemma 8,
as for the stuttering H of T′ such that H ↓µ T′ we have
⟨H,T⟩, i |= φ for every i ∈ µ−(k) and by Lemma 8 that
H, i |= φ; by Lemma 1, it follows that T′, k |= φ.

As for (2) the only-if directions follows from (1) and Per-
sistence (Theorem 1). The if-direction is shown by structural
induction, where we use for positive formulas φ the weaker
condition T′, k |= φ.

The cases 1 (φ = ⊥,⊤), 2 (φ = p) and 3 (φ = φ1 ∧ φ2,
using the induction hypothesis) in Definition 7 are immediate.

In case 4, consider T′, k |= φ1 ∨ φ2. Then w.l.o.g.
T′, k |= φ1; as φ1 must be positive, by the induction hypoth-
esis M, k |= φ1, thus by weakening also M, k |= φ1 ∨ φ2.

In case 5, we argue by contraposition. If M, k ̸|= φ, then
either (a) M, k |= φ1 and M, k ̸|= φ2 or (b) T, µ−(k) |= φ1

and T, µ−(k) ̸|= φ2, i.e., T, µ−(k) ̸|= φ. It remains to
consider (a), where we can assume T, µ−(k) |= φ. As
φ1 is positive, it follows by Lemma 7 from M, k |= φ1 that
T′, k |= φ1 and T, µ−(k) |= φ1, which implies T, µ−(k) |=
φ2 as T, µ−(k) |= φ. Since M, k ̸|= φ2 and φ2 is positive,
it follows by Lemma 7 that T′, k ̸|= φ2. Hence, T′, k ̸|= φ.

In case 7, suppose T′, k |= φ, and T, µ−(k) |= φ. Then
some j ∈

[
k..λ′

)
exists such that T′, j |= φ2 and T′, j′ |=

φ1 for all j′ ∈
[
k..j

)
. If φ1 = ⊥, then j = k and φ is

equivalent to φ2, and the result follows from the induction
hypothesis. Otherwise, φ1 and φ2 are positive, and by the
induction hypothesis M, j |= φ2 and M, j′ |= φ1 for all
j′ ∈

[
k..j

)
, thus M, k |= φ.

In case 8, φ = φ1Rφ2. We use that M, k |= φ iff either (a)
M, j |= φ2 for all j ∈

[
k..λ′

)
or (b) for some j ∈

[
k..λ′

)
,

we have M, j |= φ1 and M, j′ |= φ2 for all j′ ∈
[
k..j

]
.

Assume T′, k |= φ and T, µ−(k) |= φ.
If φ1 = ⊥, then T′, j |= φ2 and T, µ−(j) |= φ2 for

all j ∈
[
k..λ′

)
. Thus by the induction hypothesis, M, j |=

φ2 for all j ∈
[
k..λ′

)
, which by (a) implies M, k |= φ.

Otherwise, φ1 ̸= ⊥. As T′, k |= φ, either (a′) T′, j |= φ2

for all j ∈
[
k..λ′

)
or (b′) for some j ∈

[
k..λ′

)
, we have

T′, j |= φ1 and T′, j′ |= φ2 for all j′ ∈
[
k..j

]
. Since both

φ1 and φ2 are positive, using the induction hypothesis (a′)
implies (a) and (b′) implies (b); hence, M, k |= φ.

□
The relation between ⊆-minimal models and stable models

of THT1 resp. GP theories is then as follows.

Corollary 5 For any theory Γ of THT1 (resp., GP) formu-
las, T is an stable model of Γ if (resp., if and only if) T is a
⊆-minimal model of Γ.

Proof of Theorem 4. The equivalence of (1) and (2) follows
from Theorem 3 and Corollary 5. That (3) implies (1) is
shown using Proposition 22. Let T be a model of Γ and
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assume that no model T′ of Γ such that T′ ≺ T exists.
Towards a contradiction, assume that T is not c-stable. The
latter implies that some M = ⟨T′,T, µ⟩ exists such that
T′ ̸= T and M |= Γ, which by Proposition 22 is equivalent
to T′, 0 |= Γ and T, µ−(0) |= Γ. As T′ ̸= T implies T′ ≺
T, this is a contradiction. Finally, we show that (2) implies
(3). Assume that T is a minimal model of Γ that is stutter-
free. Towards a contradiction, assume that T′ |= Γ for some
T′ ≺ T, i.e., T ↓µ T′ for some µ. Let H be the stuttering of
T′ such that H ↓µ T′. Then H |= Γ (cf. Pumping Lemma 1),
and by Lemma 8, it follows that ⟨H,T⟩ |= Γ. By minimality
of T, it follows that H = T; thus the only way in which we
may still have T′ ≺ H = T is if H = T is not stutter-free,
which again is a contradiction. □

Proof of Proposition 15. As for (1), by Corollary 5, T is
an stable model of Γ if T is a ⊆-minimal model of Γ, which
then by Theorem 3 is c-stable if T is stutter-free. As for
(2), suppose T |= Γ and no model T′ ≺ T of Γ exists. If
T would not be c-stable, then ⟨T′,T, µ⟩ |= Γ for some T′

and µ such that T′ ̸= T, thus T′ ≺ T. By Proposition 22,
T′ |= Γ which is a contradiction. □

Taming summarization
Proof of Proposition 17. It is an immediate result since given
a T LTL model of Γ, the admissible defeaters ⟨H,T, µ⟩ of
Defn. 12 are a subset of the admissible defeaters of Defn. 9.
□
Proof of Theorem 6. Given a ◦-free theory Γ, let we know
that T-stable models of Γ are stutter-free. This can be shown
as in Proposition 12 by replacing c-stability with T-stability
in the proof.

We need to show that stutter-free stable traces are T-
stable. If T is a stutter-free stable trace of Γ but not T-
stable, then by Proposition 11 there exists a T-stuttering
model M = ⟨T′,T, µ⟩ of Γ such that for all i ̸= j ∈ µ−(k)
Ti = Tj and T ̸= T′. However, one of our hypothesis was
the stutter-freeness of T, therefore the only candidates to
be T-stuttering model can be contracted via id . However,
if we have ⟨T′,T, id⟩ and T′ ̸= T there must be an index
i ∈ [0, λ) such that T ′

i ̸= Ti which would contradict the
hypothesis of T being a stable model of Γ.

The second part of Theorem 6 can be proved following the
same argument of the second part of Theorem 3. □
Proof of Theorem 5. Given a theory Γ, we want to show
that the c-stable models of Γ ∪□(WEM) coincide with the
T-stable models of Γ.

We first notice that □(WEM) is a tautology for T-stable
models. In fact, given a T-stutter interpretation M =
⟨T′,T, µ⟩, □(¬p∨¬¬p) requires that for each i, j ∈ µ−(k)
either p ∈ Ti ∪ Tj or that p ̸∈ Ti ∩ Tj .

By Proposition 17 we know that if T is a c-stable of Γ ∪
□(WEM) then T is also a T-stable model of Γ∪□(WEM).
However, thanks to the previous observation □(WEM) is a
tautology for T-stutter models, therefore we get that T is a
T-stable model of Γ.

For the other direction, let us assume that T is a T-stable
model of Γ, then it is also a T-stable model of Γ∪□(WEM).
Again, thanks to the previous observation, □(WEM) forces

cTHT interpretations to be T-stutter interpretations, therefore
candidates in Defn. 9 can be restricted to T-stutter interpreta-
tions, and the definition collapses to Defn. 12. □

Proof of Proposition 16. It is immediate to see that a T-
stuttering ◦-free tautology is also a THT tautology.

Let us consider a ◦-free THT tautology φ and let us con-
sider for the sake of contradiction that there exists a well
formed T-stutter interpretation M = ⟨T′,T, µ⟩ such that
M ̸|= φ. Then by Proposition 11 we know that if M is a T-
stuttering, then we have M, µ(k) |= φ iff ⟨H,T⟩ |= φ with
H stuttering of T′ via µ. Which means that φ is not a THT
tautology. Therefore, we reached the desired conclusion. □

Computational Complexity

Lemma 9 TEL satisfiability for GP1
2(□,♢) formulas for

infinite traces is EXPSPACE-hard.
Proof. In order to prove the theorem, we exploit and adapt
the technique used in (Bozzelli and Pearce 2016) showing
that THT1

2(♢,□) is EXPSPACE-complete.
We cannot directly apply their reduction since they use a

disjunction of implications, which is not allowed as a GP
formula. However, we can exploit a similar schema.

We use a a polynomial reduction from an EXPSPACE-
complete version of the tiling problem (van Emde Boas
2019).

Let I be an instance such that I =
{C,∆, n, dinit, dfinal}, where C is a finite set of colors,
∆ ⊆ C4 is the set of domino types, n > 0 is a natural number
written in unary, and dinit, dfinal ∈ ∆ are domino types,
and |∆| = m. We denote by left : ∆ → C (respectively,
right, up, down) the color of the left edge of the domino
type. A tiling is a mapping f : [0, k]× [0, 2n − 1] → ∆ for
some k ≥ 0 such that:
• for all (i, j), (i, j+1) ∈ [0, k]×[0, 2n−1] with j < 2n−1,
right(f(i, j)) = left(f(i, j + 1)),

• for all (i, j), (i + 1, j) ∈ [0, k] × [0, 2n − 1] with i < k,
up(f(i, j)) = down(f(i+ 1, j)),

• f(0, 0) = dinit,
• f(k, 2n − 1) = dfinal.

The set of atomic proposition A is defined as follows:

A = Amain ∪ Atag ∪ {u, s}
where f(m,n) = 7 + 13 + 7m2 + wn2 + n3

• Amain = ∆ ∪ {$} ∪ Anum

• Anum = [1, n]× {0, 1}
• Atag = {t̄, t̄1, . . . , t̄f(m,n), t1, . . . , t43+20n2+11m2+40n+4n3}

The main atoms in Amain are used to encode cells. A cells
with content d ∈ ∆ and column number j ∈ [0, 2n − 1] is
encoded by finite words in

cellj := (1, b1)
+(2, b2)

+ . . . (2n − 1, b2n−1)
+(d)+

where b1, . . . , bn is the binary encoding of the column num-
ber j. Given the representation of a j-th cell, we can intro-
duce how we encode the i-th row:

rowi := {$}+ cell0 cell1 . . . cell2n−1
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A tiling f is encoded by finite words w over Amain where w
corresponds to a sequence of row encodings separated one
from each other by {$}+.

w := {$}+ row0 . . . {$}+ rowk
The extra symbols in Atag and {u, s} have some special use
to check if the prefix of the trace (projected over Amain)
contains a prefix that encodes a tiling. Intuitively, elements
in Atag are used to mark segments of the trace that should
contain specific sets of atoms in Amain, while u is used to
simulate ASP-negative constraints such as ¬φ→ ⊥, while s
is used to simulate positive constraints such as φ→ ⊥.

We recall a revisited definition of the pseudo-tiling as
defined in (Bozzelli and Pearce 2016) for the THT1

2(□,♢)
fragment. An interpretation ⟨H,T⟩ over A is a pseudo-tiling
if:

(I) for each i ≥ 0 such that |Amain ∩Hi| ≥ 1,
(II) $ ∈ H0,

(III) there is i ≥ 0 such that dfinal ∈ Hi,
(IV) 1. either for all i ≥ 0 u ∈ Ti and Ti ∩Atag = Atag , or

2. u ̸∈ T0 and for all i ≥ 0 t̄ ̸∈ Ti and |Ti ∩ Atag| ≥ 1,
(V) if u ̸∈ H0, then |Hi ∩ Atag| ≥ 1 and t̄ ̸∈ Hi for all

i ≥ 0,
(VI) if there exists an i ≥ 0 such that |Amain ∩ Hi| > 1,

then we force infinitely many s in H,
(VII) there must be infinitely many u in H and, finally

(VIII) t̄ ∈ Hi iff t̄j ∈ Hij for each j ∈ {1, . . . , f(m,n)} for
some ij .

Furthermore, if a pseudo-tiling satisfies u ∈ T0, then it is
called good. The main difference with respect to the original
definition is the use of s as a constraint since whenever we
have more the one main atom in a state, we must satisfy
infinitely many s, but we can always remove some of them
and still have infinitely many s in the trace.

We can make the following observation:
Observation 1 (Not good traces) Let T be a total pseudo-
tiling code for GP2(□,♢) which is not good. Then, u ̸∈ T0
in T, and there exists H such that H < T, ⟨H,T⟩ is a
pseudo-tiling code, which coincides with T on A \ {u, t̄},
but where some u and all the t̄ have been removed.

We can construct in polynomial time an GP2(♢,□) for-
mula φpseudo such that ⟨H,T⟩ ⊨ φpseudo iff ⟨H,T⟩ is a
pseudo-tiling code for GP2(♢,□).

□(♢u)︸ ︷︷ ︸
(VII)

∧ {$}︸︷︷︸
(II)

∧ {♢dfinal}︸ ︷︷ ︸
(III)

∧□(
∨

p∈Amain

p)︸ ︷︷ ︸
(I)

(IV),(V),(VI)


□(

∨
p∈Atag\{t̄,t̄0,...,t̄8}

p) ∧

(
∨

p∈Amain

♢(p ∧
∧

p′∈Amain\{p}
p′)) → □♢s ∧

[u ∨ ♢(t̄)] → □(u ∧
∧

p∈Atag

p)

♢t̄↔ (♢t̄1 ∧ ♢t̄f(m,n))︸ ︷︷ ︸
(VIII)

We introduce a template that allows us to derive infinitely
many s when we recognize incorrect patterns in the pseudo-
tiling. Let ti1 , . . . , tik ∈ Atag, and ∅ ⊂ A1, . . . ,Ak ⊆
Amain. Then, one can construct in polynomial time a
GP2(♢,□) formula θ(i1 | P1, . . . , ik | Pk) over P \ {u, s}
s.t. for all good pseudo-tiling codes ⟨H,T⟩ for GP2(♢,□)
with u ̸∈ H0,

⟨H,T⟩ |= θl(i1 | P1, . . . , ik | Pk) iff

the projection of H over Atag is in {t+i1} . . . {t
+
it−1

}{tωit},
for all 1 ≤ j ≤ k, all the main propositions which label the
segment of H marked by tij are in Pj , and there are infinitely
many s in H.

For a good pseudo tiling code ⟨H,T⟩ with u ̸∈ H0, Ti ∩
Atag = Atag and t̄ ̸∈ Hi for all i ≥ 0. Hence, ⟨H,T⟩ ̸|= ♢t̄.
θl(i1 | P1, . . . , ik | Pk) can be formulated as

□♢s are derived (
∧

j∈[1,...,k]

♢tij ) → □♢s

p ̸∈ Pj for ij (
∨

j∈[1,...,k]

∨
p∈A\Pj

♢(tij ∧ p)) → ♢t̄l

incorrect ij order (
∨

r,r′∈[1,...,k]:r<r′

♢(tir′ ∧ ♢(tir ))) → ♢t̄l

One can construct in polynomial time a GP2(□,♢) for-
mula φunstab over A \ {u} such that for all total interpreta-
tions T which are good pseudo-tiling codes for GP2(□,♢),
there exists a good pseudo-tiling code for GP2(□,♢) of the
form ⟨H,T⟩ with H ̸= T and satisfying φunstab iff there is
no prefix of T whose projection over Amain encodes a tiling.
We list out some properties that we want to fulfill to obtain a
tiling out of a good pseudo-tiling:

1. The content of the first cell is not dinit;

2. Either some $-position is preceded by an incomplete prefix
and is followed by a ∆-position, or some Anum-position
is preceded by an incomplete prefix and is followed by a
$-position;

3. No cell preceded by an incomplete prefix has content
dfinal and is the last cell of a row;

4. There are segments in ({$} ∪ ∆ \ {dfinal})A+
num∆+,

preceded by incomplete prefixes, such that the suffix in
A+
num∆+ is not a correct encoding of a cell;

5. There is a row preceded by an incomplete prefix whose
first (resp. last) cell has column number distinct from 0
(resp. 2n − 1);

6. There are adjacent cells in a row, preceded by an incom-
plete prefix, whose column numbers are not consecutive;

7. Bad row (resp. column) condition: there are two adjacent
cells in a two (resp. column), preceded by an incomplete
prefix, which have different color on the shared edge;

8. There is no position labeled by dfinal that follows an
incomplete prefix.
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We show how to encode point 1. of the previous require-
ments referencing to (Bozzelli and Pearce 2016) for the en-
coding of the others. A key difference with respect to the
original proof for THT1

2(♢,□) is that all the θi must be put
in conjunction and all the markers ti cannot be reused, this is
the reason why we need so many elements in Anum, but still
polynomial in the size of the input.

φ1 :=θ1(1 | {$}, 2 | Anum, 3 | ∆ \ {dinit}, 4 | Amain)

φ2 :=


θ2(5 | Amain, 6 | $, 7 | ∆, 8 | Amain)∧
θ3(9 | {$}, 10 | ∆, 11 | Amain)∧
θ4(12 | Rmain, 13 | Anum, 14 | $, 15 | Amain)

φ7 can be obtained putting in a conjunction for all (d, d′) ∈
(∆ \ {dfinal} ×∆ : right(d) ̸= left(d′) with i := (d, d′)
the formulas

θ(Amain, 72,i | {d}, 73,i | Anum, 74,i | {d′}, 75,i | Amain)

The remaining condition can be easily obtained from
(Bozzelli and Pearce 2016) following the above suggested
rewriting for conditions 1, 2, and 7.

Therefore, we define

φunstab := θ1(. . . ) ∧ · · · ∧ θf(m,n)(. . . ).

One can construct in polynomial time a GP2(□,♢) formula
φI s.t. there is an equilibrium model of φI iff there is a tiling
of I.

Let φpseudo and φunstab the two GP2(□,♢) above de-
fined. Then,

φI := φpseudo ∧ φunstab ∧ (u ∨□♢s)

Let us argue that the construction is sound. Let us assume
that T is an equilibrium model of φI , then we know that it
is a good pseudo-tiling. It is a pseudo-tiling code because it
satisfies φpseudo and it is good because there are infinitely
many u in H, therefore in order to get stability we need to
derive all of them, and the only rule that can be used is the
last one in the definition of φpseudo, which makes u true
throughout all the trace, see Observation 1. Furthermore, all
the conditions for a pseudo-tiling code to represent a tiling
code must be fulfilled, otherwise, if one in (1.-8.) was not
fulfilled or if there were more than one atom in Amain in
at least one state, we would have had infinitely many s that
would have caused instability.

Let us show that the construction is complete. Assume that
there exists a tiling f , then let T be any good pseudo-tiling
code such that the projection of some prefix of T over Amain

is an encoding of f . Since u ∈ T0, then T |= φI . Let us
assume that there exists H ⊂ T such that ⟨H,T⟩ |= φI .
Since H ̸= T and T is a good pseudo-tiling, then H and T
can differ only on u and s. If u ̸∈ H0, then there are infinitely
many s in H. Such a situation happens if there are either
more than one main atom in a state, which contradicts our
hypothesis, or if one of the conditions (1.-8.) of T being an
encoding of a tiling is violated, which would imply that f is
not a tiling. □

Lemma 10 (Finite stable models characterization for THT1)
Let Γ be a theory in THT1. Minimal LTL models of Γ
coincide with stable models of Γ. Furthermore, the existence
of a finite LTL model for Γ, implies the existence of a
minimal one.

Proof. Given a Γ theory, we know that if M = ⟨H,T⟩ |= Γ,
then H |= Γ because of Lemma 8.

Therefore, let T be a minimal LTL model and assume for
the sake of contradiction that there exists H < T such that
⟨H,T⟩ |= Γ, then H would be an LTL model smaller than
T contradiction the hypothesis.

Let us assume that T is a stable model of Γ, then it is also
an LTL model of Γ. If it is not already a minimal LTL model
of Γ, then by the finiteness of T we can remove atoms from
T and obtain a minimal H LTL model of Γ. This second
point proves the second statement of the Lemma. □

Proof of Theorem 7.
• The proof for the GP-hardness result is given in Lemma 9.

• The hardness for the THT2
2(U) fragment satisfiability fol-

lows directly from the construction φ given in (Bozzelli
and Pearce 2016).

• The NP completeness for the THT1
2(□,♢) fragment fol-

lows from Lemma 10 and a result in (Fionda and Greco
2016). Furthermore, if we add the formula □♢p to the the-
ory, where p is a fresh atom, then we can admit also the F
operator, which is rewritten into p, if it appears in the body
of the rules because p can be true only at the final state. If
it appears in the head of a rule, then we replace it with u
and we add □(u∨ ū), □(u∧ ū→ ⊥), □(p∧ ū→ ⊥). So
that u occurs only when p occurs, namely at the last state
of the trace.

• The PSPACE-completeness for theTHT1
2(□,♢,◦) frag-

ment follows from Lemma 10 and a result in (Fionda
and Greco 2016). Furthermore, if we add the formula
♢p∧□(◦⊤∧p→ bot) to the theory, we can replace every
occurrence of the F operator in the theory; moreover, we
can also replace each occurrence of the ◦̂(φ) formulas
with ◦(φ) ∨ p. The reason is that there must be a state i
where u ∈ Hi for each possible M THT model of Γ, and
because of the constrain □(◦⊤∧ p→ bot), all the models
must be of length i+ 1.

□
Let us recall the definition of temporal programs for finite

traces given in (Cabalar and Schaub 2019). The previous
operator, not considered in this work, is denoted by •. A
temporal program is defined as follows.

Definition 13 (Temporal program) Given an alphabet A,
we define the set of temporal literals as {p,¬p, •p,¬ • p |
p ∈ A}. A temporal program is any set of temporal rules of
one of the following forms:

• (initial rule)
r : B → A (20)

• (dynamic rule) ◦̂□r, where r is an initial rule;
• (final rule) either □(F → r).
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where B = b1∧· · ·∧ bn with n ≥ 0, A = a1∨· · ·∨am with
m ≥ 0 and the bi and aj are temporal literals for dynamic
rules, or regular literals a, ̸= a|a ∈ A for initial and final
rules. We denote by B+(r) (resp. B−(r)) the set of (resp.
negated) temporal atoms in the body of r, and by H(r) the
set {c1, . . . , cl}.

Since we do not want to consider past operators, we can
rewrite dynamic rules

◦̂□(•p ∧ q → r)

into
□(p ∧ ◦q → ◦r) ∨ F

Observation 2 Deciding whether a ¬-free temporal pro-
grams as defined in (Cabalar and Schaub 2019) admits a
finite stable model is PSPACE-c, while if it is also ◦-free then
it is NP-c.

Proof. Given the suggested rewriting of temporal programs
for finite traces and the results from Theorem 7 we can con-
clude that the satisfiability problem for ¬-free temporal pro-
grams over finite traces is PSPACE complete and NP com-
plete for ¬-free and ◦-free temporal. □

Proof of Lemma 2. Given a THT1
m+1(♢,□) theory Γ, we

know by Theorem III.1 in (Bozzelli and Pearce 2016) that
TEL satisfiability is EXPSPACE-hard. But we also notice
that formulas in Γ have implication height one and that are
◦-free. Therefore, we can use Theorem 3, from which we
reduce the problem of c-stable model existence to the sta-
ble model existence. Furthermore, once we have the stable
model, we can obtain the c-stable one just by removing stut-
tering.

A similar argument can be obtained for the THT0 frag-
ment while resorting to Theorem IV.1 in (Bozzelli and Pearce
2016).

The hardness for THT2
2(U) is obtained by adding∧

p∈A
(¬p ∨ ¬¬p) U

∧
p∈A

(¬p) to the construction proposed

in (Bozzelli and Pearce 2016). The reason is that we do not
admit defeaters different from T-stuttering ones. Therefore,
we can appeal to 6, since after the first empty state there can
be only empty sets, i.e. an empty suffix.

The PSPACE-hardness for THT1(◦,R) can be obtained
by Theorem IV.4 in (Bozzelli and Pearce 2016) by imposing
the non contraction axiom □(◦⊤). □

Proposition 23 Deciding whether a given theory Γ has an
c-stable model is in EXPSPACE.

Proof.(Sketch) This can be shown using automata-theoretic
techniques, similar as for the result that stable model exis-
tence is in EXPSPACE in general (Cabalar and Demri 2011).
To this end, Cabalar and Demri roughly speaking constructed
an NFA Büchi automaton Aφ that recognizes as a language
(whose alphabet is the set of all interpretations of A) the
models of a given THT formula φ. A further NFA Büchi au-
tomaton K(A) accepts all T that are not stable, witnessed by
some H such that ⟨H,T⟩ |= φ. The final automaton, which

accepts the stable models of the input theory, intersects the
language of Aφ, L(A) with the complement of the language
L(K(A)) of K(A). The EXPSPACE upper bound is then
derived using well-known results.

We can adapt this construction in order to check the condi-
tion ⟨T′,T, µ⟩ |= φ for general µ instead of the special case
µ = id. To this end, the representation of traces is modified,
and the formula evaluation expressed in LTL.

Specifically, we represent M = ⟨T′,T, µ⟩ in a trace TM,
which uses for T′ a copy A′ of the variables A as in (Cabalar
and Demri 2011), and a special variable m for marking in
TM the positions sj = min(µ−1(j)) for all j ≥ 0, i.e., the
first position in the segment of T that is mapped to position
j of T′; note that µ = id holds iff each position in TM is
marked. Furthermore, on all positions sj , sj+1,. . . in µ−1(j),
the value of T′

j is put.
For evaluating T |= φ, we may take any Büchi automaton

for evaluating φ under LTL semantics.
For evaluating M = ⟨T′,T, µ⟩ |= φ where T′ ̸= T, we

may express that ⟨T′,T, µ⟩ is proper and T′ ̸= T in LTL,
using formulas

m ∧□(T ′ ≤ T ), (21)

□(◦̂m ∨ T ′ = ◦̂T ′), (22)
♢
∨
p∈A ¬p′ ∧ p (23)

The evaluation of formulas in ⟨T′,T, µ⟩ at T′ resp. T can
then be defined by a structural transformation fw(φ), where
w = T′,T, which mirrors the conditions of the definition,
using the variables in A resp. A′.

In more detail, fT(φ) = φ, while fT′(φ) is defined by
fT′(⊤) = ⊤, fT′(⊥) = ⊥, fT′(p) = p′, fT′(φ1 ⊗ φ2) =
fT′(φ1) ⊗ fT′(φ2) for ⊗ ∈ {∧,∨}, etc.; in particular for
implication we have

fT′(φ1 → φ2) = (fT′(φ1) → fT′(φ2))

∧ fT(φ1 → φ2)

and for the ◦ operator

fT′(◦φ) = m ∧ ◦(fT′(φ)). (24)

Then ⟨T′,T, µ⟩ |= φ amounts to T′
M |= fT′(φ).

In order to avoid an exponential blowup in the rewriting,
we may use auxiliary symbols pψ resp. p′ψ to name subfor-
mulas ψ, and require that pψ ↔ fT(ψ) and p′ψ ↔ fT′(ψ),
where the names are recursively used.

In summary, the automata-based argument in (Cabalar and
Demri 2011) can be adapted to show that deciding c-stable
model existence is feasible in EXPSPACE. □

Proposition 24 Deciding whether a given theory Γ has an
c-stable model is EXPSPACE-complete in general.

Proof.(Sketch) By Lemma 2 and Propositions 23, it remains
to argue about finite c-stable models. We may enforce finite-
ness, without compromising c-stability, by adding the for-
mula

in ∧□((in ∨ out) ∧ (in ∧ out→ ⊥))

∧□(out→ (□out ∧ ♢out)). (25)
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Note that this formula is in GP and in THT1
2.

Here out marks the area which is out of a simulated finite
trace. The formulas in Γ are modified to restrict their scope
to the area where in is true, by changing φ to in ∧ φ, and
temporal subformulas φ1 R φ2, φ1 U φ2, ◦φ, and ◦̂φ are
adjusted to (φ1∧in)∨out R(φ2∧in), (φ1∧in)U(φ2∧in),
◦(in ∧ φ), and ◦(in ∧ φ) ∨ out respectively. In the area
marked with out, no other atoms than out can be true in any
stable model, thus creating a strongly ultimately periodic
trace. The c-stability condition is inside the area marked with
out not affected. That is, if T1 and T2 are traces such that
⟨T1,T2, µ⟩ |= Γ, then for the modified Γ′ and the infinite
traces T′

1 and T′
2 representing T1 and T2, respectively, we

shall have ⟨T′
1,T

′
2, µ

′⟩ |= Γ′, where µ′ extends µ to [0,∞)
if needed. This also works in the converse direction. □

Proof of Theorem 8. The result follows from Proposition 23
and Proposition 24. □

Proof of Proposition 19. Any ◦-free THT1
1 theory Γ has by

Theorem 3 some c-stable model iff it has some stable model
T. The latter can by Lemma 1 be stuttered into an infinite
model T′; it is easy to see that T′ is then also stable. It
has been shown in (Bozzelli and Pearce 2015) that deciding
whether Γ has an infinite stable model is NP-complete. This
shows the result for THT1

1.
For GP1, we thus obtain NP-membership as it is a sub-

class of THT1
1. The NP-hardness follows immediately from

deciding whether a given positive propositional disjunctive
logic program P , with empty rule heads allowed, has some
stable mode, which is known to be NP-complete (Eiter and
Gottlob 1995). □
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8 Semantic Properties
In LTL and THT with only future operators, we can always
transform satisfaction of a trace M at point k into satisfaction
of a suffix of the trace at 0.

Definition 14 (Trace shifting) Given a cTHT-trace M =
⟨H,T, µ⟩ with λ = |H| and λ′ = |T| we define the shifting
of M by a distance d ∈

[
0..λ

)
, denoted by M[d], as the new

cTHT-trace M[d] = ⟨H′,T′, µ′⟩ where:

• we define d′ =def Σ
d−1
i=0 |µ−(i)|

• µ′ is a contractor from λ′ − d′ to λ− d (we assume ω −
n = ω for any natural number n) satisfying µ(j − d′) =
µ(j)− d for all j ∈

[
0..λ′ − d′

)
.

• T′ = (T ′
i )
[
0..λ′−d′

) with T ′
i = Ti+d′

• H′ = (H ′
i)
[
0..λ−d

) with H ′
i = Hi+d

The following property can be easily observed by a simple
analysis of THT satisfaction conditions:

Proposition 25 M, k |= φ iff M[k], 0 |= φ.

It is interesting to note that some unfolding features of the
U and R operators from THT and LTL do not hold anymore
in cTHT. Consider the following THT-tautology

φU ψ ↔ (ψ ∨ (φ ∧ ◦(φU ψ)))

It is possible to see that M = ⟨H,T, µ⟩ where T =
{p} · {p} · {q} · , H = {p} · {q} · , µ−(0) = {0, 1}, and
µ−(1) = {2} is a model of φ U ψ, but not of ψ ∨ (φ ∧
◦(φU ψ)). For a similar reason the following formula is not
a tautology in cTHT.

φ R ψ ↔ (ψ ∧ (φ ∨ ◦(φ R ψ)))

However, in the next Lemma, we ensure that under some
conditions on the trace, we can lift from the THT case some
unfolding properties of the temporal operators to the cTHT
case.

Lemma 11 (Integral unfolding) Given a cTHT trace M
such that the i ∈ [0, . . . λ) state is integral, i.e. |µ−(i)| = 1,
then the following equivalences hold

(a) M, i |= ◦φ iff i+ 1 < λ and M, i+ 1 |= φ,
(b) M, i |= φU ψ iff M, i |= ψ ∨ (φ ∧ ◦(φU ψ)), and
(c) M, i |= φ R ψ iff M, i |= ψ ∧ (φ ∨ ◦(φ R ψ)).

Proof. We can prove all the points by induction on the struc-
tural complexity of the formula φ. The propositional case is
straightforward. Let us analyze what happens with ◦φ, case
(a). By Defn. 7 we know that

M, i |= ◦φ ⇐⇒ |µ−(i)| = 1, i+1 < λ, and M, i+1 |= φ

since by assumption |µ−(i)| = 1, we only require M, i+1 |=
φ to hold. We give the detailed proof for φ U ψ case (b),
but we leave out the on for case (c) since it has a similar
argument of (b).

Let us assume that i+1 < λ. By Defn. 7 we know that

M, i |= φ U ψ ⇐⇒
{

for some j ∈
[
i..λ

)
, we have M, j |= ψ

and M, k |= φ for all k ∈
[
i..j

)
⇐⇒


either (1) M, i |= ψ, or (2)
for some j ∈

[
i+1..λ

)
, we have M, j |= ψ

M, i |= φ and
M, k |= φ for all k ∈

[
i+1..j

)
Exploiting point (a) and the boolean connective cases, we
obtained the desired rewriting, since either ψ holds at the
state i or φ holds at i and we have an U formula to satisfy at
position i+1.

The i+1 = λ case is simpler, since the only option for j
in the Defn. 7 is j = i, implying that the first argument of
the U does not play any rule. Therefore the rewriting holds
in the case as well, since the second disjunction, namely
(φ ∧ ◦(φ U ψ)) cannot be evaluated true, since the next
operator does not hold in the last position. □

We can identify interesting tautologies that involve the
next operator too.
• two ways to express synchronicity: □(□◦̂⊤ ↔ (□◦⊤)∨
(◦⊤U ¬◦⊤))

9 Alternative Definitions of A-Stable Models
Above, we have defined a-stable models by requiring for an
LTL-model T that

∀H, µ : ⟨H,T, µ⟩ |= Γ implies H = T (A1)

We might consider alternative conditions:

∀H, µ : ⟨H,T, µ⟩ |= Γ implies ⟨T,H, id⟩ |= Γ (A2)

∀H, µ : ⟨H,T, µ⟩ |= Γ implies ∃µ′⟨T,H, µ′⟩ |= Γ (A3)

Informally, (A2) allows that T is a componentwise smaller
trace than H, while (A3) says that we must be able to sum-
marize H into T; note that by Persistence, in both cases H
must then be an LTL-model; i.e., if H is not an LTL-model
and ⟨H,T, µ⟩ |= Γ, then T is not a-stable.

The three conditions (A1)-(A3) are progressively more per-
missive, meaning that stability under condition (Ai) implies
stability under (Aj), j ≥ i; the converse is not true, i.e., the
conditions are strictly more permissive.

9.1 A2 (vs) A3
To show this for (A2) and (A3), we use the following exam-
ple.
Example 10 Consider

Γ = {¬p, ◦⊤ → ◦◦p, ♢p, □(p→ ◦p)}.
Then the only s-stable model is T = ∅·∅·{p}ω , as we must

have p at i = 2 and there is no need to put p at i = 1 (it must
not be at i = 0). At i ≥ 3, we then always must have p.

According to (A1), T is not a-stable, as we can map it to
the trace H = ∅·{p}ω , by contracting T0 and T1 with µ, and
then ⟨H,T, µ⟩ |= Γ holds.

Let Ti = ∅i·pω , i ≥ 1; then T = T2 and H = T1.
We examine when Ti,Tj , µ |= Γ, i, j ≥ 1, is possible, i.e.,

some µ exists:
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• as ◦⊤ → ◦◦p must be satisfied at position 0 in Tj , we
must have that p is true at position 2 of Tj , and j ≤ 2
holds.

• If µ(1) = 1, then ◦◦p must be satisfied at position 0, thus
µ(2) = 2 must hold and p must be true at position 2 of Ti,
i.e., i ≤ 2.

• If µ(1) = 0, then j ≥ 2, hence j = 2 must hold, as
otherwise ¬p can not be satisfied at position 0. On the
other hand, i can be arbitrary: we can set µ(0) = 0 and
µ(k) = k − 1, k ≥ 1, as from some position on in Ti p is
always satisfied.

Consequently, under (A2), T = T2 is not stable, as e.g.
⟨T3,T2, µ⟩ |= Γ is possible but ⟨T2,T3, id⟩ |= Γ does not
hold (as as T3 ̸↓id T2); similarly, also T = T1 is not stable,
as for ⟨T2,T1, µ⟩ |= Γ we have that ⟨T1,T2, id⟩ |= Γ does
not hold.

Under (A3), T = T2 is not stable, as e.g. ⟨T3,T2, µ⟩ |= Γ
is possible but not ⟨T2,T3, µ

′⟩ |= Γ (as T3 is not an
LTL-model of Γ). However, T = T1 is stable, as for
⟨Ti,T1, µ⟩ |= Γ we have i = 1, 2 and ⟨T1,T2, µ

′⟩ |= Γ
is possible. Noticeable, T′ is not an s-stable model of Γ. □

9.2 A1 (vs) A2
That (A1) strictly implies (A2) is shown by a more involving
example.

Example 11 Consider Γ = {φ1, φ2, φ3, φ4}, where

φ1 = ¬p,
φ2 = □(p→ ◦p),
φ3 =◦⊤ → ◦◦p
φ4 = ♢p ∨□◦⊤

The only two possible LTL-models of Γ are T =
∅·∅·({p})ω and H = ∅·({p})ω . Roughly speaking, p cannot
be true in position 1 and it must be true somewhere in the
future because of φ4 ∧ φ3. If the first disjunction of φ4 is
satisfied we must have p somewhere in the future. Otherwise,
if we have an infinite trace, then there is a next state and
we trigger the implication in φ3. Either way, we trigger the
outer implication φ3, which implies that p occurs already at
the second state or at the third. Once we see it in the trace,
we propagate p because of φ2.

We claim that H is not an a-stable model under (A1) nor
(A2), while T is a-stable under (A2), but not under (A1).

If we consider H as a candidate, then we soon realize
that it cannot be an a-stable model either under (A1) or (A2)
because it is not even an s-stable model.

If we consider T as a candidate, we can contract it into H
with a contractor µ such that µ−(0) = [0, 1] µ−(i) = i+ 1
for i ≥ 1 would be a a-THT model, i.e., ⟨H,T, µ⟩ |= Γ. To
see it, we can easily check that φi for i = 1, 2, 3, 4 are satis-
fied. Regarding φ3 we notice that in the Here trace the impli-
cation is not triggered, since the first step is asynchronous,
but it has to hold also in the There trace for each i ∈ µ−1(0).
At position 0, ⟨T,T, id⟩, 0 |= ◦◦p since p ∈ T2.

However, we also have that ⟨T,H, id⟩ |= Γ, which is also
the reason why H is not an s-stable model. φ1 is satisfied
since both H0 and T0 are empty. From i ≥ 2, p ∈ Ti,

therefore φ2 and φ3 are satisfied too. We also notice that
⟨H,T, id⟩, i |= ◦◦p, which imlpies that ⟨H,T, id⟩ |= φ4.

H is the unique non-trivial summarization of T becuase
the summarization must be an LTL model, and the unique
two LTL models are T and H. □

9.3 Syntactic relaxation, so far A1 < A2 (?) A2’ <
A3 < A3’

A variant of (A2) and (A3) is by merely requiring that
H ↓id T resp. H ↓µ′

T for some µ′ holds and dropping
⟨T,H, id⟩ |= Γ resp. ⟨T,H, µ′⟩ |= Γ. The resulting condi-
tions (A2′) and (A3′) also yield a strict hierarchy, as Exam-
ple 10 and 11 separate (A2′) and (A3) resp. (A1) and (A2′).
However, we can separate (A1) and (A2′) by using a simpler
theory

Γ = {¬p, □(¬p ∨ p), ♢p, □(p→ ◦p)}.
The s-stable models of Γ are of the form Ti = ∅i·{p}ω,
i ≥ 1, and the single a-stable model under (A1) is T1. Under
(A2′), each Ti is a-stable as H,Ti, µ |= Γ is only possible
if H is of the form Tj for j ≤ i; but here Tj ↓id Ti holds.

With the following example, we want to separate A3 from
A3’.

Example 12 (To be checked) Consider the LTL traces
Ti = ∅i · {p}ω with i < 4. They are the unique LTL models
of the following formula φ:

◦◦◦p ∧□(p→ ◦p) (26)

T3 is the unique s-stable and a-stable model under (A1),
(A2), and (A3), since ⟨Ti+1,Ti, id⟩, 0 |= φ and there is no
mapping µ from Ti+1 to Ti such that ⟨Ti,Ti+1, µ⟩, 0 |= φ
for 0 ≤ i ≤ 2. The reason is that the first three steps
are required to be synchronous. However, it is possible to
find a contraction such that T3 ↓µ T2, for instance with
µ−1(0) = {0, 1}, and µ−1(i) = {i + 1} for each i ≥ 1.
Therefore, under (A3’), T2 would be an a-stable model of φ.

[Davide: A2 (vs) A2’ still todo.]

10 Inconsistency and Compact Stable Models
Presence of the ◦-operator may cause that a theory lacks an
a-stable model while some s-stable model exists, even if it is
near to be a GP formula. We first show an example where
the lack of summarization via an a-stable model is caused by
the fact that a trace must be infinite, not to express either a
complex pattern or a stuttering justified by synchronization,
but to solve an instability problem along the trace.

Example 13 Consider the theory

Γ = {□(◦⊤ → p), □(¬p→ p)}.

The single s-stable model of Γ is T = {p}ω. Indeed,
⟨H,T⟩ |= □(◦⊤ → p) implies that p ∈ Hi for every
i ≥ 0, thus H = T must hold. However, T is not a-stable
since M = ⟨∅, {p}ω, µ⟩ where µ(i) = 0 for each i ∈ N,
fulfills M, 0 |= Γ: M, 0 ̸|= ◦⊤ and M, 0 ̸|= ¬p, while
T, µ−(0) |= p, which means that condition 5 of satisfaction
M, 0 |= φ→ ψ is satisfied.
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The theory in the previous example has a single s-stable
model that is infinite; the existence of finite s-stable models
does not change the picture.

Example 14 Consider the theory

Γ = {¬◦⊤ → ◦⊤}.

Note that ∅ · (∅+ + ∅ω) are all the s-stable models of the
theory. However, none of them is a-stable because they can
be summarized into an empty state.

As a possible alternative to a-stability, which aims at sum-
marization of a model on the logical basis of HT, we may
also consider a syntactic preference on s-stable models by
reducing positive information with contractors, instead of
reacquiring a justification for the trace length given by the
dynamic of the behaviour of the trace.

Definition 15 (c-stable Model) A trace T is a compact (c)
stable model of a theory Γ, if T is an s-stable model of Γ and
no s-stable model T′ of Γ such that T ↓ T′ and T ̸= T′

exists.

Revisiting the examples from above, in Example 13 the
single s-stable model of Γ is trivially c-stable; in Example 14;
T = ∅ · ∅ is the single c-stable model of Γ, and in Example 6
(where a-stable models exist), T′ = {p} is defeated by T′′ =
∅, which is a c-stable model. The latter also shows that c-
stable models may eliminate a-stable models. However, this
does not happen for ◦-free GP theories. As a consequence
of Theorems 3 and 4, we obtain:

Proposition 26 Let Γ be a set of ◦-free formulas. Then
every c-stable model of Γ is an a-stable model of Γ, and if Γ
consists of ◦-free GP formulas, then every a-stable model of
Γ is also a c-stable model of Γ.

However, c-stable models may not always exist when s-
stable (or even a-stable) models exist, again for near-GP
theories.

Example 15 Consider the theory

Γ = {¬p, ◦(p ∨ ¬p), ◦◦(p ∧□(p→ ◦p)}.
The s-stable models of Γ are T1 = ∅·∅·{p}ω and T2 =
∅·{p}ω . As we have T1 ↓id T2 and T2 ↓µ T1 for µ(0) = 0,
µ(i) = i− 1, i ≥ 1, none of them is c-stable. However, both
T1 and T2 are a-stable models of Γ.

In the previous example, a more relaxed notion of c-stable
model that requires T′ ↓ T if T ↓ T′ holds (rather than
T′ ̸= T) would yield both T1 and T2 as c-stable models.
However, this mutual-mapping relaxation does not guarantee
us c-stable model existence in general.

Example 16 Consider the theory

Γ =

{
¬◦⊤ → ◦⊤, (◦□q1) → ⊥, ◦⊤ → □(◦pi ∨ ◦qi),
□(pi → pi+1), □(qi+1 → qi), □(qi → ◦qi+1), i ≥ 1

}
.

The s-stable models of Γ are all infinite traces of the form
Ti = ∅ · Si · Si+1 · Si+2 · . . . where Si = {qj | j ∈ [1, i)} ∪
{pk | k ≥ i}, for i ≥ 1. Note that the first formula in
Γ sensibly enforces a trace length greater than 1 (simply
putting a formula ◦⊤ would not work).

We can map each Ti to Ti+1 using µ(0) = 0 and µ(j) =
j − 1, for each j ≥ 1, and thus Ti+1 ⪯ Ti for each i ≥ 1.
On the other hand, we can not map Ti+1 to any Tj , j ≤ i,
as Sj does not occur in Ti+1 and all sets Si are pairwise
incomparable; hence no surjective mapping µ from Ti+1 to
Ti is possible.

Thus we have the strict chain T1 ≻ T2 ≻ . . .,
which means that Γ has no c-stable model. Furthermore,
⟨Ti+1,Ti, µ⟩ |= Γ holds (in particular, ⟨Ti+1,Ti, µ⟩ ̸|=
◦⊤, ¬◦⊤); hence Γ has no a-stable model either.

Furthermore, let us take H = ∅ and µ(i) = 0 for each
i ≥ 0. Then ⟨H,Ti, µ⟩ |= Γ for each i ≥ 1.

Under some conditions, c-stable models always exist if
s-stable models exist. Let THT1 denote the class of formulas
with no nesting of temporal operators.
Proposition 27 For every s-stable model T of a theory Γ of
THT1 formulas over a finite alphabet A, there exists some
c-stable model T′ ⪯ T of Γ.

Proof.(Sketch) Let S be the set of all s-stable models T′

such that T′ ⪯ T holds. We claim that S has a finite chain
T0 = T ≻ T1 ≻ · · · ≻ Tm, m ≥ 0, that can not be
extended; hence T′ = Tm is a c-stable model such that
T′ ⪯ T.

If S is a singleton, this is trivial. Otherwise, if some
T′ ∈ S has finite length, the claim holds since we can set
T1 = T′ and there is by the finiteness of A only finitely
many T′′ such that T′′ ≺ T′ holds; thus by transitivity of ⪯,
every chain as described must be finite. On the other hand,
in S some T′ of finite length always exists: since there is no
nesting of temporal operators, each s-stable model T of Γ is
strongly ultimately periodic, i.e., of the form T = Tf ·Xω,
where Tf is a finite prefix of T of length k andXω an infinite
repetition of a set X ⊆ A (Bozzelli and Pearce 2015). If we
assume without loss of generality that Tf has length at least
2 and ends with X , then we obtain that Tf is a finite s-stable
model of Γ as well. Indeed, as there is no temporal nesting,
for each temporal subformula ψ occurring in Γ, we have
that T, 0 |= ψ iff Tf , 0 |= ψ: satisfaction of subformulas
of the form ◦ψ′ depends only on position i = 1, and by
the infinite repetition of the last state of Tf , satisfaction of
temporal subformulas φ1 U φ2, φ1 R φ2 at position i = 1
remains invariant. Hence, T |= Γ iff Tf |= Γ. Furthermore,
any ⟨Hf ,Tf ⟩, where Tf ↓id Hf such that ⟨Hf ,Tf ⟩ |= Γ
can be extended to ⟨H,T⟩ such that ⟨H,T⟩ |= Γ, where
H = Hf ·Y ω and Hf ends with Y ; as T is s-stable, it follows
Hf = Tf and thus Tf is s-stable. □ □

We remark that in the argument for this proposition, the
finiteness of A is essential.
Example 17 The theory Γ = {¬¬pi → pi, pi → pi+1 |
i ≥ 1} has infinitely many (atemporal) stable models Si =
{pj | j ≥ i}, which form a decreasing chain S1 ⊃ S2 ⊃
S3 · · · ; hence Γ has corresponding s-stable models (in fact,
of the form Si · ∅∗ resp. Si · ∅ω), none of which is c-stable.
However, Γ has a further atemporal stable model, viz. ∅,
which is also an s-stable model of Γ and thus trivially c-
stable. If we add ¬q → ⊥ and pi → q, for all i ≥ 1, to Γ,
the s-stable models of the resulting theory Γ′ are given by
Si ∪ {q} · (∅∗ + ∅ω), and no c-stable model exists.
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When we exclude the ◦-operator from THT1, then we
obtain from Propositions 26 and 29 that the c-stable models
amount to the a-stable models with minimal positive infor-
mation.

Proposition 28 For a theory Γ consisting of ◦-free THT1

formulas over a finite alphabet, the c-stable models coincide
with the ≺-minimal a-stable models.

Proof. Assume first that T is a c-stable model of Γ. By
Proposition 26, T is a-stable. Towards a contradiction, as-
sume T is not ≺-minimal among the a-stable models, i.e.,
some a-stable model T′ ≺ T exists. By Theorem 2, we know
that T′ is also s-stable, then by Proposition 29, some c-stable
model T′′ ⪯ T′ exists; as T′′ ≺ T, this contradicts that T
is a c-stable model of Γ.

Conversely, assume T is a ≺-minimal a-stable model of Γ.
By Proposition 29, some c-stable model T′ ⪯ T exists, and
by Proposition 26 T′ is a-stable; hence T′ = T follows, i.e.,
T is c-stable. □ □

That is, making s-stable models of finite ◦-free THT1

theories syntactically compact will also yield semantic sum-
marizations in logic-based terms.

Question:
How to define preference such that the preferred models

approximate the a-stable models and would let more a-stable
models of ◦-free theories “survive”?

Proposition 29 For every s-stable model T of a theory Γ of
◦-free THT1 formulas over a finite alphabet A, there exists
some c-stable model T′ ⪯ T of Γ.

Proof.(Sketch) We determine a trace T′ with the desired
property as follows. Let µ∗ be the lexicographic minimal
mapping µ such that T ↓µ T′ holds for some s-stable model
T′, i.e., the sequence µ(0), µ(1), . . . , µ(|T|−1) if T is finite
resp. µ(0), µ(1), . . . if T is infinite is smallest (no µ′ exists
such that µ′(j) < µ∗(j) and µ′(i) = µ∗(i) for all i ∈ [0, i]
for some i ≥ 0).

Let S be the set of all s-stable models T′ such that T ↓µ∗

T′ holds; note that S is non-empty.
We claim that S has a chain T0 = T ≻ T1 ≻ · · ·Tm that

can not be extended. To show this, since there is no nesting
of temporal operators, for each s-stable trace T′ of Γ there
exists some position i such that each T ′

j , j ≥ i, is a stable
model of the same set ΓT′ of atemporal formulas, which
are obtained from Γ and T′ depending on which temporal
subformulas Opφ in Γ are true respectively false at position
0 of T′ (positions before i are used to satisfy / falsify the
temporal subformulas which need some witness position in
T′); this gives us a “type” τT′ of the trace. Importantly, by
replacing T ′

j with any stable model of ΓT′ , we always obtain
another s-stable trace of T′ of the same type. Thus, without
loss of generality, we may assume that each T ′

j , j ≥ i, is a
⊆-minimal stable model of ΓT′ (which by finiteness of A
exists). At the positions j′ < i, we have stable models T ′

j′

of atemporal formulas Γj
′

T′ ⊇ ΓT′ ; no such T ′
j′ can thus be a

strict subset of some T ′
j , j ≥ i.

(As a lemma, if T and T ′ are stable models of sets Γ and
Γ′ of atemporal formulas, respectively, such that T ⊆ T ′

and Γ ⊇ Γ′, then T = T ′. This holds since each stable
model T of a theory Γ can be reconstructed by monotonic
HT-inference from Γ augmented with ¬a for all a /∈ Γ.)

Now pick any T′ in S of the described form. Then, every
trace T′′ ≺ T′ in S that is of the same type (τT′) must be
equal to T′ on positions j ≥ i and strictly smaller on at least
one position j′ < i. Continuing with traces of the type τT′ ,
after finitely many steps we arrive at a minimal trace Tτ(T′)

among the traces of type τT′ . If some trace T′′ ≺ Tτ(T′)

exists, then we continue the chain with traces of type τT′′ .
Since the number of non-equivalent types is finite (as the
alphabet A is finite), after finitely many rounds we arrive at a
trace T′′ such that the chain T0 = T ≻ T1 ≻ · · ·Tm = T′′

can not be extended.
We claim that T′ = Tm is a c-stable model of Γ; it re-

mains to show that no s-stable model T′′ of Γ exists such that
T′′ ≺ T′. As T′′ ⪯ T by transitivity of ⪯ and T ↓µ∗

T′, it
follows T ↓µ T′ for some µ that is smaller or equal to µ∗;
by minimality of µ∗, it follows µ = µ∗ and that T′ ↓id T′′

must hold.
As T′ ̸= T′′ and T′′ ⪯ T′, it follows that T′′ is lexico-

graphically smaller than T′. This, however, is a contradiction
to the selection of T′. □

When we admit ◦, Proposition 29 extends to finite theories.

Proposition 30 For every s-stable model T of a finite theory
Γ of THT1 formulas, there exists some c-stable model T′ ⪯
T of Γ.

Proof.(Sketch) Suppose without loss of generality that Γ
consists of a single formula φ. For ever s-stable models of
φ, only a prefix of at most length |φ| is relevant for eval-
uating the ◦-subformulas and can impact the evaluation in
the remainder of the model. Consequently, we can divide
the s-stable models T′ ≤ T into finitely many subsets Tπ,
where π is a prefix of an s-stable model of length at most |φ|.
Following the argument in Proposition 29, there exists some
minimal element Tπ for each such prefix π, and in the finite
set {Tπ} of all such prefixes, some minimal element T′ must
exist. This T′ then satisfies T′ ≤ T′′ for all T′′ ≤ T, i.e., is
minimal among all T′′ ≤ T. □

11 Complexity
We are now ready to state the following Proposition:

Proposition 31 Suppose Γ is a set of formulas from THT1.
Then a finite trace T is a c-stable model of Γ if T is the
shortest minimal model of Γ.

Proof. Note that the finiteness requirement is used to
ensure that there exists a shortest trace. Assume T is the
shortest minimal model of Γ. Towards a contradiction, sup-
pose T is not c-stable. Then some T′ ̸= T and µ exist such
that T ↓µ T′ and ⟨T′,T, µ⟩ |= Γ. Let i be the first position
where a contraction occurs, namely |µ−(i)| > 1. Since all
the steps before position i are integral, we can repeatedly
apply the unfolding rules (b) and (c) of Lemma 11.

The idea is to unfold the formula up to position i, for
instance, if the theory was α R (β U γ) and i = 1, we would
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have the theory (γ ∨ (β ∧ ◦(β U γ)))∧ (α ∨ ◦αR (β U γ)).
More in general, we will have a theory that consists of a
residual theory ◦iΓi and an unfolded one called Γ0,...,i−1.

At i− 1 we have: M, i− 1 |= ◦Γi; so by Persistence we
have that T, µ−(i− 1) |= ◦Γi (where µ−(i− 1) = {i− 1});
and since T, µ−(i) |= Γi, we can leave out all from µ−(i)
except the last element, and so the sub-trace T′ =def T[0, i) ·
T[maxµ−(i), λ) is such that T′, i − 1 |= ◦Γi, and thus
T′, 0 |= Γ.

We can conclude that T is c-stable because it is not possi-
ble to properly contract any segment of the T-trace into an H
given our hypothesis of T being one of the shorted models
of Γ. The only other way to contract it is via the id mapping.
However, it is not possible. We can see this latter point by
observing that for THT1 theories minimal models coincide
with stable models. □

11.1 Fragments
We consider now the fragments from the sections above.

THT1: Already for ◦-free theories, we have EXPSPACE-
hardness of c-stable model existence via fragments.

GP: it is open whether EXPSPACE-hardness holds. For
◦-free theories, this may be derived by a reduction from
◦-free THT1; more specifically, in the proof of Bozzelli
and Pearce, the construction is near GP and the argument
aims at the existence of a minimal model (as there a minimal
model exists iff a stable model exists). The crux is whether a
formula

∨
i ai ∧ (bi → c) could be encoded in GP, as posi-

tive (sub)formulas ψ can be named with atoms pψ, without
affecting the existence of a minimal model.

THT1: Deciding c-stable model existence is NEXPTIME-
c, as by Proposition 29, this is equivalent to deciding stable
model existence. Notably, by (Bozzelli and Pearce 2015,
Theorem IV.3) every LTL-satisfiable THT1 formula admits
a minimal LTL model, which however may not be stable.

Deciding c-stable model existence is in NEXPTIMENP, as
a guess for an c-stable model can be checked with an NP
oracle in polynomial time. The problem is at least Σp2-hard.

Deciding compact-stable model existence is easier.

Proposition 32 Deciding whether a given THT1
1 theory Γ

has some compact-stable model is NP-c.

Proof. Each LTL-satisfiable THT1
1 theory admits some

minimal model, which is also a s-stable model; thus by Propo-
sition 29, Γ has some c-stable model iff Γ is LTL-satisfiable.
Deciding the latter is for THT1

1 in NP (Demri and Schnoebe-
len 2002). □
□

THT1(◦,♢), THT(◦,□): Deciding existence of an c-
stable resp. stable model is Σp2-c.

Indeed, every stable model of a theory in THT1(◦,♢) and
THT(◦,□) has only few (polynomially many) nonempty
positions, which by cutting them down can be made into an

almost-empty stable model where all non-empty positions
are in a polynomial size prefix (Bozzelli and Pearce 2015).
Hence, c-stable model existence and compact-stable model
existence are in Σp2. The Σp2-hardness is inherited by the
Σp2-cness of stable semantics.

Open issues: GP complexity, NEXPTIMENP improve-
ment, THT1

1 c-stability, compact-stability in general?

12 Related Work and Conclusion
• One of the logic used when dealing with LTL for asyn-

chronous systems is Temporal Logic of Actions (TLA)
(Lamport 1994), which is a logic designed to express in
the same formula both specifications and the system. TLA
has a temporal operator called action, that resembles the
next operator, but it coincides with an execution of an
atomic instruction and is parameterized by the variables
that are allowed to stutter. For instance, a global temporal
property may refer to a clock over minutes m and hours h,
while a local component might have a clock over seconds
s minutes m, and hours h. Allowing stuttering of m, and
h in the specification makes it possible to specify both the
specification and the description of the system in the same
formula.

• Asynch. extensions of Hyper LTL ((Bozzelli, Peron, and
Sánchez 2021)). They resort to a notion of stuttering.
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Figure 6: Possible splitting of a classical model M of a program π.

12.1 Forks
In this section, I put some observations on the semantics for
both the atemporal and the temporal case where the negation
is used.

12.2 Static case
Possible view: We can see the different ti as different guesses
(or views where instead of the K operator, we can access the
different classical candidates via the negation) while mini-
mizing h. Let us consider the program

π = {¬p→ q}

with T = {t1, t2}, t1 = {p, q}, t2 = {q}, and h = ∅. We no-
tice that ¬pmust be true in both the two worlds ti for i = 1, 2
according to Defn. 7. Therefore, even if t2 ∈ T , even in a
stratified setting, we can have h = ∅. However, if we have a
disjunctive (with negation) program π such that π |= p (posi-
tive consequence) and π |= ¬q (negative consequence), then
we can evaluate the negation over p and q since all the worlds
in T must be labeled by classical models of π obtaining that
we can minimize h as in HT. Can a possible reading be the
following one: in cTHT the implication is more construc-
tive than in HT, because you may have to consider different
assumptions that may have different interpretations of rule
bodies?

If we add the excluded middle for p: (p∨¬p), then p can be
either always true or false for all possible set of assumptions
T . Therefore, we could minimize h as it was under HT
semantics.

Otherwise, if we consider T as a set of only minimal
models, then if the program is stratified, we get in h what we
would get in HT, and if the program has even cycles, then we
may not be able to decide between two choices. For instance
in

π′ = {¬q → p} ∪ π
We can have T = {t2, t3} with t3 = {p} and empty h. While
in the absence of even cycles programs like

π2 = {¬p→ q ∨ r}

with T = {t2, t4} with t4 = {r} do not have any h such that
⟨T, h⟩ is a cTHT model.

How to read negation:

• ¬¬p means p in all the accessible worlds in T

• ¬p means p in any of the accessible worlds in T

13 Temporal case
13.1 T-Stuttering axioms
If T = [∅, {p}], H = [∅] and

π = ¬p→ ◦p
then ⟨T,H⟩ |= π.

However, let us consider the following axiom:

T stuttering: □(¬¬p ∨ ¬p) ∀ p ∈ A

If we add T stuttering: to a theory Γ, then when minimizing,
we can contract only sequences of equal states. Under this
axiom, we would obtain T = [∅, {p}] as c-TEL models of
π.

(A): □(p ∨ ¬p ∨ ◦̂⊤) ∀ p ∈ A
When applying the minimization criteria, under (A) we

have that either you are contracting a total fragment, or you
are locally minimized in an TEL style. Under (A) we are
separating the two orthogonal minimizations, namely (i) the
trace contraction, and (ii) the HT-minimization. We get there-
fore the stutter-free TEL models. Adding also the excluded
middle, then we get stutter-free LTL models.

Axiom:
□(¬α→ ¬αW ◦̂⊤)

It is a sort of N-necessity axiom designed for negative as-
sumptions that contribute to deriving synchronization steps.
If this holds, then we have synchronization steps as expected.
So, under ”reflexive” properties for negative assumptions, we
gain a stutter-free TEL-like behavior.

13.2 Stratified negation for temporal programs
The temporal programs here considered are:

• fulfillment-free

• may contain constraints such as φ→ ⊥
• rules have at most one atom in the head

Example 8 contains an c-unstable theory Γ = {¬p→ ♢p},
but also Γ′ = {¬p → ◦p} is c-unstable. In this subsection,
we want to address this issue, by resorting to a dependency
graph. Let us first observe that the theories Γ1 = {¬p→ ♢q}
and Γ′

1 = {¬p → ◦q} have both c-stables models. T2 =
∅ · {q} and T3 = ∅ · {q} · ∅ are the c-stable models of Γ′

1.
T0 = {q}, T1 = {q} · ∅, T2, T3 are the c-stable models of
Γ1.

We note that there is a common pattern in the reason why
Γ and Γ′ are c-unstable, namely, that we are assuming ¬p to
justify the extension of the trace with a state where p holds.
This is very similar to what happens with the logic program
¬p→ p, which has no answer set.

Therefore, we need a stronger notion of stratification. Let
us introduce the concept of temporal fork stratification, under
the idea of imposing the constraint that “I cannot prove that
there is a next state with p assuming not p now.”

More formally, we introduce the following notion of de-
pendency graph, where we do not only consider atoms but
also synchronization steps.
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Definition 16 (Dependency Graph) The dependency
graph of a temporal unfolded program πω is the directed
graph DGπ = ⟨V,E⟩ where V = {⊤i, pi,¬pi | p ∈ A and
(i) (a, b)(−) ∈ E if a ∈ H(r) and b ∈ B+(r) (b ∈ B−(r))
for some rule ◦kr in πω, (ii) (qk, pk

′
) ∈ E for k′ ≥ k if

◦k(□ p → q) ∈ πω, and (iii) (qk
′
, pk) ∈ E for k′ ≥ k if

◦k(p → ♢ q) ∈ π (iv) for each pi add (pi,⊤i) for each
i ≥ 1.

Intuitively, (ii) and (iii) are added because we can read □p and
♢p as a conjunction resp. disjunction of ◦ip, i ≥ 0. Condition
(iv) is meant to consider the dependencies of synchronization
steps. If there is a path from node ni to node nj such that
at least one of the arcs is negative, we say that ni negatively
depends on nj . If there is a path from ni to itself such that
at least one of the arcs is negative, we say that there is a
negative loop on ni.

Definition 17 (Temporal fork stratified program) For a
program π, we require (i) the absence of negative loops
on atoms in V , (ii) for every ni, nj ∈ V such that j < i,
ni cannot depend negatively on nj , (iii) for every rule to be
normal, and (iv) π to be fulfillment-free. If a π fulfills (i-iv),
we call it a temporal fork-stratified program.

Proposition 33 (Temporal fork stratified characterization)
Given a temporal fork stratified temporal program π, π is
satisfiable under TEL semantics iff it is satisfiable under
c-TEL semantics. Furthermore, if π is next-free, M is an
c-stable model of π iff M is a stutter-free stable model of π.

Given a Polarity-consistent-stratified temporal program π,
since it is a temporal stratified, then its minimal LTL models
are TEL models.

Since they are stratified, we can assume that there is an or-
der in the application of an immediate consequence operator.
Therefore, we can reason over a linear order and apply an
inductive argument.

Let us consider a generic position i, and let us assume that
synchronization steps have been proved till position i − 1.
Then, we compute the (unique) local consequence, which
should be in Ti for persistence. If we have to evaluate a
rule r = B(r) → H(r) with ◦p ∈ H , then if q ∈ B−(r),
then we know that p ̸= q because of condition (i). More
generally, ¬q is not affected by what it derives for condition
(i), therefore the evaluation of ¬q is not compromised by any
future q lately derived.

Since the initial condition does not require an initial syn-
chronization, therefore, we can apply the same (inductive)
argument for the initial case.

Counterexamples for not requiring condition (ii) on nega-
tive dependencies are Γ and Γ′.

[Davide: Can we extend this results to THT2 theories?]

13.3 Unfolding of the until operator

Normal form of γ ≡ φU ψ for TEL:

□(Łγ → Łψ ∨ Łφ)
□(Łγ → Łψ ∨ ◦Łγ)

□(Łψ → Łγ)
□(Łφ ∧ ◦Łγ → Łγ)

□(Łγ → ♢Łψ)

We can find a way not to force any synchronicity using
aux atoms:

□(¬Łs → Łs′)
□(¬Łs′ → Łs)

□(¬Łs′ → ◦Łs′)
□(¬Łs → ◦Łs)

We duplicate rules, putting ¬Łs (and ¬Łs′ ) in the body of
rules which have the next operator in the head. We obtain:

□(Łγ → Łψ ∨ Łφ)
□(Łγ ∧ ¬Łs → Łψ ∨ ◦Łγ)
□(Łγ ∧ ¬Łs′ → Łψ ∨ ◦Łγ)

□(Łψ → Łγ)
□(Łφ ∧ ◦Łγ → Łγ)

□(Łγ → ♢Łψ)

13.4 What happens with unstratified negation?
To consider:

π = □(¬p→ q) ∧□(¬q → p)

in relation with
π′ = □(p ∨ q)

From π it looks like we cannot extend a trace based on
an alternation based on the negation, i.e., such an alternation
cannot be used to derive a synchronization step.

From π′ we realize that we can fully positively derive
either p or q without any other assumption, therefore we
can alternate. Note that positive derived alternation is a
justification for a trace extension.

Therefore, we could use again the dependency graph for
this purpose. Namely, if alternation among a set of atoms U
is positively guaranteed, then it may be possible that we can
use the negation in a more unrestricted way. For instance, if
π′ belongs to the theory Γ, then we can use the negation over
p to derive ◦q.

13.5 EX
To investigate

(¬¬φ) ∧ ψ

13.6 Possible applications
• Planning, where a planning domain P is encoded as a

temporal program π(P ), but inertia rules r have ◦⊤ in
the body, namely ◦⊤ ∈ B+(r). Intuitively, repetitions of
actions in a plan may be considered fine, but stretching
the length of a plan because of inertia rules should not be
possible. Inertial rules should not force any extension of
the plan.
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Normal form for THT1
1 theories Let us consider a THT1

1
theory. We can always rewrite it into a normal form via
a Tsein transformation tr obtaining only formulas of the
following types:

φ1 ∧ φ2 ∧ · · · ∧ φk → ψ1 ∨ · · · ∨ ψi (27)
□(p) ↔ p□ (28)
♢(p) ↔ p♢ (29)
◦(p) ↔ p◦ (30)

Where φ1, . . . , φk and ψ1 ∨ · · · ∨ ψi are conjunction and
disjunction of atoms, either originally present in the alphabet,
or later introduced by the Tsein translation.

Now we want to rewrite the above formulas into a new
normal form, but this time under stable semantics preserving
equi-satisfiability. In order to do that, we rewrite (30) into

◦(p) ↔ (p◦ ∧m) (31)

And we add also {♢¬p ∧ p→ m,♢p ∧ ¬p→ m} for every
p ∈ A to the theory. We call this second transformation tr′
Claim: There exists a stable model for tr′(φ) iff there exists
a c-stable model for tr(φ).
Proof. The left to right direction is obtained by noting that if
there is a c-stable model for φ, then there is a c-stable model
for tr(φ). Furthermore, if there is a c-stable model for tr(φ),
then there is a stable model of tr(φ). Therefore, also one for

The right to left. If you derive m, then you derive a non-
contraction step. Let us assume for the sake of contradiction
that T is one of the shortest stable models for tr′(φ) and that
m ∈ T0, but T0 can be contracted, namely that there exist H
and µ such that |µ−(0)| > 1 such that ⟨H,T, µ⟩ |= φ.

Let us consider all three ways in which we can derive m
and the conclude a contradiction for all of them. □

14 Stutter minimality
• Define a less-stutter ordering

• Define stutter-minimal temporal equilibrium models

• Under which conditions, contracting TEMs are the stutter-
minimal TEMs and vice versa

• find an example of contracting TEM that is not stutter-
minimal (using ◦ and without using ◦)

• Study stutter-minimality under the Excluded Middle axiom
for all atoms. Which is the relation to stutter-invariance in
LTL?

15 Metric
Hint for metric: I suspect that the time stamp function τw
should not assign τh(i) = τt(µ(i)) but τh(i) = τt(µ(i+1)−
1) instead (if i+ 1 is a valid position), that is the last T-state
“covered” by Hi. In the example, this means for instance that
τh(0) = τt(1) and τh(1) = τt(4). When T is infinite but H
is not, the final state of the latter Hi with i = λh − 1 would
have τh(λh−1) = τt(µ(λh)−1) = τt(ω−1) but ω−1 is not
defined. In that case, we could make τt(i) either undefined
or perhaps ω meaning that this last state is an abbreviation
of the limit of the infinite sequence of remaining states in

T, and so, its time stamp is also a limit ordinal. So, in the
example, τh(2) = ω.

TE: I am not sure about this. How is then ⋄φ handled (one
misses the states before τt(µ(i+ 1)− 1? Note that the next
operator ◦φ is, for metric temporal logic, a particular case of
the interval ”cross-diamond”1,1]φ if I am not mistaken. So in
general one would need to think about how intervals in here
are mapped to intervals in there (?).

16 Examples
Example 18 (Not correct) Consider the traces H =
∅ · ∅ · {a}ω and T = ∅ · {a}ω. We have H ⪯ T because
T ↓id H, but also T ⪯ H because we can use H ↓µ T with
µ(0) = 0 and µ(i) = i− 1 for all i ≥ 1. Now, consider the
formula:

◦◦a ∧ ◦◦□(a→ ◦a) (32)

Note that this theory forces an infinite trace. In fact, the
only (synchronous) t-stable model of (32) is H and it seems
that this should also be the only c-stable model: there is
no reason to conclude a at step i = 1. Yet, we have both
⟨H,T, id⟩, 0 |= (32) and ⟨T,H, µ⟩, 0 |= (32). Apparently,
the fact T ↓id H has precedence over H ↓µ T. □

Example 19 Take again the traces H = ∅ · ∅ · {a}ω and
T = ∅ · {a}ω . Consider now the formula:

¬a ∧ ◦(a ∨ ¬a) ∧ ◦◦a ∧ ◦◦□(a→ ◦a) (33)

The two t-stable models of this formula are H and T. I had
made this observation before:

If we go for equivalence classes, both H and T would
be stable. But if we use Def2 then none would be stable

but this is wrong. We cannot form a model by contracting T
to H or vice versa because the formula ◦(a ∨ ¬a) forces us
to have H1 = T1.

These examples would lead us to the following definition

Definition 18 (Temporal Equilibrium Model (A2’)) A to-
tal cTHT-trace ⟨T,T, id⟩ is a temporal equilibrium model
of a theory Γ if it is a model of Γ (that is T, 0 |= Γ in LTL)
and for all H and µ such that ⟨H,T, µ⟩, 0 |= Γ we have
H ↓id T.

In the following example, we want to study a new source
of instability with respect to the usual TEL semantics.

Example 20 Modified after Meeting (18.Sept) Let us con-
sider the following formulas φ1 = □(¬◦⊤ → ◦⊤), φ2 =
¬◦⊤ → ◦⊤, and φ3 = □♢◦⊤. The unique TEL and LTL
models of φ1 are traces of length λ = ω. However, let us pro-
pose the following interpretation ⟨H,T, µ⟩, where H = ∅,
and T = ∅ω. Note that the only possible way to define µ is
µ(i) = 0 for each i ∈ [0, . . . λ). Applying the definition of
the semantics of cTHT, we obtain that ⟨H,T, µ⟩, 0 ⊨ φ1.
Therefore, we have found a source of instability. We could try
to stabilize φ1. Here follows some possible ways:

• adding □◦⊤, i.e., we are asserting that the trace is infinite,
therefore you are justifying what classically follows from
φ1;
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• adding a choice □(p∨¬p), since the alternation works as
a justification of an extension of the trace.

φ1 seems to require a justification for extending the trace,
while φ3 doesn’t.

Example 21 Let us consider the following formulas φ1 =
□♢¬◦⊤, and φ2 = □♢¬¬◦⊤. Given an interpreta-
tion ⟨H,T, µ⟩, and a time point i ∈ [0, . . . , λ), then
⟨H,T, µ⟩, i ⊨ φ1 implies that there exists j ≥ i such that
⟨H,T, µ⟩, j ⊨ ¬◦⊤. Note that ⟨H,T, µ⟩, j ⊨ ¬◦⊤ is equiv-
alent to ⟨T,T, id⟩, j′ ̸⊨ ◦⊤ for each j′ ∈ λ−1(j), therefore
we are requiring the T trace to be finite. Furthermore, if
H = ∅, then ⟨H,T, µ⟩, 0 ⊨ □♢¬◦⊤. Therefore, the unique
c-stable model is T = ∅.
φ2 requires T to be infinite, while H could be either finite

or infinite. Therefore, there are no c-stable models.

Claim: If there are no temporal operators within the
scope of negation (or dobule implication), then there exists a
T-stable model iff there exists a stable model.
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