On the Properties of Atom Definability and
Well-Supportedness in Logic Programming*

Pedro Cabalar!, Jorge Fandinno!-2, Luis Farinas?,

David Pearce®, and Agustin Valverde*

! Universidade da Coruiia, Spain
{cabalar, jorge.fandino}Qudc.es
2 University of Toulouse IRIT, CNRS, France
{jorge.fandinno,farinas}@irit.fr
3 Universidad Politécnica de Madrid, Spain
david.pearce@upm.es
4 Universidad de Mélaga, Spain
a_valverde@ctima.uma.es

Abstract. We analyse alternative extensions of stable models for non-
disjunctive logic programs with arbitrary Boolean formulas in the body,
and examine two semantic properties. The first property, we call atom
definability, allows one to replace any expression in rule bodies by an
auxiliary atom defined by a single rule. The second property, well-sup-
portedness, was introduced by Fages and dictates that it must be possible
to establish a derivation ordering for all true atoms in a stable model so
that self-supportedness is not allowed. We start from a generic fixpoint
definition for well-supportedness that deals with: (1) a monotonic basis,
for which we consider the whole range of intermediate logics; and (2),
an assumption function, that determines which type of negated formulas
can be added as defaults. Assuming that we take the strongest under-
lying logic in such a case, we show that only Equilibrium Logic satisfies
both atom definability and strict well-suportedness.

1 Introduction

Almost 30 years ago, the introduction of the stable models [I] semantics for
normal logic programs constituted the first general semantics for default nega-
tion that was defined on any normal logic program, without limitations on the
syntactic dependences among atoms and rules. Since then, many extensions of
stable models have been proposed in the literature to cope with more and more
general syntactic fragments that went beyond normal logic programs. If we ex-
clusively focus on propositional connectives, rule heads were soon extended to

* Partially supported by Xunta de Galicia (projects GPC ED431B 2016/035 and 2016-
2019 ED431G/01 for CITIC center) and ERDF; by the Centre International de
Mathématiques et d’Informatique de Toulouse (CIMI), contract ANR-11-LABEX-
0040-CIMI within program ANR-11-IDEX-0002-02; by UPM RP151046021 and by
Spanish MINECO project TIN2015-70266-C2-1-P.

include disjunction [2] and negative literals [3]. Going a step forward, [4] intro-
duced a type of rule B — H where both the body B and the head H could be
a so-called nested expression, that is, a Boolean formula allowing conjunction,
disjunction and negation, but not the implication symbol, which could not be
nested. The first extension of stable models to arbitrary propositional formulas,
including nested implications, was actually provided with the previous definition
of Equilibrium Logic [5] which, as proved in [0], is a conservative extension of
nested expressions and, as shown in [7], can be alternatively described in terms
of a formula reduct. Although Equilibrium Logic constitutes nowadays one of
the most successful and better studied logical characterisations for Answer Set
Programming (ASP), other approaches have been proposed trying to overcome
some features on which no agreement seems to have been reached so far. For
instance, one of those properties pursued by some authors is that stable models
of a program should be minimal with respect to the set of their true atoms. Al-
though this holds for disjunctive logic programs in all ASP semantics, the first
proposals for negation in the head (or double negation in the body) [3] already
violated minimality, this being also the case of Equilibrium Logic, which is a
conservative extension. For instance, a common way to represent a choice rule
in Equilibrium logic is using the expression:

-p = p (1)

with double negation or, alternatively, its strongly equivalent disjunctive form
pV—p that uses negation in the head. The equilibrium models of (1)) are # and {p},
which is not minimal. In an attempt to guarantee minimality for programs with
aggregates, Faber, Leone and Pfeifer [§] (FLP) came out with a new semantics
that was generalised to arbitrary propositional formulas in [9] while keeping the
minimality criterion. For instance, the unique FLP-stable model of is 0.

Apart from minimality, another property that has been recently considered
by Shen et al in [I0] is the extension of Fages’ well-supportedness [11], originally
defined for normal logic programs, to rules with a more general syntax like, for
instance, allowing Boolean formulas in the head or the body. Intuitively, a model
M is said to be well-supported if its true atoms can be assigned a derivation or-
dering (via modus ponens) from the positive part of the program, while the
interpretation of negated atoms is fixed with respect to M, acting like an as-
sumption a priori. Fages proved that well-supported models coincide with stable
models for normal logic programs, but did not specify how to extrapolate well-
supportedness to other syntactic classes. For instance, consider rule again
and model M = {p}. If we consider that ——p belongs to the “positive” part
of the program, then it should be included in the derivation ordering, as any
regular atom. However, doing so, there is no way to obtain p in a well-supported
manner, since we would have to assign ——p some level strictly smaller than p
and find a different rule to justify ——p, something that does not exist. On the
other hand, if ——p is seen as a “negated” formula (as happens with negated
atoms), then it should behave as an assumption and its truth should be fixed
with respect to M a priori as well. For M = {p}, =—p would directly hold, and
S0, rule would just behave as a fact for p, making it true.

In this paper, we provide a general definition of well-supportedness for pro-
grams with a head atom and a Boolean formula in the body. This definition
is parametrized in two ways: (1) the type of formulas that can be used as “as-
sumptions,” that is, whose truth is fixed with respect to some model M; and (2),
the monotonic logic that defines satisfaction of a rule body before applying the
rule to derive a new conclusion. For (1), we study three cases: negated atoms,
negated literals, and negated arbitrary formulas. For (2), we analyse the whole
range of intermediate logics, from intuitionistic to classical logic, both included.
In the paper, we prove that a group of variants collapse either into Equilibrium
Logic or Clark’s completion. To compare the different alternatives, we analyse
one more property we call atom definability. This property asserts that if we
replace occurrences of a formula ¢ in one or more rule bodies by a new auxiliary
atom a, and we define this atom with an additional rule ¢ — a, then we should
get a strongly equivalent program (modulo the original alphabet). As we will
see, this is important since semantics satisfying atom definability immediately
provide a way to unfold programs with double negation into regular, normal logic
programs. We show that, among the analysed variants, only those collapsing to
Equilibrium Logic or to Clark’s completion satisfy atom definability.

2 Auxiliary Atoms and Atom definability

In this section we introduce the property of atom definability and motivate its
importance for one of most powerful representational features of ASP: the defi-
nition of auwziliary atoms or predicates. Auxiliary atoms constitute a fundamen-
tal part of the widespread, commonly accepted, specification methodology for
problem solving in ASP called Generate, Define and Test (GDT) that we will
illustrate with a well-known example.

Ezample 1 (Hamiltonian cycles). Given a graph with nodes N and edges E C
N x N find cyclic paths that visit each node exactly once.

INPUT: Facts {node(X) | X € N} and {edge(X,Y) | (X,Y) € E}.

OUTPUT: Facts in(X,Y), edges forming a cyclic path that traverses all nodes.

In what follows, we represent logic program rules as implications B — H, B
being the rule body and H the rule head. We also use A and — instead of commas
and not, respectively. When using a expression with variables we assume it is
an abbreviation of the conjunction of its possible ground instantiations. We also
assume finite domains, leaving the infinite case for the future extension to first-
order. A possible ASP representation of this problem would be:

edge(X,Y) — 0 {in(X,Y)} 1 (2)
in(X,Y)ANin(X,Z2)\NY 2 — L (3)

(X, Y)Nin(Z,Y)NX +Z — L (4)
node(X) Anode(Y) A —reach(X,Y) — L (5)
n(X,Y) — reach(X,Y) (6)

(X, Z) ANreach(Z,Y) — reach(X,Y) (7

The GDT methodology identifies three main groups of rules:

G = non-deterministic choices that generate potential solutions. In our case, we
have the choice rule (2)) so that, for each edge edge(X,Y") in the graph, we
may freely decide to include 0 or 1 instances of fact in(X,Y") in our solution.

T = constraints that rule out undesired solutions (the test part). In the exam-
ple, rules , , check that we generate linear paths and that any pair
of nodes are mutually reachable.

D = definition of auxiliary predicates when features for G and T cannot be
directly represented in the ASP language. In the example, rules @ and
define the auziliary predicate reach(X,Y’), the transitive closure of in(X,Y).

Although choice rules like are already included in the standard input
language ASP Core 2.0 [12] (used for the ASP solvers competition), their se-
mantics is actually defined in terms of auxiliary predicates. In the past, before
the introduction of choices, a common way to represent was:

edge(X,Y) A —out(X,Y) = in(X,Y) (8)
edge(X,Y) N —in(X,Y) = out(X,Y) 9)

using another auxiliary predicate out(X,Y). An important observation, some-
times underestimated, is that these auxiliary predicates are not a relevant part
of the problem definition. In Example [I] this problem definition involves input
predicates node and edge plus the output predicate in describing the result.
Predicates out and reach are representational resources used internally and are
not to be included in the final result, as their extent is irrelevant for the prob-
lem solution. Think, for instance, that out(X,Y") eventually collects the edges
that are not in(X,Y), so it does not provide new information and its use is
merely technical. Moreover, if we had to compare two different ASP encodings
of the Hamiltonian cycle problem, it seems obvious that predicates out and reach
should not be part of the language. In fact, all ASP solvers provide some option
to hide irrelevant predicates.

In the previous example, we saw a pair of features (the transitive closure and
the choice rule) whose semantics could be directly defined in terms of auxiliary
atoms. Of course, when doing so, correctness is not an issue, since the applica-
tion of auxiliary atoms is done by definition. However, one may wonder what
happens when we want to use auxiliary predicates to capture the meaning of
some expression or formula that is not an ASP extension, but is part of the
basic language from normal logic programs. Can we trust that the replacement
is correct? To illustrate this idea, consider the following common situation. We
introduced a large graph instance for which we expect to find some Hamiltonian
cycle, but the execution of the ASP solver yields no solution. In order to identify
which constraint might have been applied, we decide to replace by:

unreach(X,Y) — L (10)
node(X) Anode(Y) A —reach(X,Y) = unreach(X,Y) (11)

i.e., the constraint body is now captured by an auxiliary predicate unreach(X,Y)
that keeps track of pairs of disconnected nodes. We momentarily remove and
find a pair of nodes in the graph for which some edge was missing by mistake.
Then, we decide to keep , (11)) for repeating this debugging technique. Now,
can we safely replace by || in any context?

This question is directly related to the formal property of strong equiva-
lence [6]. Let V be some vocabulary or set of atoms, and Ly a syntactic language,
with signature V, for which stable models are defined. Moreover, let SM(I") de-
note the set of stable models for some I' C Ly,. We say that two theories I, I/
are strongly equivalent, written I' = I, iff SM(I" U A) = SM(I” U A) for any
arbitrary theory A C Ly,. That is, I" and I"” provide the same results even when
joined with any arbitrary common context A. This definition assumes that I", "’
and A deal with the same common signature V. However, as we discussed be-
fore, auxiliary atoms should be kept hidden inside I" and I'" and not used for
comparison. To cope with different vocabularies, we further specialise to one
of the variants considered in [I3] recently named projective strong equivalence
n [T4]. Suppose that the vocabularies of I and I are, respectively, V U U and
V UU’, where U and U’ represent hidden local atoms. We write now SMy (I)
to stand for the set of stable models of I restricted to vocabulary V, that is
SMy (I") A {INV | I € SM(I')}. Then, two theories I, I"" satisfy projective
strong equivalence with respect to vocabulary V' (are V-strongly equivalent, for
short), written I" =y I'" iff SMy (I"'UA) = SMy (I U A) for any theory A C Ly

Using this formal concept, our example amounts to asking whether the pro-
grams [= {} and IV = {, } are V-strongly equivalent for any vocab-
ulary V' not containing unreach(X,Y’). Since defines predicate unreach,
and the latter cannot be defined anywhere else in the program, we obviously
expect an affirmative answer to this question. We can even generalise this prop-
erty in the following way. We say that a syntactic language Ly for vocabulary
V' is implicational if it contains, at least, the implication symbol —. A program
I' C Ly from an implicational language Ly is a set of implications (rules) so
that, for each rule (& — 8) € I' the formulas « (the body) and S (the head) do
not contain implicationsﬂ in their turn. Given a program I', let I'[¢/a] denote
any theory resulting from arbitrarily replacing some occurrences of formula ¢ in
the rule bodies of I" by an atom a.

Definition 1 (Atom definability). We say that a semantics for an implica-
tional language Ly satisfies atom definability iff for any program I' C Ly, any
subformula ¢ occurring in one or more bodies of I' and any fresh atom a ¢ V:

I'=y I'lp/a] U {p — a} =
In our example, we have replaced each ground instance of body formula ¢ =

node(c) Anode(d) A —reach(c,d) in (5)) by a new ground atom a = unreach(c,d),
being the result I'[¢/a] of these replacements. On the other hand, it is easy

® We allow the exception ¢ — L since, as we will see later, this corresponds to ¢ in
intermediate logics.

to see that corresponds to the new rule ¢ — a. Thus, these replacements
would be V-strongly equivalent to the original formula if we chose a semantics
satisfying atom definability. In the general case, it seems clear that this is an in-
teresting property that one would wish to guarantee, as it is behind the intuitive
use of auxiliary predicates. However, the consequences of such a property may
also affect the admissible semantics for other extensions going beyond normal or
disjunctive logic programs. For instance, suppose that bodies with double nega-
tion were introduced in ASP for the first time and that no previous semantics
for this extension were available. We could still see each doubly negated atom
——p as an expression —¢ where ¢ = (—p). Then, atom definability should allow
us simply to replace =—p by —a providing that a is a fresh atom and we include
a rule ¢ — a in the program. This means that atom definability immediately
provides a method to remove double negation. For instance, take again under
this new reading: — :ﬁ — p. Atom definability guarantees that:

©
- a—p (12)
-p —a (13)
~~
©

is strongly equivalent to relative to any original signature not containing a.
In particular, as the stable models of (12)-(13) are {p} and {a}, atom defin-
ability implies that the stable models of (1) must be the result of filtering out
atom a, i.e., {p} and (). In other words, any argument against obtaining {p}
and () as stable models of becomes an argument against obtaining {p} and
{a} as regular stable models for the normal logic program (12)-(13]), under the
reasonable assumption that definition of auxiliary atoms works “as expected”.

3 Formal preliminaries

We recall some basic preliminaries and definitions that will be used in the rest
of the paper. Here, we will restrict attention to propositional formulas, leaving
first-order extensions for future work. Propositional formulas are built in the
usual way over a wvocabulary or set V of atoms plus connectives A, V, — and
L. We regard —y is an abbreviation of ¢ — L, that T stands for —L and that
@ <> 1 stands for (¢ — P) A (Y — ¢). A literal is an atom p (positive literal)
or its negation —p (negative literal). Given a conjunction of literals B, we write
Bt and B~ to respectively stand for the conjunctions of positive and negative
literals in B (empty conjunctions correspond to T). As expected, a negated literal
can be either =p or =—p. Note that, in intermediate logics, =—p does not need to
be equivalent to p whereas operator — is independent from A and V and cannot
be defined in terms of the latter. We say that an occurrence of formula ¢ in I" is
positive iff ¢ is in the scope of an even number of implication antecedents in I.
We also say that occurrence ¢ is negated in I' iff ¢ is in the scope of negation
in I', that is, it is in the antecedent of some implication with L as consequent.

Note that ¢ can be both positive and negated in I': for instance, p is positive
and negated in (p — q) — L, but ¢ is just negated. A Boolean formula (also
known as nested expression [4]), is a propositional formula exclusively formed
with operators A,V,— and L. In other words, Boolean formulas do not contain
— except in negations ¢ — 1, that is, —p.

Let L be a propositional logic and let M |=r, ¢ represent its satisfaction
relation for an interpretation M and formula ¢. M is said to be a model of a
theory I') written M =g, I, iff it satisfies all formulas in I". As usual, we say that
I" entails a formula 1, written I' =1, v, iff all models of I" satisfy ¢. Similarly,
v is a tautology, written |=r, ¢, if any interpretation is a model of ¢. We write
CL to stand for Classical Logic. As usual, a classical interpretation M is just
a set of atoms M C V. We write IL for Intuitionistic Logic and briefly recall
its semantics. A frame is a pair (W, <) where W is a set of points or ‘worlds’
and < is a partial order on W. An interpretation has the form (W, <, v) where
v: W — 2V assigns a set of true atoms to each world, satisfying v(w) C v(w’)
for all pairs of worlds w < w’. We define when M = (W, <, v) satisfies a formula
¢ at some world w, written M, w |=1r, ¢, in the following recursive way:

— M,w |=p iff p € v(w) for any atom p € V

- M,wlE L

M,wlEaAfiff Mw|=aand M,w =0
MwlEaVvpiff Mjwl=aor M,wl=p

— M,wEa— giff for all w’' > w, M,w' £« or M,w' |=8

Intuitionistic logic IL is strictly weaker than classical logic CL, IL C CL, since
many classical tautologies (such as pV —p) are not tautologies in IL. By an inter-
mediate logic we mean any logic L lying between IL and CL, IL C L C CL. The
strongest (non-classical) intermediate logic is known as the logic of Here-and-
There, HT and is defined by frames with two worlds W = {h,t} (respectively
called here and there) fixing h < ¢. An HT model can be represented as a
pair (H,T) with H C T corresponding to frame ({h,t}, < ,v) where v(h) = H
and v(t) = T. An HT interpretation M = (H,T) is said to be an equilibrium
model of a theory I' it H = T, M =gt ' and there is no H' C H such that
(H',T) |=ur I'. Equilibrium logic is the logic induced by equilibrium models.

Theorem 1. Equilibrium Logic satisfies the atom definability property (Def. .
Moreover, this property holds even when allowing nested implications in I', given
that the replaced occurrences of ¢ do not occur positively non-negated in I.

The extension in Theorem [1]for nested implications does not hold if ¢ occurs
positively non-negated in I'. As an example, take the program I consisting of
((p = q) — p) and (p — ¢) whose only stable model is {p,q}. Assume that
@ is the leftmost occurrence of p in the first formula, which occurs positively
non-negated. Then, I'[¢/a]U{¢ — a} contains the rules ((a — q) — p), (p — q)
and (p — a) yielding no stable model. The intuition for this limitation is that
a positive, non-negated occurrence of a formula acts as a rule head in HT. In
fact, (p — q) — p is HT-equivalent to the pair of rules =—¢ — p and —p — L.

Although equilibrium models are defined for arbitrary propositional theories,
the syntactic fragment we will identify as logic programs in this paper will be
more limited, since we are interested in extensions of normal programs for which
we can still find a natural definition of well-supportedness. We define a Boolean
(logic) program P to be a set of rules B — p where the body B is a Boolean
formula and the head p is an atom. As usual, P is further said to be a normal
(logic) program iff all rule bodies in P are conjunctions of literals. We assume the
reader is familiar with normal programs and their stable model semantics [I].
As is well-known, equilibrium models coincide with stable models in the sense
that an interpretation M is a stable model of a normal program P iff (M, M) is
an equilibrium model of P, [5].

Clark’s completion [15] of a normal program P, denoted as COMP(P), corre-
sponds to the union of P and the implications p — By V - - - V B,, for each atom
p € V where By,..., B, are the bodies of all rules B; — p in P for that head
atom. As usual, if no rules exist for p, then the empty disjunction corresponds
to L. The intuitive reading of COMP(P) is that each true atom in M must have
some supporting rule B; — p in P whose body is true in M, M |= B;. We say
that a classical interpretation M is a supported model of P iff M |=c1, COMP(P)
and, by abuse of notation, we also write COMP(P) to represent the supported
models of P. For normal programs, it is well-known that SM(P) C COMP(P)
but the converse does not necessarily hold. The main difference relies on the
behaviour of positive loops. For instance, take the program P;:

gAN—Tr =D (14)

p—q (15)

Its completion is the conjunction of P; plus the implications (r — 1), (p —
gN—r) and (¢ — p). The resulting theory is classically equivalent to —r A (p < q)
having two supported models) and {p, ¢} while only the former is stable. To
overcome this difference, Fages [I1] strengthened supported models as follows.
A classical interpretation M is a well-supported model of a normal program P
iff there exists a strict partial order < on M such that, for every atom p € M,
there is a rule (B; — p) € P that satisfies: (i) M |= B; and (ii) ¢ < p for every
positive literal ¢ in B;. In the example above, the supported model M = {p, ¢}
is not well-supported. To see why, note that the only support for p is whose
body holds in M. To be well-supported, we would need a strict order < satisfying
q < p for the positive literal ¢ in the body. However, the only support for ¢, in
its turn, is whose body also holds in M and we would also need its positive
literal to satisfy p < ¢. If we add fact p to program Pj, then the new program
P, has a unique well-supported model {p, ¢} where p is supported by the fact
and ¢ is supported by with the order p < ¢q. Fages proved that the stable
models of a normal logic program coincide with its well-supported models.

4 Well-supported models of Boolean programs

Extending the definition of supported models from normal to Boolean programs
is straightforward: for each true atom p in M, we must still find some rule B; — p

in the program with true body M |= B; to support it. So, we add the formulas
p — B V---V B, collecting all bodies B; for head p in the program — the
fact that these bodies are Boolean formulas does not affect the definition in a
substantial way. For instance, the completion of would become p < ——p
which is a classical tautology, its supported models being (§ and {p}.

Theorem 2. Supported models of Boolean programs satisfy atom definability.

The extension of well-supportedness to Boolean bodies, however, is not so
immediate, as it depends on the syntactic form of the rule body, treating negative
and positive literals in a different way. Given a candidate model M, an interesting
observation is that all negative literals are directly interpreted with respect to
M, regardless of the derivation order < we choose. Thus, we can simply add
them to the program as a set of axioms Ay := {-p | p € V\ M} we call
assumptions. On the other hand, for finding a supporting rule B — p for p, all
atoms in B* must be strictly smaller than p with respect to relation <. Let us
define M-, := {q € M | ¢ < p}, that is, all atoms in M strictly smaller than p.
Using these ideas, we can rephrase the definition of well-supported model in a
way that does not depend on the rule body syntax:

Proposition 1. M is a well-supported model of a normal program P iff there
exists a well-founded strict partial order < on M such that, for each p € M,
there is a rule (B — p) € P satisfying: M, U Ay |=c1 B. m|

The use of negated assumptions Aj; shares some resemblance with McDer-
mott and Doyle’s [16] fixpoint definition of expansion E for non-monotonic modal
logics: in that case, the epistemic negation =Ly of any formula ¢ ¢ E can be
added as assumption. As an example of Proposition[I] consider program Ps con-
sisting of (b A —m¢ — d) and fact b. Its unique well-supported model is {b,d},
associated to order b < d. It is easy to see that d is justified because the body
of its rule b A —c is classically entailed by M-,y = {b} and Ay = {—c}. Now,
Proposition [I] can be directly used to provide a definition of well-supported
model for Boolean programs by simply generalising the form of rule bodies B
from conjunctions of literals to Boolean formulas. Unfortunately, this direct ex-
trapolation does not satisfy atom definability. Take again and consider the
interpretation M = {p}. As we only have one atom and this atom is true,
M~, U Ay = 0 while the only possible rule is not supported 0 f~cr, ~—p. How-
ever, as we explained in Section to respect atom definability, should behave
as the program — after removing atom a, so {p} must be a stable model
of both programs. This example apparently creates a false dilemma: either we
choose well-supportedness or atom definability, but not both. We claim, how-
ever, that the apparent dilemma can be resolved by allowing the concept of
well-supportedness to be parametrised in at least two different ways. A first, ob-
vious way is to permit different logics to characterise the monotonic entailment
relation in Proposition [I} so one would expect, for instance, that Equilibrium
Logic corresponds to HT instead of CL. Different semantics may arise from
considering other logics but, as we will show, if we focus on the whole family of

intermediate logics, most variants collapse into a pair of non-monotonic alterna-
tives, one of them being Equilibrium Logic. A second observation is that there
is no reason a priori why the set of assumptions Aj,; should be restricted to
negated atoms. As mentioned, in non-monotonic modal logics, assumptions may
involve negations of more general formulas. Given a class of formulas C C Ly,
we define the corresponding set of assumptions with respect to a classical inter-
pretation M as AS; :={ ~¢ | ¢ € C, M [cL ¢ } that is, we collect the negation
of all formulas of class C not satisfied by M. We are particularly interested in
three classes: the set of atoms, the set of literals and the set of propositional for-
mulas, respectively denoted with the superscripts at, lit and for. Thus, Ay; used
before corresponds now to A4%. This leads us to the following general definition
of well-supported model.

Definition 2 (Well-supported model). Given a logic L and a class of as-
sumption formulas C, a set of atoms M is a LC-well-supported model (for
short, L¢-model) of a Boolean program P iff there exists a strict partial or-
der < on M such that, for each p € M, there is a rule (B — p) € P satisfying
M=, UAS, L B. a]

Under this new notation, [I0] corresponds now to CL*-models, that is, we
use classical entailment of rule bodies and take negated atoms as assumptions.
If we consider the class of literals C = lit as assumptions, then we obtain the
following characterisations of supported and equilibrium models.

Theorem 3. If P is a Boolean program and M a classical interpretation:

(i) M is a supported model of P iff M is a CLlit—mode{ of P.
(ii) (M, M) is an equilibrium model of P iff it is a HT"-model of P. i

Property (i) means that we can see Clark’s completion (supportedness) as a
degenerate case of well-supportedness. This is because A% has M as its unique
classical model, so the other part of the well-supportedness condition M, has
no effect at all. Property (ii), however, has a different reading. It means that
equilibrium models are well-supported if we take negated literals as assumptions
and use HT entailment to interpret them. Remember that ——p is not HT-
equivalent to p. Definition [2] gives us a new reading of their meanings: ——p
corresponds to assuming that p will not eventually become false, while p must be
derived from rules under some derivation order <. Therefore, Equilibrium Logic
simultaneously satisfies well-supportedness (in a non-degenerate way) besides
atom definability. What happens with the rest of variants that can be obtained
from Definition 2 These variants are not completely unrelated. For instance,
well-supported models for LC are preserved for stronger logics or for more general
assumption classes, as stated below.

Proposition 2. Let M be a L€-model of a Boolean program P. Then, for any
logic M D L and any D D C, M is also an MP-model of P. O

10

As we showed that CL*-models do not satisfy atom definability because
{p} is not a CL%-model of , by the proposition above, {p} will not be a
well-supported model of in any weaker logic either, and so:

Corollary 1. For any L C CL, L%-models do not satisfy atom definability. O

The next result shows that, at least for intermediate logics, the remaining
combinations for monotonic logics and where C includes at least the set of literals
lit, eventually collapse into supported or equilibrium models.

Theorem 4. Let P be a Boolean program and C O lit. Then:

(i) M is a CLC-model of P iff M is a supported model of P.
(i) For any intermediate logic L C CL:
M is a LE-model of P iff (M, M) is an equilibrium model of P. |

That is, we obtain the same result as in Theorem [3] even if we use any non-
classical intermediate logic L from IL to HT. Again, (i) is not surprising since,
for classical logic, the set A4 fixes a unique model M and the same will happen
for any C D lit. So, strictly speaking, supported models are not well-supported,
since they admit any arbitrary partial order relation <. This means that the
only non-monotonic candidate from Definition 2] among intermediate logics that
satisfies strict well-supportedness and atom definability is Equilibrium Logic.

5 Related Work and Conclusions

We have examined two properties, well-supportedness and atom definability,
that we suggest might be taken as desiderata for a sound methodology for gen-
eralised logic programming based on the concept of stable model. Given certain
assumptions and a range of possible underlying logics, it turns out that essen-
tially only Equilibrium Logic satisfies both conditions. This may be seen as a
new and strong argument in its favourﬁ

A related approach to generalising well-supportedness for Boolean programs
is pursued in [I0], proposing a modification of the so-called FLP-semantics of
[8]. Though the approach we have taken here is related, it is less restrictive than
that of [10], since assumptions there are restricted to negated atoms, A¢} in our
notation, and logical inference is classical, based on |=c1. A fuller analysis and
discussion of [I0] is left for future work. However, we can already remark that
the semantics proposed in [I0] does not satisfy atom definability.

We plan to extend this analysis to other semantics for Boolean programs
such as [I7] and the ones studied in [I8]. An important topic for future study is
to provide a full, first-order logical account of these desiderata.

Acknowledgements. We are very thankful to the anonymous reviewers for their
helpful comments and suggestions to improve the paper, especially for pointing
out example after Theorem [I] which led to a more accurate reformulation.

5 Many other properties of Equilibrium Logic, studied elsewhere, also speak in its
favour, eg. not least the characterisation of strong equivalence, [6].

11

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Gelfond, M., Lifschitz, V.: The stable models semantics for logic programming. In:
Proc. of the 5th Intl. Conf. on Logic Programming. (1988) 1070-1080

Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9 (1991) 365-385

Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Program-
ming 35(1) (1998) 39-78

Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence 25 (1999) 369-389

Pearce, D.: A new logical characterisation of stable models and answer sets. In:
Non monotonic extensions of logic programming. Proc. NMELP’96. (LNAT 1216).
Springer-Verlag (1997)

Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2(4) (October 2001) 526-541

Ferraris, P.: Answer sets for propositional theories. In Baral, C., Greco, G., Leone,
N., Terracina, G., eds.: Proceedings of the 8th International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05). Volume 3662 of Lecture
Notes in Computer Science. Springer-Verlag (2005) 119-131

Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In Alferes, J.J., Leite, J., eds.: Proc. of the 9th
European Conf. on Logics in Artificial Intelligence, JELIA 2004, Lisbon, Portugal,
September 27-30, Berlin, Heidelberg, Springer (2004) 200-212

Truszczynski, M.: Reducts of propositional theories, satisfiability relations, and
generalizations of semantics of logic programs. Artificial Intelligence 174(16)
(2010) 1285 — 1306

Shen, Y.D., Wang, K., Eiter, T., Fink, M., Redl, C., Krennwallner, T., Deng,
J.: {FLP} answer set semantics without circular justifications for general logic
programs. Artificial Intelligence 213 (2014) 1 — 41

Fages, F.: Consistency of Clark’s completion and existence of stable models. Jour-
nal of Methods of Logic in Computer Science 1(1) (1994) 51-60

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T,
Leone, N., Ricca, F., Schaub, T.: ASP-Core-2 input language format (2013) Avail-
able at https://www.mat.unical.it/aspcomp2013/ASPStandardization.

Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set
programming. In Kaelbling, L.P., Saffiotti, A., eds.: Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence (ILJCAT’05), Edinburgh,
Scotland, UK, Professional Book Center (2005) 97-102

Aguado, F., Cabalar, P., Fandinno, J., Pearce, D., Pérez, G., Vidal, C.: Forgetting
auxiliary atoms in forks. In: Proc. of the 10th Workshop on Answer Set Program-
ming and Other Computing Paradigms (ASPOCP’17). (2017)

Clark, K.L.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and
Databases. Plenum (1978) 293-322

McDermott, D.V., Doyle, J.: Non-monotonic logic I. Artificial Intelligence 13(1-2)
(1980) 41-72

Tasharrofi, S.: A rational extension of stable model semantics to the full proposi-
tional language. In: Proceedings of the Twenty-Third International Joint Confer-
ence on Artificial Intelligence. IJCAT’13, AAAI Press (2013) 1118-1124

Alviano, M., Faber, W.: Stable model semantics of abstract dialectical frameworks
revisited: A logic programming perspective. In: Proceedings of the 24th Intl. Joint
Conf. on Artificial Intelligence (IJCAI’15). (2015) 2684-2690

12

	On the Properties of Atom Definability and Well-Supportedness in Logic Programming

