A Normal Form for Linear Temporal
Equilibrium Logic*

Pedro Cabalar

Dept. Computacién, University of Corunna (Spain)
cabalar@udc.es

Abstract. In previous work, the so-called Temporal Equilibrium Logic
(TEL) was introduced. This formalism provides an extension of the An-
swer Set semantics for logic programs to arbirary theories in the syntax
of Linear Temporal Logic. It has been already shown that, in the non-
temporal case, arbitrary propositional theories can always be reduced to
logic program rules (with disjunction and negation in the head) inde-
pendently on the context. That is, logic programs constitute a normal
form for the non-temporal case. In this paper we show that TEL can
be similarly reduced to a normal form consisting of a set of implications
(embraced by a necessity operator) quite close to logic program rules.
This normal form may be useful both for a practical implementation of
TEL and a simpler analysis of theoretical problems.

1 Introduction

Logic programs under the answer set (or stable model) semantics [I] have be-
come a succesful paradigm for practical knowledge representation. The success
of Answer Set Programming (ASP) partly comes from a combination of solid
theoretical foundations with the availability of efficient solvers [2] that allowed
its use for real world applications. Among these typical applications of ASP we
frequently find dealing with transition systems and action theories. In this set-
ting, the nonmonotonic reasoning capabilities of ASP play a crucial role for a
suitable treatment of problems like prediction, explanation, planning or diagnos-
tics, allowing a natural representation of default rules like the well-known inertia
default for solving the frame problem [3]. However, the use of ASP solvers for ac-
tion domains has an important limitation: it requires fixing a finite length for the
sequence of transitions a priori, so that the program can be properly grounded.
In this way, it is impossible to deal with problems like the non-existence of solu-
tion (of any length) for a given planning problem or the study of properties like
the equivalence of two representations, to put a pair of examples.

A natural choice for dealing with this kind of problems is extending ASP
with modal operators, as those used in Propositional Linear Temporal Logic [4]
(LTL). Defining such an extension becomes quite straightforward if we start
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from a purely logical characterisation of ASP, like the one provided by Equi-
librium Logic [5l6]. Equilibrium Logic has proved to be a powerful tool for the
theoretical analysis of ASP, motivating the study of strong equivalenceﬂ between
logic programs [7], covering most syntactic extensions considered up to date, or
being closely related to the conception of new definitions of stable models for
arbitrary propositional [8] and first order theories [9]. Another important advan-
tage is that its formal definition is extremely simple: it amounts to a selection
criterion among models of the (monotonic) intermediate logic of Here-and-There
(HT) [10].

An extension of Equilibrium Logic for dealing with LTL operators was first
introduced in [IT] under the name of Temporal Equilibrium Logic (TEL). This
modal extension has been already used for encoding action languages [I1] or
for checking strong equivalence of temporal logic programs by a reduction to
LTL [12]. However, the interest of TEL has mostly remained theoretical, as there
does not exist any automated method for computing the temporal equilibrium
models of an arbitrary modal theory yet. An important step in this direction
has to do with reducing the arbitrary syntax of temporal theories into a normal
form closer to logic programming rules. For instance, in the non-temporal case, it
has been already proved [13] that any arbitrary propositional theory is strongly
equivalent to a logic program (allowing disjunction and negation in the head), so
that logic programs constitute a normal form for Equilibrium Logic. Similarly, in
the case of (monotonic) LTL, an implicational clause-like normal form introduced
in [14] was used for designing a temporal resolution method.

In this paper we show that TEL can be similarly reduced (under strong
equivalence) to a normal form consisting of a set of implications (embraced by a
necessity operator) quite close to logic program rules. The reduction into normal
form starts from the structure-preserving polynomial transformation presented
in [15] for the non-temporal case. This transformation has as a main feature the
introduction of an auxiliary atom per each subformula in the original theory. We
then combine this technique with the inductive definitions of temporal opera-
tors used for LTL in [I4]. The obtained normal form considerably reduces the
possible uses of modal operators and may be useful both for a future practical
implementation of TEL and a simpler analysis of theoretical problems.

The rest of the paper is organised as follows. In Section [2} we introduce the
(monotonic) temporal extension of HT. In the next section, we then define the
models selection criterion that gives raise to TEL, providing some concepts and
definitions and introducing the normal form. Section [4] details the translation
and contains the proof of its correctness. Finally, Section [5| discusses related
work and Section [f] concludes the paper.

! Two programs are strongly equivalent when they yield the same answer sets even
when they are included in a common larger program or context.



2 Linear Temporal Here-and-There (THT)

The logic of Linear Temporal Here-and-There (THT) is defined as follows. We
start from a finite set of atoms V called the propositional signature. A (temporal)
formula is defined as any combination of the classical connectives A, V, —, 1 with
the the (binary) temporal operators U (read “until”) and R (read “release”) and
the atoms in V. A formula is said to be non-modal if it does not contain temporal
operators. Negation is defined as —¢ def ¢ — L whereas T df _ 1. As usual,
¢ < 1 stands for (¢ — ) A (¢ — ). Other usual temporal operators can be
defined in terms of U and R as follows:

def def def
Op=LRe O0p=TUe WY = (pUY)VDp

Given a formula I') by size(I') we understand the number of occurrences
of atoms and connectives A,V,—, L, (O,U,R in I'. When [ is a finite theory,
we assume we deal with the conjunction of all its formulas. For any theory I,
subf(I') will denote the set of all subformulas of I".

A (temporal) interpretation M is an infinite sequence of pairs m; = (H;, T;)
with ¢ =0,1,2,... where H; C T; are sets of atoms standing for here and there
respectively. For simplicity, given a temporal interpretation, we write H (resp. T)
to denote the sequence of pair components Hy, Hy,... (resp. Ty, T1,...). Using
this notation, we will sometimes abbreviate the interpretation as M = (H, T).
An interpretation M = (H, T) is said to be total when H = T.

Let M be an interpretation for a signature U and let V' C U. The expression
M NV denotes the interpretation M restricted to signature V', that is M NV is
a sequence of pairs (H; NV, T; NV for any (H;,T;) with ¢ > 0 in M.

Given an interpretation M and an integer number k& > 0, by M}, we denote
a new interpretation that results from “shifting” M in k positions, that is, the
sequence of pairs (Hy, Tx), (Hi4+1, Te+1), (Hr+2, Tk42), . - - Note that My = M.

Definition 1 (satisfaction). An interpretation M = (H, T) satisfies a formula
©, written M = ¢, when:

MEp ifp€ Hy, for any atom p.

MEpAY ifME@pandM E .

ME VY if MEgorME1.

HT)Ee—=1v if{x,T)FEpor{x,T) ¢ forallz e {H,T}.
ME Q¢ if M1

MEeUe if3j>0, M=t andVk st. 0<k<j, M=o
MEeRY ifVi>0, Mj=vordkst 0<k<j, MpEop

RS O oo~

A formula ¢ is valid if M |= ¢ for any M. A theory is any set of formulas.
An interpretation M is a model of a theory I', written M = I', ift M | «, for
all formula o € I'.

We assume that a finite sequence M = my,mao, ..., m, is an abbreviation
of an infinite sequence where the remaining elements coincide with m,,, that is,
that for ¢ > n, m; = m,. The logic of THT is an orthogonal combination of



the logic of HT and the (standard) linear temporal logic (LTL) [4]. When we
restrict temporal interpretations to finite sequences of length 1, that is (Hy, 1)
and disregard temporal operators, we obtain the logic of HT. On the other hand,
if we restrict the semantics to total interpretations, (T, T) = ¢ corresponds to
satisfaction of formulas T | ¢ in LTL. In this sense, item [4] of Definition [1] can
be rephrased as:

4. (H,T) = o — ¢ if both (1) (H,T) = ¢ implies (H, T)  v¢; and (2)
T E ¢ — 1 in LTL.

Similarly (H, T) = ¢ < ¢ if both (1) (H,T) | ¢ iff (H,T) | ¢; and (2)
T | ¢ < ¢ in LTL. The following proposition can also be easily checked.

Proposition 1. For any I' and any M = (H,T), if M=T then TET. O

The next result shows that, for formulas not containing implications, equiv-
alence in LTL and THT coincides.

Proposition 2. Let ¢ and v be two formulas not containing implicatioﬂ. Then
@ Y is a THT tautology iff it is an LTL tautology.

Proof. As LTL models correspond to THT total models, it is obvious that any
THT tautology is an LTL tautology too. For the other direction, assume ¢ < ¥
is LTL valid but for some intepretation M = (H, T), M }£~ ¢ < . This means
that, either (i) T = ¢ is not equivalent to T |= 4 or (ii) M = ¢ is not equivalent
to M |= 9. The former immediately contradicts that ¢ < 1 is an LTL tautology.
So, suppose (ii) and, without loss of generality, that M |= ¢ but M |~ 9. Looking
at the definition of THT satisfaction, it is easy to observe that the only way to
refer to the T component in (H, T) is via implication. Since ¢ and ¢ do not
contain implications, the T component is irrelevant and we conclude that for
any interpretation M’ = (H, T'), M’ | ¢ and M’ [£ 4, including the case
M’ = (H,H). But this means there exists a LTL intepretation H for which
H | ¢ and H }~ 9 contradicting that ¢ < 1 is an LTL tautology. O

In particular, the following LTL valid formulas are also THT valid:

pUY =PV (eAO(p U P)) (1)
PRY=PA(pVO(p RY)) (2)

We can alternatively represent any interpretation M = (H, T') by seeing each
m; = (H;,T;) as a three-valued mapping m; : V' — {0, 1,2} so that, for any atom
p, mi(p) =0 when p € T; (the atom is false), m;(p) = 2 when p € H; (the atom
is true), and m;(p) = 1 when p € T; \ H; (the atom is undefined). We can then
define a valuation for any formula ¢, Writterﬂ M(yp), by similarly considering

2 Remember that negation is a form of implication.

3 We use the same name M for a temporal interpretation and for its induced three-
valued valuation function — ambiguity is removed by the way in which it is applied
(a structure or a function on formulas).



which formulas are satisfied by (H, T) (which will be assigned 2), not satisfied
by (T, T) (which will be assigned 0) or none of the two (which will take value 1).
By M, () we mean the 3-valuation of ¢ induced by the temporal interpretation
M;, that is, M shifted i positions. From the definitions in the previous section,
we can easily derive the following conditions:

M(p) = mo(p

: )
2. M(p A ) & min(M(p), M(¥); Mg V) < maz(M(p), M(1)))
if M(p) < M(%)
3. M { ) otherwise
4. M(O >def M (¢)

. 2if 35 >0: M;(p) =2 and VEk,0 <k < j = M) =
5. M(p U ) 2 { 0if V5 >0:M,(p) =0 or Ik,0 < k < j, Mg(s)) =0
1 otherwise

2ifVj > 0: M;(p) =2 or 3k, 0 < k < j, Mg () = 2
6. M(p R )< { 0if3j>0: M,(p) =0 and Vk,0 < k < j = Mg(¥)) =0
1 otherwise

From their definition, the interpretation of the temporal derived operators
becomes M(Oyp) = min {M;(¢) | i > 0} and M(O¢) = maz {M;(p) | i > 0}.

Under this alternative three-valued definition, an interpretation M satisfies
a formula ¢ when M(yp) = 2. It is easy to see that, for any interpretation M,
M E ¢ < ¢ iff M(p) = M(¢) whereas, M = O(¢ < ) iff for all ¢ > 0,
M, (¢) = M;(¢)). When M = (T, T), its induced valuation will be just written
as T(p) and obviously becomes a two-valued function, that is T(p) € {0, 2}.

Observation 1 Given M = {H, T} and a pair of formulas ¢,v, if M(p) =
M(v) then also T(p) = T(¢). O

3 Linear Temporal Equilibrium Logic (TEL)

We can now proceed to describe the models selection criterion that defines tem-
poral equilibrium models. Given two interpretations M = (H,T) and M’ =
(H', T") we say that M is lower than M, written M < M/, when T = T’ and
for all i > 0, H; C H/. As usual, M < M’ stands for M < M’ but M # M'.

Definition 2 (Temporal Equilibrium Model). An interpretation M is a
temporal equilibrium model of a theory I' if M is a total model of I' and there
is no other M' <M, M’ =T O

Note that any temporal equilibrium model is total, that is, it has the form
(T, T) and so can be actually seen as an interpretation T in the standard LTL.



By Eq(V,I") we denote the set of temporal equilibrium models under signature
V of a theory I' C Ly . Note that the consequence relation induced by temporal
equilibrium models is nonmonotonic, as happens in the non-modal case. Thus,
when dealing with equivalence of two theories, I, I'», the mere coincidence of
equilibrium models Eq(V,I7) = Eq(V,I3) will not suffice for safely replacing
one by each other, since they may behave in a different way in the presence of
additional information. Two theories I, I% are said to be strongly equivalent
when Eq(V, I3 UTI") = Eq(V,I1 UT) for any arbitrary theory I'.

We will further refine this idea of strong equivalence for transformations that
deal with an extended signature possibly containing auxiliary atoms.

Definition 3 (Strong faithfulness). We say that a translation o(I') C Ly of
some theory I' C Ly with V C U is strongly faithful if, for any theory I'' C Ly :

EqV,TuI'y={MnV | M€ EqU,o(I")UI")}

Finally, we describe the normal form we are interested in. Given a signature
V', we define a temporal literal as any expression in the setﬁ {p,Op,—p|peV}.

Definition 4 (Temporal rule). A temporal rule is either:

1. an atomp e V;

2. an implication like O(By A --- A By, — C1 V ---V Cy,) where the B; and C}
are temporal literals, n > 0 and m > 0;

3. or an implication like O(Op — q) or like d(p — Oq) with p,q atoms. O

A temporal logic program (TLP for short) is a finite set of temporal rules.

4 Reduction to Temporal Logic Programs

The translation uses an extended signature Vi, that contains an atom (a label) for

each non-constant formula in the original language Ly, that is Vi, = {L, | ¢ €

Ly \ {L, T}}. For convenience, we use L, Lef © when ¢ is T, L or an atom

p € V. This allows us to consider Vi, as a superset of V. For any non-atomic
formula v, we call its definition, df () to:

O(L, < L, eLy) if vy = (pet) with e € {A,V,—};
O(Ly < OLy) if v = Ow;
df(y) def ) O(Ly < Ly vV (L, AOL,) )
AO(Ly — OLy) ify=(oU);
O(Ly < Ly A (Ly VOLy) )
AO(OLy — L) if vy=(p R ).

Definition 5. For any theory I' in Ly, we define the translation o(I") as:
def
o) = {L, el u |J dftw)
yeEsubf(I")

4 We do not need literals like = O p.



That is, o(I") collects the labels for all the formulas in I" plus the definitions for
all the subformulas in I'. When the main connective in v is a derived operator
=, 0,0, after simplifying truth constants, we obtain the following df (y):

O(Ly < Ly ) if v = —p;
df(7) = { O(Ly = L,V OL, ) AO(L, — OLy,) if v = Op;
O(Ly < L, AQL, ) AO(OL, — L) if v = Oep.

Lemma 1. Let M be a model of a theory I' in Ly. Then, there exists some M’
such that M =MNV and M’ | o(I).

Proof. Take M’ as the sequence of 3-valued mappings M’ = m/,m},... for
signature Vi, so that:

mi(Lg) = M) (3)
for any formula ¢ € L. When ¢ is an atom p, m}(p) = m;(L,) = M;(p) = m;(p)
for all 7 > 0, thus, the valuations for atoms in M and M’ coincide. This means
that M’ NV = M.

Furthermore, as M |= I, for any ¢ € I' we get 2 = M(p) = My(yp) &
mg(Ly,) = M/(Ly,). In other words M’ |= {L,, | ¢ € I'}. To prove that M’ |=
o(I") we remain to show that M’ |= df () for any v € subf(I"). We will show it
by cases, depending on each type of subformula ~.

1. For v = (pe1) with e € {A,V,—} we have to prove M/(L.) = M/(L,eLy)
for all 7 > 0:

(8] .
M{(Ly) = m! (L) @ Milp 0 0) = f*(Mi(0), Mi (1))
) e
Q p i), mi(Ly)) = UL, o Ly)
where f* denotes, for each e € {A,V,—} their corresponding three-valued

mappings.
2. For v = O we have:

M/(L,) = m!(Loy) 2 Mi(Op) = My ()

miy (Ly) = Mjy, (Ly) = Mj(OLy)

3. For v = (¢ U ) we prove first M(L,) = M;(Ly, V (L, A OL,)) for any
1> 0.
M;(Ly) = m;(Lyusy)
Mot ¥) & M v o 1 Ofethy)

= maz( M;(¥), min {M;(p), M;+1(eU)} )

maz( mj(Ly), min {m(Ly),m} (Lous)} )

= MQ(Lw v Ls@ N OLsouw )



We have to prove now that M’ |= O(L, — QLy), that is, the implication
holds at any ¢ > 0. Assume at some ¢ > 0, M |= L.,. By construction of M’
this means M; = ¢ U 1. This implies M; = 01, that is, for some j > i,
M |= 1. But then, by construction of M’ again, M/ = Ly, for some j > i,
and this implies M} = OL,;. The same reasoning can be repeated replacing
M’ by T', and thus M} = L, — OLy, for any i > 0.

4. For v = (p R 1) the proof is completely analogous to (3| replacing the use
of equivalence by and exchanging the roles of conjunction/min and
disjunction/mazx. O

Lemma 2. Let I' be a THT theory in Ly and M a model for o(I"). Then for
any v € subf(I") and any i > 0, M;(Ly) = M;(7).

Proof. We use structural induction on ~.

1. When the subformula ~ has the shape T, L or an atom p this is trivial, since
L, = v by definition.
2. When v = ¢ @ ¢ for any connective ® € {A,V, —} then:

M;(Lyey) = M;(Ly, o Ly) because M = df (¢ o ¢)
= f*( Mi(Ly), Mi(Ly) )
= f*(M;(¢), M;()) applying induction on L, Ly,
=M;(pe )
3. When v = Qe:
M;(Loy) = Mi(OL,) because M = df(Ox)
=M, 1(Ly)

=M, ;1(p) applying induction on L,
=M;(Ovp)

4. When v = (p U v), if we apply structural induction using df () as we did
in the previous cases, we can only prove that, for any ¢ > 0:

Mi(Lv)
=M,;(Ly VL, AQLy) because M |= df (¢ U )
=M,;(¢) Ve ANQOL,) by induction on Ly, Ly, (4)

but we cannot get rid of L., since vy itself is the formula to be proved in the

induction step.

To prove that M;(L,) = M;(y), we will equivalently show that M; = L., <

«, showing both M; =L, if M; =~ and T; =L, iff T; = ~.

(a) We prove first the two directions of M; = L., iff M; = .
From left to right, given M; = L., we get M; = ¥ V ¢ A OL, due
to (). From M |= df(v) we also conclude M; = L, — 0Ly and thus
M, = OLy. Applying structural induction on Ly, we get M; = 1. But
then, there exists j > i such that M; |= 9. Take the smallest j satisfying
M; [= ¢, so that we further have My [~ ¢ for any k, ¢ < k < j. We



will inductively prove that My = ¢ AQL, forall k =4,i4+1,...,5 -1
which, together with M; = ¢ implies M; = (¢ U @) = . For k = ¢
we know M; = ¢ and so M; = ¢ A OL,. Assume proved for k with
i < k < j—1 and we want to prove it for k+1. By induction, M, = OL,
which is equivalent to (M, k + 1) |= L,,. This corresponds in its turn to
(M, k+1) E¢¥VeAQL, but as k+1 < j we also have (M, k+1) £ 9
so that (M, k+1) = ¢ A OL,.

From right to left, suppose M; |= v, that is, M; | ¢ U 1. This means
there exists some j > i such that M; = ¢ and My = ¢ for all k,
1 < k < j. We will inductivley show that for any &k = 5,5 — 1,...,4,
M, = L., which includes the case k = i we really want to prove. For
k = j, we saw that M; = ¢ and, from , this implies M; = L,.
Assume proved for k 4+ 1 with ¢ < k < j and we want to prove it for k.
As i < k < j, we had that My, = . On the other hand, by induction
(M, k+1) = Ly and so My, = OL,,. Altogether, we get M; = ¢ AL,
which again from implies My, = L,,.

(b) Now, we must prove T; = L, iff T; = 7. Note that, due to Ob-
servation |1} the induction hypothesis M;(¢) = M;(L,) also holds for
Ti(¢) = Ti(L,), and the same happens with subformula . Following
the same reasoning as in we also have T;(L,) = T;(¢ V¢ A OL,).
From M’ [= df(y) we also conclude T; = L, — OL,. Using these
premises, it is easy to check that the previous proof of item [4a] still ap-
plies when replacing M by T. a

5. When v = (p R ), analogously to case [4 we can use df(y) to obtain, for
any ¢ > 0: M;(L,) = M;(¥ A (¢ V OL,)). The rest of the proof is dual to

case [] switching the roles of A and V, and of ‘=" with ‘.’ O

Theorem 1. For any theory I' in Ly: {M | M T} ={M'NV |M' | o(I')}.

Proof. The ‘C’ direction immediately follows from Lemma [I] For proving the
‘2’ direction, suppose we have some M’ model of o(I"). This implies M’ |=
{Ly | ¢ eI}, ie. M'(L,) =2 forall p € I'. As I' C subf(I"), we can apply
Lemma 2] to conclude Mj(Ly) = Mj(¢) for any i > 0. But then Mf(¢) = 2 for
any ¢ € I', that is, M’ |= I'. Finally, it follows that M’ NV = I" since I' is a
theory in language Ly . ad

Clearly, including an arbitrary theory I'" C £y in Theorem [1] as follows:
M| METUI"}y={M'NV | M Eo(l)Ul"}

and then taking the minimal models on both sides trivially preserves the equality.
As a result:

Corollary 1. Translation o(I") is strongly faithful.

Transformation o(I") is obviously modular, and its polynomial complexity can
be easily deduced, but is not a temporal logic program yet, as it contains nested
implications. However, we can apply some simple transformations on implication,



v df () df*(v)

O(Ly — Ly)
e Ay |O(Ly < Ly ALy) O(Ly — Ly)
O, ALy — L)

O, — Ly)

eVY |O(Ly < Ly VLy) O(Ly — Ly)

¢ = ¢|0(Ly < (Ly — Ly)

O, < Ly VL, AQL,)

u
PUD) AL, = 0Ly)

Oy — L)
O(Le AOLy — Ly)
O(L, — 0Ly)

O@Ly AL, — L)
O(Ly A OLy — L)
O(L, — L)

O(Ly — Ly vV OL,)
O(OLy — L,)

O(L, < Ly A (L, VOLy))

R
PRY OOL, — L)

Fig. 1. Transformation o*(y) generating a temporal logic program.

conjunction and disjunction that have been shown to be strongly equivalent at
the (non-temporal) propositional level [I5], and obtain a TLP without changing
the signature Vr,. For each definition df (), we define the strongly equivalent set
(understood as the conjunction) of temporal logic program rules df*(y) as shown
in Figure[l] The temporal logic program o*(I") is obtained by replacing in o(I")
each subformula definition df (@) by the corresponding set of rules df*(¢). Note
that, as o*(I") is strongly equivalent to o(I") (under the same vocabulary) it
preserves strong faithfulness with respect to I

Figure [2| shows the translation that results for derived operators after apply-
ing their definitions. To illustrate the effect of ¢* consider the example theory
I just conmsisting of O(—p — q U p). The translation o*(I}) consists of the
conjunction of Ly plus the rules in the df*(y) columns of tables in Figure

Although ¢*(I") is systematically applied on any subformula, for a practical
implementation, we can frequently avoid the introduction of new labels, when
the obtained expressions are already a TLP. For instance, in the example above,
it would actually suffice with considering df*(p U ¢) that introduces label L
and then replacing Iy with O(-p — Lj). The next results shows that o*(I)
keeps polynomial (in fact, linear) complexity on the size of I.



v |m()
—¢|0(Ly ALy, — L) O(-L, — L,)
O O(Ly — Ly VOLy) O(Ly — Ly)
O(Ly — OLy) O(OLy — L)
Oy O, AOLy — Ly)  O(Ly — Ly)
oOL, —- L,) Oy, — QL,)

Fig. 2. Transformation o* () that results for derived operators.

* d )

] af*(7) ll . ‘ AL XS?AL) |
O —pVa) S@Li - L;)
01 —pVv OLa) p—plUyg O(L; — Ls)
pUq O(p — Lu) O(Lz V -L; V L)
O(gA QL1 — L) O(Ls AQLs — Ly)
O(Li — Op) O(Ls — Ls)

ﬁp O@L2Ap— 1) O(-p—qU p) O(Ls — OL4)
O(=p — Lo) O(OLs — La)

Fig. 3. Transformation o*(I) for example theory It = {O(-p — ¢ U p)} .

Theorem 2. Translation w(I") is linear and its size can be bounded as follows:
size(o*(I")) < 2 |I'| + 34 size(I).

Proof. Theory o*(I") can be written as (/\weF L) Adf*(I"). For the size of the
first conjunct, we have an atom plus a conjunction connective per each formula
in I' (this also includes the last A connecting to df*(I")), so we get 2 |I'|. The
second conjunct, df*(I"), corresponds to the conjunction of all df*(vy) per each
subformula « in I'. In the worst case, operators U and R, we have 5 temporal
rules using a total of 13 atom occurrences and 16 connectives. These 5 rules will
be joined by 4 implicit conjunctions, and we can use an additional one to join
them to the rest of subformulas. Thus, we obtain size(df*(I")) < 34 |subf(I")|.
Finally, observe that the number of subformulas can be bounded by size(I") (it
will be strictly lower only if repeated subformulas occur). a

5 Discussion and related work

It is perhaps interesting to compare the obtained TLP form to the so-called
Separated Normal Form (SNF) previously introduced in [14] for the case of LTL.



An LTL formula is in SNF if it has one of the following formsﬂ

1. Civ---v(C, an nitial C-rule
2. OBV VB, —0CV---vOC,) a global O-rule
3. OC an initial O-rule
4. O(B1V---V B, — 0C) a global O-rule

where B;, C;, B and C are (non-modal) literals (that is, an atom or its negation).
Apart from the minor difference in initial rules, which can be easily removed in
favour of auxiliary atoms, we can observe that the main difference is that the
bodies of rules do not contain modal operators, whereas the heads always refer
to a modal operator, either a disjunction of ()C;’s or a single ¢C. In LTL, an
obvious way for obtaining SNF from our TLP form would be moving any (OB
in the body to ()—B in the head, and vice versa, moving any non-modal literal
C in the head to —=C in the body, removing double negations afterwards. For
instance, a TLP rule like O(—p A Og — r V (Os) becomes the LTL-equivalent
SNF global O-rule O(—pA-r — OsV(—q). For the case of rules like O(Op — q)
we could similarly transform them into the SNF global {-rule: O(—g — ¢—p).
Unfortunately, in the logic of HT (even in the non-modal case) exchanging literals
between the body and the head in this way is not generally possible. This is
because, in this logic, =—C « C is not valid. As a result, we cannot replace, for
instance OC with =0—C and we must maintain rules O(p — ¢q) and their dual
O(0Op — ¢q). By this same reason, in THT it is not possible to define operator R
in terms of U or vice versa, by just applying De Morgan laws.

Another interesting question is why the U operator cannot be simply encoded
with the formula O(L. <Ly VL,AQOL,) that results from applying the inductive
definition . The reason is that, in this way, we could infinitely make the
auxiliary atom L., true without guaranteeing that at some finite future Ly, is
made true. The latter is accomplished by the formula (L, — QLy). Thus, we
cannot get rid of ¢ operator in the rule heads (as happens in SNF too). The
explanation for the R operator and the use of [J in the body is completely dual.

6 Conclusions

We have introduced a normal form for Temporal Equilibrium Logic, a formalism
that provides an answer set semantics for arbitrary theories in the syntax of
propositional linear temporal logic. This normal form, called Temporal Logic
Programs, is close to logic programming rules (with disjunction and negation
in the head), embraced with necessity operators. As a result, we can disregard
the arbitrary nesting of temporal operators, or even the whole use of operators
like “until” and “release.” Besides, the close similarity of the obtained form
to standard logic programming may help in the future to apply well-known
techniques like the use of loop formulas [16] or the technique of splitting [17] to
(some families of) temporal programs.

5 For comparison purposes, we have adapted the original formulation that dealt with
both future and past operators, to the case in which only future operators are used.
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