Syntactic ASP Forgetting with Forks

F. Aguadol, P. Cabalar!, J. Fandifio?, D. Pearce®, G. Pérez!, C. Vidal

! University of Corunna, Spain
2 University of Nebraska at Omaha,USA
3 Polytechnic University of Madrid, Spain

LPNMR 2022
September 7th, 2022, Italy

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 1/29

Using auxiliary atoms in ASP

@ A program [1 may use auxiliary atoms from A C At

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

Using auxiliary atoms in ASP

@ A program [1 may use auxiliary atoms from A C At

@ Stable models of 1 only use atoms in V' = At \ A

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 2/29

Using auxiliary atoms in ASP

@ A program 1 may use auxiliary atoms from A C At

@ Stable models of 1 only use atoms in V' = At \ A

A forgetting operator 7([1,A) =" in V

M and " should have the “same behaviour” on V

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 2/29

Using auxiliary atoms in ASP

@ A program 1 may use auxiliary atoms from A C At

@ Stable models of 1 only use atoms in V' = At \ A

A forgetting operator 7([1,A) =" in V

M and " should have the “same behaviour” on V

Strong equivalence

SM[NU Q] = SM[f(MN,A)U Q] for any program Q

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 2/29

Using auxiliary atoms in ASP

@ A program 1 may use auxiliary atoms from A C At

@ Stable models of 1 only use atoms in V' = At \ A

A forgetting operator 7([1,A) =" in V
M and I’ should have the “same behaviour” on V

Strong equivaternice persistence
SMy[MuU Q] = SM[f(MN,A)U Q] for any program Q in V

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 2/29

We cannot forget without forks

e |Gongalves, Knorr & Leite 2016] forgetting under “strong persistence”
is sometimes impossible in ASP. Example: a cannot be forgotten in

a—c —a— b ——a— a (P1)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 3/29

We cannot forget without forks

e |Gongalves, Knorr & Leite 2016] forgetting under “strong persistence”
is sometimes impossible in ASP. Example: a cannot be forgotten in

a—c —a— b ——a— a (P1)

e Condition Q (based on HT-models) holds iff A cannot be forgotten

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 3/29

We cannot forget without forks

e |Gongalves, Knorr & Leite 2016] forgetting under “strong persistence”
is sometimes impossible in ASP. Example: a cannot be forgotten in

a—c —a— b ——a— a (P1)
e Condition Q (based on HT-models) holds iff A cannot be forgotten

e |Aguado et al. 2019] proved that forgetting under “strong
persistence” is ALWAYS possible with a new operator fork ‘[’

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 3/29

We cannot forget without forks

e |Gongalves, Knorr & Leite 2016] forgetting under “strong persistence”
is sometimes impossible in ASP. Example: a cannot be forgotten in

a—c —a— b ——a— a (P1)
e Condition Q (based on HT-models) holds iff A cannot be forgotten

e |Aguado et al. 2019] proved that forgetting under “strong
persistence” is ALWAYS possible with a new operator fork ‘[’

f(Pi,a)=(b|c)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 3/29

Methods for forgetting

Semantic method: obtain 7([1, A) by generation of sets of models.
Problems:

o It always implies the worst computational cost

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 4/29

Methods for forgetting

Semantic method: obtain 7([1, A) by generation of sets of models.
Problems:

o It always implies the worst computational cost

@ Unfeasible by hand, even for small programs

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 4/29

Methods for forgetting

Semantic method: obtain 7([1, A) by generation of sets of models.
Problems:

o It always implies the worst computational cost

@ Unfeasible by hand, even for small programs

e f(I,0) and I may have a (very) different syntactic look
Syntactic methods:

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 4/29

Methods for forgetting

Semantic method: obtain 7([1, A) by generation of sets of models.
Problems:

o It always implies the worst computational cost

@ Unfeasible by hand, even for small programs

e f(I,0) and I may have a (very) different syntactic look
Syntactic methods:

e [Knorr & Leite 2014] f,s for non-disjunctive logic programs

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 4/29

Methods for forgetting

Semantic method: obtain 7([1, A) by generation of sets of models.
Problems:

o It always implies the worst computational cost

@ Unfeasible by hand, even for small programs

e (IM1,0) and I may have a (very) different syntactic look
Syntactic methods:

e [Knorr & Leite 2014] f,s for non-disjunctive logic programs
[Berthold et al. 2019] fs, for arbitrary logic programs
Both satisfy strong persistence (if 2 does not hold)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 4/29

Methods for forgetting

Semantic method: obtain 7([1, A) by generation of sets of models.
Problems:

o It always implies the worst computational cost

@ Unfeasible by hand, even for small programs

e (IM1,0) and I may have a (very) different syntactic look
Syntactic methods:

e [Knorr & Leite 2014] f,s for non-disjunctive logic programs
[Berthold et al. 2019] fs, for arbitrary logic programs
Both satisfy strong persistence (if 2 does not hold)

@ f, is rather complex: table with 10 different cases plus construction
of an as-dual program.

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 4/29

In this paper

@ We propose a new syntactic operator “unfolding” 7 always applicable

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

In this paper

@ We propose a new syntactic operator “unfolding” 7 always applicable

o 1| relies on f. “cut operator” which is close to £,

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 5/29

In this paper

@ We propose a new syntactic operator “unfolding” 7 always applicable
o 1| relies on f. “cut operator” which is close to £,

@ In some cases we can remove forks from the result even when £, is
not applicable (under syntactic sufficient conditions)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 5/29

© Background

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

Formulas and programs

We define propositional formulas ¢ as usual:

pu= L | p | vne | ove | v—v
Definition

An extended disjunctive rule r is an implication of the form:

PLA - APm /AT Pmt1 A AP A7 Para A - A g
Bd*(r)

— Pk+1 V-V ph
—_———

Bd—(r) Hd(r)

Bd——(r)

where all p; € At and 0 < m<n< k < h.
A logic program [1 is a set of extended disjunctive rules.

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 7/29

Formulas and programs

We define propositional formulas ¢ as usual:

pu= L | p | vne | ove | v—v
Definition

An extended disjunctive rule r is an implication of the form:

PLA - APm /AT Pmt1 A AP A7 Para A - A g
Bd*(r)

— Pk+1 V-V ph
—_——
Bd—(r) Bd——(r) Hd(r)

where all p; € At and 0 < m<n< k < h.
A logic program [1 is a set of extended disjunctive rules.

e Any formula is strongly equivalent to a logic program |[Cabalar &
Ferraris 2007]

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 7/29

Formulas and programs

We define propositional formulas ¢ as usual:

pu= L | p | vne | ove | v—v
Definition

An extended disjunctive rule r is an implication of the form:

PLA - APm /AT Pmt1 A AP A7 Para A - A g
Bd*(r)

— Pk+1 V-V ph
—_——
Bd—(r) Bd——(r) Hd(r)

where all p; € At and 0 < m<n< k < h.
A logic program [1 is a set of extended disjunctive rules.

e Any formula is strongly equivalent to a logic program |[Cabalar &
Ferraris 2007]

@ A rule contains an a-choice if it has the form:

pA—-ma—PVa

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 7/29

Forks

e [Aguado et al. 2019] introduced a “disjunctive” operator ‘| called fork

oF == L | p | (FIF) | FAF | ove | v—F

Keypoint: forks do not appear in disjunctions or rule bodies

aANb—(-c—elaVv-d)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 8/29

Forks

e [Aguado et al. 2019] introduced a “disjunctive” operator ‘| called fork

oF == L | p | (FIF) | FAF | ove | v—F

Keypoint: forks do not appear in disjunctions or rule bodies

aANb—(-c—elaVv-d)
(a| b) — ¢ P

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 8/29

Forks

e [Aguado et al. 2019] introduced a “disjunctive” operator ‘| called fork

oF == L | p | (FIF) | FAF | ove | v—F

Keypoint: forks do not appear in disjunctions or rule bodies

aANb—(-c—elaVv-d)
(a| b) — ¢ P

e Semantics based on Here-and-There (HT) [Heyting 1930].
HT models = pairs (H, T) of sets of atoms H C T.

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 8/29

Forks

e [Aguado et al. 2019] introduced a “disjunctive” operator ‘| called fork

oF u= L | p | (FIF) | FAF | ove | ¢=F

Keypoint: forks do not appear in disjunctions or rule bodies

aANb—(-c—elaVv-d)
(a| b) — ¢ P

e Semantics based on Here-and-There (HT) [Heyting 1930].
HT models = pairs (H, T) of sets of atoms H C T.

e Keypoint: T-denotation of a fork F (see paper)

(F)T = set of sets of atoms H's for a fixed TC 22"

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 8/29

© The Cut Operator

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

Removing redundancies

Given I1, behead?(I1) removes:

e rules with a € Hd(r) N Bd™(r)

pNa—aVy is a tautology

@ head occurrences of a where a € Hd(r) N Bd ™ (r)

pA"a—=dVY = pA-a—=> Y

e [1 = behead?(IN)

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator

Cut inference rule

pNa—=Y

a—aVvp

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

(CUT)

The Cut Operator

Cut inference rule

pNa—=Y

a—aVvp
pAhNa—=>PpV}p

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

(CUT)

The Cut Operator

Cut inference rule

pNa—=Y a—aVvp (CUT)
pAhNa—=>PpV}p
Example (M)
a—t s—a r—avu —a— VvV

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator

Cut inference rule

Aa— —aV
P a—avp (CUT)
pNa—1pVp
Example (M)
a—t s—a r—aVu —a— Vv
a—t s—a a—t r—avVvu

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator

Cut inference rule

Na— a—aVv
d 4 p (CUT)
pNa—1pVp
Example (M)
a—t s—a r—aVu —a— Vv
a—t s—a a—t r—avVvu
s —t

r—tVvVu
=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator

(a € BY(r))

e NES(IN, a, r) = conjunction of all applications of cut for a on rule r

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator

(a € BY(r))

e NES(IN, a, r) = conjunction of all applications of cut for a on rule r
Example (I;)

a—t s—a r—aVvu

—1a— Vv

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator

(a € BY(r))

e NES(IN, a, r) = conjunction of all applications of cut for a on rule r
Example (I;)

a—t s—a r—aVvu

—1a— Vv

NES(My,a,(a — t))

(s—=>t)A(r—tVu)

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator

e NES(IN, a, r) = conjunction of all applications of cut for a on rule r
(a € B™(r))

Example (I;)

a—t s—a r—aVu —a— VvV

NES(My1,a,(a = t)) = (s — t)A(r — tV 1)

@ Special case, when the ruleis ma=(a AT — 1)
NES(I1, a, —a) = conjunction of rules with a € Hd(r) replacing a by L

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 12/29

The Cut Operator

e NES(IN, a, r) = conjunction of all applications of cut for a on rule r
(a € BT(r))

Example (I;)

a—t s—a r—aVu —a— VvV

NES(My1,a,(a = t)) = (s — t)A(r — tV 1)

@ Special case, when the ruleis —a=(aA T — 1)
NES(I1, a, —a) = conjunction of rules with a € Hd(r) replacing a by |

@ In the example:

NES(My,a,-a)=(s — L)A(r— L Vu)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 12/29

The Cut Operator

e NES(IN, a, r) = conjunction of all applications of cut for a on rule r
(a € BT(r))

Example (I;)

a—t s—a r—aVu —a— VvV

NES(My1,a,(a = t)) = (s — t)A(r — tV 1)

@ Special case, when the ruleis —a=(aA T — 1)
NES(I1, a, —a) = conjunction of rules with a € Hd(r) replacing a by |

@ In the example:

NES(My,a,7a)=(s = L)A(r— LVu)=-sA(r—u)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 12/29

The Cut Operator £(I1, a)

(i) Remove atom a from non-supporting heads obtaining [1" = behead?(I1);

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator £(I1, a)

(i) Remove atom a from non-supporting heads obtaining [1" = behead?(I1);
Example (M)
a—t s—a r—aVu

—a—V

In the example: Iy = behead?(I;1) so nothing to do

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator £(I1, a)

(i) Replace each rule r € 1" with a € B (r) by NES(I, a,r)
Example

a—t s—a r—avVvu

—a—V

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator £(I1, a)
Example

a—t

S —a

(i) Replace each rule r € 1" with a € B (r) by NES(I, a,r)

r—avVvu

—a—V

NES(My,a,(a—t)) = (s—=t)A(r—tVu)

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator £(I1, a)
Example

(s—=t)A(r—tVu)

S —a

(i) Replace each rule r € 1" with a € B (r) by NES(I, a,r)

r—avVvu

-a— Vv
NES(My,a,(a—t)) = (s—=t)A(r—tVu)

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator £(I1, a)

(iii) Remove every rule r with Hd(r) = {a};
Example

(s—=t)A(r—tVu)

s—a r—aVvu

—a— Vv

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator £(I1, a)

(iii) Remove every rule r with Hd(r) = {a};
Example

(s—=t)AN(r—tVu) s=—+a r—aVu

—a— Vv

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator £(I1, a)

(iii) Remove every rule r with Hd(r) = {a};
Example
(s—=t)A(r—tVu)

r—aVvu

—a— Vv

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator £(I1, a)

(iv) Replace the remaining occurrences of a by =NES(I', a, —a).
Example

(s—=t)A(r—tVu)

r—aVvu

—a—V

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator £(I1, a)
(iv) Replace the remaining occurrences of a by =NES(IT, a, —a)
Example

(s—=t)A(r—tVu)

r—aVvu

—a—V

NES(Mq,a,—a) = —sA(r — u)
a ~>

S (=sA(r—u))
—a ~ o (asA(r—u))

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator £(I1, a)

(iv) Replace the remaining occurrences of a by =NES(I', a, —a).
Example

(s—=t)A(r—tVu)

r—=(asA(r—u)Vu —=(-sA(r—u)—v

NES(Mq,a,—a) = —sA(r — u)
a ~>

S (=sA(r—u))
—a ~ o (asA(r—u))

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

The Cut Operator £(I, a)

(iv) Replace the remaining occurrences of a by =NES(I', a, —a).

Example

(s=t)A(r—=tVu) r=>=(=sA(r—u)Vu —=(asA(r—u))—v

NES(Mq,a,—a) = —sA(r — u)
a ~ —(asA(r—u)
—a ~ o (asA(r—u))
The result is a set of formulas, but they can be easily reduced to a
program by well-known HT transformations [Cabalar et al 2005]

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 16 /29

The Cut Operator £(I, a)

(iv) Replace the remaining occurrences of a by =NES(I', a, —a).

Example

(s=t)A(r—=tVu) r=>=(=sA(r—u)Vu —=(asA(r—u))—v

NES(Mq,a,—a) = —sA(r — u)
a ~ —(asA(r—u)
—a ~ o (asA(r—u))

The result is a set of formulas, but they can be easily reduced to a
program by well-known HT transformations [Cabalar et al 2005]

Example

s—t r—t\Vu —“SAr —v

SN\ U — v r\N—-sA\-—-—u—u

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 16 /29

When does f. guarantee strong persistence?

Definition (Definition 4 from [Berthold et al. 2019])
I is a-forgettable if, at least one of the following conditions is satisfied:

@ [1 contains the fact ‘a’ as a rule

(T—a)en

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 17/29

When does f. guarantee strong persistence?

Definition (Definition 4 from [Berthold et al. 2019])
I is a-forgettable if, at least one of the following conditions is satisfied:

@ [1 contains the fact ‘a’ as a rule

(T—a)en

@ [1 does not contain a-choices

(pA——ma—aVvy)gn

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 17 /29

When does f. guarantee strong persistence?

Definition (Definition 4 from [Berthold et al. 2019])
I is a-forgettable if, at least one of the following conditions is satisfied:

@ [1 contains the fact ‘a’ as a rule

(T—a)en

@ [1 does not contain a-choices

(pA——ma—aVvy)gn

© All rules in Il in which a occurs are a-choices

N={r|agAt(r)} U{p A—-—ma—aVvy}

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 17 /29

When does f. guarantee strong persistence?

Theorem

Let I be a logic program for signature At, let V C At and a € At\ V and
let 1" = behead?(IM). If 1" is a-forgettable, then:

I gv fc(l'l, a).

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 17/29

When does f. guarantee strong persistence?

Theorem

Let I be a logic program for signature At, let V C At and a € At\ V and
let 1" = behead?(IM). If 1" is a-forgettable, then:

I gv fc(l'l, a).

Example (M; has no a-choices)

a—t s—a —a— Vv r—avVvu
f(My,a):

s—t r—tVu —-sAN—r—v —-SA—-—u—>v rA=-sSA—-—u—u

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 17 /29

@ Forgetting into forks

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

Forgetting into forks: the unfolding operator

Example (P1)

a—b —a—C

——a — a
Py contains an a-choice.

f. does not guarantee strong persistence

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

Forgetting into forks: the unfolding operator

o [[v/y]: substitute v by ¢

e Propositional logic: forgetting a is equivalent to IN[a/ L]V MN[a/T]

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

Forgetting into forks: the unfolding operator

o [[v/y]: substitute v by ¢

e Propositional logic: forgetting a is equivalent to IN[a/ L]V MN[a/T]
o Equilibrium logic: 1

= (NA—-a|MNA--a)

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

Forgetting into forks: the unfolding operator

o [[v/y]: substitute v by ¢
e Propositional logic: forgetting a is equivalent to IN[a/ L]V MN[a/T]
e Equilibrium logic: 1 = (MM A —a| A —==a)
@ [1 A —aand 1A ——a are a-forgettable
MA—-a = Nfa/L]A-a

——maANp—aVvVy = 1LAp—L1lVvy = T

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 20/29

Forgetting into forks: the unfolding operator

M[v/¢]: substitute v by ¢

Propositional logic: forgetting a is equivalent to M[a/ L] v [a/T]

Equilibrium logic: M= (MA —a| A —-a)
@ [1 A —aand 1A ——a are a-forgettable
MA-—a = MN[-a/L]A—-ma

——maANp—aVvVy = TAp—aVvVy = p—aVvVy

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 20/29

Forgetting into forks: the unfolding operator
ol = (MA—-a|MA-—a)
@ [1 A —aand 1A ——a are a-forgettable

Definition (Unfolding operator, f|)

For any logic program I and atom a we define:

£(N,2) < (£(MA-a,a) | £(MA-a8))

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 21/29

Forgetting into forks: the unfolding operator

ol = (MA-a|MA—--a)
@ [1 A —aand 1A ——a are a-forgettable

Definition (Unfolding operator, f|)

For any logic program [1 and atom a we define:

£(N,2) < (£(MA-a,a) | £(MA-a8))

Theorem
Let I be a logic program for signature At, V. C At and a € At \ V. Then,

=y, f‘(l'l,a).

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 21/29

The unfolding operator: an example
Example (P1)

a—c —a— b

——a—a

f|(P1,a) =(f(P1AN—-a,a) | £(P1A—ma,a))

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

The unfolding operator: an example

f|(P1,a) =(fc(P1AN—a,a) | £(P1A—ma,a))
Example (£.(P1 A —a, a))

a—c —a— b ——a — a —a

(Pl A\ —|a)

PiA—a = Pi[a/L]A-a

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

The unfolding operator: an example

f|(P1,a) =(fc(P1AN—a,a) | £(P1A—ma,a))
Example (£.(P1 A —a, a))

a—c -a—b —-—a—a -a (P1 A —a)
1l —c -1L—=b =l =1 -1 (P1 A —a)
PiN—-a = Pl[a/J_] A —a

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

The unfolding operator: an example

f|(P1,a) = (fc(PLA—a,a) | £(P1A—ma,a))
Example (f.(P1 A —a, a))
a—c -a—b —-—a—a -a (P1 A —a)
1l —c -1L—=b =l =1 -1 (P1 A —a)
L =7 b == 1 e (Pl /\—\a)
P]_/\—|a = P]_[Q/J_]/\—!a

fo(P1A—a,a) = Pifa/L]=b
oy 3 - T 9ae

The unfolding operator: an example

f|('D17‘9) - (fc(Pl A —a, a) ‘ fC(Pl A —a, a))
Example (£.(P1 A =—a, a))

a—c —-a— b

——a— a

(Pl A —\—|a)

Pi AN——a = Pi[-a/L]A—-—a

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

The unfolding operator: an example

f|('D17‘9) - (fc(Pl A —a, a) ‘ fC(Pl A —a, a))
Example (£.(P1 A =—a, a))

a—c —a—b ——a— a ——a (P1 A ——a)
a—c 1L —b -1 —a -1 (P1 A ——a)
Py AN——a = Pi[-a/L]A-—a

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

The unfolding operator: an example

f|('D17‘9) - (fC(Pl A —a, a) ‘ fC(Pl A —a, a))
Example (£.(P1 A ——a, a))

a—c —a—b ——a— a ——a (P1 A ——a)
a—c L=b a e (P1 A ——a)
anc
Py A——a = Pi[-a/L]A-—a

fo(P1A——a,a)=fc(aNc,a)=c
o = = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

The unfolding operator: an example
Example (P1)

a—b —a—C

——a— a

fo(P1A—a,a)=0b

fc(P1A—-ma,a)=c
f‘(Pl,a) =

(fc(PiA—aya) | £o(PrA—ma,a))= (b | ©)

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

Sometimes a-forgettable is not necessary

Example (P,)

a—c —a—b —-ma—a b—c c—b

(P2 = P1 /\X)

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

Sometimes a-forgettable is not necessary

Example (P,)

a—c —a—b —-ma—a b—c c—b

X

(P2 = P1 /\X)
f|(P2,a)

f|(P1 /\X,a)
f|(P1,a) A X

strong invariance

o = = £ DA
Aguado et. al Syntactic ASP Forgetting with Forks

Sometimes a-forgettable is not necessary
Example (P,)

a—»c —a—b —-a—a b—oc c—=b (P=PiAX)
X

£|(P2,a) = f|(P1AX,a)

£i(Pr,a) A X strong invariance

— (b) A(bo)A(c—b) (FIG)AH=(FAH|GAH
(bA(b—=c)AN(c—b) | cA(b—c)A(c— b))

m] = = =

Aguado et. al Syntactic ASP Forgetting with Forks

Sometimes a-forgettable is not necessary

Example (P,)

a—»c —a—b —-a—a b—oc c—=b (P=PiAX)
X

£(P2,a) £/(P1 A X, a)

£i(Pr,a) A X strong invariance
(ble)A(b—=c)A(c—=b) (FIG)YAH=(FAH|GAH,
(bA(b—=c)AN(c—=b) | cA(b—=c)A(c— b))
(bAc|cADb)

bAc

m] = = =

Aguado et. al Syntactic ASP Forgetting with Forks

© Conclusions and future work

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks

Conclusions

@ We have introduced a syntactic transformation £|, we called unfolding

o f| is always applicable (under strong persistence)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 27/29

Conclusions

@ We have introduced a syntactic transformation £|, we called unfolding
o f| is always applicable (under strong persistence)

o £ relies on f. that can be applied on any program that does not
contain choice rules and it returns a propositional formula without
forks.

@ With general properties of forks we can sometimes reduce forks to
propositional formulas

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 27/29

Future work

@ We intend to extend the syntactic conditions under which forks can
be reduced to formulas

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 28/29

Future work

@ We intend to extend the syntactic conditions under which forks can
be reduced to formulas

@ We will also study the extension of the unfolding operator to sets of
atoms

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 28/29

Syntactic ASP Forgetting with Forks
F. Aguado, P. Cabalar, J. Fandiiio, D. Pearce, G. Pérez, C. Vidal

Thanks for your attention!

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 29/29

	Introduction
	Background
	The Cut Operator
	Forgetting into forks
	Conclusions and future work

