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1 University of Corunna, Spain
2 University of Nebraska at Omaha,USA
3 Polytechnic University of Madrid, Spain

LPNMR 2022
September 7th, 2022, Italy

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 1 / 29



Using auxiliary atoms in ASP

A program Π may use auxiliary atoms from A ⊆ At

Stable models of Π only use atoms in V = At \ A

A forgetting operator f (Π,A) = Π′ in V

Π and Π′ should have the “same behaviour” on V

Strong

[Π ∪ Q] = SM[f (Π,A) ∪ Q] for any program Q
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A program Π may use auxiliary atoms from A ⊆ At

Stable models of Π only use atoms in V = At \ A

A forgetting operator f (Π,A) = Π′ in V

Π and Π′ should have the “same behaviour” on V

Strong ((((((equivalence persistence

SMV [Π ∪ Q] = SM[f (Π,A) ∪ Q] for any program Q in V
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We cannot forget without forks

[Gonçalves, Knorr & Leite 2016] forgetting under “strong persistence”
is sometimes impossible in ASP. Example: a cannot be forgotten in

a → c ¬a → b ¬¬a → a (P1)

Condition Ω (based on HT-models) holds iff A cannot be forgotten

[Aguado et al. 2019] proved that forgetting under “strong
persistence” is ALWAYS possible with a new operator fork ‘|’

f (P1, a) = (b | c)
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Methods for forgetting

Semantic method: obtain f (Π,A) by generation of sets of models.
Problems:

It always implies the worst computational cost

Unfeasible by hand, even for small programs

f (Π, ∅) and Π may have a (very) different syntactic look

Syntactic methods:

[Knorr & Leite 2014] fas for non-disjunctive logic programs
[Berthold et al. 2019] fsp for arbitrary logic programs
Both satisfy strong persistence (if Ω does not hold)

fsp is rather complex: table with 10 different cases plus construction
of an as-dual program.
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In this paper

We propose a new syntactic operator “unfolding” f| always applicable

f| relies on fc “cut operator” which is close to fsp

In some cases we can remove forks from the result even when fsp is
not applicable (under syntactic sufficient conditions)
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Formulas and programs
We define propositional formulas φ as usual:

φ ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ φ ∧ φ
∣∣∣∣∣∣ φ ∨ φ

∣∣∣∣∣∣ φ→ φ

Definition

An extended disjunctive rule r is an implication of the form:

p1 ∧ · · · ∧ pm︸ ︷︷ ︸
Bd+(r)

∧¬pm+1 ∧ · · · ∧ ¬pn︸ ︷︷ ︸
Bd−(r)

∧¬¬pn+1 ∧ · · · ∧ ¬¬pk︸ ︷︷ ︸
Bd−−(r)

→ pk+1 ∨ · · · ∨ ph︸ ︷︷ ︸
Hd(r)

where all pi ∈ At and 0 ≤ m ≤ n ≤ k ≤ h.
A logic program Π is a set of extended disjunctive rules.

Any formula is strongly equivalent to a logic program [Cabalar &
Ferraris 2007]

A rule contains an a-choice if it has the form:

φ ∧ ¬¬a → ψ ∨ a

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 7 / 29



Formulas and programs
We define propositional formulas φ as usual:

φ ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ φ ∧ φ
∣∣∣∣∣∣ φ ∨ φ

∣∣∣∣∣∣ φ→ φ

Definition

An extended disjunctive rule r is an implication of the form:

p1 ∧ · · · ∧ pm︸ ︷︷ ︸
Bd+(r)

∧¬pm+1 ∧ · · · ∧ ¬pn︸ ︷︷ ︸
Bd−(r)

∧¬¬pn+1 ∧ · · · ∧ ¬¬pk︸ ︷︷ ︸
Bd−−(r)

→ pk+1 ∨ · · · ∨ ph︸ ︷︷ ︸
Hd(r)

where all pi ∈ At and 0 ≤ m ≤ n ≤ k ≤ h.
A logic program Π is a set of extended disjunctive rules.

Any formula is strongly equivalent to a logic program [Cabalar &
Ferraris 2007]

A rule contains an a-choice if it has the form:

φ ∧ ¬¬a → ψ ∨ a

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 7 / 29



Formulas and programs
We define propositional formulas φ as usual:

φ ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ φ ∧ φ
∣∣∣∣∣∣ φ ∨ φ

∣∣∣∣∣∣ φ→ φ

Definition

An extended disjunctive rule r is an implication of the form:

p1 ∧ · · · ∧ pm︸ ︷︷ ︸
Bd+(r)

∧¬pm+1 ∧ · · · ∧ ¬pn︸ ︷︷ ︸
Bd−(r)

∧¬¬pn+1 ∧ · · · ∧ ¬¬pk︸ ︷︷ ︸
Bd−−(r)

→ pk+1 ∨ · · · ∨ ph︸ ︷︷ ︸
Hd(r)

where all pi ∈ At and 0 ≤ m ≤ n ≤ k ≤ h.
A logic program Π is a set of extended disjunctive rules.

Any formula is strongly equivalent to a logic program [Cabalar &
Ferraris 2007]

A rule contains an a-choice if it has the form:

φ ∧ ¬¬a → ψ ∨ a

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 7 / 29



Forks

[Aguado et al. 2019] introduced a “disjunctive” operator ‘|’ called fork

F ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ (F | F )
∣∣∣∣∣∣ F ∧ F

∣∣∣∣∣∣ φ ∨ φ
∣∣∣∣∣∣ φ→ F

Keypoint: forks do not appear in disjunctions or rule bodies

a ∧ b → (¬c → e | a ∨ ¬d) Ë

(a | b) → c é

Semantics based on Here-and-There (HT) [Heyting 1930].
HT models = pairs ⟨H,T ⟩ of sets of atoms H ⊆ T .

Keypoint: T -denotation of a fork F (see paper)

⟨⟨F ⟩⟩T = set of sets of atoms H’s for a fixed T⊆ 22
T
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Removing redundancies

Given Π, beheada(Π) removes:

rules with a ∈ Hd(r) ∩ Bd+(r)

(((((((
φ ∧ a → a ∨ ψ is a tautology

head occurrences of a where a ∈ Hd(r) ∩ Bd−(r)

φ ∧ ¬a → �a ∨ ψ ≡ φ ∧ ¬a → ψ

Π ≡ beheada(Π)
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The Cut Operator

Cut inference rule

φ ∧ a → ψ α→ a ∨ β
(CUT)

Example (Π1)

a → t ¬a → v
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The Cut Operator

Cut inference rule

φ ∧ a → ψ α→ a ∨ β
φ ∧ α→ ψ ∨ β

(CUT)

Example (Π1)

a → t s → a r → a ∨ u ¬a → v

a → t s → a

s → t

a → t r → a ∨ u

r → t ∨ u
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The Cut Operator
NES(Π, a, r) = conjunction of all applications of cut for a on rule r
(a ∈ B+(r))

Example (Π1)

a → t ¬a → v

NES(Π1, a, (a → t)) = (s → t) ∧ (r → t ∨ u)

Special case, when the rule is ¬a = (a ∧ ⊤ → ⊥)
NES(Π, a,¬a) = conjunction of rules with a ∈ Hd(r) replacing a by ⊥

In the example:

NES(Π1, a,¬a) = (s → ⊥) ∧ (r → ⊥∨ u) ≡ ¬s ∧ (r → u)
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The Cut Operator fc(Π, a)

(i) Remove atom a from non-supporting heads obtaining Π′ = beheada(Π);

Example (Π1)

a → t s → a r → a ∨ u ¬a → v

In the example: Π1 = beheada(Π1) so nothing to do
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The Cut Operator fc(Π, a)

(ii) Replace each rule r ∈ Π′ with a ∈ B+(r) by NES(Π′, a, r)

Example

a → t s → a r → a ∨ u ¬a → v

NES(Π1, a, (a → t)) = (s → t) ∧ (r → t ∨ u)
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The Cut Operator fc(Π, a)

(ii) Replace each rule r ∈ Π′ with a ∈ B+(r) by NES(Π′, a, r)

Example

(s → t) ∧ (r → t ∨ u) s → a r → a ∨ u ¬a → v

NES(Π1, a, (a → t)) = (s → t) ∧ (r → t ∨ u)
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The Cut Operator fc(Π, a)

(iii) Remove every rule r with Hd(r) = {a};

Example

(s → t) ∧ (r → t ∨ u) s → a r → a ∨ u ¬a → v
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The Cut Operator fc(Π, a)
(iv) Replace the remaining occurrences of a by ¬NES(Π′, a,¬a).

Example

(s → t) ∧ (r → t ∨ u) r → a ∨ u ¬a → v

NES(Π1, a,¬a) = ¬s ∧ (r → u)
a ⇝ ¬ (¬s ∧ (r → u))

¬a ⇝ ¬¬ (¬s ∧ (r → u))

The result is a set of formulas, but they can be easily reduced to a
program by well-known HT transformations [Cabalar et al 2005]

Example

s → t r → t ∨ u ¬s ∧ ¬r → v

¬s ∧ ¬¬u → v r ∧ ¬s ∧ ¬¬u → u
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When does fc guarantee strong persistence?

Definition (Definition 4 from [Berthold et al. 2019])

Π is a-forgettable if, at least one of the following conditions is satisfied:

1 Π contains the fact ‘a’ as a rule

(⊤ → a) ∈ Π
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Π is a-forgettable if, at least one of the following conditions is satisfied:

1 Π contains the fact ‘a’ as a rule

(⊤ → a) ∈ Π

2 Π does not contain a-choices

(φ ∧ ¬¬a → a ∨ ψ) ̸∈ Π

3 All rules in Π in which a occurs are a-choices

Π = {r | a ̸∈ At(r)} ∪ {φ ∧ ¬¬a → a ∨ ψ}
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When does fc guarantee strong persistence?

Theorem

Let Π be a logic program for signature At, let V ⊆ At and a ∈ At \ V and
let Π′ = beheada(Π). If Π′ is a-forgettable, then:

Π ∼=V fc(Π, a).
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Let Π be a logic program for signature At, let V ⊆ At and a ∈ At \ V and
let Π′ = beheada(Π). If Π′ is a-forgettable, then:

Π ∼=V fc(Π, a).

Example (Π1 has no a-choices)

a → t s → a ¬a → v r → a ∨ u

fc(Π1, a) :

s → t r → t ∨ u ¬s ∧ ¬r → v ¬s ∧ ¬¬u → v r ∧ ¬s ∧ ¬¬u → u
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Forgetting into forks: the unfolding operator

Example (P1)

a → b ¬a → c ¬¬a → a

P1 contains an a-choice.

fc does not guarantee strong persistence
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Forgetting into forks: the unfolding operator

Π[γ/φ]: substitute γ by φ

Propositional logic: forgetting a is equivalent to Π[a/⊥] ∨ Π[a/⊤]

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 20 / 29



Forgetting into forks: the unfolding operator

Π[γ/φ]: substitute γ by φ

Propositional logic: forgetting a is equivalent to Π[a/⊥] ∨ Π[a/⊤]

Equilibrium logic: Π ≡ (Π ∧ ¬a | Π ∧ ¬¬a)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 20 / 29



Forgetting into forks: the unfolding operator

Π[γ/φ]: substitute γ by φ

Propositional logic: forgetting a is equivalent to Π[a/⊥] ∨ Π[a/⊤]

Equilibrium logic: Π ≡ (Π ∧ ¬a | Π ∧ ¬¬a)

Π ∧ ¬a and Π ∧ ¬¬a are a-forgettable

Π ∧ ¬a ≡ Π[a/⊥] ∧ ¬a

¬¬a ∧ φ→ a ∨ ψ ≡ ⊥ ∧ φ→ ⊥∨ ψ ≡ ⊤

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 20 / 29



Forgetting into forks: the unfolding operator

Π[γ/φ]: substitute γ by φ

Propositional logic: forgetting a is equivalent to Π[a/⊥] ∨ Π[a/⊤]

Equilibrium logic: Π ≡ (Π ∧ ¬a | Π ∧ ¬¬a)

Π ∧ ¬a and Π ∧ ¬¬a are a-forgettable

Π ∧ ¬¬a ≡ Π[¬a/⊥] ∧ ¬¬a

¬¬a ∧ φ→ a ∨ ψ ≡ ⊤ ∧ φ→ a ∨ ψ ≡ φ→ a ∨ ψ

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 20 / 29



Forgetting into forks: the unfolding operator

Π ≡ (Π ∧ ¬a | Π ∧ ¬¬a)

Π ∧ ¬a and Π ∧ ¬¬a are a-forgettable

Definition (Unfolding operator, f|)

For any logic program Π and atom a we define:

f|(Π, a)
def
= ( fc(Π ∧ ¬a, a) | fc(Π ∧ ¬¬a, a) )

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 21 / 29



Forgetting into forks: the unfolding operator

Π ≡ (Π ∧ ¬a | Π ∧ ¬¬a)

Π ∧ ¬a and Π ∧ ¬¬a are a-forgettable

Definition (Unfolding operator, f|)

For any logic program Π and atom a we define:

f|(Π, a)
def
= ( fc(Π ∧ ¬a, a) | fc(Π ∧ ¬¬a, a) )

Theorem

Let Π be a logic program for signature At, V ⊆ At and a ∈ At \ V . Then,

Π ∼=V f|(Π, a).
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The unfolding operator: an example

Example (P1)

a → c ¬a → b ¬¬a → a (P1)

f|(P1, a) = ( fc(P1 ∧ ¬a, a) | fc(P1 ∧ ¬¬a, a) )
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Example (fc(P1 ∧ ¬¬a, a))

a → c ¬a → b ¬¬a → a ¬¬a (P1 ∧ ¬¬a)

a → c ����⊥ → b a ��¬⊥ (P1 ∧ ¬¬a)

a ∧ c

P1 ∧ ¬¬a ≡ P1[¬a/⊥] ∧ ¬¬a

fc(P1 ∧ ¬¬a, a) = fc(a ∧ c , a) = c

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 24 / 29



The unfolding operator: an example

Example (P1)

a → b ¬a → c ¬¬a → a

fc(P1 ∧ ¬a, a) = b fc(P1 ∧ ¬¬a, a) = c

f|(P1, a) = ( fc(P1 ∧ ¬a, a) | fc(P1 ∧ ¬¬a, a) ) = (b | c)
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Sometimes a-forgettable is not necessary

Example (P2)

a → c ¬a → b ¬¬a → a b → c c → b︸ ︷︷ ︸
X

(P2 = P1 ∧ X )
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f|(P2, a) = f|(P1 ∧ X , a)
= f|(P1, a) ∧ X strong invariance
= (b | c) ∧ (b → c) ∧ (c → b) (F | G ) ∧ H ≡ (F ∧ H | G ∧ H)
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Conclusions

We have introduced a syntactic transformation f|, we called unfolding

f| is always applicable (under strong persistence)

f| relies on fc that can be applied on any program that does not
contain choice rules and it returns a propositional formula without
forks.

With general properties of forks we can sometimes reduce forks to
propositional formulas
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Future work

We intend to extend the syntactic conditions under which forks can
be reduced to formulas

We will also study the extension of the unfolding operator to sets of
atoms
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