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Using auxiliary atoms in ASP

@ A program [1 may use auxiliary atoms from A C At
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A forgetting operator 7([1,A) =" in V

M and " should have the “same behaviour” on V
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Using auxiliary atoms in ASP

@ A program 1 may use auxiliary atoms from A C At

@ Stable models of 1 only use atoms in V' = At \ A

A forgetting operator 7([1,A) =" in V
M and I’ should have the “same behaviour” on V

Strong equivaternice persistence
SMy[MuU Q] = SM[f(MN,A)U Q]  for any program Q in V
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We cannot forget without forks

e |Gongalves, Knorr & Leite 2016] forgetting under “strong persistence”
is sometimes impossible in ASP. Example: a cannot be forgotten in

a—c —a— b ——a— a (P1)
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e |Gongalves, Knorr & Leite 2016] forgetting under “strong persistence”
is sometimes impossible in ASP. Example: a cannot be forgotten in

a—c —a— b ——a— a (P1)
e Condition Q (based on HT-models) holds iff A cannot be forgotten

e |Aguado et al. 2019] proved that forgetting under “strong
persistence” is ALWAYS possible with a new operator fork ‘[’

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 3/29



We cannot forget without forks

e |Gongalves, Knorr & Leite 2016] forgetting under “strong persistence”
is sometimes impossible in ASP. Example: a cannot be forgotten in

a—c —a— b ——a— a (P1)
e Condition Q (based on HT-models) holds iff A cannot be forgotten

e |Aguado et al. 2019] proved that forgetting under “strong
persistence” is ALWAYS possible with a new operator fork ‘[’

f(Pi,a)=(b|c)
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Methods for forgetting

Semantic method: obtain 7([1, A) by generation of sets of models.
Problems:

o It always implies the worst computational cost
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Methods for forgetting

Semantic method: obtain 7([1, A) by generation of sets of models.
Problems:

o It always implies the worst computational cost

@ Unfeasible by hand, even for small programs

e (IM1,0) and I may have a (very) different syntactic look
Syntactic methods:

e [Knorr & Leite 2014] f,s for non-disjunctive logic programs
[Berthold et al. 2019] fs, for arbitrary logic programs
Both satisfy strong persistence (if 2 does not hold)
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Methods for forgetting

Semantic method: obtain 7([1, A) by generation of sets of models.
Problems:

o It always implies the worst computational cost

@ Unfeasible by hand, even for small programs

e (IM1,0) and I may have a (very) different syntactic look
Syntactic methods:

e [Knorr & Leite 2014] f,s for non-disjunctive logic programs
[Berthold et al. 2019] fs, for arbitrary logic programs
Both satisfy strong persistence (if 2 does not hold)

@ f, is rather complex: table with 10 different cases plus construction
of an as-dual program.
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In this paper

@ We propose a new syntactic operator “unfolding” 7 always applicable

o = = £ DA
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In this paper

@ We propose a new syntactic operator “unfolding” 7 always applicable
o 1| relies on f. “cut operator” which is close to £,

@ In some cases we can remove forks from the result even when £, is
not applicable (under syntactic sufficient conditions)
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© Background
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Formulas and programs

We define propositional formulas ¢ as usual:

pu= L | p | vne | ove | v—v
Definition

An extended disjunctive rule r is an implication of the form:

PLA - APm /AT Pmt1 A AP A7 Para A - A g
Bd*(r)

—  Pk+1 V-V ph
—_———

Bd—(r) Hd(r)

Bd——(r)

where all p; € At and 0 < m<n< k < h.
A logic program [1 is a set of extended disjunctive rules.

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 7/29




Formulas and programs

We define propositional formulas ¢ as usual:

pu= L | p | vne | ove | v—v
Definition

An extended disjunctive rule r is an implication of the form:

PLA - APm /AT Pmt1 A AP A7 Para A - A g
Bd*(r)

—  Pk+1 V-V ph
—_——
Bd—(r) Bd——(r) Hd(r)

where all p; € At and 0 < m<n< k < h.
A logic program [1 is a set of extended disjunctive rules.

e Any formula is strongly equivalent to a logic program |[Cabalar &
Ferraris 2007]

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 7/29




Formulas and programs

We define propositional formulas ¢ as usual:

pu= L | p | vne | ove | v—v
Definition

An extended disjunctive rule r is an implication of the form:

PLA - APm /AT Pmt1 A AP A7 Para A - A g
Bd*(r)

—  Pk+1 V-V ph
—_——
Bd—(r) Bd——(r) Hd(r)

where all p; € At and 0 < m<n< k < h.
A logic program [1 is a set of extended disjunctive rules.

e Any formula is strongly equivalent to a logic program |[Cabalar &
Ferraris 2007]

@ A rule contains an a-choice if it has the form:

pA—-ma—PVa
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Forks

e [Aguado et al. 2019] introduced a “disjunctive” operator ‘| called fork

oF == L | p | (FIF) | FAF | ove | v—F

Keypoint: forks do not appear in disjunctions or rule bodies

aANb—(-c—elaVv-d)
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e [Aguado et al. 2019] introduced a “disjunctive” operator ‘| called fork

oF == L | p | (FIF) | FAF | ove | v—F

Keypoint: forks do not appear in disjunctions or rule bodies

aANb—(-c—elaVv-d)
(a| b) — ¢ P

e Semantics based on Here-and-There (HT) [Heyting 1930].
HT models = pairs (H, T) of sets of atoms H C T.
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Forks

e [Aguado et al. 2019] introduced a “disjunctive” operator ‘| called fork

oF u= L | p | (FIF) | FAF | ove | ¢=F

Keypoint: forks do not appear in disjunctions or rule bodies

aANb—(-c—elaVv-d)
(a| b) — ¢ P

e Semantics based on Here-and-There (HT) [Heyting 1930].
HT models = pairs (H, T) of sets of atoms H C T.

e Keypoint: T-denotation of a fork F (see paper)

(F)T = set of sets of atoms H's for a fixed TC 22"
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© The Cut Operator

=] & = E DA
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Removing redundancies

Given I1, behead?(I1) removes:

e rules with a € Hd(r) N Bd™(r)

pNa—aVy is a tautology

@ head occurrences of a where a € Hd(r) N Bd ™ (r)

pA"a—=dVY = pA-a—=> Y

e [1 = behead?(IN)

o = = £ DA
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The Cut Operator

Cut inference rule

pNa—=Y

a—aVvp

=] & = E DA
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The Cut Operator

Cut inference rule

pNa—=Y

a—aVvp
pAhNa—=>PpV}p
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The Cut Operator

Cut inference rule

pNa—=Y a—aVvp (CUT)
pAhNa—=>PpV}p
Example (M)
a—t s—a r—avu —a— VvV
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The Cut Operator

Cut inference rule

Aa— —aV
P a—avp (CUT)
pNa—1pVp
Example (M)
a—t s—a r—aVu —a— Vv
a—t s—a a—t r—avVvu

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks



The Cut Operator

Cut inference rule

Na— a—aVv
d 4 p (CUT)
pNa—1pVp
Example (M)
a—t s—a r—aVu —a— Vv
a—t s—a a—t r—avVvu
s —t

r—tVvVu
=] & = E DA
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The Cut Operator

(a € BY(r))

e NES(IN, a, r) = conjunction of all applications of cut for a on rule r
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The Cut Operator

(a € BY(r))

e NES(IN, a, r) = conjunction of all applications of cut for a on rule r
Example (I;)

a—t s—a r—aVvu

—1a— Vv
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The Cut Operator

(a € BY(r))

e NES(IN, a, r) = conjunction of all applications of cut for a on rule r
Example (I;)

a—t s—a r—aVvu

—1a— Vv

NES(My,a,(a — t))

(s—=>t)A(r—tVu)

o = = £ DA
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The Cut Operator

e NES(IN, a, r) = conjunction of all applications of cut for a on rule r
(a € B™(r))

Example (I;)

a—t s—a r—aVu —a— VvV

NES(My1,a,(a = t)) = (s — t)A(r — tV 1)

@ Special case, when the ruleis ma=(a AT — 1)
NES(I1, a, —a) = conjunction of rules with a € Hd(r) replacing a by L
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The Cut Operator

e NES(IN, a, r) = conjunction of all applications of cut for a on rule r
(a € BT(r))

Example (I;)

a—t s—a r—aVu —a— VvV

NES(My1,a,(a = t)) = (s — t)A(r — tV 1)

@ Special case, when the ruleis —a=(aA T — 1)
NES(I1, a, —a) = conjunction of rules with a € Hd(r) replacing a by |

@ In the example:

NES(My,a,-a)=(s — L)A(r— L Vu)
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The Cut Operator

e NES(IN, a, r) = conjunction of all applications of cut for a on rule r
(a € BT(r))

Example (I;)

a—t s—a r—aVu —a— VvV

NES(My1,a,(a = t)) = (s — t)A(r — tV 1)

@ Special case, when the ruleis —a=(aA T — 1)
NES(I1, a, —a) = conjunction of rules with a € Hd(r) replacing a by |

@ In the example:

NES(My,a,7a)=(s = L)A(r— LVu)=-sA(r—u)
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The Cut Operator £(I1, a)

(i) Remove atom a from non-supporting heads obtaining [1" = behead?(I1);

o = = £ DA
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The Cut Operator £(I1, a)

(i) Remove atom a from non-supporting heads obtaining [1" = behead?(I1);
Example (M)
a—t s—a r—aVu

—a—V

In the example: Iy = behead?(I;1) so nothing to do

=] & = E DA
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The Cut Operator £(I1, a)

(i) Replace each rule r € 1" with a € B (r) by NES(I, a,r)
Example

a—t s—a r—avVvu

—a—V
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The Cut Operator £(I1, a)
Example

a—t

S —a

(i) Replace each rule r € 1" with a € B (r) by NES(I, a,r)

r—avVvu

—a—V

NES(My,a,(a—t)) = (s—=t)A(r—tVu)

o = = £ DA
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The Cut Operator £(I1, a)
Example

(s—=t)A(r—tVu)

S —a

(i) Replace each rule r € 1" with a € B (r) by NES(I, a,r)

r—avVvu

-a— Vv
NES(My,a,(a—t)) = (s—=t)A(r—tVu)

o = = £ DA
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The Cut Operator £(I1, a)

(iii) Remove every rule r with Hd(r) = {a};
Example

(s—=t)A(r—tVu)

s—a r—aVvu

—a— Vv

=] & = E DA
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The Cut Operator £(I1, a)

(iii) Remove every rule r with Hd(r) = {a};
Example

(s—=t)AN(r—tVu) s=—+a r—aVu

—a— Vv

=] & = E DA
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The Cut Operator £(I1, a)

(iii) Remove every rule r with Hd(r) = {a};
Example
(s—=t)A(r—tVu)

r—aVvu

—a— Vv
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The Cut Operator £(I1, a)

(iv) Replace the remaining occurrences of a by =NES(I', a, —a).
Example

(s—=t)A(r—tVu)

r—aVvu

—a—V

o = = £ DA
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The Cut Operator £(I1, a)
(iv) Replace the remaining occurrences of a by =NES(IT, a, —a)
Example

(s—=t)A(r—tVu)

r—aVvu

—a—V

NES(Mq,a,—a) = —sA(r — u)
a ~>

S (=sA(r—u))
—a ~ o (asA(r—u))

o = = £ DA
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The Cut Operator £(I1, a)

(iv) Replace the remaining occurrences of a by =NES(I', a, —a).
Example

(s—=t)A(r—tVu)

r—=(asA(r—u)Vu —=(-sA(r—u)—v

NES(Mq,a,—a) = —sA(r — u)
a ~>

S (=sA(r—u))
—a ~ o (asA(r—u))

=] & = E DA
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The Cut Operator £(I, a)

(iv) Replace the remaining occurrences of a by =NES(I', a, —a).

Example

(s=t)A(r—=tVu) r=>=(=sA(r—u)Vu —=(asA(r—u))—v

NES(Mq,a,—a) = —sA(r — u)
a ~ —(asA(r—u)
—a ~ o (asA(r—u))
The result is a set of formulas, but they can be easily reduced to a
program by well-known HT transformations [Cabalar et al 2005]
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The Cut Operator £(I, a)

(iv) Replace the remaining occurrences of a by =NES(I', a, —a).

Example

(s=t)A(r—=tVu) r=>=(=sA(r—u)Vu —=(asA(r—u))—v

NES(Mq,a,—a) = —sA(r — u)
a ~ —(asA(r—u)
—a ~ o (asA(r—u))

The result is a set of formulas, but they can be easily reduced to a
program by well-known HT transformations [Cabalar et al 2005]

Example

s—t r—t\Vu —“SAr —v

SN\ U — v r\N—-sA\-—-—u—u
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When does f. guarantee strong persistence?

Definition (Definition 4 from [Berthold et al. 2019])
I is a-forgettable if, at least one of the following conditions is satisfied:

@ [1 contains the fact ‘a’ as a rule

(T—a)en
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Definition (Definition 4 from [Berthold et al. 2019])
I is a-forgettable if, at least one of the following conditions is satisfied:

@ [1 contains the fact ‘a’ as a rule

(T—a)en

@ [1 does not contain a-choices

(pA——ma—aVvy)gn
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When does f. guarantee strong persistence?

Definition (Definition 4 from [Berthold et al. 2019])
I is a-forgettable if, at least one of the following conditions is satisfied:

@ [1 contains the fact ‘a’ as a rule

(T—a)en

@ [1 does not contain a-choices

(pA——ma—aVvy)gn

© All rules in Il in which a occurs are a-choices

N={r|agAt(r)} U{p A—-—ma—aVvy}
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When does f. guarantee strong persistence?

Theorem

Let I be a logic program for signature At, let V C At and a € At\ V and
let 1" = behead?(IM). If 1" is a-forgettable, then:

I gv fc(l'l, a).
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When does f. guarantee strong persistence?

Theorem

Let I be a logic program for signature At, let V C At and a € At\ V and
let 1" = behead?(IM). If 1" is a-forgettable, then:

I gv fc(l'l, a).

Example (M; has no a-choices)

a—t s—a —a— Vv r—avVvu
f(My,a):

s—t r—tVu —-sAN—r—v —-SA—-—u—>v rA=-sSA—-—u—u
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@ Forgetting into forks

=] & = E DA
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Forgetting into forks: the unfolding operator

Example (P1)

a—b —a—C

——a — a
Py contains an a-choice.

f. does not guarantee strong persistence

=] & = E DA
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Forgetting into forks: the unfolding operator

o [[v/y]: substitute v by ¢

e Propositional logic: forgetting a is equivalent to IN[a/ L]V MN[a/T]

=] & = E DA
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Forgetting into forks: the unfolding operator

o [[v/y]: substitute v by ¢

e Propositional logic: forgetting a is equivalent to IN[a/ L]V MN[a/T]
o Equilibrium logic: 1

= (NA—-a|MNA--a)
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Forgetting into forks: the unfolding operator

o [[v/y]: substitute v by ¢
e Propositional logic: forgetting a is equivalent to IN[a/ L]V MN[a/T]
e Equilibrium logic: 1 = (MM A —a| A —==a)
@ [1 A —aand 1A ——a are a-forgettable
MA—-a = Nfa/L]A-a

——maANp—aVvVy = 1LAp—L1lVvy = T
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Forgetting into forks: the unfolding operator

M[v/¢]: substitute v by ¢

Propositional logic: forgetting a is equivalent to M[a/ L] v [a/T]

Equilibrium logic: M= (MA —a| A —-a)
@ [1 A —aand 1A ——a are a-forgettable
MA-—a = MN[-a/L]A—-ma

——maANp—aVvVy = TAp—aVvVy = p—aVvVy
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Forgetting into forks: the unfolding operator
ol = (MA—-a|MA-—a)
@ [1 A —aand 1A ——a are a-forgettable

Definition (Unfolding operator, f|)

For any logic program I and atom a we define:

£(N,2) < (£(MA-a,a) | £(MA-a8))
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Forgetting into forks: the unfolding operator

ol = (MA-a|MA—--a)
@ [1 A —aand 1A ——a are a-forgettable

Definition (Unfolding operator, f|)

For any logic program [1 and atom a we define:

£(N,2) < (£(MA-a,a) | £(MA-a8))

Theorem
Let I be a logic program for signature At, V. C At and a € At \ V. Then,

=y, f‘(l'l,a).
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The unfolding operator: an example
Example (P1)

a—c —a— b

——a—a

f|(P1,a) =(f(P1AN—-a,a) | £(P1A—ma,a))

=] & = E DA
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The unfolding operator: an example

f|(P1,a) =(fc(P1AN—a,a) | £(P1A—ma,a))
Example (£.(P1 A —a, a))

a—c —a— b ——a — a —a

(Pl A\ —|a)

PiA—a = Pi[a/L]A-a

=] & = E DA
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The unfolding operator: an example

f|(P1,a) =(fc(P1AN—a,a) | £(P1A—ma,a))
Example (£.(P1 A —a, a))

a—c -a—b —-—a—a -a (P1 A —a)
1l —c -1L—=b =l =1 -1 (P1 A —a)
PiN—-a = Pl[a/J_] A —a

o = = £ DA
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The unfolding operator: an example

f|(P1,a) = (fc(PLA—a,a) | £(P1A—ma,a))
Example (f.(P1 A —a, a))
a—c -a—b —-—a—a -a (P1 A —a)
1l —c -1L—=b =l =1 -1 (P1 A —a)
L =7 b == 1 e (Pl /\—\a)
P]_/\—|a = P]_[Q/J_]/\—!a

fo(P1A—a,a) = Pifa/L]=b
oy 3 - T 9ae



The unfolding operator: an example

f|('D17‘9) - ( fc(Pl A —a, a) ‘ fC(Pl A —a, a) )
Example (£.(P1 A =—a, a))

a—c —-a— b

——a— a

(Pl A —\—|a)

Pi AN——a = Pi[-a/L]A—-—a

=] & = E DA
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The unfolding operator: an example

f|('D17‘9) - ( fc(Pl A —a, a) ‘ fC(Pl A —a, a) )
Example (£.(P1 A =—a, a))

a—c —a—b ——a— a ——a (P1 A ——a)
a—c 1L —b -1 —a -1 (P1 A ——a)
Py AN——a = Pi[-a/L]A-—a

o = = £ DA
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The unfolding operator: an example

f|('D17‘9) - ( fC(Pl A —a, a) ‘ fC(Pl A —a, a) )
Example (£.(P1 A ——a, a))

a—c —a—b ——a— a ——a (P1 A ——a)
a—c L=b a e (P1 A ——a)
anc
Py A——a = Pi[-a/L]A-—a

fo(P1A——a,a)=fc(aNc,a)=c
o = = E DA
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The unfolding operator: an example
Example (P1)

a—b —a—C

——a— a

fo(P1A—a,a)=0b

fc(P1A—-ma,a)=c
f‘(Pl,a) =

(fc(PiA—aya) | £o(PrA—ma,a) )= (b | ©)

=] & = E DA
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Sometimes a-forgettable is not necessary

Example (P,)

a—c —a—b —-ma—a b—c c—b

(P2 = P1 /\X)

=] & = E DA
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Sometimes a-forgettable is not necessary

Example (P,)

a—c —a—b —-ma—a b—c c—b

X

(P2 = P1 /\X)
f|(P2,a)

f|(P1 /\X,a)
f|(P1,a) A X

strong invariance

o = = £ DA
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Sometimes a-forgettable is not necessary
Example (P,)

a—»c —a—b —-a—a b—oc c—=b (P=PiAX)
X

£|(P2,a) = f|(P1AX,a)

£i(Pr,a) A X strong invariance

— (b ) A(bo)A(c—b) (FIG)AH=(FAH|GAH
(bA(b—=c)AN(c—b) | cA(b—c)A(c— b))

m] = = =
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Sometimes a-forgettable is not necessary

Example (P,)

a—»c —a—b —-a—a b—oc c—=b (P=PiAX)
X

£(P2,a) £/(P1 A X, a)

£i(Pr,a) A X strong invariance
(ble)A(b—=c)A(c—=b) (FIG)YAH=(FAH|GAH,
(bA(b—=c)AN(c—=b) | cA(b—=c)A(c— b))
(bAc|cADb)

bAc

m] = = =
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© Conclusions and future work

=] & = E DA
Aguado et. al Syntactic ASP Forgetting with Forks



Conclusions

@ We have introduced a syntactic transformation £|, we called unfolding

o f| is always applicable (under strong persistence)
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Conclusions

@ We have introduced a syntactic transformation £|, we called unfolding
o f| is always applicable (under strong persistence)

o £ relies on f. that can be applied on any program that does not
contain choice rules and it returns a propositional formula without
forks.

@ With general properties of forks we can sometimes reduce forks to
propositional formulas
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Future work

@ We intend to extend the syntactic conditions under which forks can
be reduced to formulas
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Future work

@ We intend to extend the syntactic conditions under which forks can
be reduced to formulas

@ We will also study the extension of the unfolding operator to sets of
atoms
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Thanks for your attention!
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