Syntactic ASP Forgetting with Forks

F. Aguado¹, P. Cabalar¹, J. Fandiño², D. Pearce³, G. Pérez¹, C. Vidal¹

¹ University of Corunna, Spain
 ² University of Nebraska at Omaha,USA
 ³ Polytechnic University of Madrid, Spain

LPNMR 2022 September 7th, 2022, Italy

• A program Π may use auxiliary atoms from $A \subseteq At$

< (17) < (17)

- A program Π may use auxiliary atoms from $A \subseteq At$
- Stable models of Π only use atoms in $V = At \setminus A$

< f³ ► <

- A program Π may use auxiliary atoms from $A \subseteq At$
- Stable models of Π only use atoms in $V = At \setminus A$
- A forgetting operator $f(\Pi, A) = \Pi'$ in V
- Π and Π' should have the "same behaviour" on V

2/29

A (1) < A (1) < A (1) </p>

- A program Π may use auxiliary atoms from $A \subseteq At$
- Stable models of Π only use atoms in $V = At \setminus A$
- A forgetting operator $f(\Pi, A) = \Pi'$ in V
- Π and Π' should have the "same behaviour" on V
- Strong equivalence

 $SM[\Pi \cup Q] = SM[f(\Pi, A) \cup Q]$ for any program Q

2/29

< 回 > < 三 > < 三 > -

- A program Π may use auxiliary atoms from $A \subseteq At$
- Stable models of Π only use atoms in $V = At \setminus A$
- A forgetting operator $f(\Pi, A) = \Pi'$ in V
- Π and Π' should have the "same behaviour" on V
- Strong equivalence persistence

 $SM_{\mathbf{V}}[\Pi \cup Q] = SM[f(\Pi, A) \cup Q]$ for any program Q in \mathbf{V}

2/29

く 目 ト く ヨ ト く ヨ ト

• [Gonçalves, Knorr & Leite 2016] forgetting under "strong persistence" is sometimes impossible in ASP. Example: *a* cannot be forgotten in

$$a \to c \quad \neg a \to b \quad \neg \neg a \to a \quad (P_1)$$

• [Gonçalves, Knorr & Leite 2016] forgetting under "strong persistence" is sometimes impossible in ASP. Example: *a* cannot be forgotten in

 $a \rightarrow c \quad \neg a \rightarrow b \quad \neg \neg a \rightarrow a \quad (P_1)$

• Condition Ω (based on HT-models) holds iff A cannot be forgotten

3/29

• [Gonçalves, Knorr & Leite 2016] forgetting under "strong persistence" is sometimes impossible in ASP. Example: *a* cannot be forgotten in

 $a \rightarrow c \quad \neg a \rightarrow b \quad \neg \neg a \rightarrow a \quad (P_1)$

- Condition Ω (based on HT-models) holds iff A cannot be forgotten
- [Aguado *et al.* 2019] proved that forgetting under "strong persistence" is ALWAYS possible with a new operator fork ']'

3 / 29

• [Gonçalves, Knorr & Leite 2016] forgetting under "strong persistence" is sometimes impossible in ASP. Example: *a* cannot be forgotten in

 $a \rightarrow c \quad \neg a \rightarrow b \quad \neg \neg a \rightarrow a \quad (P_1)$

- Condition Ω (based on HT-models) holds iff A cannot be forgotten
- [Aguado et al. 2019] proved that forgetting under "strong persistence" is ALWAYS possible with a new operator fork '|'

 $f(P_1, a) = (b \mid c)$

Semantic method: obtain $f(\Pi, A)$ by generation of sets of models. Problems:

• It always implies the worst computational cost

< 4 → <

Semantic method: obtain $f(\Pi, A)$ by generation of sets of models. Problems:

- It always implies the worst computational cost
- Unfeasible by hand, even for small programs

4 / 29

Semantic method: obtain $f(\Pi, A)$ by generation of sets of models. Problems:

- It always implies the worst computational cost
- Unfeasible by hand, even for small programs

• $f(\Pi, \emptyset)$ and Π may have a (very) different syntactic look Syntactic methods:

4 / 29

Semantic method: obtain $f(\Pi, A)$ by generation of sets of models. Problems:

- It always implies the worst computational cost
- Unfeasible by hand, even for small programs

• $f(\Pi, \emptyset)$ and Π may have a (very) different syntactic look Syntactic methods:

• [Knorr & Leite 2014] f_{as} for non-disjunctive logic programs

Semantic method: obtain $f(\Pi, A)$ by generation of sets of models. Problems:

- It always implies the worst computational cost
- Unfeasible by hand, even for small programs
- $f(\Pi, \emptyset)$ and Π may have a (very) different syntactic look Syntactic methods:
 - [Knorr & Leite 2014] f_{as} for non-disjunctive logic programs [Berthold *et al.* 2019] f_{sp} for arbitrary logic programs Both satisfy strong persistence (if Ω does not hold)

Semantic method: obtain $f(\Pi, A)$ by generation of sets of models. Problems:

- It always implies the worst computational cost
- Unfeasible by hand, even for small programs
- $f(\Pi, \emptyset)$ and Π may have a (very) different syntactic look Syntactic methods:
 - [Knorr & Leite 2014] f_{as} for non-disjunctive logic programs [Berthold *et al.* 2019] f_{sp} for arbitrary logic programs Both satisfy strong persistence (if Ω does not hold)
 - *f_{sp}* is rather complex: table with 10 different cases plus construction of an *as-dual* program.

く 目 ト く ヨ ト く ヨ ト

In this paper

• We propose a new syntactic operator "unfolding" f_{\parallel} always applicable

3

イロト 不得 トイヨト イヨト

In this paper

- We propose a new syntactic operator "unfolding" f_{\parallel} always applicable
- $f_{|}$ relies on f_{c} "cut operator" which is close to f_{sp}

In this paper

- We propose a new syntactic operator "unfolding" f_{\parallel} always applicable
- $f_{|}$ relies on f_{c} "cut operator" which is close to f_{sp}
- In some cases we can remove forks from the result even when f_{sp} is not applicable (under syntactic sufficient conditions)

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Formulas and programs

We define propositional formulas φ as usual:

$$\varphi \ ::= \ \perp \ | \ p \ | \ \varphi \land \varphi \ | \ \varphi \lor \varphi \ | \ \varphi \to \varphi$$

Definition

An extended disjunctive rule *r* is an implication of the form:

$$\underbrace{p_1 \wedge \cdots \wedge p_m}_{Bd^+(r)} \wedge \underbrace{\neg p_{m+1} \wedge \cdots \wedge \neg p_n}_{Bd^-(r)} \wedge \underbrace{\neg \neg p_{n+1} \wedge \cdots \wedge \neg \neg p_k}_{Bd^{--}(r)} \rightarrow \underbrace{p_{k+1} \vee \cdots \vee p_h}_{Hd(r)}$$

where all $p_i \in At$ and $0 < m < n < k < h$.

A logic program Π is a set of extended disjunctive rules.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Formulas and programs

We define propositional formulas φ as usual:

$$\varphi \ ::= \ \perp \ | \ p \ | \ \varphi \land \varphi \ | \ \varphi \lor \varphi \ | \ \varphi \to \varphi$$

Definition

An extended disjunctive rule r is an implication of the form:

$$\underbrace{p_1 \wedge \cdots \wedge p_m}_{Bd^+(r)} \wedge \underbrace{\neg p_{m+1} \wedge \cdots \wedge \neg p_n}_{Bd^-(r)} \wedge \underbrace{\neg \neg p_{n+1} \wedge \cdots \wedge \neg \neg p_k}_{Bd^{--}(r)} \rightarrow \underbrace{p_{k+1} \vee \cdots \vee p_h}_{Hd(r)}$$

where all $p_i \in At$ and $0 \le m \le n \le k \le h$.

A logic program Π is a set of extended disjunctive rules.

• Any formula is strongly equivalent to a logic program [Cabalar & Ferraris 2007]

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Formulas and programs

We define propositional formulas φ as usual:

$$\varphi ::= \bot \quad | \quad p \quad | \quad \varphi \land \varphi \quad | \quad \varphi \lor \varphi \quad | \quad \varphi \to \varphi$$

Definition

An extended disjunctive rule r is an implication of the form:

$$\underbrace{p_1 \wedge \cdots \wedge p_m}_{Bd^+(r)} \wedge \underbrace{\neg p_{m+1} \wedge \cdots \wedge \neg p_n}_{Bd^-(r)} \wedge \underbrace{\neg p_{n+1} \wedge \cdots \wedge \neg p_k}_{Bd^-(r)} \rightarrow \underbrace{p_{k+1} \vee \cdots \vee p_h}_{Hd(r)}$$

where all $p_i \in At$ and $0 \le m \le n \le k \le h$.
A logic program Π is a set of extended disjunctive rules.

 Any formula is strongly equivalent to a logic program [Cabalar & Ferraris 2007]

• A rule contains an *a*-choice if it has the form:

$$\varphi \wedge \neg \neg \mathbf{a} \to \psi \vee \mathbf{a}$$

<日

<</p>

• [Aguado et al. 2019] introduced a "disjunctive" operator '|' called fork

• $F ::= \bot$ p (F | F) $F \land F$ $\varphi \lor \varphi$ $\varphi \to F$

Keypoint: forks do not appear in disjunctions or rule bodies

$$a \wedge b \rightarrow (\neg c \rightarrow e \mid a \lor \neg d)$$
 \checkmark

(日)

• [Aguado et al. 2019] introduced a "disjunctive" operator '|' called fork

• $F ::= \bot$ p (F | F) $F \land F$ $\varphi \lor \varphi$ $\varphi \to F$

Keypoint: forks do not appear in disjunctions or rule bodies

$$\begin{array}{ccc} a \wedge b \rightarrow (\neg c \rightarrow e \mid a \lor \neg d) & \checkmark \\ & (a \mid b) \rightarrow c & & \bigstar \end{array}$$

(日)

• [Aguado et al. 2019] introduced a "disjunctive" operator '|' called fork

• $F ::= \bot$ p (F | F) $F \land F$ $\varphi \lor \varphi$ $\varphi \to F$

Keypoint: forks do not appear in disjunctions or rule bodies

$$\begin{array}{ccc} a \wedge b \rightarrow (\neg c \rightarrow e \mid a \lor \neg d) & \checkmark \\ (a \mid b) \rightarrow c & & \bigstar \end{array}$$

Semantics based on Here-and-There (HT) [Heyting 1930].
 HT models = pairs ⟨H, T⟩ of sets of atoms H ⊆ T.

8 / 29

• [Aguado et al. 2019] introduced a "disjunctive" operator '|' called fork

• $F ::= \bot$ p (F | F) $F \land F$ $\varphi \lor \varphi$ $\varphi \to F$

Keypoint: forks do not appear in disjunctions or rule bodies

$$\begin{array}{ccc} a \wedge b \to (\neg c \to e \mid a \lor \neg d) & \checkmark \\ (a \mid b) \to c & \bigstar \end{array}$$

- Semantics based on Here-and-There (HT) [Heyting 1930].
 HT models = pairs ⟨H, T⟩ of sets of atoms H ⊆ T.
- Keypoint: *T*-denotation of a fork *F* (see paper)

 $\langle\!\langle F \rangle\!\rangle^T$ = set of sets of atoms *H*'s for a fixed $T \subseteq 2^{2^T}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A (10) N (10)

Removing redundancies

Given Π , behead^a(Π) removes: • rules with $a \in Hd(r) \cap Bd^+(r)$

 $\varphi \land a \rightarrow a \lor \psi$ is a tautology

• head occurrences of a where $a \in Hd(r) \cap Bd^{-}(r)$

 $\varphi \wedge \neg \mathbf{a} \to \mathbf{a} \vee \psi \ \equiv \ \varphi \wedge \neg \mathbf{a} \to \psi$

• $\Pi \equiv behead^a(\Pi)$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Cut inference rule

$$arphi \wedge \mathsf{a} o \psi \qquad \quad \alpha o \mathsf{a} ee eta$$

(CUT)

æ

・ロト ・四ト ・ヨト ・ヨト

Cut inference rule

$$\frac{\varphi \wedge \mathbf{a} \rightarrow \psi \qquad \alpha \rightarrow \mathbf{a} \vee \beta}{\varphi \wedge \alpha \rightarrow \psi \vee \beta}$$

イロン イ理 とく ヨン イ ヨン

3

(CUT)

Cut inference rule

$$\frac{\varphi \wedge \mathbf{a} \to \psi \qquad \alpha \to \mathbf{a} \vee \beta}{\varphi \wedge \alpha \to \psi \vee \beta} \tag{CUT}$$

イロン 不聞 とくほとう ほとう

3

Cut inference rule

$$\frac{\varphi \wedge \mathbf{a} \to \psi \qquad \alpha \to \mathbf{a} \vee \beta}{\varphi \wedge \alpha \to \psi \vee \beta} \tag{CUT}$$

a ightarrow t	$r \rightarrow a \lor u$
	a ightarrow t

Λ.		- o	~t	<u>_</u>
AP	uau	10 (Ξί. Ι	d I

Syntactic ASP Forgetting with Forks

LPNMR 2022

イロン イヨン イヨン

3

Cut inference rule

$$\frac{\varphi \wedge \mathbf{a} \to \psi \qquad \alpha \to \mathbf{a} \vee \beta}{\varphi \wedge \alpha \to \psi \vee \beta} \tag{CUT}$$

a ightarrow t	s ightarrow a	a ightarrow t	$r \rightarrow a \lor u$
<u>s</u> -	$\rightarrow t$	$r \rightarrow$	→ <i>t</i> ∨ <i>u</i>

LPNMR 2022

イロト イポト イヨト イヨト

11 / 29

NES(Π, a, r) = conjunction of all applications of cut for a on rule r (a ∈ B⁺(r))

イロト イポト イヨト イヨト

NES(Π, a, r) = conjunction of all applications of cut for a on rule r (a ∈ B⁺(r))

Example (Π_1)

 $a \rightarrow t$ $s \rightarrow a$ $r \rightarrow a \lor u$ $\neg a \rightarrow v$

イロト 不得 トイヨト イヨト
NES(Π, a, r) = conjunction of all applications of cut for a on rule r (a ∈ B⁺(r))

Example (Π_1)

 $a \rightarrow t$ $s \rightarrow a$ $r \rightarrow a \lor u$ $\neg a \rightarrow v$

 $\textit{NES}(\Pi_1, a, (a \rightarrow t)) \; = \; (s \rightarrow t) \land (r \rightarrow t \lor u)$

3

12 / 29

 NES(Π, a, r) = conjunction of all applications of cut for a on rule r (a ∈ B⁺(r))

Example (Π_1)

 $a \rightarrow t$ $s \rightarrow a$ $r \rightarrow a \lor u$ $\neg a \rightarrow v$

 $NES(\Pi_1, a, (a \to t)) = (s \to t) \land (r \to t \lor u)$

Special case, when the rule is ¬a = (a ∧ ⊤ → ⊥)
 NES(Π, a, ¬a) = conjunction of rules with a ∈ Hd(r) replacing a by ⊥

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 NES(Π, a, r) = conjunction of all applications of cut for a on rule r (a ∈ B⁺(r))

Example (Π_1)

 $a \rightarrow t$ $s \rightarrow a$ $r \rightarrow a \lor u$ $\neg a \rightarrow v$

 $NES(\Pi_1, a, (a \rightarrow t)) = (s \rightarrow t) \land (r \rightarrow t \lor u)$

Special case, when the rule is ¬a = (a ∧ ⊤ → ⊥)
 NES(Π, a, ¬a) = conjunction of rules with a ∈ Hd(r) replacing a by ⊥

• In the example:

 $NES(\Pi_1, a, \neg a) = (s \rightarrow \bot) \land (r \rightarrow \bot \lor u)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

 NES(Π, a, r) = conjunction of all applications of cut for a on rule r (a ∈ B⁺(r))

Example (Π_1)

 $a \rightarrow t$ $s \rightarrow a$ $r \rightarrow a \lor u$ $\neg a \rightarrow v$

 $NES(\Pi_1, a, (a \rightarrow t)) = (s \rightarrow t) \land (r \rightarrow t \lor u)$

Special case, when the rule is ¬a = (a ∧ ⊤ → ⊥)
 NES(Π, a, ¬a) = conjunction of rules with a ∈ Hd(r) replacing a by ⊥

• In the example:

 $NES(\Pi_1, a, \neg a) = (s \rightarrow \bot) \land (r \rightarrow \bot \lor u) \equiv \neg s \land (r \rightarrow u)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

(i) Remove atom a from non-supporting heads obtaining $\Pi' = behead^a(\Pi)$;

< 個 → < Ξ

э

(i) Remove atom a from non-supporting heads obtaining $\Pi' = behead^a(\Pi)$;

Example (Π_1) $a \rightarrow t$ $s \rightarrow a$ $r \rightarrow a \lor u$ $\neg a \rightarrow v$

In the example: $\Pi_1 = behead^a(\Pi_1)$ so nothing to do

3

13/29

(ii) Replace each rule $r \in \Pi'$ with $a \in B^+(r)$ by $NES(\Pi', a, r)$

Example

 $a \rightarrow t$ $s \rightarrow a$ $r \rightarrow a \lor u$ $\neg a \rightarrow v$

イロト 不得 トイヨト イヨト

э

(ii) Replace each rule $r \in \Pi'$ with $a \in B^+(r)$ by $NES(\Pi', a, r)$

Example $a \rightarrow t \quad s \rightarrow a \quad r \rightarrow a \lor u \quad \neg a \rightarrow v$

 $NES(\Pi_1, a, (a \rightarrow t)) = (s \rightarrow t) \land (r \rightarrow t \lor u)$

3

(日)

(ii) Replace each rule $r \in \Pi'$ with $a \in B^+(r)$ by $NES(\Pi', a, r)$

Example

 $(s \rightarrow t) \land (r \rightarrow t \lor u) \quad s \rightarrow a \quad r \rightarrow a \lor u \quad \neg a \rightarrow v$

 $NES(\Pi_1, a, (a \rightarrow t)) = (s \rightarrow t) \land (r \rightarrow t \lor u)$

イロト イポト イヨト イヨト 二日

(iii) Remove every rule r with $Hd(r) = \{a\}$;

Example

 $(s \rightarrow t) \land (r \rightarrow t \lor u)$ $s \rightarrow a$ $r \rightarrow a \lor u$ $\neg a \rightarrow v$

イロト イポト イヨト イヨト 二日

(iii) Remove every rule r with $Hd(r) = \{a\}$;

Example $(s \rightarrow t) \land (r \rightarrow t \lor u)$ $s \rightarrow a$ $r \rightarrow a \lor u$ $\neg a \rightarrow v$

イロト 不得 トイヨト イヨト 二日

(iii) Remove every rule r with $Hd(r) = \{a\}$;

Example

 $(s \rightarrow t) \land (r \rightarrow t \lor u)$

 $r \rightarrow a \lor u \qquad \neg a \rightarrow v$

(日)

(iv) Replace the remaining occurrences of a by $\neg NES(\Pi', a, \neg a)$.

Example

$$(s \rightarrow t) \land (r \rightarrow t \lor u) \quad r \rightarrow a \lor u \quad \neg a \rightarrow v$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

(iv) Replace the remaining occurrences of a by $\neg NES(\Pi', a, \neg a)$.

Example

$$(s \rightarrow t) \land (r \rightarrow t \lor u) \quad r \rightarrow a \lor u \quad \neg a \rightarrow v$$

$$NES(\Pi_1, a, \neg a) = \neg s \land (r \to u) \\ a \quad \rightsquigarrow \quad \neg (\neg s \land (r \to u)) \\ \neg a \quad \rightsquigarrow \quad \neg \neg (\neg s \land (r \to u))$$

э

・ 同 ト ・ ヨ ト ・ ヨ ト

(iv) Replace the remaining occurrences of a by $\neg NES(\Pi', a, \neg a)$.

Example

 $(s \to t) \land (r \to t \lor u) \quad r \to \neg (\neg s \land (r \to u)) \lor u \quad \neg \neg (\neg s \land (r \to u)) \to v$

$$NES(\Pi_1, a, \neg a) = \neg s \land (r \to u)$$

$$a \quad \rightsquigarrow \quad \neg (\neg s \land (r \to u))$$

$$\neg a \quad \rightsquigarrow \quad \neg \neg (\neg s \land (r \to u))$$

(iv) Replace the remaining occurrences of a by $\neg NES(\Pi', a, \neg a)$.

Example

 $(s \to t) \land (r \to t \lor u) \quad r \to \neg (\neg s \land (r \to u)) \lor u \quad \neg \neg (\neg s \land (r \to u)) \to v$

$$\begin{array}{l} \mathsf{VES}(\Pi_1,a,\neg a) = \neg s \land (r \to u) \\ a & \rightsquigarrow & \neg (\neg s \land (r \to u)) \\ \neg a & \rightsquigarrow & \neg \neg (\neg s \land (r \to u)) \end{array}$$

The result is a set of formulas, but they can be easily reduced to a program by well-known HT transformations [Cabalar et al 2005]

(iv) Replace the remaining occurrences of a by $\neg NES(\Pi', a, \neg a)$.

Example

 $(s \rightarrow t) \land (r \rightarrow t \lor u) \quad r \rightarrow \neg (\neg s \land (r \rightarrow u)) \lor u \quad \neg \neg (\neg s \land (r \rightarrow u)) \rightarrow v$

$$\begin{array}{l} \mathsf{VES}(\Pi_1, a, \neg a) = \neg s \land (r \rightarrow u) \\ a \quad \rightsquigarrow \quad \neg \left(\neg s \land (r \rightarrow u)\right) \\ \neg a \quad \rightsquigarrow \quad \neg \neg \left(\neg s \land (r \rightarrow u)\right) \end{array}$$

The result is a set of formulas, but they can be easily reduced to a program by well-known HT transformations [Cabalar et al 2005]

Example

$$s \to t \qquad r \to t \lor u \qquad \neg s \land \neg r \to v$$
$$\neg s \land \neg \neg u \to v \qquad r \land \neg s \land \neg \neg u \to u$$

Definition (Definition 4 from [Berthold et al. 2019])

 Π is *a*-forgettable if, at least one of the following conditions is satisfied:

1 Contains the fact 'a' as a rule

 $(\top \rightarrow a) \in \Pi$

< 🗇 🕨 < 🗩 🕨

Definition (Definition 4 from [Berthold *et al.* 2019])
□ is *a*-forgettable if, at least one of the following conditions is satisfied:
□ □ contains the fact '*a*' as a rule

 $(\top \rightarrow a) \in \Pi$

② □ does not contain a-choices

 $(\varphi \land \neg \neg a \to a \lor \psi) \notin \Pi$

Definition (Definition 4 from [Berthold *et al.* 2019])
□ is *a*-forgettable if, at least one of the following conditions is satisfied:
□ □ contains the fact '*a*' as a rule

 $(\top \rightarrow a) \in \Pi$

2 Π does not contain *a*-choices

 $(\varphi \land \neg \neg a \to a \lor \psi) \not\in \Pi$

3 All rules in Π in which *a* occurs are *a*-choices

 $\Pi = \{ r \mid a \notin At(r) \} \cup \{ \varphi \land \neg \neg a \to a \lor \psi \}$

<日本

<</p>

Theorem

Let Π be a logic program for signature At, let $V \subseteq At$ and $a \in At \setminus V$ and let $\Pi' = behead^a(\Pi)$. If Π' is a-forgettable, then:

 $\Pi \cong_V \mathtt{f}_c(\Pi, a).$

17 / 29

< 🗇 🕨 < 🖃 🕨

Theorem

Let Π be a logic program for signature At, let $V \subseteq At$ and $a \in At \setminus V$ and let $\Pi' = behead^a(\Pi)$. If Π' is a-forgettable, then:

 $\Pi \cong_V \mathtt{f}_c(\Pi, a).$

・ 何 ト ・ ヨ ト ・ ヨ ト

 P_1 contains an *a*-choice.

 f_c does not guarantee strong persistence

э

- $\Pi[\gamma/\varphi]$: substitute γ by φ
- Propositional logic: forgetting *a* is equivalent to $\Pi[a/\bot] \vee \Pi[a/\top]$

イロト 不得 トイヨト イヨト

- $\Pi[\gamma/\varphi]$: substitute γ by φ
- Propositional logic: forgetting *a* is equivalent to $\Pi[a/\bot] \vee \Pi[a/\top]$
- Equilibrium logic: $\Pi \equiv (\Pi \land \neg a \mid \Pi \land \neg \neg a)$

3

- $\Pi[\gamma/\varphi]$: substitute γ by φ
- Propositional logic: forgetting *a* is equivalent to $\Pi[a/\bot] \vee \Pi[a/\top]$
- Equilibrium logic: $\Pi \equiv (\Pi \land \neg a \mid \Pi \land \neg \neg a)$
- $\Pi \land \neg a$ and $\Pi \land \neg \neg a$ are *a*-forgettable

 $\begin{array}{rcl} \Pi \wedge \neg a & \equiv & \Pi[a/\bot] \wedge \neg a \\ \neg \neg a \wedge \varphi \rightarrow a \lor \psi & \equiv & \bot \wedge \varphi \rightarrow \bot \lor \psi & \equiv & \top \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- $\Pi[\gamma/\varphi]$: substitute γ by φ
- Propositional logic: forgetting *a* is equivalent to $\Pi[a/\bot] \vee \Pi[a/\top]$
- Equilibrium logic: $\Pi \equiv (\Pi \land \neg a \mid \Pi \land \neg \neg a)$
- $\Pi \land \neg a$ and $\Pi \land \neg \neg a$ are *a*-forgettable

$$\begin{split} \Pi \wedge \neg \neg a &\equiv \Pi [\neg a / \bot] \wedge \neg \neg a \\ \neg \neg a \wedge \varphi \to a \lor \psi &\equiv \quad \top \wedge \varphi \to a \lor \psi &\equiv \quad \varphi \to a \lor \psi \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

•
$$\Pi \equiv (\Pi \land \neg a \mid \Pi \land \neg \neg a)$$

•
$$\Pi \land \neg a$$
 and $\Pi \land \neg \neg a$ are *a*-forgettable

Definition (Unfolding operator, $f_{|}$)

For any logic program Π and atom *a* we define:

$$\mathtt{f}_{|}(\Pi, a) \stackrel{\mathrm{def}}{=} (\mathtt{f}_{c}(\Pi \land \neg a, a) \mid \mathtt{f}_{c}(\Pi \land \neg \neg a, a))$$

く 何 ト く ヨ ト く ヨ ト

•
$$\Pi \equiv (\Pi \wedge \neg a \mid \Pi \wedge \neg \neg a)$$

•
$$\Pi \land \neg a$$
 and $\Pi \land \neg \neg a$ are *a*-forgettable

Definition (Unfolding operator, $f_{|}$)

For any logic program Π and atom *a* we define:

$$\mathtt{f}_{|}(\Pi, a) \stackrel{\mathrm{def}}{=} (\mathtt{f}_{c}(\Pi \land \neg a, a) | \mathtt{f}_{c}(\Pi \land \neg \neg a, a))$$

Theorem

Let Π be a logic program for signature At, $V \subseteq$ At and $a \in$ At $\setminus V$. Then,

 $\Pi \cong_V \mathtt{f}_{|}(\Pi, a).$

The unfolding operator: an example

 $\texttt{f}_{|}(P_1,a) = (\texttt{f}_c(P_1 \land \neg a,a) \mid \texttt{f}_c(P_1 \land \neg \neg a,a))$

Aguado et. al

Syntactic ASP Forgetting with Forks

LPNMR 2022

(日)

22 / 29

The unfolding operator: an example $f_{|}(P_1,a) = (f_c(P_1 \land \neg a,a) | f_c(P_1 \land \neg \neg a,a))$ Example $(f_c(P_1 \land \neg a, a))$ $(P_1 \land \neg a)$ $a \rightarrow c \quad \neg a \rightarrow b \quad \neg \neg a \rightarrow a \quad \neg a$

 $P_1 \wedge \neg a \equiv P_1[a/\bot] \wedge \neg a$

イロト イポト イヨト イヨト 二日

The unfolding operator: an example

$$\texttt{f}_{|}(P_1,a) = (\texttt{f}_c(P_1 \land \neg a,a) \mid \texttt{f}_c(P_1 \land \neg \neg a,a))$$

 $P_1 \wedge \neg a \equiv P_1[a/\bot] \wedge \neg a$

The unfolding operator: an example

$$\texttt{f}_{|}(P_1,a) = (\texttt{f}_c(P_1 \land \neg a,a) \mid \texttt{f}_c(P_1 \land \neg \neg a,a))$$

$$P_1 \wedge \neg a \equiv P_1[a/\bot] \wedge \neg a$$
$$f_c(P_1 \wedge \neg a, a) \equiv P_1[a/\bot] = b$$

イロト イヨト イヨト ・

The unfolding operator: an example $f_{\downarrow}(P_1, a) = (f_c(P_1 \land \neg a, a) \mid f_c(P_1 \land \neg \neg a, a))$ Example $(f_c(P_1 \land \neg \neg a, a))$ $a
ightarrow c extsf{ \neg a}
ightarrow b extsf{ \neg \neg a}
ightarrow a extsf{ \neg \neg a} (P_1 \land extsf{ \neg \neg a})$

 $P_1 \wedge \neg \neg a \equiv P_1[\neg a/\bot] \wedge \neg \neg a$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The unfolding operator: an example

$$\mathtt{f}_{|}(P_1,a) = (\mathtt{f}_c(P_1 \land \neg a,a) \mid \mathtt{f}_c(P_1 \land \neg \neg a,a))$$

$$P_1 \wedge \neg \neg a \equiv P_1[\neg a/\bot] \wedge \neg \neg a$$

3
The unfolding operator: an example

$$\texttt{f}_{|}(P_1,a) = (\texttt{f}_c(P_1 \land \neg a,a) \mid \texttt{f}_c(P_1 \land \neg \neg a,a))$$

$$P_1 \land \neg \neg a \equiv P_1[\neg a/\bot] \land \neg \neg a$$
$$f_c(P_1 \land \neg \neg a, a) = f_c(a \land c, a) = c$$

Aguado et. al

イロト イポト イヨト イヨト 二日

The unfolding operator: an example

Example (P_1) $a \rightarrow b$ $\neg a \rightarrow c$ $\neg \neg a \rightarrow a$

 $f_c(P_1 \land \neg a, a) = b$ $f_c(P_1 \land \neg \neg a, a) = c$

 $f_{|}(P_1,a) = (f_c(P_1 \land \neg a,a) \mid f_c(P_1 \land \neg \neg a,a)) = (b \mid c)$

LPNMR 2022

(日)

3

Example
$$(P_2)$$

 $a \to c \quad \neg a \to b \quad \neg \neg a \to a \quad \underbrace{b \to c \quad c \to b}_{X} \quad (P_2 = P_1 \land X)$

$$\begin{array}{rcl} \mathtt{f}_{|}(P_{2},a) &=& \mathtt{f}_{|}(P_{1}\wedge X,a) \\ &=& \mathtt{f}_{|}(P_{1},a)\wedge X \end{array}$$

strong invariance

Image: A mathematical states and a mathem

∃ >

2

25 / 29

Example
$$(P_2)$$

 $a \to c \quad \neg a \to b \quad \neg \neg a \to a \quad \underbrace{b \to c \quad c \to b}_{X} \quad (P_2 = P_1 \land X)$

$$\begin{aligned} \mathbf{f}_{|}(P_{2},a) &= \mathbf{f}_{|}(P_{1} \wedge X,a) \\ &= \mathbf{f}_{|}(P_{1},a) \wedge X \quad \text{strong invariance} \\ &= (b \mid c) \wedge (b \rightarrow c) \wedge (c \rightarrow b) \quad (F \mid G) \wedge H \equiv (F \wedge H \mid G \wedge H) \\ &\equiv (b \wedge (b \rightarrow c) \wedge (c \rightarrow b) \mid c \wedge (b \rightarrow c) \wedge (c \rightarrow b)) \end{aligned}$$

LPNMR 2022

< 4³ ► <

표 제 표

Example
$$(P_2)$$

 $a \to c \quad \neg a \to b \quad \neg \neg a \to a \quad \underbrace{b \to c \quad c \to b}_{X} \quad (P_2 = P_1 \land X)$

$$\begin{aligned} \mathbf{f}_{|}(P_{2},a) &= \mathbf{f}_{|}(P_{1} \wedge X,a) \\ &= \mathbf{f}_{|}(P_{1},a) \wedge X \quad \text{strong invariance} \\ &= (b \mid c) \wedge (b \rightarrow c) \wedge (c \rightarrow b) \quad (F \mid G) \wedge H \equiv (F \wedge H \mid G \wedge H) \\ &= (b \wedge (b \rightarrow c) \wedge (c \rightarrow b) \mid c \wedge (b \rightarrow c) \wedge (c \rightarrow b)) \\ &\equiv (b \wedge c \mid c \wedge b) \\ &\equiv b \wedge c \end{aligned}$$

< (17) × <

э

25 / 29

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Conclusions

- \bullet We have introduced a syntactic transformation $\mathtt{f}_{\parallel},$ we called unfolding
- f | is always applicable (under strong persistence)

27 / 29

Conclusions

- \bullet We have introduced a syntactic transformation $\mathtt{f}_{\parallel},$ we called unfolding
- f | is always applicable (under strong persistence)
- f_| relies on f_c that can be applied on any program that does not contain choice rules and it returns a propositional formula without forks.
- With general properties of forks we can sometimes reduce forks to propositional formulas

Future work

• We intend to extend the syntactic conditions under which forks can be reduced to formulas

< A > <

э

Future work

- We intend to extend the syntactic conditions under which forks can be reduced to formulas
- We will also study the extension of the unfolding operator to sets of atoms

28 / 29

A 🖓

Syntactic ASP Forgetting with Forks

F. Aguado, P. Cabalar, J. Fandiño, D. Pearce, G. Pérez, C. Vidal

Thanks for your attention!