
Syntactic ASP Forgetting with Forks

F. Aguado1, P. Cabalar1, J. Fandiño2, D. Pearce3, G. Pérez1, C. Vidal1

1 University of Corunna, Spain
2 University of Nebraska at Omaha,USA
3 Polytechnic University of Madrid, Spain

LPNMR 2022
September 7th, 2022, Italy

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 1 / 29

Using auxiliary atoms in ASP

A program Π may use auxiliary atoms from A ⊆ At

Stable models of Π only use atoms in V = At \ A

A forgetting operator f (Π,A) = Π′ in V

Π and Π′ should have the “same behaviour” on V

Strong

[Π ∪ Q] = SM[f (Π,A) ∪ Q] for any program Q

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 2 / 29

Using auxiliary atoms in ASP

A program Π may use auxiliary atoms from A ⊆ At

Stable models of Π only use atoms in V = At \ A

A forgetting operator f (Π,A) = Π′ in V

Π and Π′ should have the “same behaviour” on V

Strong

[Π ∪ Q] = SM[f (Π,A) ∪ Q] for any program Q

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 2 / 29

Using auxiliary atoms in ASP

A program Π may use auxiliary atoms from A ⊆ At

Stable models of Π only use atoms in V = At \ A

A forgetting operator f (Π,A) = Π′ in V

Π and Π′ should have the “same behaviour” on V

Strong

[Π ∪ Q] = SM[f (Π,A) ∪ Q] for any program Q

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 2 / 29

Using auxiliary atoms in ASP

A program Π may use auxiliary atoms from A ⊆ At

Stable models of Π only use atoms in V = At \ A

A forgetting operator f (Π,A) = Π′ in V

Π and Π′ should have the “same behaviour” on V

Strong equivalence

SM[Π ∪ Q] = SM[f (Π,A) ∪ Q] for any program Q

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 2 / 29

Using auxiliary atoms in ASP

A program Π may use auxiliary atoms from A ⊆ At

Stable models of Π only use atoms in V = At \ A

A forgetting operator f (Π,A) = Π′ in V

Π and Π′ should have the “same behaviour” on V

Strong ((((((equivalence persistence

SMV [Π ∪ Q] = SM[f (Π,A) ∪ Q] for any program Q in V

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 2 / 29

We cannot forget without forks

[Gonçalves, Knorr & Leite 2016] forgetting under “strong persistence”
is sometimes impossible in ASP. Example: a cannot be forgotten in

a → c ¬a → b ¬¬a → a (P1)

Condition Ω (based on HT-models) holds iff A cannot be forgotten

[Aguado et al. 2019] proved that forgetting under “strong
persistence” is ALWAYS possible with a new operator fork ‘|’

f (P1, a) = (b | c)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 3 / 29

We cannot forget without forks

[Gonçalves, Knorr & Leite 2016] forgetting under “strong persistence”
is sometimes impossible in ASP. Example: a cannot be forgotten in

a → c ¬a → b ¬¬a → a (P1)

Condition Ω (based on HT-models) holds iff A cannot be forgotten

[Aguado et al. 2019] proved that forgetting under “strong
persistence” is ALWAYS possible with a new operator fork ‘|’

f (P1, a) = (b | c)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 3 / 29

We cannot forget without forks

[Gonçalves, Knorr & Leite 2016] forgetting under “strong persistence”
is sometimes impossible in ASP. Example: a cannot be forgotten in

a → c ¬a → b ¬¬a → a (P1)

Condition Ω (based on HT-models) holds iff A cannot be forgotten

[Aguado et al. 2019] proved that forgetting under “strong
persistence” is ALWAYS possible with a new operator fork ‘|’

f (P1, a) = (b | c)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 3 / 29

We cannot forget without forks

[Gonçalves, Knorr & Leite 2016] forgetting under “strong persistence”
is sometimes impossible in ASP. Example: a cannot be forgotten in

a → c ¬a → b ¬¬a → a (P1)

Condition Ω (based on HT-models) holds iff A cannot be forgotten

[Aguado et al. 2019] proved that forgetting under “strong
persistence” is ALWAYS possible with a new operator fork ‘|’

f (P1, a) = (b | c)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 3 / 29

Methods for forgetting

Semantic method: obtain f (Π,A) by generation of sets of models.
Problems:

It always implies the worst computational cost

Unfeasible by hand, even for small programs

f (Π, ∅) and Π may have a (very) different syntactic look

Syntactic methods:

[Knorr & Leite 2014] fas for non-disjunctive logic programs
[Berthold et al. 2019] fsp for arbitrary logic programs
Both satisfy strong persistence (if Ω does not hold)

fsp is rather complex: table with 10 different cases plus construction
of an as-dual program.

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 4 / 29

Methods for forgetting

Semantic method: obtain f (Π,A) by generation of sets of models.
Problems:

It always implies the worst computational cost

Unfeasible by hand, even for small programs

f (Π, ∅) and Π may have a (very) different syntactic look

Syntactic methods:

[Knorr & Leite 2014] fas for non-disjunctive logic programs
[Berthold et al. 2019] fsp for arbitrary logic programs
Both satisfy strong persistence (if Ω does not hold)

fsp is rather complex: table with 10 different cases plus construction
of an as-dual program.

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 4 / 29

Methods for forgetting

Semantic method: obtain f (Π,A) by generation of sets of models.
Problems:

It always implies the worst computational cost

Unfeasible by hand, even for small programs

f (Π, ∅) and Π may have a (very) different syntactic look

Syntactic methods:

[Knorr & Leite 2014] fas for non-disjunctive logic programs
[Berthold et al. 2019] fsp for arbitrary logic programs
Both satisfy strong persistence (if Ω does not hold)

fsp is rather complex: table with 10 different cases plus construction
of an as-dual program.

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 4 / 29

Methods for forgetting

Semantic method: obtain f (Π,A) by generation of sets of models.
Problems:

It always implies the worst computational cost

Unfeasible by hand, even for small programs

f (Π, ∅) and Π may have a (very) different syntactic look

Syntactic methods:

[Knorr & Leite 2014] fas for non-disjunctive logic programs

[Berthold et al. 2019] fsp for arbitrary logic programs
Both satisfy strong persistence (if Ω does not hold)

fsp is rather complex: table with 10 different cases plus construction
of an as-dual program.

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 4 / 29

Methods for forgetting

Semantic method: obtain f (Π,A) by generation of sets of models.
Problems:

It always implies the worst computational cost

Unfeasible by hand, even for small programs

f (Π, ∅) and Π may have a (very) different syntactic look

Syntactic methods:

[Knorr & Leite 2014] fas for non-disjunctive logic programs
[Berthold et al. 2019] fsp for arbitrary logic programs
Both satisfy strong persistence (if Ω does not hold)

fsp is rather complex: table with 10 different cases plus construction
of an as-dual program.

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 4 / 29

Methods for forgetting

Semantic method: obtain f (Π,A) by generation of sets of models.
Problems:

It always implies the worst computational cost

Unfeasible by hand, even for small programs

f (Π, ∅) and Π may have a (very) different syntactic look

Syntactic methods:

[Knorr & Leite 2014] fas for non-disjunctive logic programs
[Berthold et al. 2019] fsp for arbitrary logic programs
Both satisfy strong persistence (if Ω does not hold)

fsp is rather complex: table with 10 different cases plus construction
of an as-dual program.

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 4 / 29

In this paper

We propose a new syntactic operator “unfolding” f| always applicable

f| relies on fc “cut operator” which is close to fsp

In some cases we can remove forks from the result even when fsp is
not applicable (under syntactic sufficient conditions)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 5 / 29

In this paper

We propose a new syntactic operator “unfolding” f| always applicable

f| relies on fc “cut operator” which is close to fsp

In some cases we can remove forks from the result even when fsp is
not applicable (under syntactic sufficient conditions)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 5 / 29

In this paper

We propose a new syntactic operator “unfolding” f| always applicable

f| relies on fc “cut operator” which is close to fsp

In some cases we can remove forks from the result even when fsp is
not applicable (under syntactic sufficient conditions)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 5 / 29

1 Introduction

2 Background

3 The Cut Operator

4 Forgetting into forks

5 Conclusions and future work

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 6 / 29

Formulas and programs
We define propositional formulas φ as usual:

φ ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ φ ∧ φ
∣∣∣∣∣∣ φ ∨ φ

∣∣∣∣∣∣ φ→ φ

Definition

An extended disjunctive rule r is an implication of the form:

p1 ∧ · · · ∧ pm︸ ︷︷ ︸
Bd+(r)

∧¬pm+1 ∧ · · · ∧ ¬pn︸ ︷︷ ︸
Bd−(r)

∧¬¬pn+1 ∧ · · · ∧ ¬¬pk︸ ︷︷ ︸
Bd−−(r)

→ pk+1 ∨ · · · ∨ ph︸ ︷︷ ︸
Hd(r)

where all pi ∈ At and 0 ≤ m ≤ n ≤ k ≤ h.
A logic program Π is a set of extended disjunctive rules.

Any formula is strongly equivalent to a logic program [Cabalar &
Ferraris 2007]

A rule contains an a-choice if it has the form:

φ ∧ ¬¬a → ψ ∨ a

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 7 / 29

Formulas and programs
We define propositional formulas φ as usual:

φ ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ φ ∧ φ
∣∣∣∣∣∣ φ ∨ φ

∣∣∣∣∣∣ φ→ φ

Definition

An extended disjunctive rule r is an implication of the form:

p1 ∧ · · · ∧ pm︸ ︷︷ ︸
Bd+(r)

∧¬pm+1 ∧ · · · ∧ ¬pn︸ ︷︷ ︸
Bd−(r)

∧¬¬pn+1 ∧ · · · ∧ ¬¬pk︸ ︷︷ ︸
Bd−−(r)

→ pk+1 ∨ · · · ∨ ph︸ ︷︷ ︸
Hd(r)

where all pi ∈ At and 0 ≤ m ≤ n ≤ k ≤ h.
A logic program Π is a set of extended disjunctive rules.

Any formula is strongly equivalent to a logic program [Cabalar &
Ferraris 2007]

A rule contains an a-choice if it has the form:

φ ∧ ¬¬a → ψ ∨ a

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 7 / 29

Formulas and programs
We define propositional formulas φ as usual:

φ ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ φ ∧ φ
∣∣∣∣∣∣ φ ∨ φ

∣∣∣∣∣∣ φ→ φ

Definition

An extended disjunctive rule r is an implication of the form:

p1 ∧ · · · ∧ pm︸ ︷︷ ︸
Bd+(r)

∧¬pm+1 ∧ · · · ∧ ¬pn︸ ︷︷ ︸
Bd−(r)

∧¬¬pn+1 ∧ · · · ∧ ¬¬pk︸ ︷︷ ︸
Bd−−(r)

→ pk+1 ∨ · · · ∨ ph︸ ︷︷ ︸
Hd(r)

where all pi ∈ At and 0 ≤ m ≤ n ≤ k ≤ h.
A logic program Π is a set of extended disjunctive rules.

Any formula is strongly equivalent to a logic program [Cabalar &
Ferraris 2007]

A rule contains an a-choice if it has the form:

φ ∧ ¬¬a → ψ ∨ a

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 7 / 29

Forks

[Aguado et al. 2019] introduced a “disjunctive” operator ‘|’ called fork

F ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ (F | F)
∣∣∣∣∣∣ F ∧ F

∣∣∣∣∣∣ φ ∨ φ
∣∣∣∣∣∣ φ→ F

Keypoint: forks do not appear in disjunctions or rule bodies

a ∧ b → (¬c → e | a ∨ ¬d) Ë

(a | b) → c é

Semantics based on Here-and-There (HT) [Heyting 1930].
HT models = pairs ⟨H,T ⟩ of sets of atoms H ⊆ T .

Keypoint: T -denotation of a fork F (see paper)

⟨⟨F ⟩⟩T = set of sets of atoms H’s for a fixed T⊆ 22
T

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 8 / 29

Forks

[Aguado et al. 2019] introduced a “disjunctive” operator ‘|’ called fork

F ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ (F | F)
∣∣∣∣∣∣ F ∧ F

∣∣∣∣∣∣ φ ∨ φ
∣∣∣∣∣∣ φ→ F

Keypoint: forks do not appear in disjunctions or rule bodies

a ∧ b → (¬c → e | a ∨ ¬d) Ë
(a | b) → c é

Semantics based on Here-and-There (HT) [Heyting 1930].
HT models = pairs ⟨H,T ⟩ of sets of atoms H ⊆ T .

Keypoint: T -denotation of a fork F (see paper)

⟨⟨F ⟩⟩T = set of sets of atoms H’s for a fixed T⊆ 22
T

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 8 / 29

Forks

[Aguado et al. 2019] introduced a “disjunctive” operator ‘|’ called fork

F ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ (F | F)
∣∣∣∣∣∣ F ∧ F

∣∣∣∣∣∣ φ ∨ φ
∣∣∣∣∣∣ φ→ F

Keypoint: forks do not appear in disjunctions or rule bodies

a ∧ b → (¬c → e | a ∨ ¬d) Ë
(a | b) → c é

Semantics based on Here-and-There (HT) [Heyting 1930].
HT models = pairs ⟨H,T ⟩ of sets of atoms H ⊆ T .

Keypoint: T -denotation of a fork F (see paper)

⟨⟨F ⟩⟩T = set of sets of atoms H’s for a fixed T⊆ 22
T

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 8 / 29

Forks

[Aguado et al. 2019] introduced a “disjunctive” operator ‘|’ called fork

F ::= ⊥
∣∣∣∣∣∣ p

∣∣∣∣∣∣ (F | F)
∣∣∣∣∣∣ F ∧ F

∣∣∣∣∣∣ φ ∨ φ
∣∣∣∣∣∣ φ→ F

Keypoint: forks do not appear in disjunctions or rule bodies

a ∧ b → (¬c → e | a ∨ ¬d) Ë
(a | b) → c é

Semantics based on Here-and-There (HT) [Heyting 1930].
HT models = pairs ⟨H,T ⟩ of sets of atoms H ⊆ T .

Keypoint: T -denotation of a fork F (see paper)

⟨⟨F ⟩⟩T = set of sets of atoms H’s for a fixed T⊆ 22
T

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 8 / 29

1 Introduction

2 Background

3 The Cut Operator

4 Forgetting into forks

5 Conclusions and future work

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 9 / 29

Removing redundancies

Given Π, beheada(Π) removes:

rules with a ∈ Hd(r) ∩ Bd+(r)

(((((((
φ ∧ a → a ∨ ψ is a tautology

head occurrences of a where a ∈ Hd(r) ∩ Bd−(r)

φ ∧ ¬a → �a ∨ ψ ≡ φ ∧ ¬a → ψ

Π ≡ beheada(Π)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 10 / 29

The Cut Operator

Cut inference rule

φ ∧ a → ψ α→ a ∨ β
(CUT)

Example (Π1)

a → t ¬a → v

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 11 / 29

The Cut Operator

Cut inference rule

φ ∧ a → ψ α→ a ∨ β
φ ∧ α→ ψ ∨ β

(CUT)

Example (Π1)

a → t ¬a → v

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 11 / 29

The Cut Operator

Cut inference rule

φ ∧ a → ψ α→ a ∨ β
φ ∧ α→ ψ ∨ β

(CUT)

Example (Π1)

a → t s → a r → a ∨ u ¬a → v

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 11 / 29

The Cut Operator

Cut inference rule

φ ∧ a → ψ α→ a ∨ β
φ ∧ α→ ψ ∨ β

(CUT)

Example (Π1)

a → t s → a r → a ∨ u ¬a → v

a → t s → a a → t r → a ∨ u

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 11 / 29

The Cut Operator

Cut inference rule

φ ∧ a → ψ α→ a ∨ β
φ ∧ α→ ψ ∨ β

(CUT)

Example (Π1)

a → t s → a r → a ∨ u ¬a → v

a → t s → a

s → t

a → t r → a ∨ u

r → t ∨ u

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 11 / 29

The Cut Operator
NES(Π, a, r) = conjunction of all applications of cut for a on rule r
(a ∈ B+(r))

Example (Π1)

a → t ¬a → v

NES(Π1, a, (a → t)) = (s → t) ∧ (r → t ∨ u)

Special case, when the rule is ¬a = (a ∧ ⊤ → ⊥)
NES(Π, a,¬a) = conjunction of rules with a ∈ Hd(r) replacing a by ⊥

In the example:

NES(Π1, a,¬a) = (s → ⊥) ∧ (r → ⊥∨ u) ≡ ¬s ∧ (r → u)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 12 / 29

The Cut Operator
NES(Π, a, r) = conjunction of all applications of cut for a on rule r
(a ∈ B+(r))

Example (Π1)

a → t s → a r → a ∨ u ¬a → v

NES(Π1, a, (a → t)) = (s → t) ∧ (r → t ∨ u)

Special case, when the rule is ¬a = (a ∧ ⊤ → ⊥)
NES(Π, a,¬a) = conjunction of rules with a ∈ Hd(r) replacing a by ⊥

In the example:

NES(Π1, a,¬a) = (s → ⊥) ∧ (r → ⊥∨ u) ≡ ¬s ∧ (r → u)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 12 / 29

The Cut Operator
NES(Π, a, r) = conjunction of all applications of cut for a on rule r
(a ∈ B+(r))

Example (Π1)

a → t s → a r → a ∨ u ¬a → v

NES(Π1, a, (a → t)) = (s → t) ∧ (r → t ∨ u)

Special case, when the rule is ¬a = (a ∧ ⊤ → ⊥)
NES(Π, a,¬a) = conjunction of rules with a ∈ Hd(r) replacing a by ⊥

In the example:

NES(Π1, a,¬a) = (s → ⊥) ∧ (r → ⊥∨ u) ≡ ¬s ∧ (r → u)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 12 / 29

The Cut Operator
NES(Π, a, r) = conjunction of all applications of cut for a on rule r
(a ∈ B+(r))

Example (Π1)

a → t s → a r → a ∨ u ¬a → v

NES(Π1, a, (a → t)) = (s → t) ∧ (r → t ∨ u)

Special case, when the rule is ¬a = (a ∧ ⊤ → ⊥)
NES(Π, a,¬a) = conjunction of rules with a ∈ Hd(r) replacing a by ⊥

In the example:

NES(Π1, a,¬a) = (s → ⊥) ∧ (r → ⊥∨ u) ≡ ¬s ∧ (r → u)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 12 / 29

The Cut Operator
NES(Π, a, r) = conjunction of all applications of cut for a on rule r
(a ∈ B+(r))

Example (Π1)

a → t s → a r → a ∨ u ¬a → v

NES(Π1, a, (a → t)) = (s → t) ∧ (r → t ∨ u)

Special case, when the rule is ¬a = (a ∧ ⊤ → ⊥)
NES(Π, a,¬a) = conjunction of rules with a ∈ Hd(r) replacing a by ⊥

In the example:

NES(Π1, a,¬a) = (s → ⊥) ∧ (r → ⊥∨ u)

≡ ¬s ∧ (r → u)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 12 / 29

The Cut Operator
NES(Π, a, r) = conjunction of all applications of cut for a on rule r
(a ∈ B+(r))

Example (Π1)

a → t s → a r → a ∨ u ¬a → v

NES(Π1, a, (a → t)) = (s → t) ∧ (r → t ∨ u)

Special case, when the rule is ¬a = (a ∧ ⊤ → ⊥)
NES(Π, a,¬a) = conjunction of rules with a ∈ Hd(r) replacing a by ⊥

In the example:

NES(Π1, a,¬a) = (s → ⊥) ∧ (r → ⊥∨ u) ≡ ¬s ∧ (r → u)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 12 / 29

The Cut Operator fc(Π, a)

(i) Remove atom a from non-supporting heads obtaining Π′ = beheada(Π);

Example (Π1)

a → t s → a r → a ∨ u ¬a → v

In the example: Π1 = beheada(Π1) so nothing to do

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 13 / 29

The Cut Operator fc(Π, a)

(i) Remove atom a from non-supporting heads obtaining Π′ = beheada(Π);

Example (Π1)

a → t s → a r → a ∨ u ¬a → v

In the example: Π1 = beheada(Π1) so nothing to do

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 13 / 29

The Cut Operator fc(Π, a)

(ii) Replace each rule r ∈ Π′ with a ∈ B+(r) by NES(Π′, a, r)

Example

a → t s → a r → a ∨ u ¬a → v

NES(Π1, a, (a → t)) = (s → t) ∧ (r → t ∨ u)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 14 / 29

The Cut Operator fc(Π, a)

(ii) Replace each rule r ∈ Π′ with a ∈ B+(r) by NES(Π′, a, r)

Example

a → t s → a r → a ∨ u ¬a → v

NES(Π1, a, (a → t)) = (s → t) ∧ (r → t ∨ u)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 14 / 29

The Cut Operator fc(Π, a)

(ii) Replace each rule r ∈ Π′ with a ∈ B+(r) by NES(Π′, a, r)

Example

(s → t) ∧ (r → t ∨ u) s → a r → a ∨ u ¬a → v

NES(Π1, a, (a → t)) = (s → t) ∧ (r → t ∨ u)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 14 / 29

The Cut Operator fc(Π, a)

(iii) Remove every rule r with Hd(r) = {a};

Example

(s → t) ∧ (r → t ∨ u) s → a r → a ∨ u ¬a → v

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 15 / 29

The Cut Operator fc(Π, a)

(iii) Remove every rule r with Hd(r) = {a};

Example

(s → t) ∧ (r → t ∨ u) ���s → a r → a ∨ u ¬a → v

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 15 / 29

The Cut Operator fc(Π, a)

(iii) Remove every rule r with Hd(r) = {a};

Example

(s → t) ∧ (r → t ∨ u) r → a ∨ u ¬a → v

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 15 / 29

The Cut Operator fc(Π, a)
(iv) Replace the remaining occurrences of a by ¬NES(Π′, a,¬a).

Example

(s → t) ∧ (r → t ∨ u) r → a ∨ u ¬a → v

NES(Π1, a,¬a) = ¬s ∧ (r → u)
a ⇝ ¬ (¬s ∧ (r → u))

¬a ⇝ ¬¬ (¬s ∧ (r → u))

The result is a set of formulas, but they can be easily reduced to a
program by well-known HT transformations [Cabalar et al 2005]

Example

s → t r → t ∨ u ¬s ∧ ¬r → v

¬s ∧ ¬¬u → v r ∧ ¬s ∧ ¬¬u → u

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 16 / 29

The Cut Operator fc(Π, a)
(iv) Replace the remaining occurrences of a by ¬NES(Π′, a,¬a).

Example

(s → t) ∧ (r → t ∨ u) r → a ∨ u ¬a → v

NES(Π1, a,¬a) = ¬s ∧ (r → u)
a ⇝ ¬ (¬s ∧ (r → u))

¬a ⇝ ¬¬ (¬s ∧ (r → u))

The result is a set of formulas, but they can be easily reduced to a
program by well-known HT transformations [Cabalar et al 2005]

Example

s → t r → t ∨ u ¬s ∧ ¬r → v

¬s ∧ ¬¬u → v r ∧ ¬s ∧ ¬¬u → u

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 16 / 29

The Cut Operator fc(Π, a)
(iv) Replace the remaining occurrences of a by ¬NES(Π′, a,¬a).

Example

(s → t) ∧ (r → t ∨ u) r → ¬(¬s ∧ (r → u)) ∨ u ¬¬(¬s ∧ (r → u)) → v

NES(Π1, a,¬a) = ¬s ∧ (r → u)
a ⇝ ¬ (¬s ∧ (r → u))

¬a ⇝ ¬¬ (¬s ∧ (r → u))

The result is a set of formulas, but they can be easily reduced to a
program by well-known HT transformations [Cabalar et al 2005]

Example

s → t r → t ∨ u ¬s ∧ ¬r → v

¬s ∧ ¬¬u → v r ∧ ¬s ∧ ¬¬u → u

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 16 / 29

The Cut Operator fc(Π, a)
(iv) Replace the remaining occurrences of a by ¬NES(Π′, a,¬a).

Example

(s → t) ∧ (r → t ∨ u) r → ¬(¬s ∧ (r → u)) ∨ u ¬¬(¬s ∧ (r → u)) → v

NES(Π1, a,¬a) = ¬s ∧ (r → u)
a ⇝ ¬ (¬s ∧ (r → u))

¬a ⇝ ¬¬ (¬s ∧ (r → u))

The result is a set of formulas, but they can be easily reduced to a
program by well-known HT transformations [Cabalar et al 2005]

Example

s → t r → t ∨ u ¬s ∧ ¬r → v

¬s ∧ ¬¬u → v r ∧ ¬s ∧ ¬¬u → u

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 16 / 29

The Cut Operator fc(Π, a)
(iv) Replace the remaining occurrences of a by ¬NES(Π′, a,¬a).

Example

(s → t) ∧ (r → t ∨ u) r → ¬(¬s ∧ (r → u)) ∨ u ¬¬(¬s ∧ (r → u)) → v

NES(Π1, a,¬a) = ¬s ∧ (r → u)
a ⇝ ¬ (¬s ∧ (r → u))

¬a ⇝ ¬¬ (¬s ∧ (r → u))

The result is a set of formulas, but they can be easily reduced to a
program by well-known HT transformations [Cabalar et al 2005]

Example

s → t r → t ∨ u ¬s ∧ ¬r → v

¬s ∧ ¬¬u → v r ∧ ¬s ∧ ¬¬u → u

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 16 / 29

When does fc guarantee strong persistence?

Definition (Definition 4 from [Berthold et al. 2019])

Π is a-forgettable if, at least one of the following conditions is satisfied:

1 Π contains the fact ‘a’ as a rule

(⊤ → a) ∈ Π

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 17 / 29

When does fc guarantee strong persistence?

Definition (Definition 4 from [Berthold et al. 2019])

Π is a-forgettable if, at least one of the following conditions is satisfied:

1 Π contains the fact ‘a’ as a rule

(⊤ → a) ∈ Π

2 Π does not contain a-choices

(φ ∧ ¬¬a → a ∨ ψ) ̸∈ Π

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 17 / 29

When does fc guarantee strong persistence?

Definition (Definition 4 from [Berthold et al. 2019])

Π is a-forgettable if, at least one of the following conditions is satisfied:

1 Π contains the fact ‘a’ as a rule

(⊤ → a) ∈ Π

2 Π does not contain a-choices

(φ ∧ ¬¬a → a ∨ ψ) ̸∈ Π

3 All rules in Π in which a occurs are a-choices

Π = {r | a ̸∈ At(r)} ∪ {φ ∧ ¬¬a → a ∨ ψ}

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 17 / 29

When does fc guarantee strong persistence?

Theorem

Let Π be a logic program for signature At, let V ⊆ At and a ∈ At \ V and
let Π′ = beheada(Π). If Π′ is a-forgettable, then:

Π ∼=V fc(Π, a).

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 17 / 29

When does fc guarantee strong persistence?

Theorem

Let Π be a logic program for signature At, let V ⊆ At and a ∈ At \ V and
let Π′ = beheada(Π). If Π′ is a-forgettable, then:

Π ∼=V fc(Π, a).

Example (Π1 has no a-choices)

a → t s → a ¬a → v r → a ∨ u

fc(Π1, a) :

s → t r → t ∨ u ¬s ∧ ¬r → v ¬s ∧ ¬¬u → v r ∧ ¬s ∧ ¬¬u → u

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 17 / 29

1 Introduction

2 Background

3 The Cut Operator

4 Forgetting into forks

5 Conclusions and future work

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 18 / 29

Forgetting into forks: the unfolding operator

Example (P1)

a → b ¬a → c ¬¬a → a

P1 contains an a-choice.

fc does not guarantee strong persistence

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 19 / 29

Forgetting into forks: the unfolding operator

Π[γ/φ]: substitute γ by φ

Propositional logic: forgetting a is equivalent to Π[a/⊥] ∨ Π[a/⊤]

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 20 / 29

Forgetting into forks: the unfolding operator

Π[γ/φ]: substitute γ by φ

Propositional logic: forgetting a is equivalent to Π[a/⊥] ∨ Π[a/⊤]

Equilibrium logic: Π ≡ (Π ∧ ¬a | Π ∧ ¬¬a)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 20 / 29

Forgetting into forks: the unfolding operator

Π[γ/φ]: substitute γ by φ

Propositional logic: forgetting a is equivalent to Π[a/⊥] ∨ Π[a/⊤]

Equilibrium logic: Π ≡ (Π ∧ ¬a | Π ∧ ¬¬a)

Π ∧ ¬a and Π ∧ ¬¬a are a-forgettable

Π ∧ ¬a ≡ Π[a/⊥] ∧ ¬a

¬¬a ∧ φ→ a ∨ ψ ≡ ⊥ ∧ φ→ ⊥∨ ψ ≡ ⊤

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 20 / 29

Forgetting into forks: the unfolding operator

Π[γ/φ]: substitute γ by φ

Propositional logic: forgetting a is equivalent to Π[a/⊥] ∨ Π[a/⊤]

Equilibrium logic: Π ≡ (Π ∧ ¬a | Π ∧ ¬¬a)

Π ∧ ¬a and Π ∧ ¬¬a are a-forgettable

Π ∧ ¬¬a ≡ Π[¬a/⊥] ∧ ¬¬a

¬¬a ∧ φ→ a ∨ ψ ≡ ⊤ ∧ φ→ a ∨ ψ ≡ φ→ a ∨ ψ

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 20 / 29

Forgetting into forks: the unfolding operator

Π ≡ (Π ∧ ¬a | Π ∧ ¬¬a)

Π ∧ ¬a and Π ∧ ¬¬a are a-forgettable

Definition (Unfolding operator, f|)

For any logic program Π and atom a we define:

f|(Π, a)
def
= (fc(Π ∧ ¬a, a) | fc(Π ∧ ¬¬a, a))

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 21 / 29

Forgetting into forks: the unfolding operator

Π ≡ (Π ∧ ¬a | Π ∧ ¬¬a)

Π ∧ ¬a and Π ∧ ¬¬a are a-forgettable

Definition (Unfolding operator, f|)

For any logic program Π and atom a we define:

f|(Π, a)
def
= (fc(Π ∧ ¬a, a) | fc(Π ∧ ¬¬a, a))

Theorem

Let Π be a logic program for signature At, V ⊆ At and a ∈ At \ V . Then,

Π ∼=V f|(Π, a).

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 21 / 29

The unfolding operator: an example

Example (P1)

a → c ¬a → b ¬¬a → a (P1)

f|(P1, a) = (fc(P1 ∧ ¬a, a) | fc(P1 ∧ ¬¬a, a))

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 22 / 29

The unfolding operator: an example

f|(P1, a) = (fc(P1 ∧ ¬a, a) | fc(P1 ∧ ¬¬a, a))

Example (fc(P1 ∧ ¬a, a))

a → c ¬a → b ¬¬a → a ¬a (P1 ∧ ¬a)

P1 ∧ ¬a ≡ P1[a/⊥] ∧ ¬a

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 23 / 29

The unfolding operator: an example

f|(P1, a) = (fc(P1 ∧ ¬a, a) | fc(P1 ∧ ¬¬a, a))

Example (fc(P1 ∧ ¬a, a))

a → c ¬a → b ¬¬a → a ¬a (P1 ∧ ¬a)

⊥ → c ¬⊥ → b ¬¬⊥ → ⊥ ¬⊥ (P1 ∧ ¬a)

P1 ∧ ¬a ≡ P1[a/⊥] ∧ ¬a

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 23 / 29

The unfolding operator: an example

f|(P1, a) = (fc(P1 ∧ ¬a, a) | fc(P1 ∧ ¬¬a, a))

Example (fc(P1 ∧ ¬a, a))

a → c ¬a → b ¬¬a → a ¬a (P1 ∧ ¬a)

⊥ → c ¬⊥ → b ¬¬⊥ → ⊥ ¬⊥ (P1 ∧ ¬a)

����⊥ → c b ((((((¬¬⊥ → ⊥ ��¬⊥ (P1 ∧ ¬a)

P1 ∧ ¬a ≡ P1[a/⊥] ∧ ¬a

fc(P1 ∧ ¬a, a) ≡ P1[a/⊥] = b

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 23 / 29

The unfolding operator: an example

f|(P1, a) = (fc(P1 ∧ ¬a, a) | fc(P1 ∧ ¬¬a, a))

Example (fc(P1 ∧ ¬¬a, a))

a → c ¬a → b ¬¬a → a ¬¬a (P1 ∧ ¬¬a)

P1 ∧ ¬¬a ≡ P1[¬a/⊥] ∧ ¬¬a

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 24 / 29

The unfolding operator: an example

f|(P1, a) = (fc(P1 ∧ ¬a, a) | fc(P1 ∧ ¬¬a, a))

Example (fc(P1 ∧ ¬¬a, a))

a → c ¬a → b ¬¬a → a ¬¬a (P1 ∧ ¬¬a)

a → c ⊥ → b ¬⊥ → a ¬⊥ (P1 ∧ ¬¬a)

P1 ∧ ¬¬a ≡ P1[¬a/⊥] ∧ ¬¬a

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 24 / 29

The unfolding operator: an example

f|(P1, a) = (fc(P1 ∧ ¬a, a) | fc(P1 ∧ ¬¬a, a))

Example (fc(P1 ∧ ¬¬a, a))

a → c ¬a → b ¬¬a → a ¬¬a (P1 ∧ ¬¬a)

a → c ����⊥ → b a ��¬⊥ (P1 ∧ ¬¬a)

a ∧ c

P1 ∧ ¬¬a ≡ P1[¬a/⊥] ∧ ¬¬a

fc(P1 ∧ ¬¬a, a) = fc(a ∧ c , a) = c

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 24 / 29

The unfolding operator: an example

Example (P1)

a → b ¬a → c ¬¬a → a

fc(P1 ∧ ¬a, a) = b fc(P1 ∧ ¬¬a, a) = c

f|(P1, a) = (fc(P1 ∧ ¬a, a) | fc(P1 ∧ ¬¬a, a)) = (b | c)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 24 / 29

Sometimes a-forgettable is not necessary

Example (P2)

a → c ¬a → b ¬¬a → a b → c c → b︸ ︷︷ ︸
X

(P2 = P1 ∧ X)

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 25 / 29

Sometimes a-forgettable is not necessary

Example (P2)

a → c ¬a → b ¬¬a → a b → c c → b︸ ︷︷ ︸
X

(P2 = P1 ∧ X)

f|(P2, a) = f|(P1 ∧ X , a)
= f|(P1, a) ∧ X strong invariance

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 25 / 29

Sometimes a-forgettable is not necessary

Example (P2)

a → c ¬a → b ¬¬a → a b → c c → b︸ ︷︷ ︸
X

(P2 = P1 ∧ X)

f|(P2, a) = f|(P1 ∧ X , a)
= f|(P1, a) ∧ X strong invariance
= (b | c) ∧ (b → c) ∧ (c → b) (F | G) ∧ H ≡ (F ∧ H | G ∧ H)
≡ (b ∧ (b → c) ∧ (c → b) | c ∧ (b → c) ∧ (c → b))

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 25 / 29

Sometimes a-forgettable is not necessary

Example (P2)

a → c ¬a → b ¬¬a → a b → c c → b︸ ︷︷ ︸
X

(P2 = P1 ∧ X)

f|(P2, a) = f|(P1 ∧ X , a)
= f|(P1, a) ∧ X strong invariance
= (b | c) ∧ (b → c) ∧ (c → b) (F | G) ∧ H ≡ (F ∧ H | G ∧ H)
= (b ∧ (b → c) ∧ (c → b) | c ∧ (b → c) ∧ (c → b))
≡ (b ∧ c | c ∧ b)
≡ b ∧ c

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 25 / 29

1 Introduction

2 Background

3 The Cut Operator

4 Forgetting into forks

5 Conclusions and future work

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 26 / 29

Conclusions

We have introduced a syntactic transformation f|, we called unfolding

f| is always applicable (under strong persistence)

f| relies on fc that can be applied on any program that does not
contain choice rules and it returns a propositional formula without
forks.

With general properties of forks we can sometimes reduce forks to
propositional formulas

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 27 / 29

Conclusions

We have introduced a syntactic transformation f|, we called unfolding

f| is always applicable (under strong persistence)

f| relies on fc that can be applied on any program that does not
contain choice rules and it returns a propositional formula without
forks.

With general properties of forks we can sometimes reduce forks to
propositional formulas

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 27 / 29

Future work

We intend to extend the syntactic conditions under which forks can
be reduced to formulas

We will also study the extension of the unfolding operator to sets of
atoms

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 28 / 29

Future work

We intend to extend the syntactic conditions under which forks can
be reduced to formulas

We will also study the extension of the unfolding operator to sets of
atoms

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 28 / 29

Syntactic ASP Forgetting with Forks

F. Aguado, P. Cabalar, J. Fandiño, D. Pearce, G. Pérez, C. Vidal

Thanks for your attention!

Aguado et. al Syntactic ASP Forgetting with Forks LPNMR 2022 29 / 29

	Introduction
	Background
	The Cut Operator
	Forgetting into forks
	Conclusions and future work

