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Introduction

Epistemic Logic Programs

Epistemic Specifications [Gelfond91] (aka Epistemic Logic Programs)
extend logic programs, under answer set semantics, with subjective
literals.

A subjective literal is like a query about some literal ` like p or not p

K ` means ` holds in all stable models (cautions consequence)

M ` means ` holds in some stable model (brave consequence)
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Introduction

Epistemic Logic Programs

Example

Program Π = Hamiltonian paths
in(X ,Y ) = edge (X ,Y ) in the path

K in(1, 2) = all Hamiltonian paths contain edge (1, 2)

M in(1, 2) = some Hamiltonian path contains edge (1, 2)

More than queries: we can use them to derive new information

critical(X ,Y ) ← K in(X ,Y )

irrelevant(X ,Y ) ← edge(X ,Y ), not M in(X ,Y )
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Introduction

Epistemic Logic Programs

- The idea looks simple! So, why is it so hard to characterize?

K and M may affect the answer sets they are meant to quantify.
How to solve cyclic specifications?

a← not K b b ← not K a

[Gelfond 1991]: alternative world views (sets of answer sets).
Above, we get these two: [ {a} ] and [ {b} ].

Problem with self-supportedness [Truszczyński 2011]
a← K a has 2 world views,

[ ∅ ] (expected) and [ {a} ] (unfounded)

(� see talk about foundedness tomorrow / 16:30)
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Introduction

Epistemic Logic Programs: Literature

Later approaches try to overcome this original self-supportedness:

Gelfond 2011, “New Semantics for Epistemic Specifications”

P. T. Kahl 2014, “Refining the semantics for epistemic logic programming”

P. Kahl et al. 2015, “The language of epistemic specifications (refined)
including a prototype solver”

Fariñas del Cerro, Herzig, and Su 2015, “Epistemic Equilibrium Logic”

Shen and Eiter 2017, “Evaluating Epistemic Negation in Answer Set
Programming (Extended Abstract)”

Son et al. 2017, “On Computing World Views of Epistemic Logic Programs”
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Introduction

Methodology

Current methodology: testing intuition on a set of example programs
Example Π + Semantics X ⇒ world views ¤ intuitive?

Next step: we propose defining formal properties. Advantages:

they help to predict results for families of examples

intuitions are formalized: some intuitions may be inconsistent

they make comparison easier

Knowing that semantics X does not satisfy a property is also valuable
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Introduction

In this paper . . .

In this paper, we introduce the property of epistemic splitting.

Inspired by the splitting theorem for regular logic programs [Lifschitz
& Turner 1994],

Some programs Π can be splitted in two parts Πb ∪ Πt :
bottom Πb produces world views to be queried
top Πt gets conclusions from queries on the bottom

� Keypoint: when this happens, the semantics of Π should be definable
in terms of the semantics of Πb and Πt .
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Epistemic Splitting

1 Introduction

2 Epistemic Splitting

3 Epistemic Splitting: application to conformant planning

4 Epistemic Splitting in other existing semantics

5 Conclusions
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Epistemic Splitting

An example

Note ∼p is treated as an atom plus ⊥ ← p,∼p

Example (Gelfond 1991)

College rules to decide whether a student X is eligible for a scholarship:

eligible(X ) ← high(X )

eligible(X ) ← minority(X ), fair(X )

∼eligible(X ) ← ∼fair(X ),∼high(X )

Additional college criterion:

“The students whose eligibility is not determined by the college
rules should be interviewed by the scholarship committee.”

For student mike we just know: high(mike) ∨ fair(mike)

Two stable models {high(mike), eligible(mike)}, {fair(mike)}
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Epistemic Splitting

An example

Two stable models {high(mike), eligible(mike)}, {fair(mike)}
Can we determine eligible(mike)? (cautious consequence).

Adding constraint ⊥ ← eligible(mike) tells us “no”

The same for ∼eligible(mike), so an interview should follow.
We can represent this using an epistemic rule:

interview(X )← notK eligible(X ), notK ∼eligible(X )

 The rule for interview(X ) uses a query on the rest of the program
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Epistemic Splitting

Syntax

Given regular literal `, a subjective literal L can be:
L ::= ` | K ` |M ` | not K ` | not M `

A rule has the form:

p1 ∨ · · · ∨ pn︸ ︷︷ ︸
head: atoms

← L1 , . . . , Lm︸ ︷︷ ︸
body: subjective lits.

When n = 0, the head becomes ⊥ (a constraint).
The constraint is subjective if all Li are subjective
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Cabalar, Fandinno & Fariñas del Cerro Splitting Epistemic Logic Programs LPNMR’19 11 / 30



Epistemic Splitting

Syntax

Given regular literal `, a subjective literal L can be:
L ::= ` | K ` |M ` | not K ` | not M `

A rule has the form:

p1 ∨ · · · ∨ pn︸ ︷︷ ︸
head: atoms

← L1 , . . . , Lm︸ ︷︷ ︸
body: subjective lits.

When n = 0, the head becomes ⊥ (a constraint).
The constraint is subjective if all Li are subjective
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Epistemic Splitting

(Generic) semantics: some properties

Definition (Semantics)

A semantics is a function that maps each program (set of rules) to a set of
world views.

The following two properties are satisfied by all semantics in the literature:

Property (Supra-ASP)

A semantics satisfies supra-ASP iff any program Π with no subjective
literal has a unique world view collecting the answer sets of Π.

Property (Supra-S5)

A semantics satisfies supra-S5 iff every world view of Π is also a model of
Π in the modal logic S5.
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Epistemic Splitting

Epistemic Splitting

Property (Epistemic splitting, Informally)

A semantics satisfies epistemic splitting if, for every program that can be
divided in two parts, bottom and top, such that

the bottom does not refer to atoms in the top, and

the top may only refer bottom atoms through subjective literals.

its world views can be computed as a combination of the world views of
the bottom and the top.
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Epistemic Splitting

Epistemic Splitting

— bottom part ———————————————

eligible(X ) ← high(X ) (1)

eligible(X ) ← minority(X ), fair(X ) (2)

∼eligible(X ) ← ∼fair(X ),∼high(X ) (3)

fair(mike) ∨ high(mike) (4)

— top part ————————————————–

interview(X ) ← notK eligible(X ), notK ∼eligible(X ) (5)

(1)-(4) do not refer to interview(X )
(5) only refers to atoms in (1)-(4) through subjective literals.
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Epistemic Splitting

Epistemic Splitting

— bottom part ———————————————

eligible(X ) ← high(X )

eligible(X ) ← minority(X ), fair(X )

∼eligible(X ) ← ∼fair(X ),∼high(X )

fair(mike) ∨ high(mike)

No subjective literals: we get two answer sets

M1 = {fair(mike)} M2 = {high(mike), eligible(mike)}

Supra-ASP implies unique world view W = [M1,M2 ]

In W , K eligible(mike) and K ∼eligible(mike) are false!
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Epistemic Splitting

Epistemic Splitting

We can simplify the top with respect to W

— top part ————————————————–

interview(mike) ← notK eligible(mike), notK ∼eligible(mike)

which is now a regular program with a unique answer set

M3 = {interview(mike)}

and world view W ′ = [M3]
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Epistemic Splitting

Epistemic Splitting

— bottom part ———————————————

eligible(X ) ← high(X )

eligible(X ) ← minority(X ), fair(X )

∼eligible(X ) ← ∼fair(X ),∼high(X )

fair(mike) ∨ high(mike)

— top part ————————————————–

interview(X ) ← notK eligible(X ), notK ∼eligible(X )

The world view of the whole program is {M1 ∪M3,M2 ∪M3} where

M1 ∪M3 = {fair(mike), interview(mike)}
M2 ∪M3 = {high(mike), eligible(mike), interview(mike)}
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Epistemic Splitting

Epistemic Splitting: Formally

Definition (Epistemic splitting set)

A set of atoms U is an epistemic splitting set of program Π if
for each rule r ∈ Π

1 all atoms in r belong to U, or

2 no atom from U occurs outside a subjective literal in r

U defines a disjoint splitting on Π where bottom Πb contains rules that 1

and top Πt rules that 2 .

In our running example U = At \ {interview(mike)}

Subjective constraints with all atoms in U can be included in Πb or Πt
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Epistemic Splitting

Epistemic Splitting: Formally

Definition (Subjective reduct)

ΠW
U = replace in Π each subjective literal L with atoms in U by:
> if W |= L or by ⊥ otherwise.

Property (Epistemic splitting, Formally)

A semantics satisfies epistemic splitting iff, for any epistemic splitting set
of any program Π, the following two conditions are equivalent:

W is a world view of Π

W = { Ib ∪ It
∣∣ Ib ∈Wb and It ∈Wt } where Wb is a world view of

Πb and Wt is a world view of (Πt)
Wb
U .
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Epistemic Splitting

Epistemic splitting in Gelfond’s original semantics

Theorem

[Gelfond 1991] satisfies epistemic splitting.

� [Watson 2000] proved a different splitting result for [Gelfond 1991]

It is syntactically less restrictive: it allows dependences involving
atoms,

The price to pay is that an additional semantic condition needs to be
checked for all possible world views.
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Epistemic Splitting

Epistemic Splitting: Consequences

Epistemically stratified program = no cycles through subjective literals

Theorem

Epistemic splitting + supra-ASP + Π epistemically stratified
⇒ Π has (at most) one world view W .

W can be computed iteratively applying the splitting property.

Example — layer 1 ———————————————

eligible(X ) ← high(X )

eligible(X ) ← minority(X ), fair(X )

∼eligible(X ) ← ∼fair(X ),∼high(X )

fair(mike) ∨ high(mike)

— layer 2 ————————————————–

interview(X ) ← notK eligible(X ), notK ∼eligible(X )

— layer 3 ————————————————–

appointment(X ) ← K interview(X )
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Epistemic Splitting

Epistemic Splitting: Consequences

A property introduced by [Leclerc & Kahl 2018]

Property (Subjective constraint monotonicity)

A semantics satisfies subjective constraint monotonicity if, for every
program Π and subjective constraint c, the world views of Π ∪ {c} are
precisely the world views of Π such that W |= c (in S5).

In standard ASP, we have that

a← not b b ← not a ⊥ ← b

has a unique stable model {a}.

Theorem

Epistemic splitting implies subjective constraint monotonicity.
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Epistemic Splitting: application to conformant planning

Epistemic splitting: application to conformant planning

Example

To turn on a light, we can toggle one of two lamps `1 or `2.
Initially, `1 is plugged but we ignore the state of `2.
Get a plan to guarantee light in one step.

Ignoring inertia for simplicity, given L ∈ {`1, `2} we can use the rules

plugged(`1)

plugged(`2) ∨ ∼plugged(`2)

light ← toggle(L), plugged(L)

⊥ ← toggle(`1), toggle(`2)

{toggle(`1)} conformant plan: we get one world view by adding

toggle(`1) ⊥ ← not K light

{toggle(`2)} is not a conformant plan: we get no world view by
replacing toggle(`1) by toggle(`2) above
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Epistemic Splitting: application to conformant planning

Epistemic splitting: application to conformant planning

Let us assume a semantics has a set of rules Choice(a) which has two
world views W1 = [ {a} ] and W2 = [∅].
For instance, in [Gelfond 1991] we can define

Choice(a)
def
= {a← not K not a}

Under epistemic splitting and supra-ASP, we can obtain conformant plans
following the usual ASP methodology:

1 GENERATE: Choice(at) for every action at and time 1 ≤ t ≤ n

2 DEFINE: an ASP-program describing effects of actions and inertia

3 TEST: a constraint ⊥ ← not K goaln

The conformant plan is the sequence of actions 〈a1, . . . , an〉 such that
W |= K at for the unique world view W
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Epistemic Splitting in other existing semantics

Epistemic splitting in existing semantics

The rest of semantics [Gelfond 11, Fariñas et al. 15, Kahl et al. 15,
Shen & Eiter 17, Son et al. 17] do not satisfy epistemic splitting.

Take this program:
a ← not b (6)

b ← not a (7)

—————————–

c ← K a (8)

⊥ ← not c (9)

Bottom {(6)− (7)} has world view [{a}, {b}] 6|= K a and we get

c ← ⊥ (10)

⊥ ← not c (11)

with no world view.
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Epistemic Splitting in other existing semantics

Epistemic splitting in existing semantics

However, according to [Gelfond 11] or [Kahl et al. 15], the reduct w.r.t.
[{a, c}] is computed as follows:

a← not b (6)

b ← not a (7)

c ← K a (8)

⊥ ← not c (9)

This program has a unique answer set {a, c} and, thus, [{a, c}] is a world
view.

[Fariñas et al. 15, Shen & Eiter 17, Son et al. 17] agree on this world view
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Conclusions

Conclusions

1 We have introduced some formal properties to be satisfied for any
semantics for epistemic specifications.

2 In particular, we have studied some of the consequences of satisfying
epistemic splitting

Constraint monotonicity
Application of the ASP methodology to conformant planning

3 Unfortunately, only [Gelfond 1991] semantics satisfies epistemic
splitting while it suffers from self-supportedness.

� See talk about founded world views (tomorrow / 16:30)
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Cabalar, Fandinno & Fariñas del Cerro Splitting Epistemic Logic Programs LPNMR’19 30 / 30


	Introduction
	Epistemic Splitting
	Epistemic Splitting: application to conformant planning
	Epistemic Splitting in other existing semantics
	Conclusions

