Lower Bound Founded Logic of Here-and-There

Sebastian Schellhorn

University of Potsdam Institute of Computer Science Knowledge Representation and Reasoning

August 8, 2018

- 3 Programs with Linear Constraints
- 4 Related Work

5 Conclusion

Outline

1 Motivation

2 *HT*_{*LB*}

- 3 Programs with Linear Constraints
- 4 Related Work

5 Conclusion

- in ASP atoms of stable models must be founded
- stable models can be defined by the logic of Here-and-There (*HT*) and equilibrium models
- \blacksquare foundedness: regard $t \geq f$ and assign smallest truth value that can be proven

- in ASP atoms of stable models must be founded
- stable models can be defined by the logic of Here-and-There (HT) and equilibrium models
- \blacksquare foundedness: regard $t \geq f$ and assign smallest truth value that can be proven

Example

a $b \leftarrow c$

We have stable model $\{a\}$.

This idea of foundedness was generalized to ordered domains.

This idea of foundedness was generalized to ordered domains.

Examples

$$x \ge 1$$
$$x \ge 42 \leftarrow \neg (x \le 1)$$

Regarding foundedness we expect solutions $x \mapsto 1$ and $x \mapsto 42$.

$$x \ge 0$$

$$y \ge 0$$

$$x \ge 42 \leftarrow y \le 42$$

Regarding foundedness we expect the solution with $x \mapsto 42$ and $y \mapsto 0$.

This idea of foundedness was generalized to ordered domains.

Examples

$$x \ge 1$$
$$x \ge 42 \leftarrow \neg (x \le 1)$$

Regarding foundedness we expect solutions $x \mapsto 1$ and $x \mapsto 42$.

$$x \ge 0$$

$$y \ge 0$$

$$x \ge 42 \leftarrow y \le 42$$

Regarding foundedness we expect the solution with $x \mapsto 42$ and $y \mapsto 0$.

Outline

1 Motivation

2 *HT*_{LB}

- 3 Programs with Linear Constraints
- 4 Related Work

5 Conclusion

Logic of Here-and-There (HT) (1)

- set of propositional atoms \mathcal{A}
- \blacksquare formula: combination of propositional atoms and logical connectives $\bot,$ $\land,$ $\lor,$ \leftarrow
- theory: a set of formulas
- interpretation: a set of atoms
- *HT*-interpretation: a pair $\langle H, T \rangle$ of interpretations with $H \subseteq T$
- denotation: $[\![\cdot]\!]_{\mathcal{A}} : \mathcal{A} \to 2^{\mathcal{A}}$, that is $[\![p]\!]_{\mathcal{A}} \stackrel{\text{def}}{=} \{I \mid p \in I\}$ for $p \in \mathcal{A}$

Logic of Here-and-There (HT) (2)

- satisfaction of formula φ over \mathcal{A} by HT-interpretation $\langle H, T \rangle$:
 - 1 $\langle H, T \rangle \not\models \bot$
 - 2 $\langle H, T \rangle \models p$ iff $H \in \llbracket p \rrbracket_{\mathcal{A}}$ for propositional atom $p \in \mathcal{A}$

 - 4 $\langle H, T \rangle \models \varphi_1 \lor \varphi_2$ iff $\langle H, T \rangle \models \varphi_1$ or $\langle H, T \rangle \models \varphi_2$
 - **5** $\langle H, T \rangle \models \varphi_1 \rightarrow \varphi_2$ iff $\langle I, T \rangle \not\models \varphi_1$ or $\langle I, T \rangle \models \varphi_2$ for both $I \in \{H, T\}$
- $\langle T, T \rangle$ equilibrium model of theory Γ over A iff $\langle T, T \rangle \models \Gamma$ and there is no $H \subset T$ with $\langle H, T \rangle \models \Gamma$

$HT_{L\!B}$ (1)

- set of atoms $\mathcal{A}_{\mathcal{X}}$, comprising variables \mathcal{X} and constants over ordered domain (\mathcal{D}, \succeq)
- \blacksquare formula: combination of atoms and logical connectives \perp , $\land,$ $\lor,$ \leftarrow
- value u stands for undefined
- valuation: $v : \mathcal{X} \to \mathcal{D}_{u}$
- $\mathfrak{V}_{\mathcal{X},\mathcal{D}}$ represents the set of valuations
- HT_{LB} -valuation over \mathcal{X} , \mathcal{D} : a pair $\langle h, t \rangle$ of valuations with $h \subseteq t$
- denotation: $\llbracket \cdot \rrbracket_{\mathcal{X}, \mathcal{D}} : \mathcal{A}_{\mathcal{X}} \to 2^{\mathfrak{V}_{\mathcal{X}, \mathcal{D}}}$, eg $\llbracket x \ge 42 \rrbracket \stackrel{\text{def}}{=} \{ v \mid v(x) \ge 42 \}$

HT_{LB} (1)

- set of atoms $\mathcal{A}_{\mathcal{X}}$, comprising variables \mathcal{X} and constants over ordered domain (\mathcal{D}, \succeq)
- \blacksquare formula: combination of atoms and logical connectives \perp , $\land,$ $\lor,$ \leftarrow
- value u stands for undefined
- valuation: $v : X \to D_u$ alternative representation: $\{(x, d) | v(x) = c, c \succeq d\}$
- $\blacksquare \ \mathfrak{V}_{\mathcal{X},\mathcal{D}}$ represents the set of valuations
- HT_{LB} -valuation over \mathcal{X} , \mathcal{D} : a pair $\langle h, t \rangle$ of valuations with $h \subseteq t$
- denotation: $\llbracket \cdot \rrbracket_{\mathcal{X}, \mathcal{D}} : \mathcal{A}_{\mathcal{X}} \to 2^{\mathfrak{V}_{\mathcal{X}, \mathcal{D}}}$, eg $\llbracket x \ge 42 \rrbracket \stackrel{\text{def}}{=} \{ v \mid v(x) \ge 42 \}$

$HT_{LB}(1)$

set of atoms $\mathcal{A}_{\mathcal{X}}$, comprising variables \mathcal{X} and constants over ordered domain (\mathcal{D}, \succeq)

HTIB

- \blacksquare formula: combination of atoms and logical connectives $\perp,$ $\wedge,$ $\lor,$ \leftarrow
- value u stands for undefined
- valuation: $v : \mathcal{X} \to \mathcal{D}_u$ alternative representation: $\{(x, d) \mid v(x) = c, c \succeq d\}$

Example

Consider variables x and y with domain $\{0, 1, 2, 3\} \cup \{u\}$

$$v = \{x \mapsto 2, y \mapsto 0\}$$
 and $v' = \{x \mapsto 1\}$

can be represented by

 $v = \{(x,0), (x,1), (x,2), (y,0)\} = (x \downarrow 2) \cup (y \downarrow 0) \text{ and } v' = (x \downarrow 1)$

HT_{LB} (1)

- set of atoms $\mathcal{A}_{\mathcal{X}}$, comprising variables \mathcal{X} and constants over ordered domain (\mathcal{D}, \succeq)
- \blacksquare formula: combination of atoms and logical connectives \perp , $\land,$ $\lor,$ \leftarrow
- value u stands for undefined
- valuation: $v : X \to D_u$ alternative representation: $\{(x, d) | v(x) = c, c \succeq d\}$
- $\blacksquare \ \mathfrak{V}_{\mathcal{X},\mathcal{D}}$ represents the set of valuations
- HT_{LB} -valuation over \mathcal{X} , \mathcal{D} : a pair $\langle h, t \rangle$ of valuations with $h \subseteq t$
- denotation: $\llbracket \cdot \rrbracket_{\mathcal{X}, \mathcal{D}} : \mathcal{A}_{\mathcal{X}} \to 2^{\mathfrak{V}_{\mathcal{X}, \mathcal{D}}}$, eg $\llbracket x \ge 42 \rrbracket \stackrel{\text{def}}{=} \{ v \mid v(x) \ge 42 \}$

satisfaction of formula φ over $\mathcal{A}_{\mathcal{X}}$ by HT_{LB} -valuation $\langle h, t \rangle$:

HTIB

- 1 $\langle h, t \rangle \not\models \bot$ 2 $\langle h, t \rangle \models a \text{ iff } v \in \llbracket a \rrbracket_{\mathcal{X}, \mathcal{D}}$ for atom $a \in \mathcal{A}_{\mathcal{X}}$ and for both $v \in \{h, t\}$ 3 $\langle h, t \rangle \models \varphi_1 \land \varphi_2$ iff $\langle h, t \rangle \models \varphi_1$ and $\langle h, t \rangle \models \varphi_2$ 4 $\langle h, t \rangle \models \varphi_1 \lor \varphi_2$ iff $\langle h, t \rangle \models \varphi_1$ or $\langle h, t \rangle \models \varphi_2$ 5 $\langle h, t \rangle \models \varphi_1 \rightarrow \varphi_2$ iff $\langle v, t \rangle \not\models \varphi_1$ or $\langle v, t \rangle \models \varphi_2$ for both $v \in \{h, t\}$
- $\langle t, t \rangle$ equilibrium model of theory Γ over $\mathcal{A}_{\mathcal{X}}$ iff $\langle t, t \rangle \models \Gamma$ and there is no $h \subset t$ with $\langle h, t \rangle \models \Gamma$

satisfaction of formula φ over $\mathcal{A}_{\mathcal{X}}$ by HT_{LB} -valuation $\langle h, t \rangle$:

HTIR

- 1 $\langle h, t \rangle \not\models \bot$ 2 $\langle h, t \rangle \not\models a \text{ iff } v \in \llbracket a \rrbracket_{\mathcal{X}, \mathcal{D}} \text{ for atom } a \in \mathcal{A}_{\mathcal{X}} \text{ and for both } v \in \{h, t\}$ 3 $\langle h, t \rangle \models \varphi_1 \land \varphi_2 \text{ iff } \langle h, t \rangle \models \varphi_1 \text{ and } \langle h, t \rangle \models \varphi_2$ 4 $\langle h, t \rangle \models \varphi_1 \lor \varphi_2 \text{ iff } \langle h, t \rangle \models \varphi_1 \text{ or } \langle h, t \rangle \models \varphi_2$ 5 $\langle h, t \rangle \models \varphi_1 \rightarrow \varphi_2 \text{ iff } \langle v, t \rangle \not\models \varphi_1 \text{ or } \langle v, t \rangle \models \varphi_2 \text{ for both } v \in \{h, t\}$
- $\langle t, t \rangle$ equilibrium model of theory Γ over $\mathcal{A}_{\mathcal{X}}$ iff $\langle t, t \rangle \models \Gamma$ and there is no $h \subset t$ with $\langle h, t \rangle \models \Gamma$

HT_{LB} Results

Proposition (Persistence and Negation)

Let $\langle h, t \rangle$ and $\langle t, t \rangle$ be HT_{LB} -valuations over \mathcal{X}, \mathcal{D} , and φ be a formula over $\mathcal{A}_{\mathcal{X}}$. Then,

1
$$\langle h,t \rangle \models \varphi$$
 implies $\langle t,t \rangle \models \varphi$, and

2
$$\langle h, t \rangle \models \varphi \rightarrow \bot$$
 iff $\langle t, t \rangle \not\models \varphi$.

HT_{LB} Results

Proposition (Strong Equivalence)

Let Γ_1 , Γ_2 and Γ be theories over $\mathcal{A}_{\mathcal{X}}$. Then, theories $\Gamma_1 \cup \Gamma$ and $\Gamma_2 \cup \Gamma$ have the same HT_{LB} -stable models for every theory Γ iff Γ_1 and Γ_2 have the same HT_{LB} -models.

HT_{LB} Results

Relating HT and HT_{LB} :

- HT can be seen as a special case of HT_{LB} .
- every model in HT_{LB} induces a model in HT.
- every tautology in HT is a tautology in HT_{LB} .

By straightforward defining classical satisfaction and the reduct of Ferraris in our setting we get:

HT_{IB}

Proposition (Stable models and equilibrium models coincide)

Let $\langle h, t \rangle$ be an HT_{LB} -valuation over \mathcal{X}, \mathcal{D} and Γ a theory over $\mathcal{A}_{\mathcal{X}}$. Then, $h \models_{cl} \Gamma^t$ iff $\langle h, t \rangle \models \Gamma$.

3 Programs with Linear Constraints

4 Related Work

5 Conclusion

Linear Constraint Atoms

- linear constraint atom: ∑_{i=1}^m w_ix_i ≺ k where w_i, k ∈ Z constants, x_i variables, and ≺∈ {≥, ≤, ≠, =} a binary relation
- $\mathcal{L}_{\mathcal{X}}$ set of linear constraint atoms
- denotation: $\llbracket \sum_{i=1}^{m} w_i x_i \prec k \rrbracket \stackrel{\text{def}}{=} \{ v \mid \sum_{i=1}^{m} w_i v(x_i) \prec k, v(x_i) \neq u \}$

Programs

- rule: $a_0 \lor \cdots \lor a_n \leftarrow a_{n+1} \land \cdots \land a_{n'} \land \neg a_{n'+1} \land \cdots \land \neg a_{n''}$ with a_i atoms of $\mathcal{L}_{\mathcal{X}}$ for $0 \le i \le n''$
- program: a set of rules

Example

$$x + y \ge 42$$

$$x \ge 0$$

$$x \ge 42 \leftarrow \neg (x \le 1)$$

Monotonicity

- We define an atom *a* as *monotonic* (resp. *anti-monotonic*) wrt variable *x* if $v \in [\![a]\!]$ implies $v' \in [\![a]\!]$ for every valuation *v'* with $v \subseteq v'$ (resp. $v' \subseteq v$ with $v'(x) \neq u$), where v(y) = v'(y) for all $y \in vars(a) \setminus \{x\}$.
- We define an atom a as monotonic (resp. anti-monotonic) if it is monotonic (resp. anti-monotonic) wrt all variables in vars(a), and non-monotonic otherwise.

Normal Programs

- normal rule: $a_0 \leftarrow a_1 \wedge \cdots \wedge a_n \wedge \neg a_{n+1} \wedge \cdots \wedge \neg a_{n'}$ with a_i atoms of $\mathcal{L}_{\mathcal{X}}$ for $0 \leq i \leq n'$ and $|vars(a_0)| = 1$ a_j monotonic for $n + 1 \leq j \leq n'$
- normal program: a set of normal rules

Proposition

Let P be a normal program over $\mathcal{L}_{\mathcal{X}}$. Then, each HT_{LB} -stable model of P over \mathcal{X}, \mathbb{Z} is subset minimal.

Normal Programs

- normal rule: $a_0 \leftarrow a_1 \land \cdots \land a_n \land \neg a_{n+1} \land \cdots \land \neg a_{n'}$ with a_i atoms of $\mathcal{L}_{\mathcal{X}}$ for $0 \le i \le n'$ and $|vars(a_0)| = 1$ a_j monotonic for $n + 1 \le j \le n'$
- normal program: a set of normal rules

Proposition

Let P be a normal program over $\mathcal{L}_{\mathcal{X}}$. Then, each HT_{LB} -stable model of P over \mathcal{X}, \mathbb{Z} is subset minimal.

Example of not normal program

$$x + y \ge 42$$

infinite many stable models $\{v \mid v(x) + v(y) = 42\}$

Normal Programs

• normal rule: $a_0 \leftarrow a_1 \land \cdots \land a_n \land \neg a_{n+1} \land \cdots \land \neg a_{n'}$ with a_i atoms of $\mathcal{L}_{\mathcal{X}}$ for $0 \le i \le n'$ and $|vars(a_0)| = 1$ a_j monotonic for $n + 1 \le j \le n'$

normal program: a set of normal rules

Proposition

Let P be a normal program over $\mathcal{L}_{\mathcal{X}}$. Then, each HT_{LB} -stable model of P over \mathcal{X}, \mathbb{Z} is subset minimal.

Example of not normal program

$$\begin{array}{l} x \geq 0 \\ x \geq 42 \leftarrow \neg (x \leq 1) \end{array}$$

stable models $(x \downarrow 1)$ and $(x \downarrow 42)$, where $(x \downarrow 1) \subset (x \downarrow 42)$

Positive Programs

- positive body: r normal rule, then body⁺(r) ^{def} {a_i | 1 ≤ i ≤ n, a_i monotonic}
- negative body: r normal rule, then $body^{-}(r) \stackrel{\text{\tiny def}}{=} body(r) \setminus body^{+}(r)$
- positive rule: is a normal rule with head(r) monotonic and $body^{-}(r) = \emptyset$
- positive program: a set of positive rules

Proposition

Let P be a positive program over $\mathcal{L}_{\mathcal{X}}$. Then, P has exactly one HT_{LB} -stable model over \mathcal{X}, \mathbb{Z} .

Positive Programs

- positive body: *r* normal rule, then $body^+(r) \stackrel{\text{def}}{=} \{a_i \mid 1 \le i \le n, a_i \text{ monotonic}\}$
- negative body: r normal rule, then $body^{-}(r) \stackrel{\text{\tiny def}}{=} body(r) \setminus body^{+}(r)$
- positive rule: is a normal rule with head(r) monotonic and body⁻(r) = Ø
- positive program: a set of positive rules

Proposition

Let P be a positive program over $\mathcal{L}_{\mathcal{X}}$. Then, P has exactly one HT_{LB} -stable model over \mathcal{X}, \mathbb{Z} .

Example of not positive program

 $x \ge 0$ $x \ge 42 \leftarrow y < 42$ $y \ge 0$ $y \ge 42 \leftarrow x < 42$

with stable models $(x\!\downarrow\!42)\cup(y\!\downarrow\!0)$ and $(x\!\downarrow\!0)\cup(y\!\downarrow\!42)$

Stratified Programs

idea: free of recursion through negation

Proposition

Let P be a stratified program over $\mathcal{L}_{\mathcal{X}}$ with monotonic heads only. Then, P has exactly one HT_{LB} -stable model over \mathcal{X}, \mathbb{Z} .

Proposition

Let P be a stratified program over $\mathcal{L}_{\mathcal{X}}$. Then, P has at most one HT_{LB} -stable model over \mathcal{X}, \mathbb{Z} .

Stratified Programs

idea: free of recursion through negation

Proposition

Let P be a stratified program over $\mathcal{L}_{\mathcal{X}}$ with monotonic heads only. Then, P has exactly one HT_{LB} -stable model over \mathcal{X}, \mathbb{Z} .

Proposition

Let P be a stratified program over $\mathcal{L}_{\mathcal{X}}$. Then, P has at most one HT_{LB} -stable model over \mathcal{X}, \mathbb{Z} .

Example

$$x \ge 42$$
$$x < 42$$

no stable model

Sebastian Schellhorn (University of Potsdam)

Outline

1 Motivation

3 Programs with Linear Constraints

4 Related Work

5 Conclusion

Bound Founded ASP (BFASP)

BFASP is different to HT_{LB} , since it

- not distinguishes monotonicity of atoms and logic connectives
- sets valuations per default to the smallest domain value (may different from undefined)
- understands $x + y \ge 42$ as an implication
- has unintuitive stable model $\{p\}$ for $p \leftarrow \neg p$

Logic of Here-and-There with Constraints (HT_C)

HT_C is different to HT_{LB} , since it

- not compares valuations wrt the values assigned to the variables
- not minimizes valuations wrt foundedness
- allows atoms with closed denotations only

Both HT_C and HT_{LB}

- base on HT
- capture theories over constraint atoms in a non-monotonic setting
- easily express default values

Integer Linear Programming (ILP)

- monotone theory
- not intuitive to model recursion

ASP modulo Theory

- integrate monotone theories in the non-monotonic setting of ASP
- stable models rely on any possible valid assignment for variables

Other

Aggregates

- extensions of ASP allowing to perform set operations on elements of a respective set
- aggregates under Ferraris' semantics can be represented as atoms in HT_{LB}

Outline

1 Motivation

- 3 Programs with Linear Constraints
- 4 Related Work

5 Conclusion

Conclusion

НТ_{ІВ}

- provides foundedness for minimal values of variables over ordered domains
- preserves persistence, negation and strong equivalence
- generalizes HT
- agrees to a Ferraris-like stable models semantics
- generalizes concepts like normal, stratified and positive programs and preserves corresponding properties
- improves or generalizes existing approaches