Experimenting with Robotic Intra-Logistics Domains

Martin Gebser ¹ Philipp Obermeier ¹ Thomas Otto ¹ Torsten Schaub ¹ Orkunt Sabuncu ² Van Nyugen ³ Tran Cao Son ³

¹University of Potsdam, Germany

²TED University, Ankara, Turkey

³New Mexico State University, Las Cruces, USA

Outline I

1 Introduction

- Motivation
- Robotic Intra-Logistics

2 Benchmark Suite

- Overview
- Domains
- 3 Exemplary Evaluation
 - Instances
 - Encodings
 - Results
- 4 Outlook

Outline I

1 Introduction

- Motivation
- Robotic Intra-Logistics

2 Benchmark Suite

- Overview
- Domains

3 Exemplary Evaluation

- Instances
- Encodings
- Results

4 Outlook

Gebser et al. (KRR@UP)

Answer Set Programming

Gebser et al. (KRR@UP)

Experimenting with Robotic Intra-Logistics D

\$ / 21

Answer Set Programming

 Declarative problem solving for combinatorial problems

Answer Set Programming

- Declarative problem solving for combinatorial problems
- Large spectrum of applications in academia and industry

Answer Set Programming

- Declarative problem solving for combinatorial problems
- Large spectrum of applications in academia and industry

Answer Set Programming

- Declarative problem solving for combinatorial problems
- Large spectrum of applications in academia and industry

Answer Set Programming

- Declarative problem solving for combinatorial problems
- Large spectrum of applications in academia and industry

Dynamic Real-World Apps

 Logistics, manufacturing, automation, scheduling, etc.

Answer Set Programming

- Declarative problem solving for combinatorial problems
- Large spectrum of applications in academia and industry

- Logistics, manufacturing, automation, scheduling, etc.
- Large instance sizes

Answer Set Programming

- Declarative problem solving for combinatorial problems
- Large spectrum of applications in academia and industry

- Logistics, manufacturing, automation, scheduling, etc.
- Large instance sizes
- Complex processes

Answer Set Programming

- Declarative problem solving for combinatorial problems
- Large spectrum of applications in academia and industry

- Logistics, manufacturing, automation, scheduling, etc.
- Large instance sizes
- Complex processes

Answer Set Programming

- Declarative problem solving for combinatorial problems
- Large spectrum of applications in academia and industry

- Logistics, manufacturing, automation, scheduling, etc.
- Large instance sizes
- Complex processes

Answer Set Programming

- Declarative problem solving for combinatorial problems
- Large spectrum of applications in academia and industry

Dynamic Real-World Apps

- Logistics, manufacturing, automation, scheduling, etc.
- Large instance sizes
- Complex processes

Lack of Real-Life Test Data
Existing benchmark suites kept intentionally simplistic
No industrial scale test data in the public domain

Potassco

Answer Set Programming

- Declarative problem solving for combinatorial problems
- Large spectrum of applications in academia and industry

Dynamic Real-World Apps

- Logistics, manufacturing, automation, scheduling, etc.
- Large instance sizes
- Complex processes

Robotic Intra-Logistics as Benchmark Domain
 Hard, dynamic planning problem related to MAS, scheduling, temporal logics, CSP, uncertainty, etc.

Key concern of industry 4.0

Potassco

Robotics systems for logistics and warehouse automation based on hundreds of

- mobile robots
- movable shelves

Robotics systems for logistics and warehouse automation based on hundreds of

- mobile robots
- movable shelves

Main tasks: order fulfillment, i.e.

- routing
- order picking
- replenishment

Gebser et al. (KRR@UP)

Experimenting with Robotic Intra-Logistics D

Robotics systems for logistics and warehouse automation based on hundreds of

- mobile robots
- movable shelves

Main tasks: order fulfillment, i.e.

- routing
- order picking
- replenishment

Many competing industry solutions:

 Amazon, Dematic, Genzebach, Gray Orange, Swisslog

Gebser et al. (KRR@UP)

Experimenting with Robotic Intra-Logistics D

Outline I

1 Introduction

- Motivation
- Robotic Intra-Logistics

2 Benchmark Suite

- Overview
- Domains

3 Exemplary Evaluation

- Instances
- Encodings
- Results

4 Outlook

Gebser et al. (KRR@UP)

Main Components

Standardized benchmark domains

Gebser et al. (KRR@UP)

Experimenting with Robotic Intra-Logistics D

- Standardized benchmark domains
 - Concise problem specification
 - Domains ranging from MAPF to full order fulfillment

- Standardized benchmark domains
- Versatile instance generator

- Standardized benchmark domains
- Versatile instance generator
 - Rich set of customization options
 - Leverages multi-shot ASP for generation

- Standardized benchmark domains
- Versatile instance generator
- Visualizer for instances and plans

- Standardized benchmark domains
- Versatile instance generator
- Visualizer for instances and plans
 - Animated playback of plans
 - Graphical editor for instances

- Standardized benchmark domains
- Versatile instance generator
- Visualizer for instances and plans
- Solution checker with error feedback

Main Components

- Standardized benchmark domains
- Versatile instance generator
- Visualizer for instances and plans
- Solution checker with error feedback
 - Specific error descriptions
 - Modular design, easily extensible

Gebser et al. (KRR@UP)

Experimenting with Robotic Intra-Logistics D

- Standardized benchmark domains
- Versatile instance generator
- Visualizer for instances and plans
- Solution checker with error feedback

Main Components

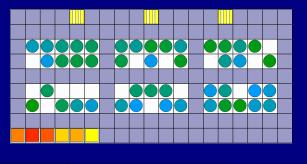
- Standardized benchmark domains
- Versatile instance generator
- Visualizer for instances and plans
- Solution checker with error feedback

Resources

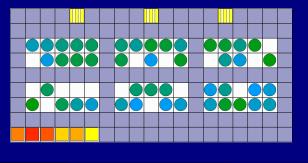
Website at http://potassco.org/asprilo

Main Components

- Standardized benchmark domains
- Versatile instance generator
- Visualizer for instances and plans
- Solution checker with error feedback


Resources

- Website at http://potassco.org/asprilo
- ICLP'18 paper, also available at https://arxiv.org/abs/1804.10247


General Domain A

- The warehouse is laid out as a (partial) 2-dimensional grid
- Shelves store products in a certain quantity, each shelf occupies a single grid node
- Mobile robots move and navigate through the warehouse along the grid, can carry shelves and deliver product units to picking stations

General Domain A

- Highway nodes are special grid nodes where robots must never put down a shelf
- A set of orders is initially provided, an order is fulfilled if all its requested product units are delivered to its assigned picking station
- Main Goal: plan robot actions such that all orders will be fulfilled

Domain A Demo

Gebser et al. (KRR@UP)

Experimenting with Robotic Intra-Logistics D

10 / 21

Domains A, B, C, M

Domain A most general domain

Gebser et al. (KRR@UP)

Domains A, B, C, M

Domain A most general domain

Domain B ignores product quantities

Complexity

Gebser et al. (KRR@UP)

Domains A, B, C, M

Domain A most general domain

Domain B ignores product quantities

Domain C ignores product quantities delivery actions at once

Complexity

Potassco

Domains A, B, C, M

Domain A most general domain

Domain B ignores product quantities

Domain C ignores product quantities delivery actions at once

Domain M only move actions singleton orders and shelves reach shelves with ordered products

Potassco

Gebser et al. (KRR@UP)

Experimenting with Robotic Intra-Logistics D

Domain M Demo

Gebser et al. (KRR@UP)

Experimenting with Robotic Intra-Logistics D

Outline I

1 Introduction

- Motivation
- Robotic Intra-Logistics

2 Benchmark Suite

- Overview
- Domains

3 Exemplary Evaluation

- Instances
- Encodings
- Results

4 Outlook

Gebser et al. (KRR@UP)

Exemplary benchmark evaluation to showcase *asprilo*

Gebser et al. (KRR@UP)

Experimenting with Robotic Intra-Logistics D

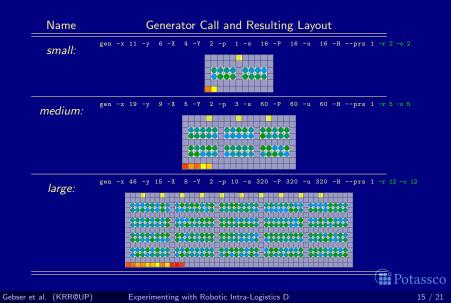
Exemplary benchmark evaluation to showcase *asprilo*Key questions of the analysis

- Exemplary benchmark evaluation to showcase asprilo
- Key questions of the analysis
 - **1** What is the impact of different representations of grid positions?

- Exemplary benchmark evaluation to showcase asprilo
- Key questions of the analysis
 - **1** What is the impact of different representations of grid positions?
 - 2 What is the impact of increasingly complex domains?

- Exemplary benchmark evaluation to showcase asprilo
- Key questions of the analysis
 - **1** What is the impact of different representations of grid positions?
 - 2 What is the impact of increasingly complex domains?
 - 3 What is the impact of decoupling sources of combinatorics?

- Exemplary benchmark evaluation to showcase asprilo
- Key questions of the analysis
 - **1** What is the impact of different representations of grid positions?
 - 2 What is the impact of increasingly complex domains?
 - 3 What is the impact of decoupling sources of combinatorics?
- Test instances created with the generator


- Exemplary benchmark evaluation to showcase asprilo
- Key questions of the analysis
 - **1** What is the impact of different representations of grid positions?
 - 2 What is the impact of increasingly complex domains?
 - 3 What is the impact of decoupling sources of combinatorics?
- Test instances created with the generator
- Referential encodings for asprilo's domains

- Exemplary benchmark evaluation to showcase asprilo
- Key questions of the analysis
 - **1** What is the impact of different representations of grid positions?
 - 2 What is the impact of increasingly complex domains?
 - 3 What is the impact of decoupling sources of combinatorics?
- Test instances created with the generator
- Referential encodings for asprilo's domains
- Detailed setup description, instances, encodings and results available at http://potassco.org/asprilo/experiments

Instances

clingo Encoding for Domain M

time(1..horizon).

clingo Encoding for Domain M routing to shelves

time(1..horizon).

direction((X,Y)) :- X=-1..1, Y=-1..1, |X+Y|=1. nextto((X,Y),(X',Y'),(X+X',Y+Y')) :- position((X,Y)), direction((X',Y')), position((X+X',Y+Y')).

{ move(R,D,T) : direction(D) } 1 :- isRobot(R), time(T).

position(R,C,T) := move(R,D,T), position(R,C',T-1), nextto(C',D,C). % movement effect and precond. := move(R,D,T), position(R,C ,T-1), not nextto(C ,D,_).

position(R,C,T) := position(R,C,T-1), not move(R,_,T), isRobot(R), time(T). %inertia

 $\label{eq:moveto(C',C,T):=nextto(C',D,C), position(R,C',T-1), move(R,D,T). \\ \mbox{$$'$ edge collision := moveto(C',C,T), moveto(C,C',T), C < C'.$}$

:- { position(R,C,T) : isRobot(R) } > 1, position(C), time(T). % vertex collision

```
processed(0,A) := ordered(0,A), shelved(S,A), position(S,C,0), position(R,C,horizon), isRobot(R).
processed(0) := isOrder(0), processed(0,A) : ordered(0,A).
```

:- not processed(0), isOrder(0).

Potassco

clingo Encoding for Domain A routing + transport + delivery

time(1..horizon).

```
direction((X,Y)) :- X=-1..1, Y=-1..1, |X+Y|=1.
nextto((X,Y),(X',Y'),(X+X',Y+Y')) := position((X,Y)), direction((X',Y')), position((X+X',Y+Y')).
    move(R,D,T) : direction(D) ;
   pickup(R.S.T) : isShelf(S)
  putdown(R,S,T) : isShelf(S) } 1 :- isRobot(R), time(T).
waits(R,T) :- not pickup(R,_,T), not putdown(R,_,T), not move(R,_,T), isRobot(R), time(T).
position(R,C,T) :- move(R,D,T),
                                  position(R,C',T-1),
                                                          nextto(C',D,C).
               :- move(R.D.T).
                                  position(R,C ,T-1), not nextto(C, D,_).
 carries(R,S,T) :- pickup(R,S,T), position(R,C,T-1), position(S,C,T-1).
               :- pickup(R.S.T), carries(R, .T-1),
               :- pickup(R,S,T), carries(_,S,T-1).
               :- pickup(R,S,T), position(R,C,T-1), position(S,C',T-1), C != C'.
               :- putdown(R.S.T), not carries(R.S.T-1).
serves(R.S.P.T) := position(R.C.T), carries(R.S.T), position(P.C), isStation(P),
position(R,C,T) := position(R,C,T-1), not move(R,_,T), isRobot(R), time(T).
carries(R.S.T) := carries(R.S.T-1), not putdown(R, .T).
                                                                     time(T).
position(S,C,T) := position(R,C,T ), carries(R,S,T).
position(S,C,T) := position(S,C,T-1), not carries(_,S,T), isShelf(S), time(T).
moveto(C',C,T) := nextto(C',D,C), position(R,C',T-1), move(R,D,T).
:- moveto(C',C,T), moveto(C,C',T), C < C'.
:- { position(R.C.T) : isRobot(R) } > 1, position(C), time(T),
:- { position(S,C,T) : isShelf(S) } > 1, position(C), time(T).
```

Experimenting with Robotic Intra-Logistics D

Encoding Variants

Variants

clingo boolean encoding clingo_{xy} boolean encoding + split positional coordinates clingcon linear constraints for positions and product quantities clingo[DL] difference constraints for positions and product quantities

Task Assignment

- Robots assigned a subset of shelves and picking stations
- All variants where tested with and without task assignments.

Results

domain	makespan	encoding	small	medium	large
м	6/10/25	clingo	0(0)	0(0)	73(4)
		clingo _{xy}	0(0)	16(1)	591(14)
		clingcon	0(0)	37(0)	1168(52)
		clingo[DL]	0(0)	193(1)	1648(96)
Ma	6/10/25	clingo	0(0)	0(0)	41(2)
		clingo _{xy}	0(0)	0(0)	763(27)
		clingcon	0(0)	36(0)	1163(49)
		clingo[DL]	0(0)	86(1)	1679(102)
См	20/-/-	clingo	805(40)	1800(120)	1800(120)
		clingcon	695(30)	1800(120)	1800(120)
C ^M a	21/35/-	clingo	23(1)	370(5)	1800(120)
a		clingcon	38(2)	459(15)	1800(120)
ВМ	26/-/-	clingo	970(53)	1800(120)	1800(120)
		clingcon	807(37)	1800(120)	1800(120)
B ^M a	26/39/-	clingo	12(0)	566(19)	1800(120)
		clingcon	29(0)	623(25)	1800(120)
AM	26/-/-	clingo	984(55)	1800(120)	1800(120)
		clingcon	856(41)	1800(120)	1800(120)
A_a^M	26/39/-	clingo	12(0)	577(18)	1800(120)
		clingcon	49(1)	625(22)	1800(120)

Experimental results in average run time & number of timeouts 🇰 Potassco

Gebser et al. (KRR@UP)

Experimenting with Robotic Intra-Logistics D

Outline I

1 Introduction

- Motivation
- Robotic Intra-Logistics

2 Benchmark Suite

- Overview
- Domains

3 Exemplary Evaluation

- Instances
- Encodings
- Results

4 Outlook

Gebser et al. (KRR@UP)

Outlook

■ Further extending *asprilo* based on user feedback

http://potassco.org/asprilo

Gebser et al. (KRR@UP)

Experimenting with Robotic Intra-Logistics D

Outlook

Further extending *asprilo* based on user feedback

Explore ASP design patterns and techniques

- scalability
- temporal logic
- preference handling
- uncertainty
- online processing

http://potassco.org/asprilo

Gebser et al. (KRR@UP)

Experimenting with Robotic Intra-Logistics D