
haspie – A Musical Harmonisation Tool based on ASP

Pedro Cabalar and Rodrigo Mart́ın

Universidade da Coruña, Spain

August 8, 2018

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 1 / 19



Motivation

• Musical teaching is still very traditional
nowadays.

• Self-teaching of music theory is hard.

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 2 / 19



Motivation

• Musical teaching is still very traditional
nowadays.

• Self-teaching of music theory is hard.

• There are not many tools to aid and
guide students and self-taught students.

• Composition tools seek results assuming
that the user knows musical theory.

• There are intelligent composers:
CHASP, Vox Populi, ANTON...

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 2 / 19



Example: Harmonisation

• Harmony is a very important subject in
music theory learning

• Choral music is the root of this subject

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 3 / 19



Example: Harmonisation

• Harmony is a very important subject in
music theory learning

• Choral music is the root of this subject

• Exercises consist in choosing chords
sequences and completing musical
pieces

• Already existing tools do not apply to
this particular field

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 3 / 19



Goals

1 Harmonise and annotate chords over
any musical score

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 4 / 19



Goals

1 Harmonise and annotate chords over
any musical score

2 Given a certain harmonisation, be able
to complete on purpose blank sections
of any incomplete voice of the score

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 4 / 19



Goals

1 Harmonise and annotate chords over
any musical score

2 Given a certain harmonisation, be able
to complete on purpose blank sections
of any incomplete voice of the score

3 Add new voices that complement the
voices already in the score

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 4 / 19



Overview

1 Motivation

2 haspie
Architecture
ASP Core
Input
Output

3 Conclusions & Future Work

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 5 / 19



haspie’s Architecture

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 6 / 19



haspie’s Architecture

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 6 / 19



ASP Core

Answer Set Programming:

• Independent of the solving process and its heuristics

• The power and flexibility of ASP lays on this independence

• The problem only needs to be specified by rules and constraints

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 7 / 19



Harmonisation

• Notes are converted to grades of the scale given the key and mode

octave(V,((N - base) / 12),T) :- note(V,N,T), N >= 0.

sem_tones(V,((N - base) \ 12),T) :- note(V,N,T), N >= 0.

grade(V,1,T) :- sem_tones(V,3,T).

grade(V,2,T) :- sem_tones(V,5,T).

grade(V,3,T) :- sem_tones(V,7,T).

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 8 / 19



Harmonisation

• Notes are converted to grades of the scale given the key and mode
• Chords are assigned to the harmonisable times of the score
• Errors are computed and the solver determines the fittest chords for

each section

1 { chord(HT,C) : pos_chord(C) } 1 :- htime(HT).

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 8 / 19



Score Completion

• Only used if there are new voices or sections that need to be
completed

• Given the incomplete or new voices’ tessiturae notes are assigned to
the available positions

• Errors are computed and solver determines the fittest notes for each
time

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 9 / 19



Score Completion

• Only used if there are new voices or sections that need to be
completed

• Given the incomplete or new voices’ tessiturae notes are assigned to
the available positions

• Errors are computed and solver determines the fittest notes for each
time

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 9 / 19



Score Completion

• Only used if there are new voices or sections that need to be
completed

• Given the incomplete or new voices’ tessiturae notes are assigned to
the available positions

• Errors are computed and solver determines the fittest notes for each
time

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 9 / 19



Melodious Preferences Modules

Despite not composing melodiously, haspie has modules that improve the
melody

• Melodious Preferences:
• Checks the tendency of the voices in the score and tries to imitate them
• Reduces the melodic jumps between notes and the amount of repeated

consecutive sounds

• Sixths Link:
• Tries to find common progressions in choral music
• If able, continues these common progressions of chords

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 10 / 19



Melodious Preferences Modules

Despite not composing melodiously, haspie has modules that improve the
melody

• Melodious Preferences:
• Checks the tendency of the voices in the score and tries to imitate them
• Reduces the melodic jumps between notes and the amount of repeated

consecutive sounds

• Sixths Link:
• Tries to find common progressions in choral music
• If able, continues these common progressions of chords

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 10 / 19



User Configuration

ASP optimization:

• The style of the resulting scores produced by the tool is determined
by the optimization of many predicates

• These optimizations are weighted to be able to specify the
significance of each of the measured predicates

• Users can define their own preferences by making use of configuration
files

#minimize[out_error(_,_) = chord_errorinstrongw

@ chord_errorinstrongp].

#minimize[same_chord(_,_) = chord_samechordw

@ chord_samechordp].

#minimize[out_error_weak(_,_) = chord_errorinweakw

@ chord_errorinweakp].

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 11 / 19



User Configuration

ASP optimization:

• The style of the resulting scores produced by the tool is determined
by the optimization of many predicates

• These optimizations are weighted to be able to specify the
significance of each of the measured predicates

• Users can define their own preferences by making use of configuration
files

#minimize[out_error(_,_) = chord_errorinstrongw

@ chord_errorinstrongp].

#minimize[same_chord(_,_) = chord_samechordw

@ chord_samechordp].

#minimize[out_error_weak(_,_) = chord_errorinweakw

@ chord_errorinweakp].

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 11 / 19



User Configuration

ASP optimization:

• The style of the resulting scores produced by the tool is determined
by the optimization of many predicates

• These optimizations are weighted to be able to specify the
significance of each of the measured predicates

• Users can define their own preferences by making use of configuration
files

#minimize[out_error(_,_) = chord_errorinstrongw

@ chord_errorinstrongp].

#minimize[same_chord(_,_) = chord_samechordw

@ chord_samechordp].

#minimize[out_error_weak(_,_) = chord_errorinweakw

@ chord_errorinweakp].

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 11 / 19



haspie’s Architecture

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 12 / 19



haspie’s Architecture

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 12 / 19



Parser and Preprocessor

• The project also included the development of a lightweight
MusicXML parser

• Written in C with the libraries Flex and Bison

• Transforms the score in MusicXML to the ASP logic facts that the
ASP module uses later

• Performs various tasks as:
• Subdivides notes to the length of the smallest figure in the score
• Detects most likely key from the score’s clef
• Reads measure sizes
• Transforms chord names annotated on score to grades

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 13 / 19



Parser and Preprocessor

• The project also included the development of a lightweight
MusicXML parser

• Written in C with the libraries Flex and Bison

• Transforms the score in MusicXML to the ASP logic facts that the
ASP module uses later

• Performs various tasks as:
• Subdivides notes to the length of the smallest figure in the score
• Detects most likely key from the score’s clef
• Reads measure sizes
• Transforms chord names annotated on score to grades

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 13 / 19



haspie’s Architecture

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 14 / 19



haspie’s Architecture

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 14 / 19



Pipeline & Output Module

• Written in Python with the toolkit Music21

• Gives feedback to the user and allows the selection of the desired
solution

• Transforms the internal representation of the solution to a Music21
representation

• Some supported formats are Lilypond, PDF, Musescore, MusicXML
or MIDI

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 15 / 19



Overview

1 Motivation

2 haspie

3 Conclusions & Future Work

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 16 / 19



Conclusions & Future Work

• About 200 ASP lines

• Good results in terms of harmony

• User still needs ASP knowledge to use it

Future Work:

• Research about modulation and implement it in the tool

• Reimplement preference-handling through asprin

• Improve the diversity of the solutions

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 17 / 19



PhD Work

”Efficient Generation of heterogeneous solutions to optimization problems
in ASP”

• Takes off from the work developed for haspie

• Looking for better ways of representing preferences (i.e asprin)

• Measure distances between solutions to use them during optimization

• Use music as test ground through haspie

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 18 / 19



haspie – A Musical Harmonisation Tool based on ASP

Pedro Cabalar and Rodrigo Mart́ın

Universidade da Coruña, Spain

August 8, 2018

Source available at github.com/trigork/haspie

Thank you!

Cabalar & Mart́ın (UDC) Musical Harmonisation based on ASP 19 / 19


	Motivation
	Background
	Goals

	haspie
	Architecture
	ASP Core
	Input
	Output

	Conclusions & Future Work

