
Executable Logic Workshop @ UDC
September 14, 2018

J. Arias1,2 M. Carro1,2 E. Salazar3 K. Marple3 G. Gupta3

1IMDEA Software Institute, 2Universidad Politécnica de Madrid, 3University of Texas at Dallas

madrid institute for advanced studies in software development technologies

0 / 27

www.software.imdea.org

Last Activities

• Tabling: advantages of bottom-up computation using top-down execution.
• Termination, performance.
• Well known, old (but still challenging)

• Add constraints: enhance expressiveness, termination properties, also speed.
• First implementation with full call / answer entailment checks.
• Modular: constraint solvers as plug-ins.
• Improved termination results w.r.t. [Toman 1997].
• PPDP’16, TPLP’1? (submitted).

• Top-down execution of ASP with constraints — evolution of s(ASP).
• Can execute non-grounded CASP programs.
• Constraint system with arbitrary (e.g., unbound) variable domains.
• Partial models: relevance.
• Almost ASP semantics: unsafe goals allowed.
• ICLP’18.

madrid institute for advanced studies in software development technologies

0 / 27

www.software.imdea.org

Last Activities

• Tabling: advantages of bottom-up computation using top-down execution.
• Termination, performance.
• Well known, old (but still challenging)

• Add constraints: enhance expressiveness, termination properties, also speed.
• First implementation with full call / answer entailment checks.
• Modular: constraint solvers as plug-ins.
• Improved termination results w.r.t. [Toman 1997].
• PPDP’16, TPLP’1? (submitted).

• Top-down execution of ASP with constraints — evolution of s(ASP).
• Can execute non-grounded CASP programs.
• Constraint system with arbitrary (e.g., unbound) variable domains.
• Partial models: relevance.
• Almost ASP semantics: unsafe goals allowed.
• ICLP’18.

madrid institute for advanced studies in software development technologies

0 / 27

www.software.imdea.org

Last Activities

• Tabling: advantages of bottom-up computation using top-down execution.
• Termination, performance.
• Well known, old (but still challenging)

• Add constraints: enhance expressiveness, termination properties, also speed.
• First implementation with full call / answer entailment checks.
• Modular: constraint solvers as plug-ins.
• Improved termination results w.r.t. [Toman 1997].
• PPDP’16, TPLP’1? (submitted).

• Top-down execution of ASP with constraints — evolution of s(ASP).
• Can execute non-grounded CASP programs.
• Constraint system with arbitrary (e.g., unbound) variable domains.
• Partial models: relevance.
• Almost ASP semantics: unsafe goals allowed.
• ICLP’18.

madrid institute for advanced studies in software development technologies

1 / 27

www.software.imdea.org

Tabling

• Solve issues with loops in SLD resolution:

1 p(b):- p(X).
2 p(a).
3

4 ?- p(A).

• Variant calls suspend:
• Branch freezes.
• Execution switches to another clause.
• Possible results feed and resume suspended calls. Execution continues.

• Termination for programs with bounded-depth property.
• Involved implementation!

madrid institute for advanced studies in software development technologies

2 / 27

www.software.imdea.org

Tabling + Constraints
• Add constraints: same, plus entailment instead of variance.

1 p(X) :- X #> Y, p(Y).
2 p(0).
3

4 ?- p(A).

• More particular calls suspend.
• p(Y){Y < X} more particular than p(X).
• Suspension, resumption driven by constraint entailment.

• Answers checked for entailment: only more general answers kept.
• Less resumptions: speedup.
• Termination guaranteed for compact constraint domains ([Toman 1997])
• Also, for programs that generate compact subset of constraint domain ([Arias &

Carro]).
• Very involved implementation.

madrid institute for advanced studies in software development technologies

3 / 27

www.software.imdea.org

Termination Comparison
Example: Find nodes in a weighted graph within a distance K from each other
(using comparable –very similar– programs).

Prolog CLP Tabling TCLP

Left recursion x x X X Without
Right recursion X X X X cycles

Left recursion x x x X With
Right recursion x X x X cycles

n 1

2

3

4

madrid institute for advanced studies in software development technologies

4 / 27

www.software.imdea.org

Design: Flexibility

• Constraint solver implementations pluggable.
• In general, amounts to writing an interface file to access projection and constraint

store extraction.
• Validated with several cases.

CLP(D≤) Connection of existing constraint solver for difference constraints,
written in C.

CLP(Q) and CLP(R) Constraint solvers for linear equations over rationals (CLP(Q))
and over reals (CLP(R)) ([Holzbaur 1995]).

CLP(Lat) New constraint solver over finite lattices.

madrid institute for advanced studies in software development technologies

5 / 27

www.software.imdea.org

Performance evaluation (Time)
Different answer management strategies

CLP(D≤)
Modular

TCLP(D≤)

truckload(300) 40452 7268
truckload(200) 4179 2239
truckload(100) 145 259

Save all
Discard

new answer
Remove
previous

Discard and
remove

truckload(300) 742039 7806 7780 7268
truckload(200) 11785 2314 2354 2239
truckload(100) 300 263 263 259

step bound(30) – 8450 – 1469
step bound(20) – 6859 38107 1267
step bound(10) – 2846 8879 845

madrid institute for advanced studies in software development technologies

6 / 27

www.software.imdea.org

Performance Evaluation (Number of Answers)
Different answer management strategies

Save all Discard new Remove previous Discard remove

101

102

103

104

105

106 4.
49
·1

05

67
,5

03

75
,2

72

48
,5

24

9,
97

1

6,
59

6

9,
46

0

1,
74

014
,9

99

41 30

5

nu
m

be
ro

fa
ns

w
er

s
(lo

g.
)

Saved Discarded Removed Returned

madrid institute for advanced studies in software development technologies

7 / 27

www.software.imdea.org

Performance evaluation – Tabling vs TCLP(Lat)
Simple Abstract Interpreter using sign abstract domain.

top

num

±0− 0+

0− +

bottom

var str atom

Two versions of Abstract Interpreter:

Tabling uses variant tabling.

TCLP(Lat) Uses entailment check to suspend.
Computation saved by reusing results
from previous, more general, call.

Tabling TLCP(Lat)

analyze(takeuchi/9) 31.44 8.09
analyze(takeuchi/7) 13.75 5.85
analyze(takeuchi/4) 2.42 3.12

madrid institute for advanced studies in software development technologies

8 / 27

www.software.imdea.org

Constraint ASP Without Grounding

madrid institute for advanced studies in software development technologies

9 / 27

www.software.imdea.org

Motivation

ASP + constraints: grounding phase an issue since ranges of (constrained)
variables may be infinite.

• Unbound range: X #> 0 in N
• Bound range, but dense domain: X #> 0 ∧ X #< 1 in Q

Current CASP systems (e.g., EZCSP [Balduccini and Lierler 2017] and
clingo[DL/LP] [Janhunen et al. 2017]) limit (some of):
• Admissible constraint domains.
• Where constraints can appear.
• Type / number of models computed.

madrid institute for advanced studies in software development technologies

10 / 27

www.software.imdea.org

s(CASP): Main Points

• Adds constraints to s(ASP) [Marple et al. 2017], a top-down execution model that
avoids the grounding phase.
• Is implemented with a goal-driven interpreter written in Ciao Prolog.
• The execution of a program starts with a query.
• Each answer provides the mgu of a successful derivation, its justification, and the

relevant (partial) stable model.

• Retains variables and constraints during the execution and in the model.

https://ciao-lang.org

https://gitlab.software.imdea.org/joaquin.arias/sCASP

madrid institute for advanced studies in software development technologies

https://ciao-lang.org
https://gitlab.software.imdea.org/joaquin.arias/sCASP

11 / 27

www.software.imdea.org

Background: s(ASP) [Marple et al. 2017]

• s(ASP) computes constructive negation: not p(X) returns in X the values for
which p(X) fails.
• Negated atoms are resolved against dual rules synthesized applying De Morgan’s laws

to Clark’s completion of the original program.

• The construction of dual rules need two new operators:
• Disequality (negation of the unification).
• Universal quantifier (in the body of the clauses).

• To ensure that global constraints and consistency rules hold, NMR-check rules
are synthesized and executed.
• The resulting program is executed by the s(ASP) interpreter which:
• Carries around explicitly unification and disequality constraints.
• Detects and handles different types of loops.

madrid institute for advanced studies in software development technologies

12 / 27

www.software.imdea.org

Background: Compilation of the Dual (Example)

• The Dual of a predicate P is another predicate that succeeds for the cases where
P would have failed:
1 Clark completion.
2 Negation of↔.
3 Rearrangement of atoms.
4 Introduction of 6= and ∀.

Given the predicate:

1 p(0).
2 p(X) :- q(X), not t(X,Y).

Its dual rules are:

1 not p(X) :- not p1(X), not p2(X).
2 not p1(X) :- X\=0.
3 not p2(X) :-
4 forall(Y, not p2_(X,Y)).
5 not p2_(X,Y) :- not q(X).
6 not p2_(X,Y) :- q(X), t(X,Y).

Constructive
disequality

Forall

For efficiency

madrid institute for advanced studies in software development technologies

12 / 27

www.software.imdea.org

Background: Compilation of the Dual (Example)

• The Dual of a predicate P is another predicate that succeeds for the cases where
P would have failed:
1 Clark completion.
2 Negation of↔.
3 Rearrangement of atoms.
4 Introduction of 6= and ∀.

Given the predicate:

1 p(0).
2 p(X) :- q(X), not t(X,Y).

Its dual rules are:

1 not p(X) :- not p1(X), not p2(X).
2 not p1(X) :- X\=0.
3 not p2(X) :-
4 forall(Y, not p2_(X,Y)).
5 not p2_(X,Y) :- not q(X).
6 not p2_(X,Y) :- q(X), t(X,Y).

Constructive
disequality

Forall

For efficiency

madrid institute for advanced studies in software development technologies

12 / 27

www.software.imdea.org

Background: Compilation of the Dual (Example)

• The Dual of a predicate P is another predicate that succeeds for the cases where
P would have failed:
1 Clark completion.
2 Negation of↔.
3 Rearrangement of atoms.
4 Introduction of 6= and ∀.

Given the predicate:

1 p(0).
2 p(X) :- q(X), not t(X,Y).

Its dual rules are:

1 not p(X) :- not p1(X), not p2(X).
2 not p1(X) :- X\=0.
3 not p2(X) :-
4 forall(Y, not p2_(X,Y)).
5 not p2_(X,Y) :- not q(X).
6 not p2_(X,Y) :- q(X), t(X,Y).

Constructive
disequality

Forall

For efficiency

madrid institute for advanced studies in software development technologies

12 / 27

www.software.imdea.org

Background: Compilation of the Dual (Example)

• The Dual of a predicate P is another predicate that succeeds for the cases where
P would have failed:
1 Clark completion.
2 Negation of↔.
3 Rearrangement of atoms.
4 Introduction of 6= and ∀.

Given the predicate:

1 p(0).
2 p(X) :- q(X), not t(X,Y).

Its dual rules are:

1 not p(X) :- not p1(X), not p2(X).
2 not p1(X) :- X\=0.
3 not p2(X) :-
4 forall(Y, not p2_(X,Y)).
5 not p2_(X,Y) :- not q(X).
6 not p2_(X,Y) :- q(X), t(X,Y).

Constructive
disequality

Forall

For efficiency

madrid institute for advanced studies in software development technologies

13 / 27

www.software.imdea.org

Background: Compilation of the NMR-check (Example)

Given the consistency rule:

∀~x (p(~x)← ∃~y B ∧ ¬p(~x))

Any model should satisfy:

∀~x∀~y (¬B ∨ p(~x)))

1 p(X) :- q(X,Y), ..., not p(X). 1 chk_1(X) :- forall(Y, not chk_1_(X,Y)).
2 not chk_1_(X,Y) :- not q(X,Y).
3 ...
4 not chk_1_(X,Y) :- q(X,Y), ..., p(X).

⊥ ← ∃~x ¬r(~x)

1 :- not r(X).

∀~x r(~x)

1 chk_2 :- forall(X, r(X)).

To ensure that each NMR-check rule is satisfied, the compiler adds the rule:

nmr_check :- forall(X,chk_1(X)), chk_2, . . .

madrid institute for advanced studies in software development technologies

13 / 27

www.software.imdea.org

Background: Compilation of the NMR-check (Example)

Given the consistency rule:

∀~x (p(~x)← ∃~y B ∧ ¬p(~x))

Any model should satisfy:

∀~x∀~y (¬B ∨ p(~x)))

1 p(X) :- q(X,Y), ..., not p(X). 1 chk_1(X) :- forall(Y, not chk_1_(X,Y)).
2 not chk_1_(X,Y) :- not q(X,Y).
3 ...
4 not chk_1_(X,Y) :- q(X,Y), ..., p(X).

⊥ ← ∃~x ¬r(~x)

1 :- not r(X).

∀~x r(~x)

1 chk_2 :- forall(X, r(X)).

To ensure that each NMR-check rule is satisfied, the compiler adds the rule:

nmr_check :- forall(X,chk_1(X)), chk_2, . . .

madrid institute for advanced studies in software development technologies

13 / 27

www.software.imdea.org

Background: Compilation of the NMR-check (Example)

Given the consistency rule:

∀~x (p(~x)← ∃~y B ∧ ¬p(~x))

Any model should satisfy:

∀~x∀~y (¬B ∨ p(~x)))

1 p(X) :- q(X,Y), ..., not p(X). 1 chk_1(X) :- forall(Y, not chk_1_(X,Y)).
2 not chk_1_(X,Y) :- not q(X,Y).
3 ...
4 not chk_1_(X,Y) :- q(X,Y), ..., p(X).

⊥ ← ∃~x ¬r(~x)

1 :- not r(X).

∀~x r(~x)

1 chk_2 :- forall(X, r(X)).

To ensure that each NMR-check rule is satisfied, the compiler adds the rule:

nmr_check :- forall(X,chk_1(X)), chk_2, . . .

madrid institute for advanced studies in software development technologies

13 / 27

www.software.imdea.org

Background: Compilation of the NMR-check (Example)

Given the consistency rule:

∀~x (p(~x)← ∃~y B ∧ ¬p(~x))

Any model should satisfy:

∀~x∀~y (¬B ∨ p(~x)))

1 p(X) :- q(X,Y), ..., not p(X). 1 chk_1(X) :- forall(Y, not chk_1_(X,Y)).
2 not chk_1_(X,Y) :- not q(X,Y).
3 ...
4 not chk_1_(X,Y) :- q(X,Y), ..., p(X).

⊥ ← ∃~x ¬r(~x)

1 :- not r(X).

∀~x r(~x)

1 chk_2 :- forall(X, r(X)).

To ensure that each NMR-check rule is satisfied, the compiler adds the rule:

nmr_check :- forall(X,chk_1(X)), chk_2, . . .

madrid institute for advanced studies in software development technologies

14 / 27

www.software.imdea.org

Background: 6= and forall(X,Goal)

Explanation delayed.

madrid institute for advanced studies in software development technologies

15 / 27

www.software.imdea.org

Background: Handling Loops (Goal eventually Calling Itself)

s(ASP) interpreter checks existence of different types of loops:

madrid institute for advanced studies in software development technologies

15 / 27

www.software.imdea.org

Background: Handling Loops (Goal eventually Calling Itself)

s(ASP) interpreter checks existence of different types of loops:

• Odd loop over negation: recursion with an odd number of intervening negations:
fails (avoid inconsistencies).

1 p(X) :- q(X), not p(X). 2 q(a).
?- p(a).
no

madrid institute for advanced studies in software development technologies

15 / 27

www.software.imdea.org

Background: Handling Loops (Goal eventually Calling Itself)

s(ASP) interpreter checks existence of different types of loops:

• Odd loop over negation: recursion with an odd number of intervening negations:
fails (avoid inconsistencies).

1 p(X) :- q(X), not p(X). 2 q(a).
?- p(a).
no

• Even loop over negation: Id. with even (non zero) number of intervening
negations. It generates multiple models.

1 p(X) :- not q(X). 2 q(X) :- not p(X).
?- p(a).
{p(a),not q(a)}

madrid institute for advanced studies in software development technologies

15 / 27

www.software.imdea.org

Background: Handling Loops (Goal eventually Calling Itself)

s(ASP) interpreter checks existence of different types of loops:

• Odd loop over negation: recursion with an odd number of intervening negations:
fails (avoid inconsistencies).

1 p(X) :- q(X), not p(X). 2 q(a).
?- p(a).
no

• Even loop over negation: Id. with even (non zero) number of intervening
negations. It generates multiple models.

1 p(X) :- not q(X). 2 q(X) :- not p(X).
?- p(a).
{p(a),not q(a)}

• Positive loops: No intervening negations. Fail if calls match (as in tabling).

1 p(X) :- ..., p(X).
?- p(a).
no

madrid institute for advanced studies in software development technologies

16 / 27

www.software.imdea.org

s(CASP): Design and Implementation

Main contributions w.r.t. s(ASP) are:
• Re-implemented interpreter: Prologs takes care of environment (e.g., the

behavior of variables).

• (Simple) constraint solver for disequality, CLP(6=), using attributed variables.
• Generic CLP interface and an extended compiler to plug in constraint solvers.
• Design and implementation of C-forall — generalizes original forall algorithm, to

support constraints in arbitrary domains.

s(CASP) s(ASP)
hanoi(8,T) 1,528 13,297
queens(4,Q) 1,930 20,141
One hamicycle 493 3,499
Two hamicycle 3,605 18,026

Run time (ms) comparison s(CASP) vs. s(ASP).

madrid institute for advanced studies in software development technologies

16 / 27

www.software.imdea.org

s(CASP): Design and Implementation

Main contributions w.r.t. s(ASP) are:
• Re-implemented interpreter: Prologs takes care of environment (e.g., the

behavior of variables).
• (Simple) constraint solver for disequality, CLP(6=), using attributed variables.

• Generic CLP interface and an extended compiler to plug in constraint solvers.
• Design and implementation of C-forall — generalizes original forall algorithm, to

support constraints in arbitrary domains.

s(CASP) s(ASP)
hanoi(8,T) 1,528 13,297
queens(4,Q) 1,930 20,141
One hamicycle 493 3,499
Two hamicycle 3,605 18,026

Run time (ms) comparison s(CASP) vs. s(ASP).

madrid institute for advanced studies in software development technologies

16 / 27

www.software.imdea.org

s(CASP): Design and Implementation

Main contributions w.r.t. s(ASP) are:
• Re-implemented interpreter: Prologs takes care of environment (e.g., the

behavior of variables).
• (Simple) constraint solver for disequality, CLP(6=), using attributed variables.
• Generic CLP interface and an extended compiler to plug in constraint solvers.

• Design and implementation of C-forall — generalizes original forall algorithm, to
support constraints in arbitrary domains.

s(CASP) s(ASP)
hanoi(8,T) 1,528 13,297
queens(4,Q) 1,930 20,141
One hamicycle 493 3,499
Two hamicycle 3,605 18,026

Run time (ms) comparison s(CASP) vs. s(ASP).

madrid institute for advanced studies in software development technologies

16 / 27

www.software.imdea.org

s(CASP): Design and Implementation

Main contributions w.r.t. s(ASP) are:
• Re-implemented interpreter: Prologs takes care of environment (e.g., the

behavior of variables).
• (Simple) constraint solver for disequality, CLP(6=), using attributed variables.
• Generic CLP interface and an extended compiler to plug in constraint solvers.
• Design and implementation of C-forall — generalizes original forall algorithm, to

support constraints in arbitrary domains.

s(CASP) s(ASP)
hanoi(8,T) 1,528 13,297
queens(4,Q) 1,930 20,141
One hamicycle 493 3,499
Two hamicycle 3,605 18,026

Run time (ms) comparison s(CASP) vs. s(ASP).

madrid institute for advanced studies in software development technologies

16 / 27

www.software.imdea.org

s(CASP): Design and Implementation

Main contributions w.r.t. s(ASP) are:
• Re-implemented interpreter: Prologs takes care of environment (e.g., the

behavior of variables).
• (Simple) constraint solver for disequality, CLP(6=), using attributed variables.
• Generic CLP interface and an extended compiler to plug in constraint solvers.
• Design and implementation of C-forall — generalizes original forall algorithm, to

support constraints in arbitrary domains.

s(CASP) s(ASP)
hanoi(8,T) 1,528 13,297
queens(4,Q) 1,930 20,141
One hamicycle 493 3,499
Two hamicycle 3,605 18,026

Run time (ms) comparison s(CASP) vs. s(ASP).

madrid institute for advanced studies in software development technologies

17 / 27

www.software.imdea.org

s(CASP): The Interpreter

1 ??(Query) :-
2 solve(Query,[],Mid),
3 solve_goal(nmr_check,Mid,Out),
4 output_just_model(Out).
5

6 solve([],In,['$success' |In]).
7 solve([Goal|Gs],In,Out) :-
8 solve_goal(Goal,In,Mid),
9 solve(Gs,Mid,Out).

10 solve_goal(Goal,In,Out) :-
11 user_defined(Goal),!,
12 check_loops(Goal,In,Out).
13 solve_goal(Goal,In,Out) :-
14 Goal=forall(V,FGoal),!,
15 c_forall(V,FGoal,In,Out).
16 solve_goal(Goal,In,Out) :-
17 call(Goal),
18 Out=['$success',Goal|In].

Figure: (Very abridged) Code of the s(CASP) interpreter.

Check
consistency

Call path /
derivation tree

Detect and
handle loops

C-forall

Builtins, CLP(6=),
CLP(Q), ...

madrid institute for advanced studies in software development technologies

17 / 27

www.software.imdea.org

s(CASP): The Interpreter

1 ??(Query) :-
2 solve(Query,[],Mid),
3 solve_goal(nmr_check,Mid,Out),
4 output_just_model(Out).
5

6 solve([],In,['$success' |In]).
7 solve([Goal|Gs],In,Out) :-
8 solve_goal(Goal,In,Mid),
9 solve(Gs,Mid,Out).

10 solve_goal(Goal,In,Out) :-
11 user_defined(Goal),!,
12 check_loops(Goal,In,Out).
13 solve_goal(Goal,In,Out) :-
14 Goal=forall(V,FGoal),!,
15 c_forall(V,FGoal,In,Out).
16 solve_goal(Goal,In,Out) :-
17 call(Goal),
18 Out=['$success',Goal|In].

Figure: (Very abridged) Code of the s(CASP) interpreter.

Check
consistency

Call path /
derivation tree

Detect and
handle loops

C-forall

Builtins, CLP(6=),
CLP(Q), ...

madrid institute for advanced studies in software development technologies

17 / 27

www.software.imdea.org

s(CASP): The Interpreter

1 ??(Query) :-
2 solve(Query,[],Mid),
3 solve_goal(nmr_check,Mid,Out),
4 output_just_model(Out).
5

6 solve([],In,['$success' |In]).
7 solve([Goal|Gs],In,Out) :-
8 solve_goal(Goal,In,Mid),
9 solve(Gs,Mid,Out).

10 solve_goal(Goal,In,Out) :-
11 user_defined(Goal),!,
12 check_loops(Goal,In,Out).
13 solve_goal(Goal,In,Out) :-
14 Goal=forall(V,FGoal),!,
15 c_forall(V,FGoal,In,Out).
16 solve_goal(Goal,In,Out) :-
17 call(Goal),
18 Out=['$success',Goal|In].

Figure: (Very abridged) Code of the s(CASP) interpreter.

Check
consistency

Call path /
derivation tree

Detect and
handle loops

C-forall

Builtins, CLP(6=),
CLP(Q), ...

madrid institute for advanced studies in software development technologies

17 / 27

www.software.imdea.org

s(CASP): The Interpreter

1 ??(Query) :-
2 solve(Query,[],Mid),
3 solve_goal(nmr_check,Mid,Out),
4 output_just_model(Out).
5

6 solve([],In,['$success' |In]).
7 solve([Goal|Gs],In,Out) :-
8 solve_goal(Goal,In,Mid),
9 solve(Gs,Mid,Out).

10 solve_goal(Goal,In,Out) :-
11 user_defined(Goal),!,
12 check_loops(Goal,In,Out).
13 solve_goal(Goal,In,Out) :-
14 Goal=forall(V,FGoal),!,
15 c_forall(V,FGoal,In,Out).
16 solve_goal(Goal,In,Out) :-
17 call(Goal),
18 Out=['$success',Goal|In].

Figure: (Very abridged) Code of the s(CASP) interpreter.

Check
consistency

Call path /
derivation tree

Detect and
handle loops

...
check_loops(Goal,In,Out) :-

pr_rule(Goal,Body),
solve(Body,[Goal|In],Out).

C-forall

Builtins, CLP(6=),
CLP(Q), ...

madrid institute for advanced studies in software development technologies

17 / 27

www.software.imdea.org

s(CASP): The Interpreter

1 ??(Query) :-
2 solve(Query,[],Mid),
3 solve_goal(nmr_check,Mid,Out),
4 output_just_model(Out).
5

6 solve([],In,['$success' |In]).
7 solve([Goal|Gs],In,Out) :-
8 solve_goal(Goal,In,Mid),
9 solve(Gs,Mid,Out).

10 solve_goal(Goal,In,Out) :-
11 user_defined(Goal),!,
12 check_loops(Goal,In,Out).
13 solve_goal(Goal,In,Out) :-
14 Goal=forall(V,FGoal),!,
15 c_forall(V,FGoal,In,Out).
16 solve_goal(Goal,In,Out) :-
17 call(Goal),
18 Out=['$success',Goal|In].

Figure: (Very abridged) Code of the s(CASP) interpreter.

Check
consistency

Call path /
derivation tree

Detect and
handle loops

C-forall

Builtins, CLP(6=),
CLP(Q), ...

madrid institute for advanced studies in software development technologies

17 / 27

www.software.imdea.org

s(CASP): The Interpreter

1 ??(Query) :-
2 solve(Query,[],Mid),
3 solve_goal(nmr_check,Mid,Out),
4 output_just_model(Out).
5

6 solve([],In,['$success' |In]).
7 solve([Goal|Gs],In,Out) :-
8 solve_goal(Goal,In,Mid),
9 solve(Gs,Mid,Out).

10 solve_goal(Goal,In,Out) :-
11 user_defined(Goal),!,
12 check_loops(Goal,In,Out).
13 solve_goal(Goal,In,Out) :-
14 Goal=forall(V,FGoal),!,
15 c_forall(V,FGoal,In,Out).
16 solve_goal(Goal,In,Out) :-
17 call(Goal),
18 Out=['$success',Goal|In].

Figure: (Very abridged) Code of the s(CASP) interpreter.

Check
consistency

Call path /
derivation tree

Detect and
handle loops

C-forall

Builtins, CLP(6=),
CLP(Q), ...

madrid institute for advanced studies in software development technologies

18 / 27

www.software.imdea.org

s(CASP): c_forall(X,Goal)

Check if Goal is true for all values in the constraint domain of X.

Intuition: Narrow the constraint store Ci under which Goal is executed by se-
lecting an answer Ai and removing from Ci the values of X covered by Ai .

AX is the projection of A onto X.

AX Id. onto the set of variables in Goal that are not X.

Algorithm (simplified):

• If Goal succeeds with answer Ai under Ci , there are two possibilities:
• Ai.X ≡ Ci.X then succeed.
• Ai.X @ Ci.X then re-execute Goal under Ci+1 = Ci ∧ Ai.X ∧ ¬Ai.X.

• If Goal fails, then fail.

Note 1: c_forall/2 takes care of disjunctions generated by ¬Ai.X
(Constraints solvers usually cannot handle them natively.)

madrid institute for advanced studies in software development technologies

18 / 27

www.software.imdea.org

s(CASP): c_forall(X,Goal)

Check if Goal is true for all values in the constraint domain of X.

Intuition: Narrow the constraint store Ci under which Goal is executed by se-
lecting an answer Ai and removing from Ci the values of X covered by Ai .

AX is the projection of A onto X.

AX Id. onto the set of variables in Goal that are not X.

Algorithm (simplified):

• If Goal succeeds with answer Ai under Ci , there are two possibilities:
• Ai.X ≡ Ci.X then succeed.
• Ai.X @ Ci.X then re-execute Goal under Ci+1 = Ci ∧ Ai.X ∧ ¬Ai.X.

• If Goal fails, then fail.

Note 1: c_forall/2 takes care of disjunctions generated by ¬Ai.X
(Constraints solvers usually cannot handle them natively.)

madrid institute for advanced studies in software development technologies

19 / 27

www.software.imdea.org

s(CASP): c_forall(X,Goal)

A1 A2

A3
A4

A′1

C2 = >∧ ¬A′1

A′2

C3 = C2 ∧ ¬A′2 A′3 ≡ C3

answers

Figure: A C-forall evaluation that succeeds.

madrid institute for advanced studies in software development technologies

19 / 27

www.software.imdea.org

s(CASP): c_forall(X,Goal)

A1 A2

A3
A4

A′1

C2 = >∧ ¬A′1

A′2

C3 = C2 ∧ ¬A′2 A′3 ≡ C3

answers (a)

Figure: A C-forall evaluation that succeeds.

madrid institute for advanced studies in software development technologies

19 / 27

www.software.imdea.org

s(CASP): c_forall(X,Goal)

A1 A2

A3
A4

A′1

C2 = >∧ ¬A′1

A′2

C3 = C2 ∧ ¬A′2

A′3 ≡ C3

answers (a) (b)

Figure: A C-forall evaluation that succeeds.

madrid institute for advanced studies in software development technologies

19 / 27

www.software.imdea.org

s(CASP): c_forall(X,Goal)

A1 A2

A3
A4

A′1

C2 = >∧ ¬A′1

A′2

C3 = C2 ∧ ¬A′2 A′3 ≡ C3

answers (a) (b) (c)

Figure: A C-forall evaluation that succeeds.

madrid institute for advanced studies in software development technologies

20 / 27

www.software.imdea.org

s(CASP): c_forall(X,Goal)

A1 A2

A3
A4

A′1

C2 = >∧ ¬A′1

A′2

C3 = C2 ∧ ¬A′2 A′3

C4

answers

Figure: A C-forall evaluation that fails.

madrid institute for advanced studies in software development technologies

20 / 27

www.software.imdea.org

s(CASP): c_forall(X,Goal)

A1 A2

A3
A4

A′1

C2 = >∧ ¬A′1

A′2

C3 = C2 ∧ ¬A′2 A′3

C4

answers (a)

Figure: A C-forall evaluation that fails.

madrid institute for advanced studies in software development technologies

20 / 27

www.software.imdea.org

s(CASP): c_forall(X,Goal)

A1 A2

A3
A4

A′1

C2 = >∧ ¬A′1

A′2

C3 = C2 ∧ ¬A′2

A′3

C4

answers (a) (b)

Figure: A C-forall evaluation that fails.

madrid institute for advanced studies in software development technologies

20 / 27

www.software.imdea.org

s(CASP): c_forall(X,Goal)

A1 A2

A3
A4

A′1

C2 = >∧ ¬A′1

A′2

C3 = C2 ∧ ¬A′2 A′3

C4

answers (a) (b) (c)

Figure: A C-forall evaluation that fails.

madrid institute for advanced studies in software development technologies

21 / 27

www.software.imdea.org

s(CASP): Yale Shooting Scenario [Janhunen et al. 2017]

• There is a turkey, a gun, and three possible
actions: wait, load, shoot.
• Initially: turkey alive, gun unloaded.
• The turkey will die if we load and shoot within 35

minutes. Otherwise, the gun powder is spoiled.
• We are not allowed to shoot in the first 35 minutes.
• We want a plan to kill the turkey within 100 minutes.

madrid institute for advanced studies in software development technologies

22 / 27

www.software.imdea.org

s(CASP): Yale Shooting Scenario [Janhunen et al. 2017]

1 duration(load,25).
2 duration(shoot,5).
3 duration(wait,36).
4 spoiled(T_Armed):- T_Armed #> 35.
5 prohibited(shoot,Time):- Time #< 35.
6

7 holds(0, State, []):- init(State).
8 holds(F_Time, F_State, [Action|As]):-
9 F_Time #> 0,

10 F_Time #= P_Time + Duration,
11 duration(Action, Duration),
12 not prohibited(Action, F_Time),
13 trans(Action, P_State, F_State),
14 holds(P_Time, P_State, As).

15 init(st(alive,unloaded,0)).
16

17 trans(load, st(alive,_,_),
18 st(alive,loaded,0)).
19 trans(wait, st(alive,Gun,P_Armed),
20 st(alive,Gun,F_Armed)):-
21 F_Armed #= P_Armed + Duration,
22 duration(wait,Duration).
23 trans(shoot, st(alive,loaded,T_Armed),
24 st(dead,unloaded,0)):-
25 not spoiled(T_Armed).
26 trans(shoot, st(alive,loaded,T_Armed),
27 st(alive,unloaded,0)):-
28 spoiled(T_Armed).

s(CASP) code for the Yale Shooting problem

Restrictions
as constraints

Negation
Negation

madrid institute for advanced studies in software development technologies

22 / 27

www.software.imdea.org

s(CASP): Yale Shooting Scenario [Janhunen et al. 2017]

1 duration(load,25).
2 duration(shoot,5).
3 duration(wait,36).
4 spoiled(T_Armed):- T_Armed #> 35.
5 prohibited(shoot,Time):- Time #< 35.
6

7 holds(0, State, []):- init(State).
8 holds(F_Time, F_State, [Action|As]):-
9 F_Time #> 0,

10 F_Time #= P_Time + Duration,
11 duration(Action, Duration),
12 not prohibited(Action, F_Time),
13 trans(Action, P_State, F_State),
14 holds(P_Time, P_State, As).

15 init(st(alive,unloaded,0)).
16

17 trans(load, st(alive,_,_),
18 st(alive,loaded,0)).
19 trans(wait, st(alive,Gun,P_Armed),
20 st(alive,Gun,F_Armed)):-
21 F_Armed #= P_Armed + Duration,
22 duration(wait,Duration).
23 trans(shoot, st(alive,loaded,T_Armed),
24 st(dead,unloaded,0)):-
25 not spoiled(T_Armed).
26 trans(shoot, st(alive,loaded,T_Armed),
27 st(alive,unloaded,0)):-
28 spoiled(T_Armed).

s(CASP) code for the Yale Shooting problem

Restrictions
as constraints

Negation
Negation

madrid institute for advanced studies in software development technologies

22 / 27

www.software.imdea.org

s(CASP): Yale Shooting Scenario [Janhunen et al. 2017]

1 duration(load,25).
2 duration(shoot,5).
3 duration(wait,36).
4 spoiled(T_Armed):- T_Armed #> 35.
5 prohibited(shoot,Time):- Time #< 35.
6

7 holds(0, State, []):- init(State).
8 holds(F_Time, F_State, [Action|As]):-
9 F_Time #> 0,

10 F_Time #= P_Time + Duration,
11 duration(Action, Duration),
12 not prohibited(Action, F_Time),
13 trans(Action, P_State, F_State),
14 holds(P_Time, P_State, As).

15 init(st(alive,unloaded,0)).
16

17 trans(load, st(alive,_,_),
18 st(alive,loaded,0)).
19 trans(wait, st(alive,Gun,P_Armed),
20 st(alive,Gun,F_Armed)):-
21 F_Armed #= P_Armed + Duration,
22 duration(wait,Duration).
23 trans(shoot, st(alive,loaded,T_Armed),
24 st(dead,unloaded,0)):-
25 not spoiled(T_Armed).
26 trans(shoot, st(alive,loaded,T_Armed),
27 st(alive,unloaded,0)):-
28 spoiled(T_Armed).

s(CASP) code for the Yale Shooting problem

Restrictions
as constraints

Negation
Negation

madrid institute for advanced studies in software development technologies

22 / 27

www.software.imdea.org

s(CASP): Yale Shooting Scenario [Janhunen et al. 2017]

1 duration(load,25).
2 duration(shoot,5).
3 duration(wait,36).
4 spoiled(T_Armed):- T_Armed #> 35.
5 prohibited(shoot,Time):- Time #< 35.
6

7 holds(0, State, []):- init(State).
8 holds(F_Time, F_State, [Action|As]):-
9 F_Time #> 0,

10 F_Time #= P_Time + Duration,
11 duration(Action, Duration),
12 not prohibited(Action, F_Time),
13 trans(Action, P_State, F_State),
14 holds(P_Time, P_State, As).

15 init(st(alive,unloaded,0)).
16

17 trans(load, st(alive,_,_),
18 st(alive,loaded,0)).
19 trans(wait, st(alive,Gun,P_Armed),
20 st(alive,Gun,F_Armed)):-
21 F_Armed #= P_Armed + Duration,
22 duration(wait,Duration).
23 trans(shoot, st(alive,loaded,T_Armed),
24 st(dead,unloaded,0)):-
25 not spoiled(T_Armed).
26 trans(shoot, st(alive,loaded,T_Armed),
27 st(alive,unloaded,0)):-
28 spoiled(T_Armed).

s(CASP) code for the Yale Shooting problem

Restrictions
as constraints

Negation
Negation

% holds(Time, st(Turkey,Gun,Time_Armed), Plan)

madrid institute for advanced studies in software development technologies

22 / 27

www.software.imdea.org

s(CASP): Yale Shooting Scenario [Janhunen et al. 2017]

1 duration(load,25).
2 duration(shoot,5).
3 duration(wait,36).
4 spoiled(T_Armed):- T_Armed #> 35.
5 prohibited(shoot,Time):- Time #< 35.
6

7 holds(0, State, []):- init(State).
8 holds(F_Time, F_State, [Action|As]):-
9 F_Time #> 0,

10 F_Time #= P_Time + Duration,
11 duration(Action, Duration),
12 not prohibited(Action, F_Time),
13 trans(Action, P_State, F_State),
14 holds(P_Time, P_State, As).

15 init(st(alive,unloaded,0)).
16

17 trans(load, st(alive,_,_),
18 st(alive,loaded,0)).
19 trans(wait, st(alive,Gun,P_Armed),
20 st(alive,Gun,F_Armed)):-
21 F_Armed #= P_Armed + Duration,
22 duration(wait,Duration).
23 trans(shoot, st(alive,loaded,T_Armed),
24 st(dead,unloaded,0)):-
25 not spoiled(T_Armed).
26 trans(shoot, st(alive,loaded,T_Armed),
27 st(alive,unloaded,0)):-
28 spoiled(T_Armed).

s(CASP) code for the Yale Shooting problem

Restrictions
as constraints

Negation
Negation

?- Time #< 100, holds(Time, st(dead,_,_), Plan).

madrid institute for advanced studies in software development technologies

23 / 27

www.software.imdea.org

s(CASP): Yale Shooting Scenario [Janhunen et al. 2017]

?- ?? [Time #< 100,holds(Time,st(dead,_,_),Plan)].

Time=55, Plan=[shoot,load, load]

Time=66, Plan=[shoot,load, wait]

Time=80, Plan=[shoot,load, load, load]

Time=91, Plan=[shoot,load, load, wait]

Time=91, Plan=[shoot,load, wait, load]

Time=96, Plan=[shoot,load, shoot,wait, load]

madrid institute for advanced studies in software development technologies

24 / 27

www.software.imdea.org

s(CASP): Yale Shooting Scenario extended

Extensions:

• Time is dense→ intervals have infinite # of
elements.
• There is a second gun and initially only one of

them is loaded.
• We cannot shoot in the first 35 minutes only if our

gun is initially unloaded.

madrid institute for advanced studies in software development technologies

25 / 27

www.software.imdea.org

s(CASP): Yale Shooting Scenario extended

1 duration(load,25).
2 duration(shoot,D):- D #> 5, D #< 15/2.
3 duration(wait,36).
4 spoiled(T_Armed):- T_Armed #> 35.
5 prohibited(shoot,Time):-
6 Time #< 35, gun(unloaded).
7

8 holds(0, State, []):- init(State).
9 holds(F_Time, F_State, [Action|As]):-

10 F_Time #> 0,
11 F_Time #= P_Time + Duration,
12 duration(Action, Duration),
13 not prohibited(Action, F_Time),
14 trans(Action, P_State, F_State),
15 holds(P_Time, P_State, As).
16

17 init(st(alive,Gun,0)) :- gun(Gun).

15 trans(load, st(alive,_,_),
16 st(alive,loaded,0)).
17 trans(wait, st(alive,Gun,P_Armed),
18 st(alive,Gun,F_Armed)):-
19 F_Armed #= P_Armed + Duration,
20 duration(wait,Duration).
21 trans(shoot, st(alive,loaded,T_Armed),
22 st(dead,unloaded,0)):-
23 not spoiled(T_Armed).
24 trans(shoot, st(alive,loaded,T_Armed),
25 st(alive,unloaded,0)):-
26 spoiled(T_Armed).
27

28 gun(loaded) :- not s_gun(loaded).
29 s_gun(loaded) :- not gun(loaded).
30 gun(unloaded) :- not gun(loaded).
31 s_gun(unloaded) :- not s_gun(loaded).

s(CASP) code for the extended and updated Yale Shooting problem.

Interval in a
dense domain

Two possible
worlds

Initial state

Restriction

madrid institute for advanced studies in software development technologies

26 / 27

www.software.imdea.org

s(CASP): Other Examples

Stream Data Reasoning: constraints and goal-directed strategy make it possible to
answer queries without evaluating the complete stream database.

1 valid_stream(Pr,Data) :-
2 stream(Pr,Data),
3 not cancelled(Pr,Data).
4

5 cancelled(PrLo,DataLo) :-
6 PrHi #> PrLo,
7 stream(PrHi,DataHi),
8 incompt(DataLo,DataHi).

Traveling Salesman Problem: s(CASP) encoding is more compact than CLP and
constraints (over dense domains) can appear as part of the model.

?- travel_path(b,Length,Cycle).

{ cycle_dist(b,c,31/10), cycle_dist(c,d,A) {A #> 8, A #< 21/2},
cycle_dist(d,a,1), cycle_dist(a,b,1) }

madrid institute for advanced studies in software development technologies

26 / 27

www.software.imdea.org

s(CASP): Other Examples

Stream Data Reasoning: constraints and goal-directed strategy make it possible to
answer queries without evaluating the complete stream database.

1 valid_stream(Pr,Data) :-
2 stream(Pr,Data),
3 not cancelled(Pr,Data).
4

5 cancelled(PrLo,DataLo) :-
6 PrHi #> PrLo,
7 stream(PrHi,DataHi),
8 incompt(DataLo,DataHi).

Traveling Salesman Problem: s(CASP) encoding is more compact than CLP and
constraints (over dense domains) can appear as part of the model.

?- travel_path(b,Length,Cycle).

{ cycle_dist(b,c,31/10), cycle_dist(c,d,A) {A #> 8, A #< 21/2},
cycle_dist(d,a,1), cycle_dist(a,b,1) }

madrid institute for advanced studies in software development technologies

27 / 27

www.software.imdea.org

General Thoughts

• Constraint + ASP subject of a lot of research.
• Constraints work better with the notion of variables!
• E.g., intensional description of sets.

• Traditional ASP evaluation shares some points with bottom-up.
• I.e., both do not in principle use variables.

• But smart top-down evaluation (tabling) achieves results similar to bottom up.
• And variables and relationships can be used.

• Can the case for ASP be similar?

madrid institute for advanced studies in software development technologies

28 / 27

www.software.imdea.org

Bibliography I

Balduccini, M. and Lierler, Y. (2017). Constraint Answer Set Solver EZCSP and why
Integration Schemas Matter. Theory and Practice of Logic Programming, 17(4):462–515.

Holzbaur, C. (1995). OFAI CLP(Q,R) Manual, Edition 1.3.3. Technical Report TR-95-09,
Austrian Research Institute for Artificial Intelligence, Vienna.

Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P., and Schaub, T. (2017).
Clingo goes Linear Constraints over Reals and Integers. TPLP, 17(5-6):872–888.

Marple, K., Salazar, E., and Gupta, G. (2017). Computing Stable Models of Normal Logic
Programs Without Grounding. CoRR, abs/1709.00501.

Toman, D. (1997). Memoing Evaluation for Constraint Extensions of Datalog. Constraints,
2(3/4):337–359.

madrid institute for advanced studies in software development technologies

	Appendix
	References

