Equilibrium models for epistemic specifications

Luis Fariñas del Cerro, Andreas Herzig, Ezgi Iraz Su University of Toulouse and CNRS, IRIT, France

A Coruña, Feb. 24, 2015

From logic to logic programs

- logic: $\varphi \to \psi$
- logic programming: *Head* ← *Body*
 - Head disjunction of atoms
 - Body conjunction of atoms, possibly prefixed by "not"
 - 'default negation', 'negation by failure' = non-deducibility of p
 - no consensus on semantics until the 90ies
- answer set semantics
 - fixed point definition: *I* is an answer set for Π iff $I = reduct(\Pi, I)$
 - remarkably 'stable': there exist 10+ different characterisations [Lifschitz "Twelve Definitions of a Stable Model", ICLP 2008]

Towards a logical account of negation by failure

- hypothesis: not every classical model of a program intended (identifying not with ¬)
- models should minimize truth of atoms
 - example: $\Pi = p \leftarrow p$ has unique minimal model \emptyset
 - so every *p* is false
- problem: programs such as {p ← not p} should have no model
 - ... but $\neg p \rightarrow p$ is equivalent to p in classical logic
- solution: ¬p → p is not equivalent to p in intuitionistic logic (more generally: intermediate logics)

The logic of here-and-there (HT)

- simple modal logic:
 - only two possible worlds H ('here') and T ('there')
 - accessibility relation is reflexive, and T is accessible from H
 - idea: H = proved true, T = hypothesised, PVAR \ T = refuted
- is an intuitionistic logic:
 - $H \subseteq T$ ('heredity condition')
 - interprets a language with a connective → that is stronger than material implication ⊃

 $\models \neg \varphi \leftrightarrow (\varphi \rightarrow \bot)$ $\models \varphi \rightarrow \neg \neg \varphi$ $\not\models \varphi \leftarrow \neg \neg \varphi$ $\not\models \varphi \lor \neg \varphi$

The logic of here-and-there (HT)

- ht-model = (H, T) such that $H \subseteq T \subseteq PVAR$
 - *H* = *T*: 'total model'
- truth conditions:

$$\begin{array}{l} H, T \models p \quad \text{iff } p \in H \\ H, T \models \neg \varphi \quad \text{iff } T, T \not\models \varphi \\ H, T \models \varphi \rightarrow \psi \quad \text{iff } H, T \models \varphi \supset \psi \text{ and } T, T \models \varphi \supset \psi \\ \text{(where } \supset \text{ is material implication)} \end{array}$$

Theorem (Lifschitz et al. 2001)

 Π_1 and Π_2 are strongly equivalent iff $\models_{HT} \Pi_1 \leftrightarrow \Pi_2$ (identifying not with \neg)

Equilibrium models

• equilibrium model: *H* = *T* (total model) such that there is no smaller ht-model

Definition

- (T, T) equilibrium model of φ iff
 - $\bigcirc T, T \models \varphi$
 - $I, T \not\models \varphi \text{ for every } H \subset T$

Theorem (Pearce 1996)

(T, T) equilibrium model of Π iff T answer set of Π

(identifying "not" with "¬")

- applies beyond standard logic programs
 - disjunctive logic programs: H = p or q
 - nested logic programs: $B = p \leftarrow (q \leftarrow r)$
 - ...

where the 10+ semantics don't agree!

missing: quantification over possible answer sets...

ASP lacks expressivity

Example (scholarship eligibility program)

- eligible \leftarrow highGPA
- ② eligible ← minority, fairGPA
- ③ $\overline{\text{eligible}} \leftarrow \overline{\text{fairGPA}}, \overline{\text{highGPA}}$
- Interview ← not eligible, not eligible
- **●** fairGPA or highGPA \leftarrow

has the answer sets

```
AS(\Pi_{eligible}) = \left\{ \{ highGPA, eligible \}, \\ \{ fairGPA \} \right\}
```

Therefore:

Π_{eligible}∦eligible Π_{eligible}∦interview

 \Rightarrow counter-intuitive!

ASP lacks expressivity

Example (scholarship eligibility program)

- eligible \leftarrow highGPA
- ② eligible ← minority, fairGPA
- ③ $\overline{\text{eligible}} \leftarrow \overline{\text{fairGPA}}, \overline{\text{highGPA}}$
- Interview ← not eligible, not eligible
- **⑤** fairGPA or highGPA ←

has the answer sets

$$AS(\Pi_{eligible}) = \left\{ \{ highGPA, eligible \}, \\ \{ fairGPA \} \right\}$$

Therefore:

Π_{eligible} ⊭ eligible Π_{eligible} ⊭ interview

 \Rightarrow counter-intuitive!

Epistemic specifications [Gelfond 1991]

Example (scholarship eligibility program, E-S-version)

- eligible \leftarrow highGPA
- ② eligible ← minority, fairGPA
- **③** $\overline{\text{eligible}} \leftarrow \overline{\text{fairGPA}}, \overline{\text{highGPA}}$
- Interview ← not K eligible, not K eligible
- **⑤** fairGPA or highGPA ←

will have the answer sets

```
AS(\Pi_{Keligible}) = \{ \{ highGPA, eligible, interview \}, \}
```

```
fairGPA, interview}
```

Therefore:

 $\Pi_{K \text{ eligible}} \not\models \text{ eligible}$ $\Pi_{K \text{ eligible}} \not\models \text{ interview}$

Epistemic specifications [Gelfond 1991]

Example (scholarship eligibility program, E-S-version)

- eligible \leftarrow highGPA
- ② eligible ← minority, fairGPA
- Interview ← not K eligible, not K eligible
- **⑤** fairGPA or highGPA ←

will have the answer sets

$$AS(\Pi_{Keligible}) = \left\{ \{ highGPA, eligible, interview \}, \\ \{ fairGPA, interview \} \right\}$$

Therefore:

 $\Pi_{K \text{ eligible}} \not\models \text{ eligible}$ $\Pi_{K \text{ eligible}} \not\models \text{ interview}$

Epistemic specifications: language

- idea: allow for quantification over all candidate answer sets
 - K q = "it is known that q"
 - M q = "q may be believed"

(more standard: "compatible with the agent's knowledge")

- syntax of rules varies from paper to paper, but basically interdefinable
- grammar [Kahl 2014]:

$$l_1$$
 or ... or $l_k \leftarrow \lambda_1, \ldots, \lambda_m$

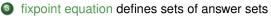
- head: objective literals 1, 11, 12, ... (possibly strongly negated)
- body: extended literals

Epistemic specifications: semantics

idea:

- move from answer sets to world views = sets of answer sets
- educt Π^W of an epistemic specification Π by a world view W (eliminates modal operators)

 \Rightarrow procedural



 \Rightarrow non-constructive

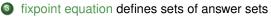
- still no consensus on reduct definition
 - [Gelfond, Tech.Rep. 1991]
 - [Gelfond, AMAI 1994]
 - [Gelfond, LPNMR 2011]
 - [Kahl, PhD 2014]
- ht-logic and equilibrium logic counterpart?
 - [Wang&Zhang, LPNMR 2005], v.i.
 - [FHS], v.i.

Epistemic specifications: semantics

idea:

- move from answer sets to world views = sets of answer sets
- reduct Π^W of an epistemic specification Π by a world view W (eliminates modal operators)

 \Rightarrow procedural



 \Rightarrow non-constructive

- still no consensus on reduct definition
 - [Gelfond, Tech.Rep. 1991]
 - [Gelfond, AMAI 1994]
 - [Gelfond, LPNMR 2011]
 - [Kahl, PhD 2014]
- ht-logic and equilibrium logic counterpart?
 - [Wang&Zhang, LPNMR 2005], v.i.
 - [FHS], v.i.

Epistemic specifications: reducts [Kahl 2014]

Definition

 reduct Π^W of an epistemic specification Π by a world view W: for each rule,

literal in body:	if true in \mathcal{W} :	if false in \mathcal{W} :
к /	replace by <i>l</i>	delete rule
notK/	replace by $ op$	replace by not I
M /	replace by $ op$	replace by not not I
notM/	replace by not I	delete rule

Problem 1: cycle with K

$$\Pi_{18} = \{ p \leftarrow K p \}$$

has two world views {Ø} and {{p}} [Gelfond 1991,1994], [Wang&Zhang 2005]
 has unique world view {Ø} [Gelfond 2011, Kahl 2014, FHS]

Remark. clear case: $K p \rightarrow p$ is the truth axiom of epistemic logic

Problem 2: cycle with M

 $\Pi_1 = \{ p \leftarrow \mathbb{M} \, p \}$

? has unique world view {{p}} [Kahl 2014]
? has 2 world views {Ø} and {{p}} [Gelfond 1991,1994], [Wang&Zhang 2005]
? has unique world view {Ø} [FHS] has 2 world views {Ø} and {{p}} if M replaced by ¬K ¬ [FHS]

Remark. circular \Rightarrow no clear intuitions (at least for us)

Problem 3: preference over a disjunction

$$\Pi_{32} = \{ p \text{ or } q \leftarrow, q \leftarrow \mathbb{M} p \}$$

- In the second second
- \odot has unique world view $\{\{q\}\}$ [Kahl 2014, FHS]

Remark. intuitively clear (similar to Gelfond's eligibility example)

Problem 4: preference over a disjunction, ctd.

$$\Pi_{32} = \{p \text{ or } q \leftarrow, q \leftarrow \text{ not } K p\}$$

has unique world view {{q}}
 has 2 world views {{q}} and {{p}}
 [Gelfond 1991,1994,2011, FHS]

Remark. intuitively clear (similar to Gelfond's eligibility example)

[Wang & Zhang 2005]'s epistemic extension of HT

- 'occamist' combination of ht-models and K45
- WZ-model = (\mathcal{W}, H, T) where
 - \mathcal{W} is a classical S5 model: $\mathcal{W} \subseteq 2^{\mathsf{PVAR}}$
 - (H, T) is an ht-model: $H \subseteq T \subseteq PVAR$ $\Rightarrow H$ and T not necessarily in \mathcal{W} (!)
- truth conditions:

 $\mathcal{W}, \mathcal{H}, \mathcal{T} \models \mathbb{K} \varphi$ iff $\mathcal{W}, \mathcal{H}', \mathcal{T}' \models \varphi$ for every ht-model $\mathcal{H}', \mathcal{T}'$

that can be built from $\boldsymbol{\mathcal{W}}$

 $\mathcal{W}, \mathcal{H}, \mathcal{T} \models \mathbb{M}\varphi$ iff $\mathcal{W}, \mathcal{H}', \mathcal{T}' \models \varphi$ for some ht-model ...

- $\langle \mathcal{W}, T, T \rangle$ is an epistemic equilibrium model of φ iff $\langle \mathcal{W}, T, T \rangle \models \varphi$ and $\langle \mathcal{W}, H, T \rangle \not\models \varphi$ for every $H \subset T$
- ⟨W⟩ is an equilibrium view of φ iff W is the maximal collection satisfying W = {T : ⟨W, T, T⟩ is an epi.eq.model of φ}

Theorem (Wang&Zhang 2005, Thm. 2)

 \mathcal{W} is a world view of Π iff \mathcal{W} is an equilibrium view of Π .

[Wang & Zhang 2005]'s epistemic extension of HT: criticisms

- not really an epistemic logic
 - $p \wedge K \neg p$ has a model (and even a WZ-equilibrium model)
- Inot really an intuitionistic modal logic
 - $\mathbf{K} \varphi \leftrightarrow \neg \mathbf{M} \neg \varphi$ valid
 - $\mathbf{K} \neg \neg \varphi \rightarrow \mathbf{K} \varphi$ valid
 - $\neg \neg \mathbf{K} \varphi \rightarrow \mathbf{K} \varphi$ valid
- equilibrium definition unintuitive beyond disjunctive logic programs ('nested epistemic logic programs', NELP)
 - (\mathcal{W}, T, T) is WZ-equilibrium model of K *p* iff \mathcal{W} S5-model of K *p* and $T=\emptyset$
 - \Rightarrow no minimisation
 - K p has no WZ-equilibrium model
 - $M p \land M \neg p$ has no WZ-equilibrium view

Our approach

- standard epistemic extension of HT
 - two-dimensional modal logic (cf. intuitionistic S5)
- a maximise falsehood: cf. equilibrium logic
 - Ø ≈_{ЕЕ} К ¬р
 - $p \lor q \models_{EE} K (p \lor q)$
 - $p \lor q \not\models_{EE} M p \land M q$
- maximise ignorance: cf. Levesque's "all-that-l-know" and Moore's autoepistemic logic
 - $p \lor q \models_{AEE} M p \land M q$
 - however makes no difference for the discriminating examples

Our epistemic ht-models

🕺 two-dimensional modal logic (cf. intuitionistic S5)

Definition

e-ht-model = (\mathcal{W}, \hbar) where

- \mathcal{W} is a classical S5 model: $\mathcal{W} \subseteq 2^{\mathsf{PVAR}}$
- $\hbar : \mathcal{W} \longrightarrow 2^{\mathsf{PVAR}}$ such that $\hbar(T) \subseteq T$ for every $T \in W$
- classical S5 model: $\hbar = id$
- truth conditions:

 $\begin{array}{ll} (\mathcal{W},\hbar), T \vDash p & \text{iff} \quad p \in \hbar(T) \\ (\mathcal{W},\hbar), T \vDash \varphi \to \psi & \text{iff} \quad (\mathcal{W},\hbar), T \vDash \varphi \supset \psi \text{ and} \\ & (\mathcal{W},id), T \vDash \varphi \supset \psi \\ (\mathcal{W},\hbar), T \vDash \mathsf{K}\varphi & \text{iff} \quad (\mathcal{W},\hbar), T' \vDash \varphi \text{ for every } T' \in \mathcal{W} \\ (\mathcal{W},\hbar), T \vDash \mathsf{M}\varphi & \text{iff} \quad (\mathcal{W},\hbar), T' \vDash \varphi \text{ for some } T' \in \mathcal{W} \\ \end{array}$

 satisfies the requirements for intuitionistic modal logics [Fischer-Servi 1976, Fariñas&Raggio 1983, Simpson 1995, ...]

Our epistemic equilibrium models

floor minimise truth (cf. equilibrium logic)

Definition

 ${\mathcal W}$ is an epistemic equilibrium model of φ iff

$$(\mathcal{W}, id), T \models \varphi \text{ for every } T \in \mathcal{W}$$

(classical S5 model of φ)

2 there is no $\hbar \neq id$ such that $(\mathcal{W}, \hbar), T \models \varphi$ for every $T \in \mathcal{W}$

(no 'weaker' e-ht-model of φ)

Example: { $p \text{ or } \overline{p} \leftarrow$ } has 3 epistemic eq.models:

 $\{\emptyset\}, \{\{p\}\}, \text{ and } \{\emptyset, \{p\}\}$

Theorem (strong equivalence)

Our autoepistemic equilibrium models

🕅 minimise knowledge (cf. Levesque's "all-that-I-know")

Definition

 $(\mathcal{W}, \mathcal{T})$ is an autoepistemic equilibrium model of φ iff

- **(** \mathcal{W} , *T***)** is an epistemic equilibrium model of φ
- $(\mathcal{W}', \mathcal{T}) \text{ is not an epistemic equilibrium model of } \varphi, \text{ for every} \\ \mathcal{W}' \text{ such that } \mathcal{W}' \supseteq \mathcal{W} \qquad (\text{no 'bigger' epi.eq.model of } \varphi)$

Example: { $p \text{ or } \overline{p} \leftarrow$ } has 1 autoepistemic eq.model:

{Ø, {p}}

Theorem (strong equivalence)

Ongoing work: first minimise knowledge, then truth?

- given Π,
 - Compute the biggest S5 model W of Π
 - Compute the biggest subset of W that is an epistemic eq.model
- gets right all the examples but $p \leftarrow M p$

To sum it up

- many possible semantics of epistemic specifications
- arguably flawed: [Gelfond 1991,1994; Wang&Zhang 2005]
- problem with preference over disjunctions: [Gelfond 2005]
- gets all examples right (idea of support): [Kahl 2014]
- epistemic HT good basis for further work:
 - simple intuitionistic modal logic
 - epistemic equilibrium models (minimises truth)
 - autoepistemic equilibrium models (maximises ignorance)
- programs with cycles:
 - intuitions not clear (perhaps not only for us)
 - semantics not easy to define