Logic-based order-of-magnitude qualitative reasoning for closeness via proximity intervals

Alfredo Burrieza Emilio Muñoz-Velasco Manuel Ojeda-Aciego

Universidad de Málaga. Andalucía Tech

Feb 23, 2015

Manuel Ojeda-Aciego (UMA)

Closeness via proximity intervals

Feb 23, 2015 1 / 35

Qualitative Reasoning (QR)

- QR is very useful for searching solutions to problems about the behavior of physical systems without using differential equations or exact numerical data.
- It is possible to reason about incomplete knowledge by providing an abstraction of the numerical values.
- QR has applications in AI, such as Robot Kinematics, Data Analysis, and dealing with movements.

.

Logics and QR

- First papers have been focused on
 - Spatio-Temporal Reasoning and
 - about solutions of ordinary differential equations
- Our work has been focused on Order of Magnitude QR.

Order of Magnitude QR

- A partition of the real line in qualitative classes (small, medium, large,...) is considered. The absolute approach.
- A family of binary order of magnitude relations which establishes different comparison relations (negligibility, closeness, comparability, ...). The relative approach.
- We defined some logics which bridge the absolute and relative approaches.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Previous works I

- Sound and complete multimodal logics dealing with negligibility, comparability, non-closeness and distance.
 - A multimodal logic approach to order of magnitude qualitative reasoning with comparability and negligibility relations. *Fundamenta Informaticae*, 68:21–46, 2005.
 - A Logic for Order of Magnitude Reasoning with Negligibility, Non-closeness and Distance. Lecture Notes in Computer Science 4788: 210–219, 2007
- Theorem provers for logics dealing with negligibility, non-closeness and distance.
 - (with A. Mora, and E. Orłowska) An implementation of a dual tableaux system for order-of-magnitude qualitative reasoning. Intl J on Computer Mathematics 86:1852–1866, 2009
 - (with J Golinska) Relational approach for a logic for order of magnitude qualitative reasoning with negligibility, non-closeness and distance. *Logic Journal of the IGPL* 17(4): 375–394, 2009

・ロット (母) ・ ヨ) ・ ヨ)

Previous works II

- (with J Golinska) Dual tableau for a multimodal logic for order of magnitude qualitative reasoning with bidirectional negligibility. Intl J on Computer Mathematics 86: 1707–1718, 2009
- Sound, complete and decidable PDL for qualitative velocity, and for dealing with movements.
 - ► A logic framework for reasoning with movement based on fuzzy qualitative representation. *Fuzzy Sets and Systems*, 242:114–131, 2014.
 - (with J Golinska) Reasoning with Qualitative Velocity: Towards a Hybrid Approach. Lecture Notes in Computer Science 7208: 635–646 2011
 - A PDL approach for qualitative velocity. Intl J of Uncertainty, Fuzziness, and Knowledge-based Systems, 19(1):11–26, 2011
 - Closeness and distance in order of magnitude qualitative reasoning via PDL. Lecture Notes in Artificial Intelligence 5988:71–80, 2010.
- We focus here on a multimodal logic for closeness.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Why this approach?

• So far, the only published reference on a logic-based approach to closeness uses PDL and qualitative sum.

Specifically, two values are assumed to be close if one of them can be obtained from the other by adding a "small" number, and small numbers are defined as those belonging to a fixed interval.

- This specific approach has a number of potential applications but might not be so useful in other situations, for instance, when there are barriers (physical, temporal, etc.).
- In this work, we consider a new logic-based alternative to the notion of closeness in the context of multimodal logics. Our notion of closeness stems from the idea that two values are considered to be *close* if they are inside a prescribed area or *proximity interval*.
- This leads to an equivalence relation, particularly, transitivity holds.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Preliminary definitions

We will consider a strictly ordered set of real numbers (S, <) divided into the following qualitative classes:

Note that all the intervals are considered relative to S.

We will consider each qualitative class to be divided into disjoint intervals called *proximity intervals*, as shown in the figure below. The qualitative class INF is itself a proximity interval.

Preliminary definitions

Definition

Let (S, <) be a strictly linear divided into the qualitative class defined above.

- A *proximity structure* is a finite set $\mathcal{I}(\mathbb{S}) = \{I_1, I_2, ..., I_n\}$ of intervals in \mathbb{S} , such that:
 - **●** For all $I_i, I_j \in \mathcal{I}(\mathbb{S})$, if $i \neq j$, then $I_i \cap I_j = \emptyset$.
 - $I_1 \cup I_2 \cup \cdots \cup I_n = \mathbb{S}.$
 - So For all x, y ∈ S and l_i ∈ I(S), if x, y ∈ l_i, then x, y belong to the same qualitative class.
 - $INF \in \mathcal{I}(\mathbb{S}).$
- Given a proximity structure I(S), the binary relation of closeness c is defined, for all x, y ∈ S, as follows: x c y if and only if there exists I_i ∈ I(S) such that x, y ∈ I_i.

Preliminary definitions

From now on, we will denote by $Q = \{NL, NM, NS, INF, PS, PM, PL\}$ the set of qualitative classes, and by QC to any element of Q.

Definition

Let (S, <) be a strictly linear set divided into the qualitative classes defined above. The binary relation of negligibility n is defined on S as x n y if and only if one of the following situations holds:

```
(i) x \in \text{INF} and y \notin \text{INF},
```

(*ii*) $x \in NS \cup PS$ and $y \in NL \cup PL$.

イロト イポト イヨト イヨト

Preliminary results

Proposition

The relation c defined above has the following properties:

- c is an equivalence relation on S.
- **2** For all $x, y, z \in S$, the following holds:
 - (a) If $x, y \in INF$, then $x \in y$.
 - (b) For every $QC \in Q$, if $x \in QC$ and $x \in y$, then $y \in QC$.

Proposition

For all $x, y, z \in \mathbb{S}$ we have:

- (i) If $x \in y$ and $y \in z$, then $x \in z$.
- (ii) If x n y and y c z, then x n z.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The language $\mathcal{L}(MQ)^{\mathcal{P}}$

Introducing the Syntax

Modal connectives $\overrightarrow{\Box}$ and $\overleftarrow{\Box}$ to deal with the usual ordering <. Two other modal operators will be used, \boxdot for closeness, and \boxdot for negligibility.

Their informal meanings are the following

- $\vec{\Box}$ A means A is true in every point greater than the current one.
- $\Box A$ means A is true in every point smaller than the current one.
- © A means A is true in every point close to the current one
- A means A is true in every point negligible with respect to the current one.

The language $\mathcal{L}(MQ)^{\mathcal{P}}$ Syntax

The formulas are defined as follows:

$$A = p \mid \xi \mid c_i \mid \neg A \mid (A \land A) \mid (A \lor A) \mid (A \to A) \mid \overrightarrow{\Box} A \mid \overleftarrow{\Box} A \mid \boxdot A \mid \boxdot A$$

where

- p represents the propositional variables
- ξ is a metavariable denoting any milestone $\alpha^-, \alpha^+, \beta^-, \beta^+, \gamma^-, \gamma^+$
- c_i are proximity constants (finitely many)
- The connectives \neg, \wedge, \vee and \rightarrow are the classical ones
- $\overrightarrow{\Box}$, $\overleftarrow{\Box}$, \boxdot , \boxdot are the previous unary modalities

We will use the symbols $\overrightarrow{\diamond}, \overleftarrow{\diamond}, \diamondsuit, \diamondsuit$ as abbreviations. We will also introduce abbreviations for qualitative classes, for instance, ps for $(\overleftarrow{\diamond} \alpha^+ \land \overrightarrow{\diamond} \beta^+) \lor \beta^+$.

The language $\mathcal{L}(MQ)^{\mathcal{P}}$

Semantics

Definition

A *frame* for $\mathcal{L}(MQ)^{\mathcal{P}}$ is a tuple $\Sigma = (\mathbb{S}, \mathcal{D}, <, \mathcal{I}(\mathbb{S}), \mathcal{P})$, where:

- (S, <) is a strict linearly ordered set.
- 2 D = {+α, -α, +β, -β, +γ, -γ} is a set of designated points in S (called *frame constants*).
- **3** $\mathcal{I}(\mathbb{S})$ is a proximity structure.
- P is a bijection (called *proximity function*), P: C → I(S), that assigns to each proximity constant c a proximity interval.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The language $\mathcal{L}(MQ)^{\mathcal{P}}$

Semantics

Definition

Let Σ be a frame for $\mathcal{L}(MQ)^{\mathcal{P}}$, an MQ-model is an ordered pair $\mathcal{M} = (\Sigma, h)$, where *h* is a meaning function (or, interpretation) $h: \mathcal{V} \longrightarrow 2^{\mathbb{S}}$. Any interpretation can be uniquely extended to the set of all formulas in $\mathcal{L}(MQ)^{\mathcal{P}}$ (also denoted by *h*) as follows:

$$h(\overrightarrow{\Box}A) = \{x \in \mathbb{S} \mid y \in h(A) \text{ for all } y \text{ such that } x < y\}$$

$$h(\overrightarrow{\Box}A) = \{x \in \mathbb{S} \mid y \in h(A) \text{ for all } y \text{ such that } y < x\}$$

$$h(\overrightarrow{\Box}A) = \{x \in \mathbb{S} \mid y \in h(A) \text{ for all } y \text{ such that } x \in y\}$$

$$h(\overrightarrow{\Box}A) = \{x \in \mathbb{S} \mid y \in h(A) \text{ for all } y \text{ such that } x \in y\}$$

$$h(\overrightarrow{\Box}A) = \{x \in \mathbb{S} \mid y \in h(A) \text{ for all } y \text{ such that } x \in y\}$$

$$h(\overrightarrow{\Box}A) = \{x \in \mathbb{S} \mid y \in h(A) \text{ for all } y \text{ such that } x \in y\}$$

$$h(\overrightarrow{\Box}A) = \{x \in \mathbb{S} \mid y \in h(A) \text{ for all } y \text{ such that } x \in y\}$$

$$h(\overrightarrow{\Box}A) = \{x \in \mathbb{S} \mid y \in h(A) \text{ for all } y \text{ such that } x \in y\}$$

$$h(\overrightarrow{\Box}A) = \{x \in \mathbb{S} \mid y \in h(A) \text{ for all } y \text{ such that } x \in y\}$$

$$h(\overrightarrow{\Box}A) = \{x \in \mathbb{S} \mid y \in h(A) \text{ for all } y \text{ such that } x \in y\}$$

$$h(\overrightarrow{\Box}A) = \{x \in \mathbb{S} \mid x \in h(A) \text{ for all } y \text{ such that } x \in y\}$$

$$h(\overrightarrow{\Box}A) = \{x \in \mathbb{S} \mid x \in h(A) \text{ for all } y \text{ such that } x \in y\}$$

The definitions of truth, satisfiability and validity are the usual ones.

Manuel Ojeda-Aciego (UMA)

An axiom system for $\mathcal{L}(MQ)^{\mathcal{P}}$

The axiom system $MQ^{\mathcal{P}}$ consists of all the tautologies of classical propositional logic plus the following axiom schemata and rules of inference:

For white connectives

K1
$$\overrightarrow{\Box}(A \to B) \to (\overrightarrow{\Box}A \to \overrightarrow{\Box}B)$$

K2 $A \to \overrightarrow{\Box} \overleftarrow{\diamond} A$
K3 $\overrightarrow{\Box}A \to \overrightarrow{\Box} \overrightarrow{\Box}A$
K4 $(\overrightarrow{\Box}(A \lor B) \land \overrightarrow{\Box}(\overrightarrow{\Box}A \lor B) \land \overrightarrow{\Box}(A \lor \overrightarrow{\Box}B)) \to (\overrightarrow{\Box}A \lor \overrightarrow{\Box}B)$

For frame constants

c1
$$\overleftarrow{\Diamond}\xi \lor \xi \lor \overrightarrow{\Diamond}\xi$$

c2 $\xi \to (\overrightarrow{\Box}\neg\xi \land \overrightarrow{\Box}\neg\xi)$
c3 $\gamma^- \to \overrightarrow{\Diamond}\beta^-$
c4 $\beta^- \to \overrightarrow{\Diamond}\alpha^-$
c5 $\alpha^- \to \overrightarrow{\Diamond}\alpha^+$
c6 $\alpha^+ \to \overrightarrow{\Diamond}\beta^+$
c7 $\beta^+ \to \overrightarrow{\Diamond}\gamma^+$

An axiom system (cont'd)

For proximity constants (for all $i, j \in \{1, ..., r\}$)

$$\begin{array}{l} \mathbf{p1} \quad \bigvee_{i=1}^{r} c_{i} \\ \mathbf{p2} \quad c_{i} \rightarrow \neg c_{j} \\ \mathbf{p3} \quad (\overleftarrow{\diamond} c_{i} \land \overrightarrow{\diamond} c_{i}) \rightarrow c_{i} \\ \mathbf{p4} \quad \overleftarrow{\diamond} c_{i} \lor c_{i} \lor \overrightarrow{\diamond} c_{i} \end{array}$$
 (for $i \neq j$)

Mixed axioms (for all $i \in \{1, \ldots, r\}$)

$$\begin{array}{l} \mathsf{m1} \quad (c_i \land \mathsf{qc}) \to \left(\overleftarrow{\Box} (c_i \to \mathsf{qc}) \land \overrightarrow{\Box} (c_i \to \mathsf{qc}) \right) \\ \mathsf{m2} \quad (c_i \land \mathsf{inf}) \to \left(\overleftarrow{\Box} (\mathsf{inf} \to c_i) \land \overrightarrow{\Box} (\mathsf{inf} \to c_i) \right) \\ \mathsf{m3} \quad \boxdot{A} \leftrightarrow \left(A \land \bigvee_{i=1}^r \left(c_i \land \left(\overleftarrow{\Box} (c_i \to A) \land \overrightarrow{\Box} (c_i \to A) \right) \right) \right) \right) \\ \mathsf{m4} \quad \boxdot{A} \leftrightarrow \left(\left(\mathsf{inf} \to \left(\overleftarrow{\Box} (\neg \mathsf{inf} \to A) \land \overrightarrow{\Box} (\neg \mathsf{inf} \to A) \right) \right) \land \\ \left((\mathsf{ns} \lor \mathsf{ps}) \to \left(\overleftarrow{\Box} (\mathsf{nl} \to A) \land \overrightarrow{\Box} (\mathsf{pl} \to A) \right) \right) \right) \right) \\ \end{array}$$

An axiom system (cont'd)

The mirror images of K1, K2 and K4 are also considered as axioms.

Rules of inference:

(MP) Modus Ponens for \rightarrow . (N $\overrightarrow{\Box}$) If $\vdash A$ then $\vdash \overrightarrow{\Box}A$. (N $\overleftarrow{\Box}$) If $\vdash A$ then $\vdash \overleftarrow{\Box}A$.

The syntactical notions of *theoremhood* and *proof* for $MQ^{\mathcal{P}}$ are defined as usual.

- We follow the step-by-step method, which is a Henkin-style proof.
- The idea is to show that for any consistent formula *A*, a model for *A* can be built, and this is done by successive finite approximations.
- It is worth to note that the actual construction of the successive finite approximations has a number of specific (and interesting) problems, mainly related to the need of the proximity functions within a frame.

Theorem (Completeness)

If A is valid formula of $\mathcal{L}(MQ)^{\mathcal{P}}$, then A is a theorem of $MQ^{\mathcal{P}}$.

(D) (A) (A) (A)

- We follow the step-by-step method, which is a Henkin-style proof.
- The idea is to show that for any consistent formula *A*, a model for *A* can be built, and this is done by successive finite approximations.
- It is worth to note that the actual construction of the successive finite approximations has a number of specific (and interesting) problems, mainly related to the need of the proximity functions within a frame.

Theorem (Completeness)

If A is valid formula of $\mathcal{L}(MQ)^{\mathcal{P}}$, then A is a theorem of $MQ^{\mathcal{P}}$.

- The idea is to show that $MQ^{\mathcal{P}}$ has the strong finite model property.
- Firstly, we show the soundness and completeness of MQ^P wrt a class of models weaker than the MQ-models.
- MQ-models do not serve our purpose in order to prove the strong finite model property of $MQ^{\mathcal{P}}$ because there are formulas which are satisfiable just in infinite MQ-models (since MQ-models are strict linear orders).
- The definition of the (weaker) *MQC*-models is a generalization of that of *MQ*-models in which the irreflexivity is restricted just to the milestones.

Theorem (Strong Finite Model Property)

Let A be a formula of $\mathcal{L}(MQ)^{\mathcal{P}}$. If A^* is satisfiable in a MQC-model, then A^* is satisfiable in a finite MQC-model containing at most 2^n points, where n is the number of subformulas of A^* .

Theorem (Decidability)

 $MQ^{\mathcal{P}}$ is decidable.

- The idea is to show that $MQ^{\mathcal{P}}$ has the strong finite model property.
- Firstly, we show the soundness and completeness of MQ^P wrt a class of models weaker than the MQ-models.
- MQ-models do not serve our purpose in order to prove the strong finite model property of $MQ^{\mathcal{P}}$ because there are formulas which are satisfiable just in infinite MQ-models (since MQ-models are strict linear orders).
- The definition of the (weaker) *MQC*-models is a generalization of that of *MQ*-models in which the irreflexivity is restricted just to the milestones.

Theorem (Strong Finite Model Property)

Let A be a formula of $\mathcal{L}(MQ)^{\mathcal{P}}$. If A^* is satisfiable in a MQC-model, then A^* is satisfiable in a finite MQC-model containing at most 2^n points, where n is the number of subformulas of A^* .

Theorem (Decidability)

 $MQ^{\mathcal{P}}$ is decidable.

- The idea is to show that $MQ^{\mathcal{P}}$ has the strong finite model property.
- Firstly, we show the soundness and completeness of MQ^P wrt a class of models weaker than the MQ-models.
- MQ-models do not serve our purpose in order to prove the strong finite model property of $MQ^{\mathcal{P}}$ because there are formulas which are satisfiable just in infinite MQ-models (since MQ-models are strict linear orders).
- The definition of the (weaker) *MQC*-models is a generalization of that of *MQ*-models in which the irreflexivity is restricted just to the milestones.

Theorem (Strong Finite Model Property)

Let A be a formula of $\mathcal{L}(MQ)^{\mathcal{P}}$. If A^* is satisfiable in a MQC-model, then A^* is satisfiable in a finite MQC-model containing at most 2^n points, where n is the number of subformulas of A^* .

Theorem (Decidability)

 $MQ^{\mathcal{P}}$ is decidable.

Future work

- Study the complexity of the logic.
- Develop automated provers for this logic: Rasiowa-Sikorsky ??
- Implement those provers.

Logic-based order-of-magnitude qualitative reasoning for closeness via proximity intervals

Alfredo Burrieza Emilio Muñoz-Velasco Manuel Ojeda-Aciego

Universidad de Málaga. Andalucía Tech

Feb 23, 2015

Manuel Ojeda-Aciego (UMA)

Closeness via proximity intervals

Feb 23, 2015 22 / 35

Maximal consistency lemmas

The notions of *consistency* and *maximal consistency* for $MQ^{\mathcal{P}}$ are the usual ones; \mathcal{MC} will denote the set of all mc-sets of formulas.

Definition

The relations \rhd and \sim are defined on \mathcal{MC} as follows:

•
$$\Gamma_1 \triangleright \Gamma_2$$
 if and only if $\{A \mid \overrightarrow{\Box} A \in \Gamma_1\} \subseteq \Gamma_2$.

• $\Gamma_1 \sim \Gamma_2$ if and only if $\Gamma_1 \rhd \Gamma_2$ or $\Gamma_1 = \Gamma_2$ or $\Gamma_2 \rhd \Gamma_1$.

Maximal consistency lemmas

Lemma

Lemma

- Given Γ ∈ MC there is exactly one proximity constant c ∈ C such that c ∈ Γ.
- **3** For all $\Gamma_i \in \mathcal{MC}$ and $c \in C$, if $\Gamma_1 \triangleright \Gamma_2 \triangleright \Gamma_3$ and $c \in \Gamma_1, \Gamma_3$, then $c \in \Gamma_2$.

イロト イヨト イヨト イヨト

Maximal consistency lemmas

Lemma (Lindenbaum Lemma)

Any consistent set of formulas in $MQ^{\mathcal{P}}$ can be extended to an mc-set in $MQ^{\mathcal{P}}$.

Lemma

Step-by-step approach to completeness

The specific construction of the successive approximations of the required model for a consistent formula *A* forces us to consider the following weaker version of the notion of frame:

Definition

Given a denumerable infinite set S, a *partial frame* is a tuple $\Sigma = (\mathbb{S}, \mathcal{D}, <, \mathcal{I}(\mathbb{S}), \mathcal{P})$ where \mathbb{S} is a subset of S, \mathcal{D} is a set of designated points in \mathbb{S} , < is a total strict ordering on $\mathbb{S}, \mathcal{I}(\mathbb{S})$ is a proximity structure, and $\mathcal{P} \colon \mathcal{C} \to \mathcal{I}(\mathbb{S})$ is a partial bijective function where \mathcal{C} is the set of proximity constants.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Conditionals

Definition

Let $\Sigma = (\mathbb{S}, \mathcal{D}, <, \mathcal{I}(\mathbb{S}), \mathcal{P})$ be a partial frame.

- A *trace* of Σ is a function $f_{\Sigma} : \mathbb{S} \longrightarrow 2^{\mathcal{L}(MQ)^{\mathcal{P}}}$ such that for all $x \in \mathbb{S}$ the set $f_{\Sigma}(x)$ is a maximal consistent set.
- **2** A trace of Σ , f_{Σ} , is called:

Coherent if it satisfies for all $x, y \in \mathbb{S}$ and $\xi \in \mathcal{D}$:

•
$$\xi^+ \in f_{\Sigma}(+\xi)$$
 and $\xi^- \in f_{\Sigma}(-\xi)$

2 If
$$x < y$$
, then $f_{\Sigma}(x) \triangleright f_{\Sigma}(y)$

③ Let $c_i ∈ C$ and I ∈ I(S). If $c_i ∈ f_{\Sigma}(x)$ and x ∈ I, then $P(c_i) = I$.

Full if it is coherent and, for all formulas *A*, and all $x \in S$, it satisfies the following conditions:

- (a) if $\overrightarrow{\Diamond} A \in f_{\Sigma}(x)$, there exists *y* such that x < y and $A \in f_{\Sigma}(y)$
- (b) if $\delta A \in f_{\Sigma}(x)$, there exists y such that y < x and $A \in f_{\Sigma}(y)$

The expressions (a) (resp., (b)) are called *prophetic* (resp., *historic*). A prophetic conditional is said to be *active* if $\overrightarrow{\Diamond} A \in f_{\Sigma}(x)$, but there is no *y* such that x < y and $A \in f_{\Sigma}(y)$; otherwise, is said to be *exhausted*.

Manuel Ojeda-Aciego (UMA)

Main results

Lemma (Trace lemma)

Let f_{Σ} be a full trace of a frame Σ . Let h be an interpretation assigning to each propositional variable p the set $h(p) = \{x \in S \mid p \in f_{\Sigma}(x)\}$. Then, for any formula A we have $h(A) = \{x \in S \mid A \in f_{\Sigma}(x)\}$.

Lemma (Exhausting lemma)

Let f_{Σ} be a coherent trace of a frame Σ , and suppose that there is a conditional for f_{Σ} which is active. Then, there is a frame Σ' and a coherent trace $f_{\Sigma'}$ extending f_{Σ} , such that this conditional is exhausted for $f_{\Sigma'}$.

・ロト ・ 同 ト ・ 臣 ト ・ 臣 ト … 臣

Definition

An *MQC-frame* for $\mathcal{L}(MQ)^{\mathcal{P}}$ is a tuple $\Sigma = (\mathbb{S}, \mathcal{D}, <, \mathcal{K}(\mathbb{S}), \mathcal{P})$, where:

- S is a set containing a subset $\mathcal{D} = \{+\alpha, -\alpha, +\beta, -\beta, +\gamma, -\gamma\}$ of designated elements (milestones).
- $\mathcal{K}(\mathbb{S}) = \{K_1, K_2, \dots, K_n\}$ is a partition of \mathbb{S} such that:
 - For all x, y ∈ S and K_i ∈ K(S), if x, y ∈ K_i, then x, y belong to the same qualitative class defined by the milestones.
 - **2** INF $\in \mathcal{K}(\mathbb{S})$.
- $\mathcal{P}: \mathcal{C} \longrightarrow \mathcal{K}(\mathbb{S})$ is a bijection.

An *MQC-model on* Σ is an ordered pair $\mathcal{M} = (\Sigma, h)$, where *h* is a *meaning function* defined as above.

The concepts of satisfiability, truth and validity of a formula in a *MQC*-model are defined as usual.

- We will use the usual *filtration method*, showing that each formula which is satisfiable in an *MQC*-model is satisfiable also in a *finite MQC*-model with bounded size.
- In order to obtain this finite model, we will define an equivalence relation of the universe of the original (non-necessarily finite) model.
- Due to the particular features of our logic, which includes a number of constants and milestones, this equivalence relation will be based on the set of subformulas of a suitable modification *A*^{*} of the formula *A*.
- Given a formula A written only in terms of the primitive operators we define

$$A^* =_{def} A \wedge \bigvee_{c_i \in \mathcal{C}} c_i \wedge \bigwedge_{\xi \in \mathcal{D}} (\xi \to \overrightarrow{\Box} \neg \xi)$$

Defining filtrations

- In what follows, we denote by Γ the set of subformulas of A*.
- Given any *MQC*-model *M* = (S, *D*, <, *I*(S), *P*, *h*) of *A*^{*} and *x*, *y* ∈ S, we define *x* ~_Γ *y* iff {*B* ∈ Γ: *x* ∈ *h*(*B*)} = {*B* ∈ Γ: *y* ∈ *h*(*B*)}.
- Clearly \sim_{Γ} is an equivalence relation on \mathbb{S} .
- So, for every $x \in \mathbb{S}$, we define $[x] = \{y \in \mathbb{S} : y \sim_{\Gamma} x\}$
- S_Γ denotes the quotient set S/~_Γ
- K_{Γ} denotes the set $\{[x] \in \mathbb{S}_{\Gamma} \mid x \in K\}$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Filtrations

Definition

Given A^* , Γ , and \sim_{Γ} as defined above, and given a *MQC*-model $\mathcal{M} = (\mathbb{S}, \mathcal{D}, <, \mathcal{K}(\mathbb{S}), \mathcal{P}, h)$ of A^* , the Γ -*filtration of* \mathcal{M} is a structure of the form $\mathcal{M}_{\Gamma} = (\mathbb{S}_{\Gamma}, \mathcal{D}_{\Gamma}, <_{\Gamma}, \mathcal{K}(\mathbb{S})_{\Gamma}, \mathcal{P}_{\Gamma}, h_{\Gamma})$, where:

2
$$\mathcal{D}_{\Gamma} = \{ [+\alpha], [+\beta], [+\gamma], [-\alpha], [-\beta], [-\gamma] \}.$$

*h*_Γ(*p*) = {[*x*]: *x* ∈ *h*(*p*)}, for every atom *p* ∈ Γ (if *p* ∉ Γ, *h*_Γ(*p*) = Ø). *h*_Γ(ξ) = {[ξ]}.

First results

Proposition

Given an MQC-model \mathcal{M} of A^* , the Γ -filtration of \mathcal{M} has at most 2^n elements in \mathbb{S}_{Γ} , where n is the cardinal of Γ .

Proposition

Let $\mathcal{M}_{\Gamma} = (\mathbb{S}_{\Gamma}, \mathcal{D}_{\Gamma}, <_{\Gamma}, \mathcal{K}(\mathbb{S})_{\Gamma}, \mathcal{P}_{\Gamma}, h_{\Gamma})$ be the Γ -filtration of a MQC-model $\mathcal{M} = (\mathbb{S}, \mathcal{D}, <, \mathcal{K}(\mathbb{S}), \mathcal{P}, h)$. Then, x < y implies $[x] <_{\Gamma} [y]$ for every $x, y \in \mathbb{S}$.

Proposition

If $\mathcal{M}_{\Gamma} = (\mathbb{S}_{\Gamma}, \mathcal{D}_{\Gamma}, \mathcal{P}_{\Gamma}, <_{\Gamma}, h_{\Gamma})$ is the Γ -filtration of an MQC-model $\mathcal{M} = (\mathbb{S}, \mathcal{D}, \mathcal{P}, <, h)$, then \mathcal{M}_{Γ} is also a MQC-model.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

First results

Proposition

Let $\mathcal{M}_{\Gamma} = (\mathbb{S}_{\Gamma}, \mathcal{D}_{\Gamma}, <_{\Gamma}, \mathcal{K}(\mathbb{S})_{\Gamma}, \mathcal{P}_{\Gamma}, h_{\Gamma})$ be a Γ -filtration of a MQC-model $\mathcal{M} = (\mathbb{S}, \mathcal{D}, <, \mathcal{K}(\mathbb{S}), \mathcal{P}, h)$. Then, for every $A \in \Gamma$ and for every $x \in \mathbb{S}$, we have:

 $x \in h(A)$ if and only if $[x] \in h_{\Gamma}(A)$.

Theorem (Strong Finite Model Property)

Let A be a formula of $\mathcal{L}(MQ)^{\mathcal{P}}$. If A^* is satisfiable in a MQC-model, then A^* is satisfiable in a finite MQC-model containing at most 2^n points, where n is the number of subformulas of A^* .

The previous theorem can be used to define a test for satisfiability (resp. validity) of a formula *A* with respect to *MQC*-models.

・ロト ・回ト ・ヨト ・ヨト … ヨ

First results

Now, the following result states the equivalence between validity wrt MQC-models, validity wrt MQ-models, and theoremhood wrt $MQ^{\mathcal{P}}$.

Theorem

For every formula A of $\mathcal{L}(MQ)^{\mathcal{P}}$, the following conditions are equivalent:

- (i) A is a theorem of $MQ^{\mathcal{P}}$.
- (ii) A is MQC-valid.
- (iii) A is MQ-valid.

As a consequence of the previous results we obtain the following result:

Theorem (Decidability) $MQ^{\mathcal{P}}$ is decidable.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))